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Abstract

Polynomial optimization is widely applicatible in solving both practical and theoretical compu-
tation problem. One particularly successful way to solve the polynomial optimization certifying
the nonnegativity of a polynomial using the sum of squares (SOS) certificate. In this thesis, we
study how different choices of the polynomial basis can affect the numerical stability of the linear
system generated when using Semidefinite programming (SDP) to test SOS. We run numerical
experiments comparing the performance of monomial basis and different types of orthogonal basis,
and we discuss the different trade-offs between the choice two types of polynomial basis.
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1 Introduction

Polynomial optimization problems are ubiquitous in applied mathematics and engineering. For
instance, Ahmadi and Majumdar [AM16] suggested to use polynomial optimization in the field
of artificial intelligence for solving real-time decision problems. In electric power system design,
the optimal power flow problem can be reduced to a polynomial optimization problem as well,
see [Jos16].

In general, an optimization problem [BBV04, Chapter 1] takes the form

min f(x) subject to g;(x) >0

hy(x) = 0. (1.1)

where f,g;, h; are arbitrary functions of the variables x = (1,...,2,). The function f is called
the objective function, and the functions g;, h; are called the constraints. Hence, when solving an
optimization problem, one tries to minimize the objective function subject to certain constraints.
There are several ways to address this problem, which are collected as nonlinear optimization
methods. Some famous optimization approaches are the Gradient decent method, Newton’s method
and Interior-point method [BBV04, Chapter 9-11]. Those optimization algorithms seek to exploit
the properties of the objective function to find a local minimizer x* and hope (with justifications
in special cases) that the function value at the minimizer is close to the global minimum. Whereas
polynomial optimization takes a different approach.

Polynomial optimization, as the name suggests, is the specific case when the functions f, g;, h;
in (1.1) are polynomials. In this thesis, we focus on unconstrained polynomial optimization,
that is, the feasible domain is R™. (In general, constrained optimization problem can be reduced
to their unconstrained counterpart.) Then, instead of minimizing a polynomial, one can search
for its maximal lower bound, see [Drel8, Chapter 1]. Hence, we can equivalently formulate the
unconstrained problem as

max r s.t. f(x)—r >0 forallx e R",

where the objective function f is a polynomial, and the lower bound r is a real number [BPT12,
Chapter 3].

To solve this problem, we need to decide whether a given polynomial is nonnegative (see
Definition 2.1.5). It turns out that this problem has been well studied in real algebraic geometry
since the beginning of the 19th century. However, it turns out that deciding whether an arbitrary
multivariate polynomial is nonnegative is, in the language of computational complexity, co-NP-
hard (computationally infeasible), see [BPT12, Chapter 3].

Therefore, one wants to find sufficient conditions that certify nonnegativity of a polynomial
which are easier to check, rather than directly deciding the nonnegativity of a polynomial. Such
conditions are called certificates of nonnegativity. The most famous and canonical nonnegativity
certificate is sums of squares (SOS) (see Definition 2.1.6). Deciding if a polynomial is a sum of
squares can be formulated as a semidefinite program (SDP) (see Definition 2.2.6). Under mild
conditions, SDPs have known algorithms that can solve the problem in polynomial time (efficiently)
with respect to the input size, see [BPT12, Chapter 2].

When solving the SDP, the solver is actually dealing with a set of linear equations, which can
be compactly written in the form Ax = b, obtained by the process of comparison of coefficients



(COC). Though this process is formally introduced in Section 2.3, the intuition behind it is quite
simple. It can be understood in terms of vectors after realizing that the set of n-variate real
polynomials with degree less than or equals to d, denoted by R[x], 4 forms a vector space. Then
any polynomial p(x) € R[x],4 can be uniquely identified as p(x) = Z?:o c;jb; given a basis
B = {by, ..., by} of R[x], 4. Hence, to determine whether 2 polynomials are equal, one can express
the 2 polynomials in the same basis, and comparing whether the coefficients are the same. This
is the intuition behind COC. The generated equalities will then be used as the linear equations in
SDP. For more about vector space and basis, one could refer to the book Linear Algebra and Its
Applications [Lay16].

The linear system that is formed by COC depends on the two bases: The basis B we use to
compare the coefficients and the basis B’ that the original polynomial is written in. We measure
the stability of the linear system, as suggested by [Recl4], via the (generalized) condition number
(see Definition 2.2.10), which heavily depends on the choice of both B and B’. The stability of the
system is very important in practice because this measures how robust the method is under noisy
data, see [Recl4]. Yet, it is unclear what bases combinations generate the best result.

In this thesis, we generalize the work of [Rec14] to the multivariate setting and perform com-
puter aided numerical experiments of different combinations of the bases, to determine what choice
of basis to carry out COC so that the resulted linear system is most stable. With our result, prac-
titioners can find the best basis choice to plug into an SDP solver to certify a polynomial given
by the basis determined by the corresponding real life problem.

1.1 Thesis Outline

The thesis is organized as follows: In Section 2, we introduce the preliminary material, including
the tools that we need throughout this thesis, and the algorithm that will be employed to carry
out the COC. A brief survey of polynomial bases that are considered in this thesis is also included
in this section. Section 3 presents the main numerical results of the condition number. Finally, in
Section 4, we discuss the result that is obtained in Section 3 and some thoughts on what are the
further efforts that can be made to this problem.



2 Preliminaries

In this section, we introduce the notation and the necessary background material to understand
the problem. Moreover, we describe the algorithm that is used to carry out the comparison of
coefficients (COC) process and provide a brief survey of the polynomial bases that are considered
in this thesis.

2.1 Real Polynomials

To rigorously define the considered decision problem, we first recall the terms related to polyno-
maals.

Throughout, we use bold letters for vectors, e.g. x = (z1,...,x,) € R". The set of all m by n
real matrices is denoted as R™*". Further, to ease the notations, we define the following function:

N:N—=N

N(d) — (n;—d)

where ( J ) stands for the binomial coefficient n + d choose d.

The primary interest of this thesis is on polynomials, so we first spend a paragraph define all
the terms of polynomials that will be used.

Let R[x|] = R[zy, ..., z,] be the ring of n-variate polynomials. We only consider polynomials
p € R[x] that are supported on a finite set A € N". Hence, we can write p as the form p(x) =
Y aca CaX®. We call a polynomial of the form x* a monomial, and we define the degree of the
monomials to be |a|] = >"1"  a;. Then the degree of the polynomial p is given by the maximum
degree over all monomials of p that has a non-zero coefficient. That is, the degree of p = max{|a| :
ca # 0} [Drel8].

We use R[x],, 4 for the set of all n-variate real polynomials with degree less than or equal to d.

Example 2.1.1. Consider p(x,y,z) = z* + 2vyz — 6y + 7 with x,y,z being variables. This
polynomial has 3 variables and has degree 4, thus it belongs to R[x]3 4.

Immediate observations about R[x], 4 are:
Proposition 2.1.2. R[x],. 4 forms a finite real vector space of dimension N (d).

Proof. Suppose p(x),q(x) € R[X],.q4, ¢ € R, then we have, ¢p € R[x],,.4 because multiplication by
a scalar neither increases the degree nor introduces new variables. We have p+ ¢ € R[x],, 4 for the
same reason. This proves the first part of the claim.

For the dimension of R[x], 4, we observe that any n-variate degree d polynomial can be written
in the form

2 d
Co+ 121 + C2To + ... + Cpp1 ] + Cpi2T122 + ... + T,

So the set B = {1, 21,23, ..., #3, 212, ...x% } spans R[x],, 4. Moreover, it is a linear independent set.
Thus, it forms a basis of R[x], 4. By counting the involved monomials, the cardinality of B is
1B] = ("+?) = N(d), which yields the dimension of R[x],, 4.

