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1 Introduction

In this report, we explore the combinatorics of the young tableau. The young tableau is an inoffen-
sive combinatorial object introduced by Albert Young around the first years of the 20th century.
Since its introduction, it has grown into a large body of work, with deep connections to the study
of permutations, set partitions, symmetric functions, asymptotic theory of random systems, and
representation theory of the symmetric group, just to name a few. Throughout this report, we hope
to highlight the importance of this combinatorial object, alongside with all the intricate algorithms
related to it.

This report is divided into 3 main sections. In the preliminary section 2, we introduce and de-
velop the necessary notation to present our results in the remaining sections. After this introduction,
we have 2 main sections.

In 3, we introduce the famous RS K algorithm, first presented by Schensted and later generalized
by Donald Knuth. Using said algorithm, we then prove combinatorial identities regarding the study
of permutations and set partitions. At the end of the 3.2, we present a short discussion on arriving
at an analogous result for r-crossing of partitions originally posed in [4].

In 4, we connect the study of the tableau to a seamless unrelated subject: the theory of symmetric
polynomials and symmetric functions. Throughout this section, we intend to highlight how the
combinatorics of the tableau offer shorter and more intuitive proofs to results already known.

We intend that this report is accessible for a variety of audiences, including aspiring mathemati-
cians. We sincerely hope that this report may elucidate how this particular piece of mathematics

is useful in solving a wide variety of problems.



2 Preliminaries

In this section, we introduce the notation used throughout this paper. It is important to note that
the notation concerning these topics vary widely throughout the literature. Hereafter, we will be
consistent with the treatment and notation of this topic presented in Fulton’s [1]. In my experience,
the following choice of notation and terminology is also the most commonly adopted one by the
relevant literature.

2.1 Integer partitions

We call a weakly increasing finite sequence of non-negative integers a partition. A partition may
be represented as A = (A, Ag,..., \,), for some n € N, \; € Z, such that A\; > Ay > ... > A,.
Another useful representation of a partition is A = (d{*,d3?,...,d% ). The latter describes the
partition with a; copies of the integer d;, where 1 <7 < n. We define the weight of a partition to
be [A] ;= >"" | A;. To the latter, we say that X is a partition of m, or that A partitions m whenever
Al == >"" A = m. This is shorthanded by the symbol A F m. The length of a partition \ is
defined to be its number of components \; and we denote it by I(A). We shall denote by d,, the
staircase partition of size n. That is,

6 =(n—-1,n-2---,1,0)

It is often common and useful to identify finite partitions with infinite sequences of numbers
where we annex infinitely many zeroes after the last positive number to appear in the original finite
partition. For instance, under this identification A = (A, Ao, ..., A\p) = A* = (Mg, Ay .oy A, 0,0, .00).
The above definitions of weight and length of a partition are applied in this scenario as one would
expect. The symbols T, and T shall respectively denote the space of all partitions of length n
and the space of all infinite partitions with finitely many nonzero entries. Thus, the map described
above can be seen as an inclusion map from Y, into Y.

For convenience, wherein the context is appropriate, the empty partition (0,0,...) shall be
denoted by (). We define the addition of two partitions component-wise. That is, if A = (Aq,..., A,
p=(p1,---,pm) and WLOG m >n

)\+p:()\1—|—p1,...,>\n+pn,pn+17"'7pm)

This operation makes (1,,,+) and (T, +) into groups. Through the inclusion map, we can identify
T, as a subset of Y. In this case, (T,,+) is a subgroup of (T, +).

2.2 Young Diagrams

A Young Diagram is a collection of boxes arranged from left to right, with a weakly decreasing
sequence of boxes in each row. For example,




is a Young Diagram.

The definition of a Young Diagram suggests that there is a natural correspondence between
this object and partitions. Indeed, we can think of them interchangeably: Every partition has a
unique young diagram which represents it. That is, the partition A = (Ay, Ao, ..., A,) is represented
by the Young Diagram which has A; boxes in the first row, Ay boxes in the second row, and,
inductively, ), boxes in the n* row. As an example, the partition p = (3,3,2,1) can be realized as

p:

The choice of empty boxes instead of dots or lines is not completely unjustified. We shall shed more
light into this when we talk about Young Tableaux. Young Diagrams are sometimes referred to as
Ferrers Diagrams in the literature as well. Also, Young Diagrams can also be presented upside in
the literature; We will mainly use the previous representation, but, when suitable, will shift gears
to work with upside-down representation of these.
We define the conjugate partition of A = (A1,...,\,) to be X := (\],..., \,), where

N = |{\; : \; > i}|. Visually, the conjugate partition is obtained by exchanging columns and rows.
As an example, if p is as above, then

Now, we introduce the partial ordering C on T. We declare p C A\, whenever p; < \;, for all
i € N. This makes (T, C) into a poset. Visually, we see that C merely means that a partition fits
inside of another. Consider p = (3,2,2) C (5,3,3,1) = A. Visually the red boxes represent the
young diagram of p sitting inside the bigger diagram of A:

Whenever the relation p C A is established, we can may define the skew diagram p/\. The
latter is obtained by removing p from A. If p and A are as in our last example, then

p/A =

The latter is always defined when p C A but the skew diagram maybe be disconnected. We shall
say more about this in the future.



We will now introduce two other partial orderings on T, < (lexicographic order) and < (domi-
nance order). Let p = (p1,p2,-+ ), A = (A, Ao, -+ ) € T. We declare p < A, whenever there exists
an i such that \; # p;, the first ¢ such that this holds is such that p; < \;. We declare p < A,
whenever p; < \; for all 7. These two orderings make Y into a poset, and one can easily verify that

PCA = p< )\ = p<k A

Lastly, we will introduce the Young’s Lattice, since we will need it in 3.3. The young’s lattice
is nothing more than the Hasse Diagram for the poset (T, C). Visually, at the n'® branch of the
Hasse Diagram, you are dealing with all the possible integer partitions A € T such that A - n. The
following is a picture:
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2.3 Young Tableaux

Any way of arranging positive integers integer in each box of the diagram is called a filling. We
define a Young Tableau as Young Diagram together with a filling of the boxes that follows two
rules:

1) weakly increasing across each row

2) strictly increasing down each column
We can also refer to Young diagrams which have arbitrary integers fillings as tableaux, however,
throughout this report, they will not be of major concern, besides in section 3.2, wherein we talk
about permutations. Thus the word tableau refers to a Young Tableau, and, should we talk about
tableaux with arbitrary fillings, the context will be clear then. We refer to the shape of the tableau
to be the Young Diagram it is given in. A tableau of shape A is called a Standard Tableau if the
entries are the numbers {1,...,m} each occurring only once, where m = |A|.

1[3]5]8] 1[1[3[4]
6]7 416

Here, T, and T are examples of a standard tableau and a tableau on the same shape.
Skew Tableaux generalize this notion for skew diagrams just as one might expect. One could
start with two tableaux T and T, of shapes A and p such that p C A. Then the skew tableaux
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denoted by T,/ has shape p C A and with filling consistent with that of 7. Similarly, one could
start with two shapes p C A, produce p/\, and then produce a filling for the skew tableau which
is consistent with the two predefined rules. Visually, if p C A as our last example in the previous
subsection, then a skew tableau 7),/T) of shape p C A can be given by

313]

T,/Tn:= [
[4]6]

Such a filling would be consistent with the following filling of shape A:

4213|3|
7 —

It is important to note that the only information of the tableau 7, we needed to produce T,/T was
its shape p. Whatever filling the shape had will still produce the same skew diagram against 7).

Lastly, whenever we have a skew diagram or a skew tableau of shape p/\, a box of p/\ is called
outside corner if there are no boxes immediately to the right and immediately below that box.
Similarly, a box in p is called an inside corner of p/\ if, when p is realized by fitting it inside A,
the boxes immediately to the right and immediately below this box of p are not contained in p. For
instance, using our last example, the box designated by the position (3rd row,3rd column) is an
outside corner of p/\, whereas as the box (1,3) is an inside corner of p/A. Visually, the box labeled
in is an inside corner and the one labeled o is an outside corner:

T)\ =

N o]

NSV o

2.4 Words on Tableaux

We define a word w to be a finite sequence of positive integers. For two words w,w’, we define a
word operation w-w’ through concatenation, and we abbreviate it as ww’. Note that this operation
is not commutative in general. Now, let T be a tableau of shape A, where [(\) = n. Then we define
w;(T), or w; when T is understood, to be the word consisting of the entries of the i** row of T in
increasing order. Now we define the word of T to be

w(T) = wpwy_1 . .. wawy

Note that here T may be a tableau or a skew tableau. Using T, T,,/7 as in our last example, we

have
w(Ty) = (46)(357)(244)(11233) and w(T,/Tx) = (46)(7)(4)(33)

where the parenthesis are only used to better visualize the individual row words.

At first sight, is not clear how a given word may be related to a tableau. In fact, not every
word can be associated with some young diagram. In order to ensure that a word is associated
with a young diagram, the pieces of the word which make up the row words of the diagram must
match the specified rule for fillings; that is, the pieces of the word must have weakly increasing
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lengths and their content must be in weakly increasing order. Now, what can be achieve is a weaker
construction, where every word may be associated with a skew tableau, which is not necessarily
unique. Let w be a word and partition it in weakly increasing pieces. Call these pieces w; and
think of them as being sub-words of w. Each sub-word can be viewed as a word of a row. Then
one obtains a skew diagram by placing each row above and entirely to the right of the preceding
piece’s row. After describing some important operations one can define on tableaux, we shall come
back to this topic and explore the relationship of a tableau and its word in greater depth.

2.5 Row Insertion and Knuth Equivalence

We now introduce the row insertion algorithm on tableaux. This operation will aid us in defining
further tableaux operations, which, in turn, will help us in understanding this combinatorial object
much better.

The first one we will describe is the simple row insertion, or, alternatively, Schensted row
insertion. Let T be a tableau and let z be a positive integer. Then, we row insert z into T,
abbreviated by the notation 1" < z, producing a new tableau T} using the following rules:

e If 2 is as large as all the entries in the first row of T', attach z into a new box at the end of
the first row containing z and stop.

e If not, find the leftmost entry of T in the first row such that z is strictly smaller. Let that
entry be t;. Replace t; with z.

e Now, compare t; with the entries in the second row, and follow the same procedure described
in the above bullet points: Either append a new box at the end of the second row (as bullet
1), or "bump” the next strictly largest integer compared to t; call it to.

e Repeat this process inductively until you either find yourself in a situation where you can
append the bumped box into the end of a row or, if you have gotten into the last row, and
you must bump another box, create a new row containing only the new bumped box.

111]2]3]3]
Example 2.5.1. We now give two examples for the tableau T = %%% . Firstly, T « 2:
416
11]2[3]3] « 2 1]1]2]2]3] L[1[2]2]3] L111212]3] %%gzlsl
21414 —12(2]4 +—3 —2]2]3 —12]2|3 — I3TAT
315(7 35]7 315[7 —4 314[7 15
416 416 416 416 —5 6
Further, if (T < 2) < 3, then
L2zl s 1[1]2[2[3]3]
357 121244 — (T« 2)+3
315[7
415 116
6




We note that this algorithm always produces a new, well defined, tableau. To see this, first note
that the new tableau remains weakly increasing in each row. Also, note that an entry x bumps a
box containing an entry y in the a given row in a tableau if and only if ¥ > = and, if z is another
entry in that row such that z is to the left of y, then z < x. Thus, the bumped entry y can only
move down and to the left in comparison to the first column it was first sitting in the tableau. But,
our original tableau is strictly increasing in every column so that the entry directly above the new
position of y is at most x, which is strictly less than y by assumption.

The latter shows that the row insertion algorithm is reversible, provided that we are told which
box was last added. For instance, one might start with a Tableau 7" and a box with entry x which
was last added by the row insertion procedure. Then, one wishes to recover Ty and t such that
Ty <t =T. If the last-added box is in the first row, then it is necessarily the rightmost box in that
row. In this case, t is equal to the entry in the rightmost box, i.e ¢ = x. If the box is not in the
first row, then one simply finds the rightmost entry in the row above which is strictly less than x.
Repeat this procedure inductively, recording the entries, until arriving in the first row, where the
entry bumped out of the first row is the desired ¢. We highlight this procedure using a gray path
on our previously defined T" and assuming that the box with entry 6 (in the last row) is the one
last added by the algorithm

1[1[2]3
214
3

In this example, T' = (Ty < 3) where Ty = {11234,245,367,4}

Moreover, this grey path denoted above is called the bumping route of 3 when inserted in 7Tj.
We commonly use the letter R to denote a bumping route. As one might expected, such object
is of key importance in the study of row insertion. The bottom-most box of the bumping route is
referred to as the new box of the row-insertion. In this last example, the box in position (4,2) would
be the new box of the row-insertion 7' = (Tj < 3). We now give some brief definitions of concepts
related to routes.

We call a route R weakly left (respectively strictly) of another bumping route R, if in each row
containing a box of R, the route R has a box in the same row which is weakly (respectively strictly)
left of that of R. We are now ready for our first useful proposition related to the row bumping
algorithm:

Proposition 2.5.2. Let Ty, with shape p, and U = (--- ((Ty < t1) <= ta) <= -+ <= tp_1) < tg, with
shape \. If {t1,ts, - ,tr} is a sequence of weakly increasing positive integers, then no two bozes in
A/ p lie in the same column.