]



Let B, 4 be a basis of R[x], 4. In the proof above, we used a canonical basis to R[x], 4, namely
the monomial basis,
Bha={1,21,29, ..., T, 23, 1129, ..., 2 }.

Remark 2.1.3. If we list the elements of B, 4 in a column vector b, then bb” forms a matriz
whose upper triangular entries can be collected to form a basis of R[x], 24

Example 2.1.4. Let By; = {1,2,y} be a basis of R[x|s1, then

1 1z
x [1 x y} = |z 22 a2y
y y oy v

The entries of the upper triangle of the matriz, {1, z,y, 2% zy,y*} form a basis of R[x]a.2.

Next, we define the terminologies related to the decision problem.

Definition 2.1.5. Let P, o4 denote the set of nonnegative polynomials with n variables and degree
at most 2d, that is
Proa={p € R[X]n24: p(x) >0, for all x € R"}.

The reason that we chose to consider the degree 2d in the definition is that nonnegative
polynomials always have even degrees. A polynomial with odd degree would be negative when we
fix all the other variables and move one variable to positive or negative infinity.

Definition 2.1.6. Let X, 54 denote the set of polynomials with n variables and degree at most 2d
that are sum of squares (SOS), that is

k
Sn2a = {p € R[X|naa: there exists qu(x), ..., qx(x) € Rz]na s.t. p(x) =Y g7 (x)}.
=1

Notice that ¥, 024 C P, 24 because sum of squares of real numbers are always nonnegative. In
fact, geometrically, these two sets are convex cones, see [BPT12, Chapter 3].

One natural question to ask is whether these two cones are the same. In 1888, David Hilbert
showed that they are usually not the same.

Theorem 2.1.7 ( [Hil88]). There are only three special cases where the two cones coincide, i.e.
Yn2d = P oa: uniwariate polynomials, quadratic polynomials, and bivariate polynomials of degree
four. Namely, whenn =1, ord=2, orn =2 and d = 4.

However, Hilbert’s proof is highly non-constructive. Therefore, it took almost 70 years until
Motzkin, accidentally, found the first nonnegative polynomial that is not a SOS. In [Mot67], he
presented the Motzkin’ polynomial,

p(z,y) = ohy? 4+ 2yt — 32%y? + 1.



Proof. In this proof, we show Motzkin’s polynomial is nonnegative, and it can’t be written in a
sum of squares.
The nonnegativity is immediate from the AM-GM inequality. Notice that,

4,2 | 2 4
ry? = ey 1< T

Multiply both sides by 3 and move the left term to the right, which shows Motzkin’s polynomial
is nonnegative.

To show it cannot be written in a sum of squares, we need to make the following observation.
Suppose p(z,y) = z'y? + 2?y* — 32%y? + 1 = 31" hi(z,y)? can be written as a sum of squares,
then h;(z,y) = a;z%y + byxy? + ciry + d with a;, b, ¢; € R.

To make this observation, we notice that for any two terms a = a2yt and b = 229”2, ab =
a2y ti2 Hence, we know h; would be expressive enough if p(x,y) can be written in a sum of
squares, as we can see every term x'y’ in p(x, %), there exists a term 2/2¢y7/2 in h;(z,y). Note, this
argument can also be made using Newton polytope, see [BPT12, Chapter 4].

Now, we can see that the coefficients of the term z%y® in > " | h;(z,y)? equals to Y ;- ¢Z >0,
yet in Motzkin’s polynomial the coefficient of the term is —3, a contradiction. Hence, we conclude
that Motzkin’s polynomial is not a sum of squares. O

Since the discovery of Motzkin’s polynomials, there are many efforts devoted to find more
nonnegative polynomials that cannot be written in the form of sum of squares, including Chosi-
Lam polynomial and Reznick polynomial [CLR95]. Choi and Lam offered two examples that we
list in the following equations, and Reznick in [Rez00] suggested a constructive way of generating
nonnegative polynomials that can’t be written in the form of sum of squares following what
Hilbert’s original proof.

Choi-Lam polynomial:  p(x,y, z) = 2°y* +y*2* + 2%2% + 1 — dayz

p(:U, Y, z, U)) = $2y2 + y222 + 22.T2 + ’LU4 — 4U).I'y2

Coming back to our original problem, as discussed in the introduction, the decision problem of
whether an arbitrary polynomial p(x) € P, 24 is computationally hard. Whereas we can efficiently
decide whether p(x) € X, 24 using semidefinite program, which we introduce in next subsection.
Hence, we make the following trade off. We use the certificates to check the nonnegativity in a
computationally feasible way, accepting fact that we fail to identify some nonnegative polynomials.

Remark 2.1.8. We note that SOS certificate, with minor modification, can also be used to for
constrained optimization in which we only require the polynomial p to be nonnegative on an alge-
braic set S = {x € R"|g;(x) > 0,i = 1,...,n}, where g; are also polynomials. For example, if
we can decompose p as p(x) = so(X) + > iy 8i(X)gi(x), with sy, s1,. .., s, being SOS polynomials,
then we can certify p is nonnegative over S.

Lastly, we conclude that the decision problem that is considered in this thesis is the following:

Given p(x) € R[X]n24, decide whether p(x) € ¥, 24. (2.1)



2.2 Linear Algebra And Semidefinite Programming

Since R[x],, 24 forms a vector space, we use tools from linear algebra to analyze its structure and
properties. Thus, we devote this subsection introducing all required tools.

Definition 2.2.1. Given a matriz A € R™", we say it is symmetric if AT = A. We denote the
set of symmetric matrix as S".

A famous result of symmetric matrices is:

Theorem 2.2.2 (Spectral Theorem [Dem90)). Given a symmetric matriv A € R™ ™, it can be
diagonalized as

A=P'DP

where D is a diagonal matrix with real entries, and P is an orthonormal matrix.
In other words, all eigenvalues of A are real, and their corresponding eigenvectors form an
orthonormal basis of R™.

Now, we introduce the key idea relating to semidefinite programming — positive semidefinite
matrices.

Definition 2.2.3. A matriz A € R"*" is positive semidefinite (psd) if A is symmetric and
2T Ar >0 for all x € R".
We denote it as A = 0.

Proposition 2.2.4. A matriz is psd if and only if all its eigenvalues are nonnegative.

Proof. Towards a contradiction, suppose A has eigenvalue A < 0. For = being its corresponding
eigenvector, we have 27 Az = \zTx < 0, a contradiction.

On the other hand, assume A has only positive eigenvalues ;. By A being a symmetric
matrix, its eigenvectors form a basis. Thus, for any © € R", we have © = > | ¢;v; where v; are
the eigenvectors of A, that are also orthonormal to each other. Hence, 27 Az = Y | A;. Since all

X\ > 0, we have 27 Az > 0. O

Definition 2.2.5. Given A, B € R™*", then the Frobenius inner product
;) : R™ x R™™ — R is defined as

(A, B) = Tr(A" B),
where Tr stands for the trace of the matriz.

We finally introduce the program that we want use to solve the optimization problem.

Definition 2.2.6. A semidefinite program (SDP) in standard primal form is the following opti-
mization problem. Given A,C € R™*™,

min (C, X)  subject to (A;, X) =b;, i=1,...,k
Xesn (2.2)
X =0.



To compactly write the constraints, it is natural to generalize the above definition by the
following;:

Definition 2.2.7. Let k be a positive integer, A € R™* B ¢ R™ " then the inner product
between A and B, (-,-) : R x R — R s defined as

<A1,B>
<A’B> = )
<Ak’aB>

Ay
where A = |
Ay,
Note that semidefinite programming can be viewed as a generalization of linear programming.

As we can see from the following definition, semidefinite programming is linear programming that
optimize over the set of symmetric matrices instead of vectors.

Definition 2.2.8. A linear programming (LP) in standard primal form can be written as the
following. Given A € R™*" c € R",b € R™,

min c’x subject to Ax =Db
x€ER” (23)
x > 0.

Using Definition 2.2.7, we can rewrite the constraints (A4;, X) = b; in (2.2) as
(A, X) =b. (2.4)

The aim of this thesis is to study the stability of the System (2.4), where we measure stability
using (generalized) condition numbers of a matrix.

If A is a square matrix, then the condition number can easily be calculated using its inverse.
However, if A is rectangular, then we need to use its pseudo-inverse, see the following definition.

Definition 2.2.9. Given a matrix A € R™ ", the pseudo-inverse, which is also knows as the
Moore-Penrose inverse of A, is the matriz A" satisfying:

o AATA= A,

ATAAT = At
o (AANT = AAl
(ATA)T = AAL



Every matrix has its pseudo-inverse, and when A € R™" is full rank, that is rank(A) =
min{n,m}, A can be expressed in simple algebraic form.
In particular, when A has linearly independent columns, A" can be computed as

Al = (ATA) AT,

In this case, the pseudo-inverse is called the left inverse, since ATA = I, with I being the identify
matrix.

And when A has linearly independent rows, A’ can be computed as
Al = AT(AATY
and the pseudo-inverse is called the right inverse, since AA" = I.

Definition 2.2.10. Given a matrizx A € R™*", the (generalized) condition number of A, k(A) is
defined as

00 otherwise

AT A
K(A) = {HAH [|AT|  if A is full rank

for any norm || - || imposed on A.

To understand how the condition number is related to the stability of (2.4), we assume A is a
square matrix, then k(A) can be equivalently written as:

Omax(4)
Umin(A> ’

where the o, and o, denote the maximal and minimal singular values of A respectively.

Intuitively, when the condition number is large, an error in the input along the max direction
of the singular value would dominate “correct data” that is along the direction of the minimum
singular value. Therefore, if the condition number of (2.4) is small, this system is more stable
under fluctuations caused by noises.

Again, we note that (2.5) does in general not apply to our problem, and we present it simply for
the purpose of providing an intuition of the concept. A more rigorous explanation of the condition
number can be found in [CK12].

K(A) = (2.5)

2.3 Comparing of Coefficients Algorithm

In this section, we introduce the algorithm that solves the decision problem described in (2.1).
To start, we introduce the following theorem which shows how to convert our decision problem
into an SDP.

Theorem 2.3.1 (Chapter 3 [BPT12]). Let p(x) € Pyoa. If p(x) € 3,04, then for any basis By, 4
of R[X].q, there exists a matriz Q € RNDN@) sych that

By 9B, = p(x) and Q = 0. (2.6)

Note, by abuse of notation, we also use B,, 4 to denote the vector formed by all elements in the
basis B,, 4.

10



Proof. If p(x) € ¥, 24, We can write

Notice that ¢;(z) € P, 4.
Now given B, 4 = {b1,...,ba)} be a basis of R[x], 4, we have

N(d) by
¢;(x) = Z cib; = [e1, - ena))] :
= bar(a)
By substituting the section equation into the first, we have
C1,1 Cl.k 11 .- Cl,/\f(d) bl
p(x)=[b1 .. by : :
N1 o CN@ | [k o N | |y

Now the matrices in the middle is CCT = Q a psd matrix, which proofs the forward direction
of this theorem.

On the other hand, if we know p(x) = Bi 19B,,.a where Q is a psd matrix, we can just apply the
Cholesky decomposition to get @ = LT L, and recover the SOS form of p(x) as Bg JLYLB, . O

Therefore, we have reduced our decision problem to finding a specific psd matrix. Actually,
it would be deciding the feasibility of the SDP problem stated above. When we examine the
formulation of the SDP in (2.2), we minimize a target function subject to a set of linear constraints
and the variable being a psd matrix. By examining (2.6), we can see that we have a set of
constraints (later we translate this set of constraints exactly into the constraints in the SDP)
and the requirement of Q being a psd. Therefore, the existence condition that is provided in the
Theorem 2.3.1 is the subpart of the SDP which determines whether there is a feasible point that
satisfies the constraints that are imposed.

To address how the constraints B! ;QB,, 4 = p(x) are translated into the constraints (4, X) = B
in the SDP, we have the following proposition.

Proposition 2.3.2. Let B, g = {b1, - ,baray} be a basis of R[x], 4, and let B, 2q = {0}, ..., b§\/(2d)}

be the basis of R[X], 24 induced by B,, 4 using Remark 2.1.3. Given p(x) = Zﬁ(fd) c;b € Xy, 04, then

the task of finding Q in 2.6 can be reformulated as solving the feasibility part of an SDP stated in
2.2.6.

Proof. By the above theorem, the constraints are,

p(x) =B, ;QBna = (BnaB, 4 Q)
Q= 0,

as stated in 2.2.6. O

11



Note the constraints p(x) = (Bn,dBfa 4> Q) require us to compare the equality of two polynomials.
By Theorem 2.1.2, polynomials form a vector space. Thus, when fixing a basis, the polynomials
are uniquely identified via its coefficients. As a result, two polynomials are equal if they have the
same coefficients when regarded under the same basis.

Notice that (B, 4B, 4 Q) and p(x) are polynomials expressed in the basis By 4. Thus, the
equality can be established by comparing the coefficient vectors of the two polynomials.

Goal 2.3.3. We define the above process as comparison of coefficients (COC) and this thesis is
designated to evaluate the stability of the constraints p(x) = (B, 4B} ;, Q).

As we have mentioned, the stability is measured by the condition number of a matrix. Thus,
we need to re-write the constraints into the form Ax = c¢. Therefore, the problem needs to be
further reformulated. To distinguish the choices of the involved basis in this process, we introduce
two specific matrices following the ideas of [Recl4].

Definition 2.3.4 ( [Recl4]). We call the matriz B, 4B, ; in Proposition 2.3.2 the moment matrix,
we denote this matrix as M. By definition this matriz is symmetric and of rank 1.

Example 2.3.5. Consider the basis By o = {1,2x,42* — 4} of Rlx]12, one can easily verify this is
a basis.

1
If we write By o = 2x , the moment matriz M is
422 — 4
1 2x A% — 4
M = 8172[)’{2 = 2z Ax? 8x3 — 8z

402 —4 8x3 —8r 162t — 3222 +4

The moment matrix provides the first basis choice involved in the COC process. Suppose the
given polynomial p(x) = Zf:o c;bj is in the same basis as the basis of the moment matrix, that
is the upper triangle of Bn,dBid consists of by, ..., b,. Since Q = 0, Q is symmetric and hence it
is completely determined by its upper triangle entries. Let q = [q(w, s Q0 Q1,15 Q1,25 s qm,m]T
be the vector consisting of all the elements of the upper triangle of Q. The constraints p(x) =
(Bmng,d, Q) can then be reformulated as a set of linear equations Aq = ¢ where ¢ = [co, - ck]T
is the coefficients vector of p(x), and A is a matrix that is used to establish the equality of
polynomials. Then, we can measure the stability of the constraints p(x) = <Bn7d8£d, Q) by the
condition number of A.