Conversely, suppose U is a tableau on N\ D p such that it has exactly k bozes on \/p lying
in different columns. Then, there is a unique tableau Ty and a unique set of of weakly increasing
positive integers {t1,ta, -+ ,tp} such that U = (- ((Ty <= t1) < ta) = -+ <= tgp_1) < Ui

To prove this proposition, it will be of our interest to prove a result famously referred to as row
bumping lemma

Lemma 2.5.3 (Row Bumping lemma). Let T be a tableau. Let R denote the bumping route of row
inserting x into T and let R' denote be the bumping route of row inserting x’' into T < x. Let b
and b’ denote the new boxes produced by the row insertions related R and R' respectively. Then,
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Case 1. If x > 2/, then R’ is weakly left of R and V' is weakly left and strictly below b
Case 2. If x < 2/, the R is strictly left of R', and b is strictly left and weakly below O

Proof. We first consider the first case, where x > 2’/. If z is placed at the end of the first row, then
the result follows trivially. Now, assume otherwise and let y and 3’ denote the elements bumped
by x and 2’ respectively. Note that 2’ bumps the least entry strictly grater than it but also z > a/;
hence, 3’ is at most z, i.e y' < x. But since row insertion produces a well defined tableau, this
means that the box of 3/ cannot be to the right of the box of x. Noting that 3y < x and x < y, we
apply this argument inductively, for each row of the tableau. This shows that R’ is weakly left of
R. Furthermore, since 3y’ < y, we will never place the new box of the route R', i.e b, at the end of
a row where the route R is present. Hence, b’ is weakly to the left and strictly below b as required.

For the second case, assume that x or 2’ are placed at the end of the first row, then the result
follows trivially. Now, assume otherwise and let y and 3’ denote the elements bumped by z and
x’ respectively. Consider the first row of T' <— x. Note that ¢y must lie strictly to the right of the
box where x is in T < x, because all the boxes weakly to the left of the box where x occupied in
T < x are filled by elements that are weakly smaller than x, and hence, weakly less than or equal
to «’. Thus, this implies that y is strictly left of 4" in T, in particular, y < 3. Again, we apply this
argument inductively to each subsequent row to conclude that R is strictly left of R’. Because of
this, R cannot stop above any row that R’ stops. Hence, if R and R’ stop at different rows, it must
be that b is weakly below " and hence, since R is strictly left of R’ so is b in relation to ¢'. Finally,
if they stop at the same row, the same reasoning shows that b is strictly left of b’ as required. H

With the row bumping lemma in our toolbox, proposition 2.5.2 becomes an easy extension of it.

Proof of 2.5.2. We apply the row bumping lemma inductively, denoting by R; the route related to
inserting ¢; into the tableau [(--- ((Tp <= t1) < t2) < -+ < t;_1)] and b; denoted the new box of
the row insertion associated with R;. Now, note that the boxes of \/p are precisely the new boxes
of the subsequent row insertions of the ¢;. But, by the row bumping lemma, R; is strictly to the
left of R;; 1 and b; is strictly left and weakly below b, 4, for all i in [k — 1]. Hence, no two boxes of
A/p lie in the same column as required.

For the converse, simply note that, as argued before, the row insertion algorithm is reversible.
Start by performing the reverse row bumping algorithm on U from the box located at the right-most
of A/p. This will give you a tableau T}, and an integer t; such that T}, < ¢, = U. Next, perform the
reverse row bumping algorithm on the resulting tableau T}, from the box located secondly right-most
of \/p. This will give you a tableau Tj_; and an integer t;_; such that [(Tx—1 + tx_1) < tx] = U.
Also, since A/p is a well defined skew tableau, it follows that t;_; < ;. Inductively, we get the
desired result. ]

An analogous proposition of that of 2.5.2 can be formulated to explain the behavior of the row
insertion process when dealing with strictly increasing sequences.

Proposition 2.5.4. Let Ty, with shape p, and U := (- -+ ((Tp <= t1) <= to) < -+ <= tp_1) < tx, with
shape X. If {t1,ta, -+ ,tx} is a sequence of strictly decreasing positive integers, then no two bozxes
in A/ p lie in the same Tow.

Conversely, suppose U is a tableau on X\ D p such that it has exactly k bozes on \/p lying in
different rows. Then, there is a unique tableau Ty and a unique set of of strictly decreasing positive
integers {ti,ta, -+ ,tr} such that U = (--- (T <= t1) <= to) < -+ < tp_1) < 1k
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Proof. The proof is analogous to that of 2.5.3, crucially using the first case of the row bumping
lemma. The only meaningful difference to note here is that, for the converse direction, the reverse
bumping algorithm should be applied from the bottom-most to the uppermost row of \/p. [ |

The above presented propositions showcase how the row insertion algorithm can be understood
through diagrammatically lens on the tableaux. However, it is often useful to understand how
this algorithm affects words of tableaux. For simplicity, let’s first consider that an entry x is
being inserted in some row of a Tableau T'. Consider that row’s word specifically; denote it by w.
Remember that w is a weakly increasing sequence of positive integers. Write w = w-v, where v and
v are words such that for any integer in u; in u, we have that u; < x, and, for any integer in v; in v,
v; > x. Here, it is possible that either v or u are empty words. The row insertion algorithm tells us
to find y in this row such that y is the left-most entry which is strictly greater than x, bumping y
down. Thus, we can further rewrite this word as w = u - y - v. If such y exists, the row insertion is
performed by precisely replacing this y with x, bumping the former into the next row. In this case,
one can visualize the change performed by the row insertion algorithm in the word of this row as
follows:

w-r=u-y-v)-r~y-(u-x-0)

If no such y exists, we simply append z to the end of the row word w. This process becomes
more interesting when we allow for the entire word of the tableau to be considered. This is best
understood through an example. For this, we will continue to use the previously defined T this
subsection. Here, w(7T) = (46)(357)(244)(11233). Now, row inserting 2 into 7' changes its word as
follows:

(46)(357)(244)(112 - 3 - 3) - 2 ~~ (46)(357)(244) - 3 - (11223)
46)(357) - 4 - (234)(11223)
46) - 5 - (347)(234)(11223)

6)(45)(347)(234)(11223)

iiii

A~ TN N/

This relationship between row insertion and words was first presented by Donald Knuth, who years
later rediscovered the row insertion algorithm first presented by Schensted. The way the algorithm
acts on words is of extreme importance in proving further results that will be presented later. For
the moment, we note that this relationship reveals the inner structure of the algorithm, breaking
it down into atomic pieces. To see this, let T be a tableau w be its corresponding first row word.
Pretend that we are to row insert x into 7. Again, we choose a factorization of w such that y
represents the element of the first row to be bumped by the insertion algorithm. Then, w =u-y-v
of w. Let v = v; - - - v,. We declare the relationship between two words & < p whenever every integer
in k£ is smaller than or equal to every integer in p.
The steps can be listed, with the rules that govern them, as

(UYL -+ Vg_10y) - T = UYVY -+ - Vg1 Vgl — UYV7 * -+ Vg1 TV, T < V41 < vy)

> UYV) * * * Vg—2TVq—1Vq T < Vg_o < Ug1)
C P UYV1TV + - - Vg—1Vq

(
(
(
(

— uYTUy - - - U, u<y<x<v1)



Note that the reiterated transformation at each step is:

TYZ — T2Y (z <z <y) (K

At this point, the row insertion algorithm tells us that y is bumped into the next row, while x
stays at that given position. Thus, we have to completely bump y out of this row. Again, we list
the steps as follow

ULU * * * Up—1UpYTV = ULUQ * * * Up—1YUpTV
= UU2 "+ - Up—2YUp 1 UpXV
e UTYUsg ¢ Up TV

= YuilUg - - - UpTV
Through these reiterated transformations, the rule governing them is:

TYZ — YT 2 (x <z<y) (K”)

It turns our that these two word transformations, K” and K’, are so important that they take
a specific name: elementary Knuth transformations.

We call two words w and w’, Knuth equivalent if one is obtained from another by solemnly
applying Knuth transformations to them. This defines an equivalence relation on the set of words
of tableaux. The latter will be denoted by w = w'.

In particular, these two operations motivate a proposition, whose proof is immediate from this
discussion.

Proposition 2.5.5. Let T' be any tableau and t be any positive integer, then w(T < t) = w(T) -t

At this point, it is hard to see how Knuth equivalence will aid us any further than describing
an algorithm to go from a word of tableau to a new word. As an example, this notion is crucial in
proving the following important theorem.

Theorem 2.5.6. Fvery word w is Knuth equivalent to some word of a unique tableau T

Proof. Let w = w129 - xg. Then, let T} =[ry]. Then, T can be obtained by setting

T:= (- ((T) < x2) < x3) -+ < T_1) < x}. By our last prop w(7T') = z; - 2 = w. Unfortunately,
uniqueness is not so easy to show, but, in terms of future applications, even more important than
existence. Since the purpose of this paper is to elucidate the applications of the Combinatorics
of young tableaux, we omit the proof of uniqueness from this discussion. However, the interested
reader may find a proof of this result in page 22 of Fulton’s [1]. [ |

2.6 Jeu de Taquin

We now introduce another algorithm on tableaux. This algorithm is commonly named sliding
game or Jeu de Taquin, which literally means teasing game when translated from French. From
Fulton’s [1]: “The name jeu de taquin refers to the French version of the 15 puzzle, in which one
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tries to rearrange the numbers by sliding neighboring squares into the empty box.” Indeed, the
chosen allusion makes sense, as we will see in a moment.

In contrast with the row-insertion algorithm described last section, this algorithm acts on skew
tableaux in such way to turn them into well defined tableaux. Given a skew tableau S, the following
is what we call the sliding algorithm:

Choose an inside corner (as defined in 2.3) of S. (As a reminder, an inside corner of skew
tableau will be a box with no filling)

Consider the two neighboring entries of such an inside corner. These are the entries immedi-
ately below and immediately above that empty box. These are guaranteed to exist, since we
are starting with an outside corner. Identify which entry is smaller. If they happen to have
the same size, simply choose the one directly below the inside corner (i.e , the leftmost one).

Slide the smaller of the two into the inside corner. Here, slide literally means to exchange the
inside corner with the smaller outside corner.

Repeat the previous two steps with the empty box, identifying its two new neighboring entries
after the sliding procedure. Repeat, inductively until an inside corner becomes an outside
corner.

At this point, remove the inside corner from the diagram. Halt.

Again, this is best explained visually. Take the skew tableau S = =7 . Then, the sliding
6
procedure, choosing the inside corner conveniently depicted by the black box, produces:

44 4 44213. 44213'
5171 BB T RET T RbT
416 416 416 416

We will address the issue of choosing an inside corner in what follows, but first, it is important
to note that this procedure always produces a well defined skew tableau. The fact that it produces
a skew diagram is evident, but in order to verify that the fillings remain consistent, one must check
two cases. Consider the following sliding results:

v b|lv v b
)

< >
a y| =5 lalxly a y | 2%

a

In the first case, all the rows remain weakly increasing since x < y and the column fillings
are not affect. In the second case, the row fillings are not affected, but since x > y the columns
remain strictly increasing. This shows that the sliding procedure always produce a well defined skew
tableau. Furthermore, as with the row-insertion algorithm, the sliding algorithm is again reversible,
provided that we know what outside corner was removed last.

11



Now, after choosing some a inside corner of .S, and applying the sliding algorithm, one is faced
with the option to “tease” the resulting skew tableau again by choosing another inside corner (if
there is any). Indeed, one can do this inductively, choosing inside corners and sliding them out, until
one is left with a tableau. This resulting tableau is called called the rectification of S, denoted
in short by Rect(S), and the entire procedure of perturbing S to arrive at Rect(S) is what jeu de
taquin is. To give an example, consider S as above. Then, using the black boxes to indicate our
choice of inside corners to run the sliding algorithm at each step, jeu de taquin gives:

S = 4471 ~

5
416

Ol
ol

4]
= Rect(S5)

3~

NN

4[4 414
7 7

AN AN AN

3] F%EI EE23] (23]
14517
6]

=SSN |
$

=SSN
4|

4
2
6

]

[

One may be justifiably concerned about the well-definiteness of this procedure, since it involves
a choice of inside corners repeatedly. However, we will know show that, in fact, this procedure
is independent of the sequence of choices of inside corners. That is, no matter how one chooses
the inside corners of S to apply the sliding algorithm, Rect(S) will always be the same. Firstly, a
proposition:

Proposition 2.6.1. If a skew tableau is obtained by another through a sequence of slides, then their
words are Knuth equivalent.

Proof. Firstly, it is important to note that a sequence of slides may not produce a skew tableau.
Unless, you have fully thrown away the inside corner you have started with, what you have is a
skew tableau with a puncture box in it. However, it is still possible to define a word for this object
under these circumstances; such a word is defined in the most obvious way, ignoring (or skipping)
the punctured box in this object. Thus, it is easy to see that if a horizontal slide is performed,
then the word of the tableau remains the same. Thus, if the slides are horizontal, the words of
the tableau are the same, and the proposition follows easily. Now, consider a vertical slide in the
following example, where u < v <z <y < z:

u Y| o<y |u|x|Y

~

viiT|~Z (% zZ

Here, the word changes from vzzuy into vzuzry. Indeed, this is achieved by the following Knuth
transformations:

VTZUY = VTUZY (K"
= vuzzy (K"
= vuzay (K"
= vzuxy (K"

Now things get a bit more technical when we allow for more than four corners as depicted above.
This case is handled by a tedious induction argument and picky notation. We omit the latter from
this present discussion. For the interested reader, a proof of this case is presented in page 21 of
Fulton’s [1]. |
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We have now set ourselves up to success in order to prove what we originally wanted:

Claim 2.6.2. Jeu de taquin procedure is well defined: Given a skew tableau S, Rect(S) is indepen-
dent of the order that one chooses to eliminate inside corners.

Proof. This claim follows from last section’s theorem 2.5.6 and proposition 2.6.1 shown above. H

This last claim can be rephrased to give other useful characterization of Rect(S). We will label
these as corollaries, since their proofs, just like the one presented in the above claim, follow directly
from 2.5.6 and 2.6.1.

Corollary 2.6.3. Let S be a skew tableau and let w(S) represent its word. Then, Rect(S) is the
unique tableau T such that w(T) = w(S).

Proof. As above. [ |
Corollary 2.6.4. Let S and S’ be skew tableaux. Then,

Rect(S) = Rect(S") < w(S) = w(Y’)

Proof. As above. [ |

2.7 Product of Tableaux

We now come to the last introductory operation on tableaux that we will present in this report.
This operation is most commonly thought as a multiplication of tableaux because of its suggestive
notation. There are a couple of ways that one may choose to define this operation. Since the
algorithms and operations were recently introduced in this discussion, we will first define the product
in terms of those.