Since, this matrix A is not the final matrix that is used in the analysis, the procedure of

obtaining A is omitted.

Now, what if p(x) is written in a basis that is different from the basis constructed by the moment
matrix? One might argue that we can simply multiply a change of basis matrix to convert p(x) into
the basis that is used in moment matrix. However, this process would be inefficient and inaccurate.
The reason is that a change of basis matrix involves writing the basis of one polynomial in terms
of the basis of the other. This itself is a process of COC and results in an increase of fluctuations

0 (2.4) because the condition number is never smaller than 1 [Dem90]. Therefore, we introduce
the coefficient moment matriz in what follows.

12



Suppose the moment matrix is constructed with the basis B, 4 and the polynomial p(x) is
written in the basis B, ,,. That is, we have p(x) = cobg + ... + cxbj,, with By oy = {b, ..., b}, } where
k= () L

Definition 2.3.6 ( [Recl4]|). We define the coefficient extraction map as the following map,

C:Rz]p2a X By oy =+ R
C(p, V) — ¢;.

When fixing j, we have the coefficient extraction map being a linear map with respect to the
polynomial p(x). Indeed, we have

C(Ap,b}) = XC(p, b)) for A € R and
C(p1 + p2,b;) = C(p1, V) + C(p2, V).

Remark 2.3.7. When the B’ 04 = {b,...,0,} is an orthonormal basis, i.e. (b;,b;) = 0;; (the
Dirac delta function), where the inner product is defined as

b
(.0) = | px)a(x)datx)
there is a natural concrete definition for the coefficients extraction map, namely

C(p(x),b5) = (p(x), b))

When the basis is only orthogonal, we can still define the coefficients extraction map concretely
as,

Clp(x), b)) = ﬁ@o(x), ),

where the norm || - || is induced by the corresponding inner product.

Since the coefficient extraction map depends on the basis itself, it is more accurate to write
the coefficient extraction map as Cp, ,,, However, when the basis is clear, we omit the basis and
just write it as C.

2d?

We can generalize the coefficient extraction map to take in a matrix as the first argument, and
just apply the map entry-wise. With an abuse of notation, we have:

Definition 2.3.8. Given a matriz of polynomials (p;;(X)):; all in the basis Bj, 54, the coefficient
extraction map is defined as

C: R[:cm;d" X B;,Zd — R
PL1 o Pim C(pii, b)) - C(pin, b))

]

c( :
Pm1i -+ Pmn C(pm,lab9'> C(pm,mb})
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Remark 2.3.9. An immediate result from the above definition is that, given Q@ € R™™ M €
Rlz]}'54", and a basis B), 5y = {b}, ..., b}, the matriz inner product provides the following relation,

C(Q, M), b)) = (Q,C(M, b)) = (C(M, 1)), Q)

Let B, 4 = {bo, ..., b1}, where | = N'(d) — 1. By abuse of notation, we again let B,, 4 = [by, ..., bj]"
and M = B, 4B} ; € R”!. Then given p(x) in B, 53 = {0}, ..., b}, p = coby+ ... + b, and Q € R
being the change of basis matrix from B, o4 to B;m,zd, where B,, o4 is generated by B,, 4 using Remark
2.1.3, we have:

¢ = Clp,by) = C{Q. M), 1) = (C(M. 1)), Q). (27)

By the above relationship, we find the tool we are looking for. Given any moment matrix and
a basis that is different from the one used to construct the moment matrix, we can extract the
coefficient of any element of the basis when being used to represent the moment matrix. This
object is crucial, so we have the following definition:

Definition 2.3.10. We define the matriz A; = C(M, b)) to be the coefficient moment matriz of
..
J

An immediate observation we can make is the following:

Remark 2.3.11. A; is symmetric, because M is symmetric.

Recall, the SOS problem is to decide, given a polynomial p(x), whether there exists a @ = 0

such that p = B;—CdQBn,d‘ Suppose p(x) is given in B;, »,, that is p(x) = Zﬁ(gd)_l c;b’;, we can then

reformulate the constraints B?; 4@Bn.q using the coefficient moment matrix as

(A;,Q) =¢; Vj=0,.,N(2d) - 1. (2.8)
et )] (9)
a(()j,ﬁ)) a(()‘% . a?j,}) 0 o1 - qoy
agh a .ay Qo1 Q11 -~ 41
Aj _ 0,1 .,1 1,1 : Q — g .7 > ’
a((fl) ag{l) al(i) do; qi1 -+ qu
and set ) -
j — —
o o0
2%71 do,1
a 2%{2 q= C]o',l, c RI+D/2
’ af) |’ IRE
2a1{; q1,2
) |
_alﬂ | 1l
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We can reformulate the inner product (A;, @) using the fact that both A; and @ are symmetric:
<Aj7Q> = a? "q.

Then, finally, we can re-write the constraint p(x) = B;f, @B q, as the following system of linear
equations:

Thus, the numerical property of the constraints for the SDP problem is completely captured
by the condition number of A, and we can measure it given A is full-rank. Therefore, we write
computer programs to examine different combinations of bases under different degrees and number
of variate. In particular, in this thesis we write our code in python. In the rest of this section, we
discuss the polynomial bases that we are will use in this comparison, and briefly touch upon SDP
before we present our results in the next section.

2.4 Polynomial Bases

In this section, we briefly survey the polynomial bases that is considered in this thesis, and their
associated coefficient extraction map (defined in Definition 2.3.6). We also analyze the runtime of
the coefficient extraction map based on the algorithms that we employed.

2.4.1 Monomial Basis

The most canonical basis for R[x], 4 is the monomial basis:
2 d
Bna=A{l,21,29,....,27, 2122, ..., T} }.

The coefficient extraction map associated to this basis is straightforward: one would expand
a given polynomial and group them by terms. Formally, we can capture this process with the
following algorithm.

Algorithm 1: Coefficient Extraction Map for Monomial
Result: Coefficient of b in p
Input: Polynomial p, Monomial basis vector b, Monomial basis B
expand p so that it is a sum of terms in B;
store coefficient of each term in a hash table H;
return H [b];

Suppose the input polynomial p € R[x], 4 has k parentheses, has at most m terms in each
parenthesis, and has [ characters (exclude all the operators) in it. The run time of the above
algorithm would be O(mk + nd + ). The O(mk) is the cost of operations required to expand p;
O(l) is the cost of operations to iterate through the polynomial to group terms; O(nd) is the cost
of operations to get the coefficient for each basis b in B.

Example 2.4.1. The polynomial of the form p = (3z1 + x2)(x3 + x4) + z2 has k = 2, m = 2,
[ =6, and is in R[x]az.
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2.4.2 Orthogonal Polynomial Bases

Other than the monomial basis, our focus in this thesis is on orthogonal polynomials. The reason
is that due to their orthogonality, the coefficient extraction map is relatively easy to construct.

Chebyshev Polynomials. There are two kinds of polynomials that are widely used in nu-
merical analysis, the Chebyshev Polynomial of the First Kind and Chebyshev Polynomaial of the
Second Kind [MHO02]. The roots of these polynomials, called Chebyshev nodes are used in polyno-
mial interpolation because the resulting interpolation polynomial minimizes the effect of Runge’s
phenomenon.

There are many ways to generate the two sequence of polynomials in univariate settings.
Here, we decide to include the recursive definition since this is the most straightforward one to
implement.