Let T" and U be tableaux, and denote by w(7T") and w(U) their words. Let A be the unique
tableau whose word is Knuth equivalent to w(T") -w(U) (concatenation of words, as defined before).
Then, we define the product of T" with U by

A=T.-U

Since A is unique by 2.5.6, this operation is well defined. Interestingly, this operation can be defined
naively, but in a analogous fashion, using yet another operation on tableaux.

For two tableaux T and U, define the skew tableau T« U by taking a rectangle of empty squares
with dimensions #rows of T x #columns of U and gluing T directly below this rectangle and U
directly right and of it.

abTeld] ulv|w]
As an example, let T = and U =|[r] .Then,
Y

TxU =
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Then, one defines T'- U := Rect(T *U). Indeed, since w(T*U) = w(T)-w(U) and jeu de taquin
guarantees the uniqueness of Rect(T x U), 2.6.3 guarantees that the above two different definitions
of the product are equivalent.

Proposition 2.7.1. Let T denote the set of tableaux. Then, (T, ) is a monoid with identity element
denoted by 0, which is the empty tableau associated with the empty partition ().

Proof. Clearly, for any T € T, we have T - ) = () - T = T, so that ) is indeed the identity element
under this operation. It remains to show that - is associative.

Let T,U,V € T. Consider, (T-U)-V = Rect(T«U)-V. Similarly T'- (U - V) = T+ Rect(U % V).
But, note that Rect(T' «U) -V and T - Rect(U = V') are the unique tableaux whose words is Knuth
equivalent to w(Rect(T «U))-w(V) and w(T') - Rect(U % V'), respectively. But, since concatenation
of words are associative, we have:

w(Rect(T*U)) - w(V) = (w(T) -wU)) - wV)=w(T)  (wlU) -wV)) =w(T) - Rect(U « V)
Hence, (T'-U) -V =T - (U -V) as required. |

There is yet another construction of the product which is worth mentioning in this report because
it ties together the row-insertion algorithm and jeu de taquin. As before, let T, U € T, and let
w(T) = tyty---t, and w(U) = ujus - - - ug, be their words. Then,

T-U:= (- (T« up) < ug) -4 uUp_1) < ug

As a consistency check, applying 2.5.5 inductively, we have that w(T - U) = w(T) - uyug - - - u,, =
w(T) - w(U). Hence, this definition agrees with the previous ones.

Note that, though - is associative, it is not a commutative in general. The latter is easily shown
using this last definition of the product:

14



3 Applications to Counting Problems

This section is dedicated to results related to counting problems that are solved using the theory
developed thus far. Obviously, the theorems and ideas presented in this sections are not exhaustive
and one may want to refer to [1], [3], [2], for more results concerning counting problems.

3.1 RSK Correspondence

The acronym RSK stands for Robinson-Schensted-Knuth. This result is quite marvelous on its own.
RS K correspondence, due to Donald Knuth, is in fact a generalization of a weaker correspondence
named Robinson-Schensted correspondence. Here is what it states:

Theorem 3.1.1 (Robinson-Schensted Correspondence). There is a bijective correspondence between
words of length v on the alphabet of [n] and pairs of semi-standard tableauzx (P,Q), where P is a
semi-standard tableau with entries in [n] and with associated partition X\ = r and @Q is a standard
tableau on [r] on the same shape \.

We have already seen in 2.5 how a word and a tableau may be related to one another. More
specifically, we have shown that every word is Knuth equivalent to a word of a unique tableau. In
other words, if one starts with a word u = ujus - - - u, and let

Pu) :== (- (w1 ] = ug) < ug) -+ < up_1) < u,

then, P(u) does not correspond uniquely to u. In fact, choose any other word u' = w. Then,
P(u) = P(v'). This is precisely the reason for including pairs of tableaux in this correspondence.

If we have any hopes to achieve a correspondence between words and tableaux, we must take
into account Knuth transformations. This is achieved by recording where each entry of the word u
is placed throughout the standard procedure of row insertion. The way we record these placements
is through what is called recording tableau. The latter is commonly denoted by the letter @) in
the correspondence, while the tableau obtained through the standard procedure of row insertion is
called the insertion tableau, denoted by P. As before, we use the notation P(u) and Q(u) to denote
the insertion and recording tableaux respectively produced by the word u. A formal definition of
@ is given as follows:

Definition 3.1.2. Let u = uwyug - - - u,.. For all k < r, denote by Py.(u) the tableau obtained by row
inserting {uy,--- ,ur} by the standard procedure. Similarly, let Q1(u) = [1], and, inductively for
k> 1, let Qr(u) be the tableauxr Qp_1(u) with an additional box filled with content k, placed at the
position where uy was placed in Py(u). We define Q(u) := Q. (u).

One thing to note from this definition is that the recording tableau @) will have the same shape
as the insertion tableau P. In particular, since P is always a well defined young tableau, () is indeed
a young diagram. But, since the box added to P through the standard procedure is always an
outside corner, so is the box added to Q;, with entry always largest than any other already in Qy_1.
More importantly, with entry larger than any entry above or to the left of it. Hence, () is indeed a
standard tableau, since its entries are {1,--- ,r} each with multiplicity one.

15



We now give an example of this procedure with the word u = 1336572:

(P=[1]) <3 — (R=[1]3]) +3 — (P3=[1[3[3]) «+6 — (P, =[1[3[3]6]) « 5

112[3][5]7]
— (Ps = é3|3|5|) —7 — (Fs= (15 3|3|5|7|) —2 — P =3 =P(u)
- - 6
Now, we use the insertion route of P(u) to compute Q(u):
Q=10 — Q:=[112] — Qs=[112[3] — Q4 =[1]2]3]4]
1[2[3]4]6]
g -[IEBE g IEEEE o [PFT_q,

If a bijection exists, there must be a way to go from (P, (), where the pairs have the desired
properties, to some word u with length . This is exactly where () comes in handy. Remember
that Schensted algorithm is completely reversible provided that we know which box was last added.
That is, there is no ambiguity to what entry was last added provided we now which box the row
insertion algorithm created. Indeed, ) is created to record the order in which the boxes in P were
added. Using ), we are able to completely reverse P.

This method can be more accurately described (backwards) inductively as follows. Start with
(P, Q) = (P, Q) and located the box in @) occupied by the entry r. Locate the corresponding box
in P. Then, proceed by running backwards row-insertion algorithm described in 2.5. Because of
the construction of P, the result of this first step will be a tableau P,_; and an entry x such that
(P,_y < x) = P. = P. Let © = u,. To produce @,_; simply remove the box containing r from
(). At each step k, locate the entry k in ), and run this same algorithm, denoting by u; the entry
such that (Py_1 < ux) = P, . Note that at each inductive step, the largest entry in Q) will always
be an outside corner, so the reverse process in indeed well defined. By the reversibility of Schensted
algorithm under the special condition that we know which box was last created, we are able to
uniquely recover this word u = uy - - - u,.

Hence, this discussion has shown that a word u of length r in the alphabet of [n] completely
determines a pair (P, Q) with the desired properties described in the enunciation of 3.1.1. Thus,
the correspondence is shown.

In the above correspondence, we are stipulating that () is a standard tableau. What if P and
() have yet the same shape, but nothing is expected of Q7 That is, what if () is just a tableau with
entries in [m|? Indeed, this extended case is due to Knuth himself and is what is called the RSK
correspondence. We will first introduce some notation in order to formalize this result.

We call w = (41 27 7)), where uy - - -, and vy - - - v, are words of length r, a two-rowed array
of length r. In particular, we can interpret w = (, 2 . ) as the word u; - - -u,. This notation
allows us to record the above reverse process by a sequence of two rowed arrays wy = (fk f,:fl B ),
where uy, is such that (Py_y < u) = Pg. Using this notation, we describe the algorithm which
will lead us to Knuth’s generalization of this correspondence. The procedure requires only minor
modification from the above process.

16



Starting from a pair (P, Q) of tableaux on the same shape A - r, where P has entries on [m)]
and @ in [n]. Start by locating the box in @ = @, with the largest entry. If there are more than
one box with largest entries, choose the farthest to the right (they are not in the same column).
Call that entry v, and remove it from @), to get @),_;. Locate the corresponding box in P. = P and
perform backwards row insertion in that box. Just as before, you will end up with an entry z and
a tableau P._; such that (P._; < x) = P. Again, let u, := x. Define w, := (4 ). Inductively, just
as before, we get a two-rowed array w := w; = (o} 42 0 o)

Note that, by construction, v; < vy < --- < v, (1). Also, by 2.5.3 the bottom row of the
two-word array will satisfy u,_1 < ug whenever vy = vy (2). If a two-rowed array is arranged in

this particular way (when (1) and (2) hold), we say that w is in lexicographic order, or that w

is a lexicographic array. Another way to describe this is to say the pair Z is placed to the

/

right of the pair Z,) if and only if (v < v) or if (v/ = v and v’ < w). Thus, starting from (P, Q)

as above, we end up with a two-rowed array w arranged in lexicographic order.

Now, given a two-rowed array in lexicographic order w = (! 32 4" ), we construct P(w) by
the canonical procedure of row insertion using the bottom row of w, but now, the entries of Q(w)
are given by the respective entries in the top row of w. Note that in order for this process to
generate a well defined pair of tableaux (P, Q) with the desired properties, the condition that
w is in lexicographic order is necessary and sufficient. P(w) will always be a tableaux, but the
construction of Q(w) is in jeopardy if we do not impose this condition. In particular, if v; = v; for
¢ < j then one needs that u; < u; so that 2.5.3 guarantees that the box added to @); is strictly left
and weakly below the box added to );, and hence, @); is a tableau and so is @), = Q.

Now, a couple of observations are due before we finally state the RSK correspondence theorem.
We call a two-rowed array w a word when we can view one as such, i.e when w = (2 7).
Furthermore, if the word in the bottom row has entries in [r] each with multiplicity one, we call w a
permutation. This is not unmotivated since, with this notation, we can think of w as an element

oes,.

Theorem 3.1.3 (Robinson-Schensted-Knuth Correspondence). There is a bijective correspondence
between two-rowed lexicographic arrays w and ordered pairs (P, Q) of tableauz on the same shape
A. In particular, if we fix the length of the word w = (4} 27 W) to be r, then there is a bijective
correspondence between these words w and pairs of tableauzr (P,Q) on the same shape \, where

A

Proof. The proof follows immediately from the above prescribed algorithm for arbitrary lexico-
graphic two-rowed arrays. [ |

We immediately see that 3.1.1 is a special case of the above theorem for the case that the two-
rowed lexicographic array w is taken to be a word, since every two-rowed array which is a word is
in lexicographic order. Also, a useful corollary which is again a special case of the above theorem
for when w is a permutation states the following:

Corollary 3.1.4. There is a bijective correspondence between permutations w and pairs of
standard tableaux (P, Q) on the same shape. In particular, if w is taken to be a permutation on
r letters, then, there is a bijective correspondence between such w and pairs of standard tableaux
(P, Q) on the same shape X\, where \ F r.
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Furthermore, we can generalize 3.1.3 even further. Namely, we can view this theorem as a
correspondence between matrices A with non-negative integer entries and pairs of tableaux (P, Q)
with the same shape. To do so, a few cleaver observations are in order.

Firstly, note that any two-rowed array w = (4} 2 0 on) gives rise to a unique two-rowed array
in lexicographic order by a sequence of permutation of the columns of w. In turn, there is a natural
correspondence between two-rowed arrays in w and matrices A with non-negative entries. Such is
given by the following: Start with a two rowed array w, whose top and bottom row consists of
entries in [m] and [n] respectively. We can think of w as a collection of columns of the form (),
where i € [m] and j € [n]. Then, we construct A(w), an m x n matrix, by letting its (i, j) entry be
the number of times the column (;) appears in w. Conversely, starting from a m x n matrix A with
non-negative integer entries, we can arrive in a two-rowed array w by letting such be the unique (up
to lexicographic rearrangement) two-rowed array composed of columns (;), each appearing with
multiplicity a; ;.

Through this construction, we see that the RSK correspondence 3.1.3 extends to a correspon-
dence between matrices A with non-negative integer entries and pairs of tableaux (P, Q) with the
same shape. In particular, if we fix matrices A of dimension m x n, then the above algorithm tells
us that these are in bijection with pairs of tableaux (P, @), where ) has entries in [m] and P has
entries in [n].

Just as before, we may wonder under what conditions does the matrix A correspond to a word
or a permutation w. Note that the i*® row sum of A is precisely the number of entries i in Q.
Likewise, the j*"* row sum of A is the number of entries j in P. Hence, A corresponds to a word w
if and only if it’s associated @ is a standard tableau, i.e if and only if each row of A consists only
of a single entry 1, and all other entries 0. Likewise, A corresponds to a permutation if and only if
the latter holds for both rows and columns. If this holds, A can also be taught as a permutation
matrix itself.

This construction is useful in many ways. Remarkably, this idea of associating (P, Q) with a
matrix A can be useful in providing a proof of 3.1.3 that does not rely on row insertion at alll The
latter is uses an algorithm known as the matriz-ball construction. We will not provide an explicit
construction of this algorithm, but the interest reader may want to refer to Section 4.2, in Fulton’s
book.

In turn, this algorithm produces an immediate proof of the following theorem, whose corollaries
will be useful later in this report.

Theorem 3.1.5 (Symmetry Theorem). If w = (3} 2 7 27) is a two rowed array corresponding to
1 Ul U2t Up

the pair of tableauz (P,Q), then (Q,P) corresponds to the two-rowed array w=' = (4 22 7 50).
Specifically, if w is a permutation, then P(w) = Q(w™') and Q(w) = P(w™1).

Proof. Immediate from Matrix-ball Construction, describe in Fulton’s [1], Section 4.2 |

Corollary 3.1.6. There is a bijective correspondence between symmetric matrices with non-negative
integer entries and tableauz.

Proof. In the description of the array-matrix correspondence, swapping the rows of an array amounts
to taking the transpose of its corresponding matrix. Then, by 3.1.5 (P, Q) is associated with the
matrix A if and only if its transpose A! is associated with (Q, P). Thus,

A=A" = [(P.Q)=(Q.P)] <= P=Q
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and we can view the pair of identical tableau (P, P) as the tableau P itself, so the corollary follows.
|

Corollary 3.1.7. Let n be a natural number. There is a bijective correspondence between standard
tableauxr P on some shape \ = n and involutions in w € S,,.