The univariate Chebyshev Polynomial of the First Kind can be constructed as

To(z) =
T1 (fL‘) =
Ty () = 22Ty(x) — Ty (),

where T,(z) denotes the d degree univariate Chebyshev Polynomial of the First Kind [MH02].
Due to its orthogonality, the associated coefficient extraction map would be
Algorithm 2: Coefficient Extraction Map for Chebyshev First Kind
Result: Coefficient of b in p

Input: P be any polynomial, b be an element of a multivariate Chebyshev First Kind basis
coeff = f | Vi dx

——duz;

norm = f L \/ﬁ
return <<t

norm’

When handling bivariate cases, we can use a similar treatment as in Remark 2.1.3 to obtain
bases in higher dimensions.

The coefficient extraction map seems to be tedious to define in higher dimension cases. How-
ever, building upon the idea of Madi-Nagy [MN12] we have the following result which enables us
to easily construct the coefficient extraction map for orthogonal polynomials in higher dimensions.

Proposition 2.4.2. Given an orthogonal univariate polynomial basis B = {b, ...,b,}, and assume
the orthogonality is under the inner product

(b, bj) = / “by(a)by (@)w(a)d,

where w(x) is a weight function, then the multivariate polynomial basis induced by this univariate
polynomial basis is also orthogonal, and the corresponding inner product is

(bi,by) = /l /l bi ()b, (2)w(x1 ). w(wn)ds...d.
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Proof. Consider the case where we start with an orthogonal univariate polynomial basis B =
{b1(2),...,bp(x)}. Then, using modified apporach as in Remark 2.1.3 to construct a basis for
bivariate polynomials, we would get

= {b,1<x7y)v ) b;ﬂ@:’y)} = {b1<x)b1<y)’ bl(x)bQ(y)’ ) bQ(x)bl(y)7 ) bn(x)bn(y)}

Now it is immediate from Fubini’s theorem that
/ / b, )V, (2, y)w(a)w(y)dudy = / / o ()32 ()b ()b ()0 ()0 (y) derdy
l [

- / b, (2)byy ()0 (2) / by, ()b () w(y)dy

!
_{O if 11 =12 and j1 = Jo

9

0 otherwise

where C' # 0 is the norm of a basis &’ € B’. Inductively, one can generalize this to higher dimensions
as well. O

Now using Proposition 2.4.2; we have the coefficient extraction map for multivariate Chebyshev
Polynomials of the First Kind be

.. b R
C(p / p(@1, n)b(@1, - 2n) dzidzy - - - dz,,.
\/1—371 1—%) (1—z3)

The univariate Chebyshev Polynomials of the Second Kind, as suggested in [MH02], can be
constructed with the following recurrence relation:

Uo(.f) =1
Up(z) =2z
Ugii(z) = 22Uy(z) — Ug_1 (),

where Uy(x) denotes the d degree univariate Chebyshev polynomials of the Second Kind.
The associated coefficient extraction map is
Algorithm 3: Coefficient Extraction Map for Chebyshev Second Kind
Result: Coefficient of b in p
Input: p be any polynomial, b be an element of a multivariate Chebyshev Second Kind
basis

coeff = f_ll pbv/'1 — x2dx;
norm = f_ll bbv/'1 — x2du;

coeff .
norm ’

return

By the same process described above, we can construct multivariate Chebyshev polynomials
of the Second Kind again using a similar treatment Remark 2.1.3, and we can construct the
associated coefficient extraction map as in Proposition 2.4.2.
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Legendre Polynomials Legendre polynomials provide special orthogonal polynomial basis that
has a vast number of mathematical properties, and numerous applications. One of the most modern
applications that Legendre polynomials are used in is machine learning. According to Yang,
Hou and Luo, who developed a neural network based on Legendre polynomials to solve ordinary
differential equations [YHL18]. Also, according to Dash, implementing Legendre polynomials
in recurrent neural networks based predicter can significantly increase the performance of the
prediction [Das20].

There are many ways to construct the Legendre polynomials. In order to implement Legendre
polynomials, we present the Rodrigues’ formula that generates univariate Legendre polynomials
[Bli13]:

1 dav, n
B Z”n!%@ —a)
where P,(x) denotes the univariate Legendre polynomials of degree n, and (gc—nn denotes the nth
derivative with respect to x.

Another way to construct the Legendre polynomials is to define this basis as the solution to
an orthogonal system with respect to the weight function w(z) = 1 over the interval [—1, 1]. That
is, P,(x) is a polynomial such that

Pu(x)

1
/ Po(z)P,(x)dx =0 ifn #m.
—1

Though this formulation is bad for solving the exact expression of Legendre polynomials,
it shows that Legendre polynomials are orthogonal with respect to the inner product f_lldx.
Thus, this definition directly provides us the coefficient extraction map associated to Legendre
polynomials in the univariate case.

Then, via the same treatment introduced in Remark 2.1.3 and Proposition 2.4.2, we have the
coefficient extraction map associated to Legendre polynomials be the following algorithm.

Algorithm 4: Coefficient Extraction Map for Legendre Polynomial
Result: Coefficient of b in p
Input: p be any polynomial, b be an element of a multivariate Legendre basis
coeff = f_ll f_ll p(x)b(x)dzy...dxy;
norm = f_ll f_ll b(x)b(x)dxy...dzy;

coeff .
norm’

return

Jacobi Polynomials The last kind of orthogonal polynomials that we consider are Jacob: poly-
nomaials. As for the other polynomials, there are many ways to construct the Jacobi polynomial.
The easiest way to implement them is by the Rodrigues’s formula [Sue01]. In the univariate case,
we have Iy o
U+ ) (1 a4 ) (1 - a2)1)
where P*?) (x) is a Jacobi polynomial with degree n of parameter a, S.

The Jacobi polynomials are orthogonal under the inner product

P (x) =

(P (), PO () = / (1= )1+ 2 PP (@) PO )

g J 1 J
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In fact, Jacobi polynomials generalize the orthogonal polynomials discussed above. When
setting a = 0, 5 = 0, we obtain the Legendre polynomials. (So it is not surprising that they both
can be generated using Rodrigues’ formula).

Applying Remark 2.1.3 and Proposition 2.4.2, yields the following algorithm for the coefficient
extraction map associated to multivariate Jacobi polynomials:

Algorithm 5: Coefficient Extraction Map for Jacobi Polynomial
Result: Coeflicient of b in p
Input: p be any polynomial, b be an element of a multivariate Jacobi basis, parameters

.
coeff = fjl fjl(l —2)(1 4+ 2,)".. (1 — 2,)%(1 + 2,)Pp(x)b(x)dxy...d
norm = fil f_ll(l —21)(1 4+ 2,)P .. (1 — 2,)*(1 + 2,)Pb(x)b(x)d;...dT,;
return <.

norm’

2.5 Solving Semidefinite Programs

Lastly, we provide a brief overview on how to solve SDPs, see [BBV04]. The most common
algorithms utilize the duality theory. Recall the formulation of an SDP in (2.2). This is usually
referred to as the primal SDP. Utilizing the duality theory, we can also formulate a dual version
of the SDP. The advantage of the dual version is that it is usually easier to solve and has a better

problem structure that one can exploit.
The dual SDP can be formulated as,

k
max(b, subject to A < C, 2.9
max(b,y) ~subj 2:1: yiAi S (2.9)
where b = [bl e bk}T, and the inner product is the regular vector inner product. As we can

see from this formulation, we can without loss of generalization assume k < n since otherwise we
can fully determine the unknown matrix X from (2.2), then the dimension of the matrix in our
problem become smaller, which leads to a faster running time. What is more, it can be proven
that the dual problem will always be convex no matter whether the primal is convex or not. This
ensures that we can use convex optimization to solve the problem.