Proof. Let P be a standard tableau on some shape A - n. Then, consider the pair of tableaux
(P, P). For this proof, identify (P, P) with P. By 3.1.4 there is a permutation w on n associated
with P. By 3.1.6 above, there is an associated matrix A(w), which is symmetric. Hence, since the
permutation matrix A(w) = A'(w) is symmetric, w is an involution. |

For the next corollary, we introduce the following notation. Say 7' is a tableau on some shape A

with entries in [m]. Then, we use the array (1**,2%2, ... '/m®) to say that T has a; entries 1, ay
entries 2, - - -, a,, entries m.

Proposition 3.1.8. The number of tableauz T on \ with entries (1°1,2%2 ... m®m) is the same
number of tableauz T' on X\ with entries (17(@1) 20(@2) ... polam))

Proof. Let T be a tableaux on A with entries (1**,2%2 ... '/m®). What possible matrices A could
have generated T under the RSK correspondence for matrices? By the observations made in
our discussion above, A has to have column sums of ay, s, , a,,, respectively from left-most

column to the right-most column. Thus, this problem boils down to show that there are as many
A’s associated to T with this property that there are A’’s associated to T' with column sums
J(a1)> J(a2)7 e 70<04m)-
For simplicity, assume that o is a transposition between the ¢ and 2+ 1. Then, write the matrix
A as
A=[B C D]

Here, B stands for the first 2 — 1 columns, C for columns ¢ and 7+ 1, and D for the subsequent ones.
It follows that the tableau P of the pair (P, Q) associated with A is given by the product PgPcPp,
where P; stands for the insertion tableau associated with the letter i. Hence, the matrix

A=[B C D]

where C" is matrix with row sums ;1 and «;. Thus, there are many matrices A associated to T" with
column sums «q,q9, - ,q, to matrices A”’s associated to T with column sums
A, Gyt v QG 1, Qg 1, Oy m o5 Qi

Now, since the transpositions generate the symmetric group, this result holds for arbitrary
elements o € S,,. [ |

3.2 Permutations and other Combinatorial Identities

Since RSK behaves well under permutations, many useful and important properties of these objects
can be realized through this correspondence. We list some of these in this sections. For reference,
most of these results and many more can be found in Romik’s [3].

We begin with some definitions.
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Definition 3.2.1. Let w = w; ---w, € S,,. We denote by D(w), the descent set of w.
D(w) = {Z Tw; > wi+1}

For instance, if w = 769548231, then D(w) = {7,9,5,8,3}. Also, D(123456789) = (), and
D(987654321) = [9]. Analogously, we if T" is a standard tableau, we define

D(T) := {i : i is in some row above that of ¢ + 1}
5]6]

113
For example, if T'=[2[4]|7] as in, then D(T) = {1,3,6,7}.
819

Theorem 3.2.2. Ifw € S, is a permutation and (P, Q) is the pair of standard tableau corresponding
to it under RSK, then D(w) = D(Q).

Proof. Let w = w; ---w, be a permutation and let P be its associated tableau obtained by the
canonical row insertion procedure. Then, if w; > w;y 1, 2.5.3 guarantees that the box associated
with the insertion of w;;; will be strictly below that of w;. Hence, this shows one containment,
D(w) C D(Q).

For the converse, if w; < w;y 1, using 2.5.3 again, we see that that the box associated with
the insertion of w;,; will be weakly above that of w;, so that i ¢ D(Q), which gives the reserve
containment. The result follows. [ |

Proposition 3.2.3. Let f* denote the number of standard tableauz on . Let, dx(m) denote the
number of tableauz with entries in [m| and shape \. Then, for n,m > 1, we have:

z:(f/\)2 =n! and Z}O‘d}\(m) =m"

AFn AFn
Proof. The equality on the left follows immediately from 3.1.4 and the fact that there are a total
of n! elements w € 5,,. Likewise, the equality on the right follows from the fact that the number of
words in the alphabet [m] of length n is m"™ and the RSK correspondence 3.1.3. ]

Proposition 3.2.4. If |n/2| denotes the floor function evaluated at %, then
[n/2]

A n!
2= (n — 2k)!2kk!
AFn k=0
Proof. By 3.1.7, it suffices to show that the number of involutions in S,, equals the RHS of the above
equation. Why is that the case? First, note that if w is an involution, then A(w), its associated
matrix, is symmetric. In particular, w? = id. Thus, the problem boils down to counting the number
of permutations w such that w? = id. First, a little lemma:

Lemma 3.2.5. For allw € S,,, w? = id <= w is a product of disjoint 2-cycles (transpositions).

Proof. The backwards direction is evident as the order of transpositions is always 2. For the forward
direction, assume that w satisfies the assumption. Then, it is a basic fact that every permutation
can be written as the product of disjoint cycles. Assume towards a contradiction that w can be
written as a product of £ disjoint cycles for which, at least one of them is not a 2-cycle. WLOG,
let the order of such cycle be m > 3. Then, o(w) = lem(iy, iz, - - ,ix—1, m) # 2, where 4; stands for
the order of cycle j. In particular, w? # id, a contradiction. The lemma follows. [ |
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Thus, to count such permutations w, we observe that, if we fix a number of 2-cycles, say k,
then we need to choose 2k elements out of [n], and, from this pool, pair the selected elements
into k disjoint cycles. In particular, there are (27;:) ways to choose 2k elements and ,f,—g}g ways to
pair the selected elements into 2-cycles. But note that we can only select k£ such that 2k < n, i.e

ke {0,1,---,[n/2]}. Thus, the equality follows as required. [ |

Proposition 3.2.6. Let P be a tableau on the shape A. Let K(P) be the set of words which are
Knuth equivalent to w(P). Then, |K(P)| = f.

Proof. Note that every w’ such that w' = w(P) is such that RSK(w') < (P,Q"), where Q is a
standard tableau with entries in [n]. Hence, since every word w’ corresponds to some (P, Q'), it in
fact corresponds to @’ directly under this identification. Since fixing a P of shape \ gives f* choices
for (P,Q’), we are done. [ |

Before we present the next result, we introduce some notation.

If w € S, we define L(w, k) to be the largest number that can be achieved by summing & disjoint
increasing subsequences of w. Similarly, de(w, k) to be the largest number that can be obtained by
summing the length & disjoint decreasing subsequences of w. Obviously, L(w, 1) is just the longest
increasing subsequence of w and, similarly, dc(w, 1) is just the longest decreasing subsequence of
w. This definition generalizes naturally for words w instead of permutations, under the same
correspondence. It is just a matter of redefining L(w, k) to be the biggest number that can be
obtained by summing & disjoint weakly increasing subsequences of w. RSK provides the following
relationship between words and their respective longest increasing and decreasing subsequences:

Theorem 3.2.7 (Greene’s Theorem). Let w be a word associated with the pair of tableaur (P, Q)
of shape X = (A1, -+, \,) under RSK. Then, for all k € [n],

k

L(w, k) =Y X\ (1)

=1

Proof. Note that a weakly increasing sequence of w is just a sequence of numbers in the tableau P
arranged from left to right. But, since the fillings of a tableau are strictly increasing from top to
bottom, this sequence from left to right must be taken in different columns. Conversely, every row
of P can be viewed as some increasing subsequence of w. Hence, L(w, 1) is the length of the first
row, \;. By the same argument, the biggest number of disjoint k£ weakly increasing subsequences of
a word w, i.e L(w,k), can be realized by summing all of these rows, which themselves correspond
to individual increasing subsequences of w. [ |

An analogous results holds for the conjugate partition \

Theorem 3.2.8. Let w be a word associated with the pair of tableauz (P, Q) of shape A = (Ay, -+, \n)
under RSK. Then, for all k € [n],

k
de(w, k) = Z X (2)

where X' stands for the conjugate partition as defined in 2.1
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Proof. The conjugate partition is nothing other than exchanging columns for rows. Hence, this
statement is equivalent to proving that the summation of the boxes in the first k columns of A give
indeed de(w, k).

Start with a word w and the pair (P, @Q)) of tableaux associated with it via RSK. Note that every
strict decreasing subsequence of w is just a sequence of numbers arranged from top to bottom in the
tableau. Since the sequence is strictly decreasing, and the fillings of the tableau P are increasing
from left to right, these numbers must be taken in different rows. Conversely, every column of P
can be viewed as a decreasing subsequence of w. Hence, by now repeating the argument presented
above, the result follows. [ |

Since Professor A. Golsefidy mentioned this during my presentation, here is a proof of the
Erdds-Szekeres theorem using RS K

Theorem 3.2.9 (Erdés-Szekeres). Let w be a permutation of the letters in [n?]. Then, it either has
an increasing subsequence of length n or a decreasing subsequence of length n.

Proof. Let (P,Q) be the pair of SYTx of shape ) associated with the permutation w. Then, \ - n?
by 3.1.3. In particular, A must have at least n rows or n columns. If it has n columns, then
A1 = L(w, 1) > n by 3.2.7. In the second case, \| = dc(w, 1) > n, by 3.2.8. The result follows. ®

We now introduce a few sets that are important in the study of permutations. Let (), , denote
the subset of permutations w € S, such that the first n —r entries form an increasing subsequence.
Also, let II,, . denote the subset of permutations w € S, such that their first n — r entries form a
longest increasing subsequence of w. Formally, we have

Cor ={weS,:w < - <w,_} and II,,, ={we S, :w; <+ <w,_, and L(w,1) =n —r}

Note that, II,,,, C C,,,. Also, note that, we have the following combinatorial identity:

C| :( " )r!: (”)r!
n—r T

since, choosing an element w € C,, amounts to choosing both the n — r elements of [n] which
will form the increasing subsequence w; < --- < w,_, and whatever arrangement of the other r
elements is left; these are r! arrangements.

Denote by C,,,;, where ¢ < r, the permutations w € C,,, such that there are exactly ¢ ele-
ments which are bigger than {wy,--- ,w,_,}. These elements partition C,, so that the following
relationship arises:

|i| On,r,i - Cn,r (3)
=0

Denote by RSK(C,,,) the set of pairs (P, Q) of standard young tableau associated with the
permutations w € C,,, via the RSK correspondence for permutations 3.1.4. Denote by RSK (11,,,),
the analogous set for permutations w € II,, , analogously.

The elements of RSK(C,,,) are the pairs (P,Q) on SYT on some shape A = (A, -+, \g) such
that n > Ay > n — r, and, moreover, the fillings of ) are such that the first n — r spots in the first
row are filled by {1,2,--- ,n — r} from left to right (3.2.7). Similarly, the pairs of SYT (P, Q) in
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RSK(I1,,) are the pairs that satisfy the latter condition and also satisfy the stronger condition

that Ay = n — r, so that the condition L(w,1) =n — r is also met. Note that RSK(C,, ;) can be

interpreted as the subset of RSK(C,, ) such that the stronger condition A\; = n — r + 4 is met.
We are now ready to prove the following recurrence relation for II,, ,:

Proposition 3.2.10. The following identity holds:

Yk n
Z <T) |Hn,k—r| - <k’) k! = Cn,k

r=0

Proof. Fix k,r such that » < k. Now, consider RSK(C,, ). These consist of the pairs (P, Q) of
STY on the same shape such that the first row of ) consists of n — k 4+ r boxes, whose fillings of the
first n — k boxes are {1,--- ,n — k} from left to right. Consider some pair (P,Q) € RSK(Cy k).
Let {b1, - ,b,} denote the fillings of the boxes in the first row from the (n — k + 1) position to
the (n — k + r)™ position, in that order. Then, note that this sequence {by,--- ,b,} completely
determines how the first row of the pair (P, Q) € RSK(C, ) is going to look like. On the other
hand, we can arrive at this pair of SYT by the following procedure. Start with a (P, Q') € I, 5,
of same shape as that of (P,Q). This is possible since, A} = n — (k—r) =n —k + r. Then, for
the boxes filled with {n —k+1,--- ;n — k+ r}, identify them with the boxes labeled {b;,--- ,b,.}.
However, for a fixed r, k, there are valid (l:) ways of labeling the boxes in {by, - - , b, }, since you have
already chosen the n — k entries in the first row and there are still r to choose from the remaining
n—(n—k) ones. Also, for whatever picking {b1, - - , b, }, there is only one way to order them, which
is increasing from left to right. Hence, we have that

k
( )’Hn,kr| = ’Cn,k,r|
r

Thus, using 3 and summing over all the possible values of r, we see that the desired identity
holds. [ |

With the developed tools, we are able to prove the following theorem about the size of |IL,, ,|:

Theorem 3.2.11. Provided that n > 2k, we have

ot~ 200 ()

i=0 ’

In order to prove the above theorem, we will introduce yet another notation involving tableaux.
For k < n,0 < s <k, let D, s denote the set of pairs of same-shape tableaux (P, (), where
P is a SYT on [n] and @ is a tableaux with entries in [n] such that the first row if filled with
{1,---,n—Fk,a1, -+ ,as, by, by, } from left to right, for some {a;}7_1,{b;} € ([n] \ [n — k]) and
a; > as > -+ > ag, by < by < ..., and, its subsequent rows of ) follow the necessary rules of a
young tableau (see 2.3 for a refresher). Note that here, @ is not necessarily a Young Tableaux.
Certainly, if s > 2, this @ will not be a Young tableau, because of the strictly increasing condition
imposed in the sequence {a;};_;. In fact, the only thing that is stopping @) from being a young
tableau is this bad sequence {a;}?_;, as, if one were to completely erase it from the first row of @,
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it would turn into a young tableaux. Visually, a tableaux () from a pair of tableaux (P, Q) € D,
will look like the following;:

S IR (4)

The first thing to note from this definition is that RSK(C,, ;) = D, ;0. At this point, the reader
might be rightfully wondering why D, i s is important at all. Other than the obvious example of
s = 0, it might be hard to think of a way to related these “bad” pair of tableaux to our study of
Cyyr, 1L, . However, D, j s aids in the understanding of the relationship II,,,, C C, ..

Consider the set RSK(C,,) \ RSK(Il,,). These are precisely the pairs (P, Q) of SYTx such
that the first row of () has at least one additional entry past (n — r) in the first row. That is,
[RSK(Cyr)\ RSK(1L,,,)] C Dy 1. What is left in D, 1 \ [RSK(C,,,) \ RSK(IL,,)]? Those pairs
of tableaux (P, Q) for which @ is not a young tableaux! That is, the pairs (P, Q) where the first
row of @ is filled from left to right with 1,--- . n —r ay,by, -+, where by < a;. But then, viewing
b1 as another bad element in the sequence of the first row of (), it follows that such pairs are in
fact elements of D,, 5. Thus, we have D,,,1 \ [RSK(C,,)\ RSK(Il,,)] C Dy 2. Again, we will
see that whatever is left in D,, ;.5 are those pairs (P, ()) whose )'s first row is filled in such a way
is filled from left to right with 1,--- ,n —r,a1,as,bq,- -+, where by < as < a;, which can be viewed
as a subset of D, , 3. Inductively, by the same argument, for all 1 < s <r — 1, we will have

Dn,r,s \ [Dn,r,s—l \ [Dn,r,s—2 \ e \ [Dn,’r,l \ [RSK(CW,,T) \ RSK(HTL,T)] e ]] C Dn,r,s—H (5)
Note that, if s = r—1 the elements of Dy, ,.,—1\[Dprr—1 -+ -\[Dnr1 \[RSK(Cp, ) \RSK(IL,,)] - - - ]] are

those pairs (P,Q) whose @'s first row is filled with 1,---,n — r,ay, -+ ,a,_1,b;, where
by < a1 < ap_9 < --- < ay. That is if s = r — 1, then 5 becomes an equality. Thus, from
this discussion, we have the following relationship:

RSK(Hn,T) = RSK(Cn,r> \ [Dn,r,l \ [Dn,r,2 \ e \ [Dn,r,s—l \ Dn,r,s—l] e ]] (6)

We are now ready to prove the above theorem:

Proof of 3.2.11. It suffices to show that for n > 2k, we have:

k n!
Dn s| — VY
[Drs (s) (n—k+s)!

Since, using that D,, ;o = RSK(C, ;) and 6, the desired result will follow by the inclusion-exclusion
principle. Thus, to prove the above equality, we will show that there is a bijective correspondence
between D, s and RSK(C,, x—s) X As, where A; denotes the set of all possible integer sequences
{aj}i=1 € ([n] \ [n — k]), where a; > az > --- > a,. This correspondence, together with 3.2.10, will
suffice to prove the equality. The bijection is quite simple.

Starting from (P, Q) € Dy, identify the relevant sequence {a;}3_, in the first row of this Q.
For this sequence, consider the unique order preserving bijection:

p:[{n—k+1,-- ni\{a;}i = n—(k—s)+1,---,n]

24



which exists since the sets have the same size. Then, define Q' to be the tableau obtained from
by replacing every a; in the first row with n — k + j, and every other element ¢ € @ with ¢(q).
Why does this produce a well defined young tableau Q'? It suffices to check that the fillings are
increasing in every row and column of this tableau.

The first row of @' will now have fillings from left to right {1,2,--- ;n—k+s,o(b1), p(b2),- - }.
But since by > by > -+, ¢ is order preserving, and ¢(q) > n — k for all ¢, we have that the first
row of ' is in increasing order. Also, since all the subsequent rows of ) are row increasing and
@ is order preserving, we have that the rows of )/ are increasing from left to right. Now, since
n > 2k = n —k > k, we have that the second row of ) can have no more than k£ boxes. In
particular, there are no elements directly below the entries in the first row () where a;’s leave (they
are single box columns). Thus, we only have to worry about the first (n — k)'h columns. This is
fine, since these columns in () are already increasing in fillings so that, once we apply ¢ to these
entries, the columns will of ()’ will remain strictly increasing as required. Indeed, @' is a young
tableau and, by construction (P, Q') € RSK(C), j—s)-

The reserve process is identical but now we are given (P, Q') and {a;}i_; € ([n]\[n—k]). Again,
we invoke the unique order-preserving bijection ¢ as described in the forward procedure and we
now work with 1.

Note that, ¢ is unique up to the given sequence {a;}5_, € ([n] \ [» — k]). Changing an entry
in this sequence, will change how ¢ acts on it. This is precisely why we need to account for all
the possible pairs (P, Q) € D, s that will produce the same (P, Q") € RSK(C, ;_s), otherwise
we lose the necessary information to go back to (P, Q). By encoding (P, Q') together with some
{a;}5-; € ([n] \ [n — k), we know which order preserving bijection ¢ to choose. |

Definition 3.2.12. Let w € S,,, we denote by maj(w) the major index of the permutation w, and

it 1s defined by
maj(w) = Z i
)

i€D(w

For example, w = 769548231, then maj(w) = 7+9+5+8+3 = 32. Also, w(987654321) = 241
Similarly, if T is a SYT, we may define maj(T) = ZieD(T) i. By the above theorem, we have
maj(Q(w)) = maj(w), where @) represents the recording tableau related to w through RSK.

Now, we will present the g-analogue result for 3.2.11. This result will follow from an application

of the previous theorem and the following lemma:

Lemma 3.2.13. The following identity holds:

r—1
maj(w™? :
> g =] -4l (7)
’U/GCn,'r ]:0
Where [n], is the g-anlogue number of n, namely [n|, = 11__‘1;

Proof. We will not prove this result explicitly, since it does not involve any particular use of the
combinatorics exposed thus far. For the record, there are a number of ways to prove the above
result. To my knowledge, the fastest and most elegant way one can go about doing so is using the
theory of of P-partitions, best explained in Stanley’s [2], section 4.5. [ ]
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Theorem 3.2.14 (Garsia and Goupil [7]). Let w € 11,,,.. Provided that n > 2r, we have

> =y ((—1)’“-1‘ () 1In- j]q)

well,, - i=0 §=0

Proof. As commented in 3.2.12, we that maj(w) = maj(Q(w)) whenever Q(w) represents the
recording tableau of w. Then, putting the latter together with 3.1.5, we have maj(w™') =
maj(Q(w™')) = maj(P(w)), where P(w) is the insertion SYT obtained by the canonical procedure.

Thus, we can write
maj(w! maj w
Z i) = Z g™ (Pw) (8)
wellp, (P,Q)ERSK (Iy,r)

Again, we use inclusion-exclusion principle from 6 to get that

Z qmaj(wfl) — Z qmaj(P(w)) (9)

weHn,'r' (PvQ)ERSK(H’ﬂW)

Y getren N e gy S el ()
(P,Q)GRSK(Cn,T) (P7Q)€Dn,7‘,l (PvQ)eDn,r,r

_ Z qmaj(w—l) . Z qmaj(P(w)) 4t (_1>r Z qmaj(P(w)) (11>
(P,Q)ERSK(Cn,r) (P,Q)EDn 1 (P,Q)EDn
r—1

. r j r T maj w

= H[n — ]]q — (1> Z qmaJ(P(w)) et <r> (—1) Z q aj(P(w)) (12)
Jj=0 (P,Q")ECH -1 (P,Q)ECR0
r—1 r r—2 r —1

=T~ () Tl =dlact -+ 1 () Tl (13
j=0 j=0 Jj=0

Where lines (10)-(11) follow by applying 8, (11)-(12) by applying 3.2.13 and the bijection explained
in 3.2.11. By rearranging the terms in 13, we get the desired equality. [ |

3.3 Set partitions

In this section, we will connect RSK with the theory of set partitions. The results presented in
this section can be found in Chen et al [4]. Also, what follows can be primarily presented with the
theory and notation we have thus far presented. However, a much more visual, and perhaps intuitive
approach to the results that follow is given through the theory of Growth Diagrams. The latter is
intrinsically related to the RSK algorithm, but, in the interest of time, we choose not to explicitly
build this theory. However, the curious reader might want to refer to C. Krattenthaler’s Growth
Diagrams, and Increasing and Decreasing Chains in Fillings of Ferrers Shapes [5] for a proof of the
same results using said alternative theory. We start by introducing the relevant notation for the
study of set partitions.

A set partition is a way to group elements together into subsets of its own. We will be primarily
interested in integer set partitions. For instance, take S = [12] = {1,2,---,12}. Then, a set
partition of S can bet taken to be P = {(1),(2,5),(3,6,8,12),(4,7),(9,10),(11)}, where each
parenthesis is referred to as a block of the partition. For shorthand, we denote this partition by 25—
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368[12] —47—9[10], omitting the singleton blocks whenever S is known or understood. Furthermore,
another useful representation of this P, would be [(2,5);(3,6); (6,8); (8,12); (4,7); (9, 10)], which is
called the standard representation of a partition, denoted by E(P), and each entry (-, -) is called an
arc of P. For consistency, we always write the arcs of P with the left entry being the smallest of the
two. It is important that the number inside the blocks of a set partition P are listed in increasing
order, so that no ambiguity arises when referring to E(P) or to its shorthand notation.

The standard representation of a set partition might look completely unmotivated but the paren-
thesis notation can be taken to visually represent the arcs of the set partition. For instance, if S, P
as in our running examples, the standard representation of P can be interpreted as

2 3 4 5 6 7 8 9 10 11 12

We call a set partition a complete matching on [2n], if the blocks of the set partition con-
sists of pairs of elements. For instance, a complete matching on S = [2(6)] can be taken to be
[(1,2);(3,7); (4,5); (6,8); (9, 11); (10, 12)].

We denote the space of set partitions of [n] by P,. If P € P,, we denote by min(P), max(P) the
set of minimal and maximal elements in each block of P respectively. Using our running example, we
have min(P) = {1,2,3,4,9,11} and max(P) = {1,5,12,7,10,11}. Note that the singleton blocks
of P can be identified by the set operation min(P) N max(P). Also, P is a complete matching on
[2n] if and only if min(P) Nmaz(P) = () and min(P) U maz(P) = [2n].

Let P € P,. We define a k — crossing of P as a k-subset (i1, 1), (i2,72) - - - (ix, jx) of the arcs
in the standard representation such that i; < io < -+ < i < J; < Jo < --- < Ji. Hence, if P
as before, then a 3-crossing of P can be taken to be the 3-subset of the arcs (2,5),(3,6),(4,7).
Visually, you can spot this 3-crossing by looking at how many arcs cross the arc (2,5) and where
they land. Similarly, we define a k — nesting to be k-subset (i1, j1), (42, jo) - - - (ix, jr) of the arcs in
the standard representation such that iy < iy < -+ < 1 < Jp < Jp_1 < -+ < 1. In our running
example, a 2-nesting of P can be taken to be the arcs (8,12),(9,10). Visually, you look for a long
arc such that other arcs are nested inside of it. We denote by cr(P) (resp., ne(P)) the maximal
number & such that P has a k-crossing (resp, k-nesting).

Now, we will connect the study of these statistics of set partitions to the study of tableaux.
First, a definition:

Definition 3.3.1. We call a vacillating tableaux of shape \ and length 2n, denoted by V¥, a
walk in the Young’s Lattice (2.2), starting from the empty shape O and arriving at \ at the 2n"
step, wherein each step follow these specific rules:

e Do nothing twice (i); OR
e Do nothing and then add a square (i1); OR
e Remove a square and then do nothing (iii); OR

e Remove a square and then add a square (iv)
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In other words, you can view this walk as being determined by whatever strategy you choose
at each odd step. However, it is important to note that there are strategies which share the same
first step, so a strategy can be completely observed only after every 2 steps. Another way we
can represent the vacillating tableau V2" is by the sequence of shapes A" that are visited in the
corresponding walk through the Young’s Lattice.

We choose to represent a 2n walk in the Young’s lattice by the array (A% AL, .-+ A?"), and we can
view (0 = A% AL -+ [ A?" = \) as an element V2", provided that the walk follows the rules above.
Here, it is important to note that, in order to avoid confusion, we use the superscript notation to
denote the i'* shape of visited by the walk, which is different from the i"* entry of the partition A,
thus far denoted by ;.

We now give four examples of a vacillating tableaux of the form V.

AP AL AZ A3 A N NO

o011 2 2 2
o000 112 (14)
O 010 1 1 2
O 01 111 2 2

A couple of observations are due. Firstly, note that we can only have AXi"! C A, whenever i = 2k
for some k € [n]. This is because the only strategies that allow us to add a square are (i7) and (iv);
both of which tell us to add a square at the even step. Similarly, looking at (i7i) and (iv), we can
conclude that, if ™1 D A\’ then ¢ = 2k — 1 for some ¢ € [n]. Nothing specific can be said for the
case that \™1 = \’, since you can remain in place at any point during the walk, with any given
strategy.

Using the RSK algorithm, we will now construct a bijection between vacillating tableaux on
the empty shape and of size 2n, i.e V2", and P € P,.

Let P € P, and E(P) be its standard representation. We will construct a sequence {T;}?",
of SYTx inductively, such that, the shape X of T; will be determined uniquely by the arcs of the
standard representation of P. Let Ty, = (), then for each j € [n] one by one from n to 1, Ty;_; and
T5j_o are determined as follows:

e If j is an singleton block, then we set Th;_1 = Tyj_o = Th;

e If j is a right end-point of an arc (4, 7) but not a left end-point of an arc (j, k), then we set
T2j—1 = ng and sz_g = ng 1.

o If j is a right end-point of an arc (i,j) and a left end-point of an arc (j, k), then T5; 4 is
obtained from T5; by deleting j and we set Tyj_o = Thj_1 1.

e If j is a left end-point of an arc (j, k) but not a right end-point of any arc (¢, j), then Th;_;
is obtained from 7T by deleting j and we set Th;_o = Th;_;.