Hence, we can use interior point methods to solve the dual SDP. In what follows, we first
provide a gentle introduction of duality theory. Then, we present the interior point method in a
general setting. Lastly, we conclude this subsection with how this method is used to solve SDPs.

2.5.1 Duality Theory

For the ease of notation and understanding, we work with real valued functions that take in vectors
as their parameters. However, the input can be easily generalized to matrices by replacing regular
inequalities with generalized inequalities, denoted as © < y with K being a proper cone, meaning
r —y € K [BBV04].

Let f: R" - R, f;: R = R, h;: R” — R, then any constrained optimization problem, in its
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primal form, can be written as:
min f(x) subject to fi(x) <0 i=1,...,m
x€R? (210)
hi(x)=0 i=1,...,p.

Then, we define the Lagrangian of the primal problem to be a function £: R™ x RP x R™ — R

that )
L(x,\,v) +ZA¢; )+ vihi(x)
=1

We call the vectors A = P‘l e )\m}
ciated with the primal problem.
Then we define the Lagrange dual function or just dual function g: R™ x RP — R as,

V= [Vl z/p]T the Lagrange multiplier vectors asso-

g(\v) = int{f(x +ZAL +Zuihi(x)}

Observe that g(\,v) < p* for all A\, v, where p* is the optimal value of the primal problem
(2.10). Hence, the dual function provides a lower bound of the optimal value of the primal
problem. Also, note that the lower bound is trivial if there exists \; < 0, since that gives g = —o0.
So we say the points (A, v) are dual feasible if \; > 0 for alli =1,... m.

Because the dual function is a lower bound of the optimal value of (2.10), a natural question to
ask is: what is the largest lower bound we can obtain? This leads us to define the dual optimization
problem (or dual problem):

Iriaxg()\, v) subjectto \; >0 i=1,...,m. (2.11)

Observe that if we set d* as the optimal value of the dual problem, then d* < p*. We call this
inequality weak duality. If we have d* = p*, then we say strong duality holds. Strong duality is very
powerful as it offers a tight lower bound, and it can be asserted that it holds if Slater’s condition
holds [BBV04]. Note, there are also other conditions that leads to strong duality, see [BBV04] as
well.

Now, suppose strong duality holds, let x* denote the primal optimal point and (A\*, v*) denote
the dual optimal point, then we have:

= inf{f(x +ZM £ uh)

=1 (2.12)
(x*) + Z A fi(x") + Z v hi(x")

< f(x7).

The last inequality is due to the fact that x* must be feasible, which leads to f;(x*) < 0 and
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By the chain of inequalities in (2.12), we can conclude that the two inequalities must be
equalities. This result is significant, as we can observe two key points. First, from the second line
to the third line with equality being placed as inequality, we see that x* minimize L£(x, \*, *).
Secondly, from line three to line four again with equality, we must have )", X! f;(x*) = 0. Notice
that for both primal and dual feasibility, Ay > 0, fi(x*) < 0, which implies that each term in the
sum is nonnegative. Hence, for it to sum to 0, we must have Aff;(x*) =0 for alli =1,...,m. We
call this property the complementary slackness.

With the above two observations, we are ready to formulate the KKT (Karush-Kuhn-Tucker)
optimality conditions.

Theorem 2.5.1. Given the primal problem stated in (2.10), suppose that f, f; are conver and h;
are affine, and we assume they are all differentiable, then the following holds: If x*, \*, v* satisfy
the KKT conditions

filx) <0, i=1,...,
hi(x*)=0, 1=1,...,p
Af>0, i=1,....m
A fix*)=0, i=1,....m (2.13)

V) + ) NVEAE) + v Vhi(x") =0,

then x* and (X*,v*) are primal and dual optimal.

Proof. Given x* \*, v* satisfying the KK'T conditions, we have x* is primal feasible by the first
two conditions. The third condition grants dual feasibility. Further, by the third condition, we can
observe that the Lagrangian £(x, \*,v*) is convex in x. Thus, it is minimized when the gradient
with respect to x is 0, which is precisely what the last KK'T condition states. From this, we
conclude that

g\, v*) = L(x", A", v
m p
= F) + D NAE) + D vihi(x)
=1 =1
= f(x"),

where the last inequality follows from the fourth KKT condition, the complementary slackness.
By the fact that the dual value is always a lower bound of the primal optimal value, we have x*
and (A\*, v*) are primal and dual optimal. ]

The KKT condition gives us a certificate of how to use duality to find an optimal point of
both the primal and dual problem. Now, we are ready to introduce the interior point method that
utilizes the duality theory.

2.5.2 Interior Point Method

When the objective function f and the inequality constraints f; are all convex and twice con-
tinuously differentiable, and the equalities h; are affine, then we can rewrite the primal problem
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as:

min f(x) subject to fi(x) <0 i=1...m
xeR” (2.14)
Ax = b,

where A € RP*" b € RP representing the h;.

The interior point method is devised to handle this form of optimization problem. In particular,
it handles the inequality constraints in (2.14) and utilizes Newton’s method to satisfies the equality
constraints. We first outline the procedure of Newton’s method, starting with the unconstrained
version and move to the version with equality constraints. Then, we present how the interior point
method successfully reduces to the problem having only equality constrained form. In the rest of
this section, we always assume f and f; are convex and twice continuously differentiable.

Newton’s Method. Consider the following unconstrained optimization problem of the form:

min f(x).

x€eR™

Then for any point x € R", we define the Newton’s step be Ayx = —V2f(x)"'V f(x). The
convexity of f ensure that V2f(x) is a positive definite matrix, which implies

Vi) Apx = =V f(x)" V2f(x) "'V f(x) <0,

unless V f(x) = 0. Note the convexity of f grants that given x, y* with y* be the optimal solution,
if Vf(x)(y* —x) >0, then f(y*) > f(x+ cA,;x) for some constant ¢. This means the Newton’s
step is a decent step.

Also, consider f to be the second-order Taylor’s approximation of f at x, that is

. 1
fx+v) = f(x) + V)V + vV f(x)v,
then f is minimized exactly at x + A,;x. This suggests if the function f is nearly quadratic, after
taking the Newton’s step, we get a good estimate of the minimizer.

Further, we define the Newton’s decrement as vy(x) := Vf(x)TV2f(x)"!'V f(x). Then we have

F00 = inf fy) = J66) = Fx+ D) = 3700%

That is %7(){)2 gives an estimate of the gap of the current function value and its approximated
minimal value. Thus, it can be used as a stopping condition of the Newton’s method algorithm.

Algorithm 6: Newton’s Method (unconstrained)

Input: Starting point x, tolerance € > 0
while True do
Calculate Newton’s step A?x and Newton’s decrement 7(x)

if 7(x) < ¢ then
| return x

end

Choose step s by line search [BBV04, Chapter 9.2]
Update x = x + sA%x.

end
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We then investigate how Newton’s method can be applied for optimization problem with only
equality constraints:

felliRI}L f(x) subject to Ax = b,
where A € RP*" b € RP. In the constrained case, we need another approach to calculate the
Newton’s step to ensure it is not only a decrement direction but also a feasible direction.
Newton’s method, as we saw in the unconstrained case, utilizes the second order Taylor’s
approximation of the objective function f to find the Newton’s step. Let f be the second order
Taylor’s approximation in variable v of the objective function f(x), so, f (x+v)=f(x+v)+
Vix)Tv+ %VTVQ f(x)v. Then we want to solve the following optimization problem:

‘I,rel]iRr}L fx+v)+Vfx)Tv+ %VTV2f<X)V subject to A(x+v)=Db.