Note that, since Th, = (), we can only remove entries that were once inserted. Also, at each
J € [n], we can only add entries to T;_; which are strictly smaller than j. Thus, at each j € [n],
T5; can only have entries which are as big as k. Indeed, then, deleting the entry j from T5; would
only amount to deleting an outside corner. Hence, this process produces a well defined sequence
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of standard tableaux {T;}?",. Also, note that for each i we insert (associated with the arc (4, j)),
there exists j' € [n], where 5/ < j such that i is an entry of T5;,_;. Hence, all entries are eventually
removed and Ty = (). Indeed, then, the sequence {\'}2", of shapes associated with {T;}", is as a
vacillating tableaux.

But why is {\'}?", uniquely determined by {7;}?",? Because the representation F(P) is
unique! To elaborate on this, note that if we could get the same {\*}??, for two different sequences
{T!}3n, and {T;}?", they would have to agree at each deletion step of the walk. However, note
that the deletion step is completely determined by the entries ¢ inserted, since we only delete those
entries which we have inserted and, eventually, we delete them all. In turn, these inserted i's are
unambiguously determined by the arcs (7, ) in the standard representation E(P)! Thus, in fact,
{T!}3, and {T;}?", would have to be produced from the same set partition P. We denote the map
P — {\"}") by 1. Next, to show that this is a bijection, we produce the inverse process.

Let (0 = X" AL, -+ X* = 0) € V. Inductively, we produce two sequences {P'}?%; and {T;}%,
of set partitions and of SYTx respectively. Let P° be the empty set and Ty be the tableaux on the
empty shape. Then, for each i € [2n], we define

o If Xi=! = )i, then PP = P! and T}, = T},

o If X! C X\’ then, as remarked, there exists k € [n] such that i = 2k. We set P" = P! as
before, but we let T} be the unique tableaux on the shape A\?/ A\~ obtained by filling the new
box with the entry k.

e If X! D )\, then 4, there exists k € [n] such that i = 2k — 1. Using the fact that RSK is
completely reversible process, let T; be the unique tableau of shape A’ such that T; < j = T;_;
for some j. At this point, note that j < k since you have not yet inserted anything bigger
than k — 1, provided that ¢ = 2k — 1. In this case, P; is obtained from P;_; by adding the arc
(7, k) to its standard representation.

We set P := P?" under this procedure and we denote the map (§ = A%, A\, .-- A" =0) — P
by ¢, or ¢({\"}?",) = P. Using much of the same argument as for the last algorithm, one can show
that {7;}?", is indeed a well defined sequence of STYx such that Ty = () = Ty, uniquely determined
by the vacillating tableaux {\'}?7,. In fact, {T};}?", is of little important to this map; we only care
about it insofar it helps us prove that ¢ and 1) are inverses.

Every element (0 = X%, X', --- | \*" = 0)) € Vj?" produces a unique sequence of SYTx {T;}?", and
some P € P, under v. However, we constructed this algorithm in such a way that whenever we
run P through by ¢, we will get {7;}?",. But, as argued, under v, {T;}?", completely determines
the vacillating tableau {\*}?",. Thus, we have 1) o ¢(P) = P and ¢ o h({\'}?",) = {\'}?",, showing
that ¢ and v are indeed inverses of each other.

Example 3.3.2. Let P = 168 — 23 — 47 a set partition of [8]. Then it’s standard representation is:
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We first run the backwards algorithm v to get a vacillating tableau {T;}1S,. Starting from () on the
right, we go from 8 to 1 in 8 steps. (1) Do nothing, then using RSK insert 6, (2) Do nothing, then
using RSK insert 4, (3) Delete 6, then insert 1, (4) do nothing twice, (5) delete 4, then do nothing,
(6) do nothing, then insert 2, (7) delete 2, then do nothing, (8) delete 1, then do nothing. The
corresponding {T;}18, will be:

1011 4
0.0, [0 [T I12 O DI ) i g e 0.0

Which, as argued, uniquely corresponds to the vacillating tableau {\'}18,
0.0.1,1,2,1,1,1,11,11,11,1,11,1,1, 0, 0

As a consistency check, we will now perform ¢ on this resulting vacillating tableauz. Starting
from O = Ty, we will construct {T;}18, in 16 steps. (1) Do nothing. (2) Since ' C N2, fill the new
box with entry 2 = 1. (3) Do nothing. (4) Since X* C A, fill the new box with entry 3 = 2. (5)
A D N, then remove 2 from your tableau. Why? We currently have [1]2]; Thus, 2 is the unique
entry of the current running tableau such that removing it and inserting in the resulting tableau
will actually produce our current tableau. (6)-(7) Do nothing. (8) Since X C A8, fill the new box
with entry 4. (9)-(10) Do nothing. (11) Using the same reasoning as in step 5, remove 1. Since
MU C N2 fill the new box with entry 6. (13) Using the same reasoning as in step 5, remove 4. (14)
Do nothing. (15) Using the same reasoning as in step 5, remove 6. (16) Do nothing.

Throughout this process, we removed the entries 2,1,4,6 at the 5", 11" 13" 15" steps respec-
tively. Noting that 5 = 2(3) — 1,11 = 2(6) — 1, 13 = 2(7) — 1, 16 = 2(8) — 1, ¢ tells us that
P ={(2,3),(1,6),(4,7),(6,8)} as required.

From doing these examples, one can get a feel as to how this algorithm relates to the study of
crossings and nestings. Notice the pattern through which entries make their way into and leave the
sequence tableaux {7;}1%, above. In this example, 1 comes in at T, and stays in the sequence of
tableaux up until T}, 2 comes in at Ty and leaves at the same step, 4 comes in at Ty and leaves
at T, 6 comes in at Tjo and leaves at Ty4. The pattern here is that entries ¢ are entering at the
tableaux T5¢ and leaving at the tableau T5;_o, where (4, j). This is not a coincidence. We built the
algorithm to add left hand points and remove right end points deterministically. In fact, if {T;}",
is a sequence of tableaux associated with the vacillating tableaux {\*}?", via ¢(P), then (i, 7) is an
arc of P if and only if 7 is an entry on of the subsequence {T} iJ: }f If this is the case, we say that
the integer 7 is added to the sequence {T;}?", at step i and leaves at step j.

The latter fact motivates the following proposition.

Proposition 3.3.3 ( [4]). Let P € P,, and {T;}, denote the associated sequence of tableau obtained
by (P). Then, the arcs (i1, j1), - , (ix, jr) form a k-nesting of P if and only if there exists a tableau

T, € Y(P) such that iy,--- iy € content(T}) and they leave {T;}?", in decreasing order. Similarly,
the arcs (i1,71), -+ , (g, Jx) form a k-crossing of P if and only if there exists a tableau T; € (P)
such that iy, - - - ,ix € content(T}) and they leave {T;}?", in increasing order.

Proof. Since the authors proved this for crossings only, we offer a proof of this fact for nestings and
refer the interested reader to the aforementioned paper. However, we note that the exact same idea
works for crossings.
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Assume that the arcs in questions form a k — nesting, such that i, < 7, for all 1 < r < k and
1 < - < < Jgp <---<7j1. Then, as remarked above, i1, ,7; enter at steps iy,--- , 7, and
leave at steps 7ji,-- -, Jir respectively. But, by assumption, j, < --- < j1, so that i is the first to
leave, 4 the second, and, inductively, ; is the last to leave. Indeed, T; = T5(;,) and they leave in
decreasing order as required.

For the converse, if there are k integers i; < --- < iy leaving in decreasing order from ¢ (P) at
steps jr < --- < ji respectively, then P has arcs (i1,71),- -+ , (i, Jx), forming a k-nesting subset of
P as required. [ |

Theorem 3.3.4 (Thm 3.2 [4]). Let P € P, and Y(P) = (0 = X\ AL - N2" = (). Then, cr(P) is

the most number of rows in any X°, and, similarly, ne(P) is the most number of columns in any \°.

In order to prove this theorem, one needs to understand how the characterization of k-crossings
and k-nestings presented in 3.3.3 affects the shape of the sequence ¢(P). To that end, we construct
a sequence of permutations {c;}?", acting on the content(T;) backwards inductively as follows. Let
o9n = 0. As usual, denote by A the associated shape of T;. For each T}_; in the associated sequence

of (P)
o If T, =T, 1, define 0;,_1 := 0;.

o If \X' C X! then as argued before, observing T;_; and 7T}, we can determine the unique j
such that T; < j = T, ;. In this case, append j at the end of 0;, i.e 0,1 = ;7.

o If X' D X7! then i = 2k for some k € [n], and T;/T;_; is a skew tableaux with a single box
filled with the entry k. In that case, not only &£ must be a letter in o;, but also must be the
biggest one. Let o,_1 be the permutation obtained from o; by simply deleting the entry k.

Note that at any point i € [2n], o, is able to record both the content of T; and at which order these
entries will exit T;. That is, if o; = ryro - - - 1, then since r, was the last appended to o; backwards
inductively, it is the first one to leave, and similarly, r;_; is the second one to leave, and so on, all
the way up to r1, which leaves last.

The following claim is the remaining piece of the puzzle so that we can finally prove 3.3.4.

Claim 3.3.5. Let Let P € P, and {T;}?", be obtained via ¥ (P). Let {o;}?", be obtained by the
above procedure. Then, let (A(o;), B(o;)) be the associated pair of SYT to o; via the RSK algorithm.
Then, the recording tableau A(o;) agrees with Ty, i.e A(o;) = T;.

Proof. This is proven by backwards induction on the sequence {ai}?go. Clearly, since Ty, = () = 09,
the base case holds. Now, let i € [2n] and assume that the result is true for all i > j € [2n]. If
T;_1 = T;, then 0; = 0;_; and the result holds by the induction hypothesis. Now, If \¥ C X1,
then we can determine the unique j such that 7T; < j = T;_,. In this case, 0;,_; = ;5. But since,
T, = A(0;), then,

Aloi1) = Aloij) = Aloy) < j =T < j =Ti

If X' D A1 then ¢ = 2k for some k € [n], and T;/T;_; and o,_; is the permutation obtained from
o; by deleting the entry k, which is the largest at that point. Note that since k is the largest entry
of g;, it is an outside corner of T;. If k is in the first row, it is the right-most box of T}, so that the
result holds trivially. We omit the proof for the other cases but much of the same idea works, one
just have to tediously make an induction argument for every row above of the one considered. ™
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Proof of Theorem 3.3.4. To prove this, we will put together 3.3.3 and the above claim. Let {T;}",
be obtained via ¢(P). Firstly, recall that 3.3.3 states that P has a k-nesting if and only if there
exists a tableau T; € ¢(P) such that iy, - ,ix € content(T}) and they leave the sequence of tableaux
in decreasing order. Thus, because of the way we constructed {o;}?", , P has a k-nesting (resp.
k-crossing) if and only if there is an associated o; with an increasing subsequence of length k (resp.
decreasing subsequence of length k).

Also, by the claim above, A(o;) = T;. But, Greene’s Theorem 3.2.7 tells us that the number of
boxes in the first row (resp, first column) of the associated partition of A(o;), which is A, reveals
the length of 0;’s longest increasing subsequence (resp. longest decreasing subsequence). Hence, P
has a k-nesting (respect. k-crossing) if and only if there exists a T} € {T;}#",, with k boxes in the
first row (resp, k boxes in the first column). Hence, result follows as required. [ |

Proposition 3.3.6 (Prop 3.4 [4]). Let P € P,, and consider its standard representation

E(P) = [(i1, j1), (i2, J2), 5 (i, Ji)]

arranged such that j; < jo < --+ < jx. Define a(P) =iy ---ig. Then, the set of nestings of P is in
bijection with the set of decreasing subsequences of a(P).

Proof. Let (El,jl), cee (%,;, Jr) be a r-nesting of P where J1 < -+ < jy. Then, since this is a r-nesting,
we must havg iy <+ o <, SO that 71,--- , 1, forms a decreasing subsequergcepf cv(P).~ .
Now, let 71, -, be a r-decreasing subsequence of a(P). Consider (i1,71),- - , (ir, jr). Since

J1 < -+ < j,and, if {o;}27, is the associated sequence via ¥(P), By 3.3.3, there exists an associated
0, where the sequence i,i,_11,_o - - - 71 is part of it. Thus, these entries leave {ﬂ}fgo in reverse order.
Indeed, they represent a r-nesting of P as required. [ |

Unlike many (if not all) of the results presented in this section, this last proposition does not
have an analogue for crossings of P. Both the authors [4] and [5] report that they have not been
able to arrive at a r-crossing analogue for 3.3.6. I have spent a great deal of this past year thinking
about how to extend this proposition to crossings, but, at this point, I am not sure if I have made
any progress. However, I do believe that I understand this problem greatly. We will now discuss
about the shortcomings of this generalization. Hence, we dedicate the next subsection of this report
to a brief discussion of this problem

3.4 Thoughts on the analogue for r-crossings

Understanding this problem boils down to understanding how crossings and nestings are inherently
different in their structure. I like to say that nestings are robust structures, whereas crossings are
fragile. Why? Say we start with a simple partition P of 6 where every number is inside their own
block, but 1 and 6, which share a block. It standard representation is:
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Note that we have 4 available spots to put arcs on. One can check that no matter how we decide
to put arcs on this standard representation (provided that they follow the rules of doing so) I am
guaranteed to have at least a 2-nesting. Here are a couple of options:

In both of these options, I have #2 2-nestings of P. But, now let’s look at a similar situation. Here
we start with a different partition P’ of 6. Its standard representation is:

Now, I have the same number of available spots to put arcs around, but there are fillings that do
not increase the number of crossings. For instance,

One might think that this was just an occasional example, but in fact, even upon choosing the
unfriendliest partition to add a nesting, say:

one could still just leave 2 alone and add other arcs which will not create crossings. So, in a sense,
nestings are easier to create. That is, you can always guarantee them under certain conditions.
This is partly the reason why 3.3.6 is hard to extend.

Certainly, any r-crossing of P corresponds to an r-increasing subsequence of «(P). However,
we are not guaranteed that every r-increasing subsequence of a(P) corresponds to a r — crossing.
To see this, think about the following partition of 7: E(P) = [(1,2),(3,4),(5,6),(6,7)]. Then
a(P) = 1356, which is itself a strictly increasing word, yet, P has no crossings.

This anomaly can be countered by imposing the condition that the increasing subsequence
i1,--- i, is such that 7, < j;, so that all arcs are guaranteed to intersect the arc (51,51). This is a
bit unfortunate because then we have a less interesting statement. We would like a statement that
is independent of the endpoint of arcs.

One way we to word this lesser interesting statement is by defining «(P) in terms of endpoints:
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Proposition 3.4.1. Let P € P,, and consider its standard representation

E(P) = [(i1, 1), (i2, J2)s - -+, (g, )]

arranged such that iy < iy < -+ < ix. Define «(P) = jy+--jx. Then, if there exists n < k such
that iy, < j., then, any r-increasing subsequence of a(P) which has starting point weakly after j,
corresponds to a r-crossing of P.

Proof. Immediate from the previous discussion. [ |

Although 3.4.1 is still not the result one would want as far as a r-crossing analogue it does
give us some insight on our original discussion about how to draw arcs such that we arrive at a
crossing. Notice that, the counterfeit solution proposed in 3.4.1 consists in finding some n < k such
that i, < j, and then considering increasing subsequences which start weakly after j,. A couple of
observations then follow.

Notice that, if n is too big (close to k), then we have fewer possibilities to find r-long increasing
subsequences of a(P) = j1 -+ j, -+ jx. In fact, the best we could do in this case would be a k —n
long crossing. On the other hand, if we couldn’t observe the choices for iy, -+ iz, but could still
choose our r-increasing sequence ji, < --- < ji,., we would not want to choose ji, so small that we
we would fail to achieve arcs that intersect, just as in the deranged example given above. Thus, if
we look at this as a game, where our goal is to create crossings without complete information, it is
quite unclear which strategies to adopt. Visually, this is because we want arcs big enough so that
we can still draw other arcs whose left end-points are inside of it, but we don’t want it so big that
we cannot connect the right end-points of these arcs outside of this graph.

Now, for nestings, there is no such ambiguity: We are always better off having big right endpoints
and small left hand points. Visually, we want to envelope as many points under an arc so that we
still allow for the possibility of nestings inside such. In fact, this is precisely the way to maximize
nestings; that is, choosing arcs such that i1 < ig--- < 1 < Jx < Jp_1 < --+ < Jg, We have a k
crossing.

The dicothemy between these two justifies our labeling of crossings and nestings as being fragile
and robust respectively. Even though this line of argument would support the idea of those who
think that there is no such analogue for r-crossings, there is still a sense in which this would be
deeply unsatisfying. Why? Because, from the results already known, these objects are highly
symmetric. For instance, the following is one of the main theorems of [4]:

Theorem 3.4.2 (Theorem 1.1 [4]). Let S,T C [n]. Denote by P,(S,T) the subset of P, where the
partitions P are such that min(P) = S and max(P) =T. Then,

:L,cr(P)yne(P) _ Z xne(P)ycr(P) (15)
PEP,(S,T) PEP,(S,T)

We are not going to prove this theorem, but the proof basically revolves around applying the
results found in 3.3.4. What is interesting here is that the equality is essentially saying that the
arithmetic statistics cr(P),ne(P) have symmetric joint distributions over P,(S,T). So, in fact,
when we are talking about maximality, nestings and crossings are essentially just as frequent.

Another example which portray these objects’ co-symmetry would be the number of non-crossing
and non-nesting partitions. For instance, one can easily show that non-crossing set partitions of [n]
are Catalan objects.
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Proposition 3.4.3. Let NC(n) determine the number of non-crossing partitions of [n], where we
define NC(0) =1 (the empty partition is always non-crossing). Then, NC(n) satisfy the following
recurrence relation for n > 0

NC(n+1) = Xn: NC(k)NC(n — k) (16)

k=0

Proof. Consider the set [n + 1] and some set partition of it, say P. Then, [n 4 1] must be in some
block of this partition. Let k£ be the minimum number inside this block. Then, first note that we
cannot have any arc of the form (i,j) where i < k — 1 and j > k + 1, otherwise we would already
have a crossing (since k and n + 1 are connected. Thus, if we would like to count the number
of non-crossings, we have to rule out this possibility. We do that by requiring that the number
{1,--- ,k — 1} are inside form their own non-crossing partition. How many ways can we do that?
Precisely N(k —1).

Now, the same logic applies to the numbers bigger than &, since we cannot connect any of them
to the ones smaller than k& (by the argument presented above). Thus, in fact, we may then look at
the numbers {k,--- ,n+1} as a non-crossing set partition of n — k+ 1 numbers. There are precisely
NC(n —k+ 1) of these. In particular, we have

NC(n+1)=>» NC(k—-1)NC(n—k+1)=> NC(k)NC(n— k) (17)
k=1 k=0
Hence, NC(n) satisfies the Catalan recursion and the proposition follows. ]

Much of the same argument can be used to prove that the number of non-nesting partitions of
[n] is also Catalan.

This recurrence relation for non-crossing and non-nesting is not new at all, but for a long
time, mathematicians couldn’t come up with a bijection between them. In 2007, D. Panyushev
discovered a explicit bijection between these two sets. Unfortunately, this bijection is not simple
and it goes beyond the theme of this report, so we will not present it. Its complexity also does not
help in understanding the discussed problem of r-crossings (at least, not that I can tell). For the
interest reader, I recommend the paper [6], where the authors present Panyushev’s explicit bijection
and construct yet another one. Thus, 3.4.3 above shows that, when it comes down to completely
eradicating the occurrences of crossings or nestings, we do achieve symmetry, just as in 3.4.2.

We have now seen two examples on the symmetric properties of crossings and nestings. Do these
contradict the intuition developed at the beginning of our discussion? Not at all. Why? Because
3.4.2 is about maximality, 3.4.3 is about minimality, and what we are trying to investigate are
occurrences! That is, we are trying to find a way that «(P) records every r-crossing, and not just
the biggest or the smallest. Now, there is also a sense in which maximality and minimality should
play an important role in occurrences, after all, they are the maximum and minimum number of
occurrences respectively. But again, if this is the case, then it is not outwardly trivial.

I have some more thoughts and useful insights about this problem using the theory of Growth
Diagrams, shown in [5]. Since we have not explicitly built this theory here, I will say no more about
extending this proposition. If the reader is interested in this problem, don’t hesitate to contact me.
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4 Applications to the Representation Theory of Symmetric
Polynomials and Functions

Representation Theory is a field of math generally concerned with abstract algebraic structures. As
one would expect, the process of grasping these complex structures is hard on its own. Represen-
tation theorists try to reduce this problem by studying modules over these structures, representing
their elements as linear transformations of vector spaces.

In this report, we will be mainly concerned with the theory of symmetric functions and, par-
ticularly, how the combinatorics of Young Tableaux may help us understand and solve problems
related to such objects.

We will start with a brief introduction to the classical theory symmetric polynomials and in-
troduce our main object of study in this section, the Schur polynomials. Then, we will formally
construct the ring of symmetric functions and investigate how this theory agrees with the theory
generalizes the theory of symmetric polynomials. Our goal in this section is to show how the com-
binatorics of Young Tableaux relates to this theory and how it is useful in proving different results
regarding Schur Polynomials, most notably the Littlewood-Richardson coefficients, which provides
a combinatorial formula to compute product of these specific family of symmetric polynomials.

It is important to keep in mind that there are many different ways that one can develop the
theory of symmetric functions, viz., combinatorially using power series, or by purely algebraic means.
Since this report in intended for a wider audience than the veteran mathematician, we choose to
present this topic using knowledge of power series because this approach is most closely related to
combinatorics. However, of course, all roads lead to Rome and any approach produces the same
theory. For reference, we will primarily adopt the presentation of this topic exposed in Stanley’s [2],
Chapter 7. However, less experienced readers may find the presentation of this topic in Sagan’s 77
easier to chew on.

4.1 Symmetric Polynomials

As the name suggests, symmetric polynomials are nothing other than polynomials that are invariant
under a permutation of its variables. To make this precise, first consider the ring of polynomials in
n variables with coefficients in a commutative ring R. That is, consider R[z1,--- ,x,]. Then, we
define an action of .S,, on R via:

U‘f(llh,"' ’xn) :f(xal’... 71;%)

where 0 € S,, and f € R[zy,- -+ ,x,|. With this in mind, we call f a symmetric polynomial over
R whenever o- f = f. When R is understood we may refer to f as a symmetric polynomial only. In
this report, we will mainly be concerned with polynomial rings over Z or Q. We denote the space of
symmetric polynomials (or functions) in n variables over Z by A,,. Note that (A,,+, ') is a subring

of Z[xy,- -+ ,x,] with the usual polynomial addition and multiplication.
Inside this ring, there are a couple of special symmetric polynomials that earn distinguishable
names. Let A = (Aq, -+, \,), then, we define the monomial symmetric polynomial associated with

A to be the polynomial
ma(T1, -+, Ty) 1= Z 952%1) o mé?n)

oESy
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Alternatlvely, this is shorthanded by the following notation. If A as above, then we denote z* :=
[T 2, and if with this new notation, we have

m)\(ml’... 7xn> — Z xU()\)

O’ES’n

where o acts on A by permuting the indexes of it. By definition, we see that m, is a symmetric
polynomial.

Similarly, for i € [n], we denote by e;(z1, -+ ,x,) the j elementary symmetric polynomial
on n variables. It is defined in terms of the monomial symmetric polynomial associated with the
associated partition 19 = (1,--- , 1) representing the tableau with a single column of j boxes:

(T, ) =i (1, Tp) = Z Ty e (18)

1<i1 <ia << <n

We may abbreviate ej(xy, -+, x,) =: egn)

elementary symmetric polynomials hold:

R S (19)

1< <9< <i;<n

. For all 1 < j < n, the following recursive identity for

=1, Z Ty, |+ Z Ty, = egn 11)xn + egn_l) (20)

1<i<io < <ij1<n—1 1<i1 <io < <ij<n—1

Proposition 4.1.1. Consider the following generating function:

E(t) = ﬁ(l + z;t)

j=1

Then, if we denote E,(t), the same generating function truncated at the n'* product, then we have

E,(t) = ﬁ (1 +zt) Z (n)y
j=1

Proof. We proceed by induction on n. Let n = 1. Then, the conclusion holds trivially. Now, for
the induction step, let n > 1 and assume that the result holds for n — 1. Then, using the identity
in line (20), together with the induction hypothesis, we have

n n n—1 n—1
S =3 (s ) o et [0 < [T04em) e

Jj=0 J=1 Jj=1 j=1
n—1 n

(1+ tay) [ J (1 + tay) = T](1 + ta;) = En(t) (22)
j=1 j=1
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Theorem 4.1.2 (Fundamental Theorem of Symmetric Polynomials). A, is a polynomial ring in the
n elementary symmetmc polynomials. That is, every element f € A, has a unique representation
f(e(ln), e ), where f € Z[xy, -, 2]

Proof. We have to show that any symmetric polynomial can be expressed uniquely as a polynomial
in the elementary symmetric functions {e;}" ; with integer coefficients. We will show this by
simultaneously inducting on the degree d of the symmetric polynomial f € A,, andonn. If d =0,1
or n = 0,1, the result is trivial, hence the base case holds.

For the induction step, let f € A,, such that deg(f) = d and assume the conclusion is true for
all f’ such that deg(f') = d' < d and f’ is a symmetric polynomial in at most n’ < n variables.
Let m: Z[zy,- -+ ,x,] — Z[x1, -+ ,2,_1] denote the canonical evaluation map at x,, = 0. Now, we
consider different cases:

Case 1 (7(f) = 0). This implies that x,|f, but f is a symmetric polynomial so that x;|f for all
i € [n]. In particular, e,|f and deg(e,|f) < d. By our induction hypothesis, there exists a unique

h € Z[xy, -+, x,] such that f = eph(el™, -, el™). So this case follows.
Case 2 (w(f) # 0). In this case, 7(f) must be a polynomial of degree at most d in n — 1 vari-
ables. By our induction hypothesis, we have that there is a unique g € Z[zy,- -, x,_1] such that
g(egnfl), e ,e,(f:ll)) =n(f)= f(x1,--+ ,2,-1,0). Now, recall the recursive identity presented in 20:
e =" Vp, + "™ foralli€ [n] (23)
Hence, whenever z,, = 0, we have that egn) = egn_l). This implies that f — g(egn), e ,ev(ln_)l) is
symmetric, and since 7 is a ring isomorphism, 7 (f — g(egn), cee g’”l)) = 0. Thus, we are in Case
1, so that, by the same argument as above, there exists a unique h € Z[xq,---,x,] such that
F=enh(e™, - ey = g(el™, - ™). The result follows as required.
|

Essentially, 4.1.2 shows that the collection {egn)}?zl forms a basis for A,,. Now, we define yet
another symmetric polynomial.

For n > 1 and k > 0 we denote by hj(x1,--- ,z,) the complete homogeneous symmetric poly-
nomial of degree 7 in n variables. Such is defined in terms of the monomial symmetric polynomial
associated with the partition (), which represents the tableau with a single row with j boxes:

hj<x17 cee X)) = m(j)(QCl, e Ty) = Z Liy =+ L (24)

hj(ze, - @) = Z'mA(iﬁh"' ) Tp) (25)

which then shows that indeed, hg-n) is a symmetric polynomial
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Proposition 4.1.3. Consider the following generating function

it

j=1

Then, if we denote H,(t), the same generating function truncated at the n'* product, then we have

n 1 n n
:Hl—x-tzzh§ v

j=1 J =0

Proof. The Geometric Series formula tells us that (—— = >"° %" Fix n. Define h; to be the

coefficent associated with the formal power H,(t), i.e

n o0
Hthk ht?