As explained in the unconstrained case, the Newton’s step at x, A,;x, is the optimal v that
minimizes f , 8o solving the above optimization problem is finding the feasible Newton’s step. The
above optimization problem can be solved analytically using Theorem 2.5.1. It states that A,;x
is optimal if and only if the KKT conditions are satisfied. That is, there exists v* € RP such that
Av* = b— Ax = 0 (if x is feasible) and V2 f(x)v*+ V f(x) + ATv* = 0. Hence, we can characterize
this primal dual optimal pair as:

Vif(x) AT [Aux| _ [V ()
A v R

The Newton’s decrement is the same as in the unconstrained case and is still an estimate of
the difference between f(x) and the optimal value p*. Therefore, the same algorithm holds for
the constrained case, with the only modification that the Newton’s step is calculated differently
to satisfy the equality constraints.

Interior Point Method: Logarithmic Barrier Function and Central Path. In order to
reduce the problem such that Newton’s method can be applied, the most natural thing to do is to
absorb the inequality constraints into the objective function as follows:

m

min f(x) + Z I(—fi(x)) subject to A(x)=b, (2.15)

XGR" -
=1

](x):{o <0

oo x> 0.

where,

However, a problem of this idea is that the objective function is no longer differentiable, which
again forbids us from applying the Newton’s method. Hence, we approximate the step function by
a twice differentiable function: I(z) = —+log(x), where t is a parameter indicating the accuracy
of the approximation, see Figure 1.
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Figure 1: Logarithmic barrier approximation to the indicator function. For larger values of ¢, the
approximation becomes more accurate.

Further, we call the function ¢(x) = —> 1" log(—f;(x)) the logarithmic barrier function,
whose domain, {x|f;(x) < 0,7 = 1,...,m}, is the set of points that satisfies the inequality con-
straints.

Replacing I by I and writing it in terms of the logarithmic barrier function, we can approximate
(2.15) as the following optimization problem:

min f(x) + %gzﬁ(x) subject to A(x) = b, (2.16)

xeR”

where we have a convex and twice differentiable objective function. Hence, the assumptions of
Newton’s Method are satisfied.

Now, we assume that for every ¢ > 0, the Newton’s method can produce a unique solution
x*(t), and we define the central path associated to the problem (2.16) the set of central points,

{x*(t)|t > 0}.
Then, by Theorem 2.5.1, a central point can be characterized as

Ax*(t) =0, f;(x*(t)) <Ofori=1...m, (2.17)

and there exists v € R? such that
1 1
V() + 2 Vo(x (1)) + ATV = Vf(x*(t)) + Z _tf Vfi(X*(t)) + EATV =0. (2.18)

An important property for the central path is that each central point yields a dual feasible

point:
1

Al (t) = _t_f-’i =1,...,m, v(t)=vr/t.
Substituting it into (2.18), we have
VI () + ) AV L(x(1) + %ATV*(t) =0 (2.19)

Notice that (2.19) is the derivative of the Lagrangian L£(x,A,v) of the original inequality
constrained optimization problem (2.14) at x*(t) equals 0. Since the Lagrangian is convex, we
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moreover have x*(¢) minimizes the Lagrangian given A = A\*(t) and v = v*(t). Hence, the dual
function

g (1), v (1)) = f(x(t) + Z N0 fi(x7 (1) + v (1) (A" (t) — b)

= f(x(1)) —m/t,

has finite value at A*(¢), v*(t).
Recall that the dual function forms a lower bound of the optimal value of the primal problem.
Hence, if the optimal value of the primal problem is p*, then we have,

f(x (1)) —p" <m/t,

and as t — 0o, we have x*(t) converge to the minimizer of the primal objective function.

It is very tempting to device an algorithm that directly chooses t = m/e, where € is a tolerance
term, and directly invokes Newton’s method. However, it only works well for small problems with
moderate accuracy.

Hence, Fiacco and McCormick in the 1960s proposed the barrier method, which can be proven
to have good convergence. There are also many generalizations of the method to handle different
edge cases including starting with infeasible x etc. However, those are beyond the scope of this
thesis and we refer the readers to [BBV04]. Here, we only present a simple version of the barrier
method:

Algorithm 7: Barrier method

Input: Strictly feasible starting point x, ¢ > 0, > 1 tolerance € > 0

while True do
Centering step: computer x*(¢) starting at x
Update x = x*(t)
if m/t < e then

| return x
end
t =t

end

2.5.3 Interior Point Method for Semidefinite Program

At the end of this subsection, we examine how interior point method can be applied to semidefinite
programming. We mainly follow the lecture notes by Professor Pena [Penl5].
Recall that we have derived the standard and dual form of the SDP in (2.2) and (2.9). Intro-

ducing the slack variable S to the dual SDP, we can re-write the problem as

k
max b’y subject to Z yi Ay + S =C

yERE ScSn -
=1

S = 0.

(2.20)

Assume that both (2.2) and (2.20) are strictly feasible, that is we have strong duality, then
bTy* = (C, X*) with X*, y* being the primal and dual optimal variables respectively. As what we
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have seen above, we want to utilize Newton’s method to solve the problem. To do so, we have to
circumvent the inequality constraints. The KKT conditions for the SDP are as follows:

(A, X)=b; i=1,... .,k
X =0
S =0
X9 — 0 (2.21)

k
> yidi+S=C.

=1

As suggested by the interior point method, we just employ a logarithmic barrier function for
X and S. The barrier function in this case is defined as ¢: 8" — R, ¢(X) := —logdet X. Notice
that the conditions X = 0 and S = 0 imply X and S have nonnegative determinants. Hence, we
want to bound the determinant above from 0 by the negative of the logarithmic function of the
determinant. Then, we can just apply what we have said above to calculate the optimal conditions.
Note that the Newton’s method requires slight modifications. Yet, this is out of the scope of this
thesis, so we refer the reader to [Penl5] for more details.

At the end, we note that there are many well-developed SDP solvers, like SDPT3 and SeDuMi.
One can refer to [BPT12, Chapter 2.3] for a list of available SDP solvers.
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3 Numerical Results

In this section, we discuss the results obtained from our numerical experiments. The experiments
are run on a 2015 MacBook Pro with a 3.1 GHz Quad-Core Intel Core i7 Processor and 16 GB of
RAM. The code for the experiment is available at https://github.com/YixuanSeanZhou/math_
honor_project.git.

We divide the discussion into two subsections, one devoted for the univariate polynomials, and
the other for the bivariate case. The title of each figure appearing in this section uses the notation
B - B’ to describe the basis for the input polynomial as B and the basis for the moment matrix
as B'.

3.1 Univariate Polynomials

We carry out the algorithms described above for univariate polynomials and plot the results in
different figures depending on the combination of bases. First, we study the condition numbers
when the two bases are the same, see Figure 2. We observe that the condition number of the re-
sulting coefficient moment matrix tends to be small. In particular, the monomial polynomial basis
has the smallest condition number among the other polynomials. And among all the orthogonal
polynomial bases, the Chebyshev first kind has the best behavior.
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Figure 2: Condition number of the coefficient moment matrix for same basis (univ)
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After that, we discuss the performance when we pair orthogonal bases with monomial bases,
see Figure 3. We observe that the monomial polynomial basis does not work well with orthogonal
polynomial bases and the condition number of the coefficient moment matrix tends to blow up as
the degree of the polynomials increases.
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Lastly, in Figure 4 we capture the condition number of the pairing of different orthognal bases.
We see the scale of the condition number is dramatically smaller than the condition numbers when
monomial basis is involved.
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Concluding, we list the condition number of the coefficient moment matries of the four degree
14 polynomials we experimented with in Table 1. Note, we omit the Jacobi polynomial, because
Chebyshev and Legendre polynomials are special cases of it. We highlight the smallest condition
number in blue, and the smallest condition number among orthogonal bases in orange.

Moment Matrix Basis

Polynomial Basis Monomial Chebyshev 1st | Chebyshev 2nd Legendre
Monomial 2.122801e+01 | 8.866559e+04 | 1.040619e+05 | 4.401169e+04
Chebyshev 1st 3.643853e+04 | 2.673064e+01 | 4.463266e+01

Chebyshev 2nd 5.248902e+04 | 1.701201e+02 | 3.629213e+01 | 7.221286e+01

Legendre

8.260979e+-03

9.981569e+01

6.871414e+01

3.691980e+01

Table 1: Condition number of coefficient moment matrix with degree 14 (univ).
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3.2 Bivariate Polynomials

In this subsection, we perform the same experiments for the bivariate cases, and plot the results
similarly as in univariate case. Since the computational cost is much higher in this case, we only
experiment with polynomials up to degree 8. Nonetheless, we do observe analogous phenomena
as in the univariate case.

Like in the univariate case, the condition number is smaller when the basis of the polynomials
and the basis of the moment matrix are the same, see Figure 5. The monomial still has the
smallest condition number, and Chebyshev first kind outperforms other orthogonal bases by a
small margin.

monomial - monomial cheby_first_kind - cheby_first_kind

S 3 3

]

condition number
s 5 3 8 2 8

condition number

I
=

=

15
o
=}

=
5

2 3 4 5 6 7 8 2 3 4 5 3 7 8
max degree max degree

(a) monomial polynomial with monomial moment ma-  (b) Chebyshev first kind polynomial with Chebyshev
trix first kind moment matrix

cheby_second_kind - cheby_second_kind

legendre - legendre

s

3
=]

3

«condition number
]

&

condition number

e
=}

I~
=

2 3 4 5 B 7 8
max degree

2 3 4 5 & 7 8
max degree

(¢) Chebyshev second kind polynomial with Chebyshev
second kind moment matrix (d) Legendre polynomial with legendre moment matrix

Figure 5: Condition number of the coefficient moment matrix for same basis (biv)

30



When we have a combination of monomials and orthogonal polynomials, the condition numbers
again explode with growing polynomial degree, see Figure 6.
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When we pair orthogonal polynomials bases, the behavior of the system is more stable. Notice
that even better performance is achieved when combining Chebyshev first kind with Legendre,
compared to pairing Chebyshev or Legendre with themselves. The results are shown in Figure 7.
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Here, we present two tables to summarize the condition number of the combinations of the
four degree 8 polynomial bases that we used in both univariate case (Table 2) and bivariate case
(Table 3). Comparing the two tables, we observe that the condition numbers of the bivariate case

are significantly larger than the ones in the univariate case.

Moment Matrix Basis
Polynomial Basis

Monomial

Chebyshev 1st

Chebyshev 2nd

Legendre

Monomial

1.2114041e+01

9.2931794e4-02

7.3426803e+02

3.4094072e+4-02

Chebyshev 1st

2.4395198e+-02

1.6377406e+01

2.2771550e+-01

Chebyshev 2nd

4.4894498e+-02

5.3861887e4-01

1.7604737e+01

2.9399442e+-01

Legendre

8.5482089¢+01

3.9905724e4-01

3.2969591e+-01

1.8699677e+01

Table 2: Condition number of coefficient moment matrix with degree 8 (univ).

Moment Matrix Basis
Polynomial Basis

Monomial

Chebyshev 1st

Chebyshev 2nd

Legendre

Monomial

6.0303522e+01

3.8821664e4-03

2.2060581e4-03

1.3954908e+-03

Chebyshev 1st

8.2003242e4-02

8.2741589e+-01

1.2690227e+02

Chebyshev 2nd

1.3583584e+4-03

4.7372727e402

9.5693596e+01

2.0181265e+-02

Legendre

3.0351806e+-02

1.9649165e+02

1.4316038e+02

9.3276473e+4-01

Table 3: Condition number of coefficient moment matrix with degree 8 (biv).
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4 Discussion and Outlook

In this section, we state the observations drawn from Section 3, and we discuss some open problems
related to our findings for potential future efforts.

To begin with, we observe that using the monomial basis as both the basis for input polynomials
and the basis for the coefficient moment matrix tends to be a good choice, since it constantly has
low condition number. Therefore, the linear system generated by COC is more robust when the
input data is interpolated by random noises. Moreover, when performing the experiments, the
moment matrix with monomial basis has shorter running time, where we measure running time
by computer time rather than in complexity theory terms. As a result, deceivingly, one tends to
conclude that one should just choose monomial bases for both input polynomial and the coefficient
moment matrix. However, this is not true. In fact, the monomial basis has disadvantages in
stability and running time:

In terms of the stability, it may happen that the input polynomials are in the orthogonal basis.
In that case, from what we can see in the above section, choosing monomial polynomials as the
basis for the coefficient moment matrix would horribly destroy the stability of the system. The
reason is that the condition number of the linear system blows up very quickly. One might argue
that we can simply perform a change of basis operation to convert orthogonal basis to monomials.
However, this will also yield the same issues (if not more) of the condition number, because we
would need to consider the condition number of the change of a basis matrix as well. Hence, in
that case we need to choose the suitable polynomial basis for our coefficient moment matrix that
best serves the applications.

In terms of the running time, the reason that monomial basis have faster computing time is
because when using orthogonal polynomials as the basis of the coefficients moment matrix, we
need to evaluate an integral to extract the coefficients. However, in applications, this is more
or less an overhead work that one shall perform before executing optimizations. The reason is
that in applications, the number of variables and the degree of the polynomials involved are pre-
determined. Therefore, one could just calculate the needed integral for each basis beforehand.
Then, one can simply apply the linearity of an integral to quickly calculate the coefficients of any
linear combination of a basis. Since any polynomial in a corresponding basis is a linear combination
of the elements in that basis, each step in the optimization process would only require constant
time multiplication to obtain the coefficients, rather than performing O(mk + nd + ) coefficients
extraction algorithm as indicated in Section 2.4.1.

As a result, one should try to use orthogonal basis in the coefficient moment matrix when the
application is suitable and the stability of the linear system generated by the COC algorithm is
relatively well conditioned.

Another observation that we can easily make is that when comingling the monomial basis with
the orthogonal basis, the condition number of the linear system explodes very fast. However,
we do not have a rigorous explanation for this phenomenon. One reason might be the following:
Since the orthogonal polynomials are all special cases of Jacobi polynomials, they share similar
structures in their bases. As a result, when performing the integration, we have good numerical
stability. However, to fully understand this phenomenon, one has to take a closer look. Maybe
there are some structures that polynomial basis has that can be used to deduce the stability of
the system, rather than using numerical experiments.
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Lastly, we point out that there are other nonnegativity certificates that capture different in-
tuitions or have different usages in applications than the canonical SOS certificate. For example,
the sums of nonnegative circuit polynomials (SONC) [IDW16], a recently introduced certificate of
nonnegativity, is more applicable in constraint polynomial optimizations [Wan18|. This can, for
instance, be used to substitute SOS for optimization problems over hypercube, on which SOS has
worse performance compared to other algorithms [DKDW21]. Therefore, it would also be inter-
esting to see whether different choices of polynomial basis can impact the stability of the system
generated when using other nonnegativity certificates.
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