7=1 k=0 7=0

3

We can already see that Bj is going to be a sum over the monomials in the variables x;. How do
we gather all the monomials on the RHS of this expression so that we can ﬁx the exponent of t7
Fix 0 < j < n. Say that we observe monomials on the LHS to be xfll e ]’” Note that, for any
1 < r <k, the exponent k,. is equal to the exponent of ¢ on the product in the RHS, it must be
that this monomial is accompanying 7 = k; + --- 4+ k,,, on the LHS. Conversely, every monomial
appearing in this sum has this degree k. Thus, the coefficent of #/, i.e Bj, is precisely the sum of
all degree 7 monomials in z;’s.
Thus, permuting the indexes to collect terms that lie in the same orbit, we have that

7. } : _ 3(n)
hj = L1 Lo = * ilfij = h’j
1<y <ig<-i

We can now combine 4.1.3 and 4.1.1 to get the an interesting relationship between them. For

all n natural, we have
H,(t)E,(—t) =1

. In particular, if we expand this identity, we have:

1= Z itk Ze(” Ot = i <i(—1)je§">h,@j> £k (26)

k=0 \j=0
k
—  Forallkn>1, Y (=1)en" =0 (27)
j=0
k k
= b =D (1R and eV =) (—1 R, (28)
j=1 j=1

With this identity in our toolbox, we can now prove that {hg»n) "_o forms a basis for A, just as
in 4.1.2
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Theorem 4.1.4. A, is a polynomial ring in the first n degree complete homogeneous polynomials in
n variables {hg.n) }iei - That is, every element f € Ay, has a unique representation f(hﬁ”), . ,hﬁl”)),
where f € Z[zy, - 1)

Proof. Since this result in true for {egn) 7, (4.1.2), it suffices to create an endomorphism ¢ such
that ¢(e;) = h;. In fact we define ¢ in this suggestive manner, i.e let ¢ : A, — A, such that
gp(e§n)) = hg-n), for all 0 < j < n . This completely determines ¢ since {e§~n) "_, forms a basis for A,
Now, it suffices to show that ¢ in invertible. We will show an even stronger statement. Namely,
that ¢ is its own inverse (an involution).

We proceed by induction on j. Consider the base case, j = 0. Then, hén) =1= e((]"). Now, let
J > 0 and assume that the result is true for all £ < j. Then, using the recursive identity 20, 28,

and the inductive hypothesis, we get

J J
Fey) = o) = o (D)) = Y (~ 1) e = e
k=1 k=1
Indeed, ¢ is an involution, as required. [ |

Corollary 4.1.5. The collection of monomial symmetric polynomials {mg\n)}m)gn 1s a Z bases for

Ay

Proof. This follows from 4.1.4 and the identity in 25 [ |

4.2 Schur Polynomials

We will now introduce another symmetric polynomial which is going to be an important object of
our study throughout the remaining of this report: Schur polynomials.

Just as with the theory of symmetric polynomials, Schur polynomials can be defined in many
ways. Schur polynomials were originally introduced by Isaii Schur, whose definition of such involves
a ratio of determinants. We will present this algebraic definition for consistency.

Let A be an integer partition such that. Then, for define for n > A\, we define the matrix

T 7S )
A2 A2 A2
A A
A)\<.’L'1,"‘ 7xn) = "
Then, we define the Schur polynomial sy(z1,-- ,x,) € A, to be
det(Ay 5o (1, ,x
8)\<JZ1, . 71,”) — ( A4( )( 1 n)) (29)

det(Agsemy (x1, -+, xp))
For a remainder on the 6™ partition, refer to 2.1.

At first glance, this is something hard to chew on. It is a ratio of determinants, so one has to
show that this is well defined. Moreover, it is not even clear why exactly these polynomials are
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symmetric. We will not attempt to move forward with this definition of the schur polynomials.
However, keep in mind that it can be done.

We will stir away from this algebraic approach and give a definition which is directly related to
the study of tableaux. Of course, the two definitions are consistent, and, this fact alone, already
illustrates how the combinatorics of tableaux aids in the study of these polynomials.

If T is a tableau of shape A with entries in [n], denote by 27 the product of all x; where i € [n]
and with multiplicity that of the entries of T'. That is,

=0
where «; denotes the multiplicity of entry ¢ in 7. The Schur polynomial sy(z1,--,x,) € A, is
defined to be
sa(my, - ) = Z x’ (30)

TonA\

The latter generalizes naturally for skew tableaux 7" of shape A\/p, with entries in [n]:
Sx/p(T1, o0 ) 1= Z z’ (31)
Ton\/p

Proposition 4.2.1. The Schur Function is a symmetric function.

Proof. Fix a partition A\, € N, and o € S,,. Consider s)(Z4(1),** , To(n)). Then note that the order
of the inputs {x1,--- ,z,} determine the 27 insofar as they tell how are we taking into account the
multiplicity of the entries of 1. Hence, by 3.1.8, the result follows. [ |

Now, the next proposition relates the schur polynomials to the homogeneous symmetric poly-
nomials:

Proposition 4.2.2. Let A be a partition with entries in [n]. Then,
S)\('Tla e 7xn)hj(x17 e 72771) - Z S#(l'l, T 7xn) (32)
m

Where v is summed over all partitions obtained from X\ by adding j boxes, none of which lie in the
same column.

Proof. Note that , using 24

sx(@1, - xp)hy(Te, - xn) = sa(r, - xn)my (@, -+, Ty) (33)
S ST AND SIPRI  p a1
TonA  1<iy<ip<-<ij<n Tonx  Jon(j)

Firstly, recall that the set of tableau with entries in [n], 7, is monoid under the operation of
concatenation of words (-) (2.7.1). Thus, since every monoid has an associated ring, say R, one
may think of the map 7"+ 27 as a ring homomorphism between the R, and A,. In particular,
under this homomorphism, h; is the image of the sum of all tableaux with j boxes in the first
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row. Thus, computing one term in the RHS of 24, amounts to evaluating the image (under said
homomorphism) of a tableau given by the word w(T")w(J), where T with shape A and entries in [n]
and J represents a tableau with j boxes in the first row. But, remember that w(T")-w(J) = w(T - J)
and the tableau associated with w(7 - J) is given by row inserting the word of J from left to right
into 7. Thus, indeed since w(J) = wy - - - w; increases from left to right, 2.5.3 gives us that w(7T" - J)
is going to be associated with a new tableau on the shape p with j new boxes, none in the same
column. [ |

We have an analogous proposition for elementary symmetric polynomials:
Proposition 4.2.3. Let A be a partition with entries in [n]. Then,

sx(xy, - L wp)ej(x, - xy) = Zsp(:vl,--- , Ty (35)

p

Where p is summed over all partitions obtained from \ by adding j boxes, none of which lie in the
same row

Proof. Again, we have

sa(@r, - wn)ei (@, -0, xn) = sa(@y, o )My (@, -, ) (36)
Sys Yy YAy )
Ton\ 1< <ia < <i;<n Ton\ Jon (19)

Again, the exact same argument applies, the only difference is that w(J) is now strictly in-
creasing. But again, the row bumping lemma 2.5.3, yields the necessary result about the shape of
w(T - J). The result follows. |

Now, we will show how the RSK correspondence 3.1.3 can be used to give a proof of the Cauchy
Identity:

Theorem 4.2.4 (Cauchy Identity). The following identity holds:

HHl_ _ZS/\ T1, e ) SA(YL, 5 Ym) (38)

i=1j=1 Yi AET

Proof. As commented right after 3.1.3, RSK gives a correspondence between pairs of same shape
tableaux (P, @), where P is a tableau with entries in [n] and @) is a tableau with entries in [m], and
n X m matrices A with non-negative integer entries. For any m X n matrix A with non-negative
integer entries, define (zy)* := [Ti_; TT72, (@iy;)™.

Let A be an m X n matrix associated with the pair (P, Q) of same shape tableaux (via RSK),
where P, () have entries in [n], [m] respectively. The construction of this associated matrix A tells
us that its entry a; ; stands for the multiplicity of the entry j ocurring in P and the multiplicity of
of the entry 7 occurring in (). Hence, we have:

D osa(mn )y ym) = Y 2"y? (39)

AET P,Qon\
n m
— A _ Qi
= ) (zy)” = ) TT T y,)™ (40)
A,mXxn A,mXxXn i=1 j=1
nonegative entries nonegative entries
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But, recall that (1—xzy;)™" = (1+x;y;+27y;+- - - ). Hence, the RHS amounts to choosing one term
from the coefficent of the formal power series related to the geometric series (1 — z;y;)"". Indeed,
we have

n m n m 1
st(m,"' s Tn)SAYL, 5 Ym) = Z HH )% _HHT (41)
AEY Amxn i=1 j=1 i=1 j=1 iY;
nonegative entries
|
Proposition 4.2.5. The following identity for Schur polynomials hold:
H(l _xi>_1 H (1 _xixj)_l = ZS)\(Jil,"' 71:771) (42)
i=1 1<i<j<m AEY

Proof. Again, we use the geometric series identity (1 — ;)" = (1 + z; + 2? + ---). Hence, if we
denote Ay, xn, to be all the possible m x m symmetric matrices with non-negative integer entries,

we have:
H(l — )t H (1 —ax;) ' = Z (Hma” H (2, “”) (43)

=1 1<i<j<m AGA[me] = 1<j

Now, on the RHS of line 42, we have the summation of all possible monomials of the form z*,
where P is a tableau on A with entries in [m]. Thus, it suffices to apply the correspondence between
tableaux P and symmetric matrices A, given in 3.1.6. The result follows. [ |

Proposition 4.2.6. The collection of schur polynomials {SE\")}Z(,\)S,L is a Z bases for A,

Proof. 1t suffices to show that, for each n > 7 > 0, we have e§~n) = 38?) and then apply 4.1.2. This
follows easily:

eg-n) = Z Z z’ (N (44)

1<) <ia < <i<n Jon (
|

Just like this last identity we just showed, we also have that, for each n > 5 > 0,

hﬁ»n) = Z Z a— s(n) (45)

1<i1<i9<+<4<n Jon (j)

In fact, these two identities, together with the map ¢ described in 4.1.4, can be used to prove 4.2.2
and 4.2.3 directly. Along these lines, applying ¢ to 4.2.2 and 4.2.3 implies that ¢p(\) = ¢(\'), which
can also be an useful identity.

Before we go any further in our study of symmetric polynomials, we will discuss their gen-
eralizations, symmetric functions, which are essentially symmetric polynomials in infinitely many
variables. We will make that precise in the following section.
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4.3 Ring of Symmetric Functions

Thus far, we have concerned ourselves only with symmetric polynomials. We now introduce a bit
more complex object, which can be viewed as an generalization of symmetric polynomials.

This section could look unmotivated to a neophyte, thus one should not be alarmed upon not
being able to comprehend it entirely. However, there are key ideas here that are worth mentioning.
What follows is best motivated by the fact that it is useful to develop a theory that allows us to
handle symmetric polynomials in infinitely many variables.

At the same time, this theory should be consistent with the identities and properties developed
already for symmetric polynomials in finitely many variables. The latter is usually achieved by
requiring that, when setting all but finitely many variables to zero, these functions are identical to
polynomials.

Let A,, denote the space of symmetric polynomials in n variables over Z. We will construct the
ring of symmetric functions using the algebraic technique of the inverse limit (for reference on this
particular technique, see [10]).

Let A* be the subset of A, consisting of the degree k symmetric polynomials in n variables.
Then, we have a family {A*},5¢ of sets indexed by the natural numbers including 0. For each
1 < 7 € N, we have the canonical homomorphism ij : A;? = AF via

fj(f(x17... 7xi7xi+17... ’xj)Hf(l‘l,... 7xi707... ’0) (46)

Clearly, we have that 7% (f) = f for all f € AF, and for all i € N. Moreover, for all f € A¥, and for
alli <j<r

T

WZOW;‘C(f):f(xlf"axi):'ﬁi}i«(f) (47)
Note that these maps are an isomorphism whenever j < ¢ < n (because these polynomials are
symmetric). Now, we are ready to define the inverse limit of the collection {A*},5:

AR = lim A = {id € [] Ab |7l (w;) =, for all i < j} (48)

n>0

We call A¥ the symmetric functions of degree k. Formally, its elements are sequences {f,}, where
fn € AF such that its j element f; agrees with its i"" element whenever we evaluate the variables
Zit1, - ,2; at 0. These are precisely the functions whose component wise sequence satisfy our
initial intuition for the what should be a symmetric function. Thus, we may now rigorously think
of the extension of a symmetric polynomial of degree k to infinitely many variables.

Furthermore, A, comes endowed with the map 7% : A* — A* via f +— f,, its n'" component.
Again, because these functions are symmetric, these maps are isomorphisms whenever n > k. In
particular, since the collection of monomial symmetric polynomials {mg\")}l(,\)gn is a Z bases for
A, D AP, {my}ark is a basis for AF.

We are now ready to define our main object of study in this section ring of symmetric

functions. Define
A =Pt (49)
k>0
Where, @ denotes the direct sum of vectors spaces. Also, define the surjective ring homomorphisms

T o A= A, via:
T 1= GBW’; (50)

k>0
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Recall that 7% is an isomorphism whenever n > k. In particular, if we then restrict 7, to the first
the direct product over k € {0,--- ,n}, then 7, becomes an isomorphism into A¥. Effectively, what
this is saying is that the space of symmetric functions of degrees of degree at most n is isomorphic
to the space of symmetric polynomials in n variables of degree at most n.

This characterization of this map allows us to any proposition that we have proven thus far
for arbitrary symmetric polynomials. Suppose that we have any identity which involves symmetric
polynomials of degree at most n in n variables. Then, by the preceding discussion, this identity
will hold for the space of symmetric functions with degree at most n! This discussion produces a
immediate proof for the following very useful proposition:

Proposition 4.3.1. If, for all n, an identity holds for homogeneous symmetric polynomials in n
variables and of degree at most k < n . Then, the identity is valid for A.

For symmetric functions f € A, we omit the entry of variables and usually write it as f(z) to
mean f(z1,xq, ). Sometimes, we will even completely drop (x) and write f. One example of
how the polynomials we have thus far studied generalize is the schur function s). Remember that
sx(T1,- + yxn) = D pony @, where T had entries in [n]. Now, the schur function sy = > .\ a7,
but now 7" has arbitrary non-negative integer entries. Thus, a much larger class of tableaux T are
considered for the schur function (in fact, an infinitely larger class).

Corollary 4.3.2. Both collections of symmetric functions {my}rer, {Sx}rer, form a Z bases for
A.

Proof. Combine 4.1.4 and 4.2.6 with 4.3.1 above [ |

Theorem 4.3.3. The formal power series regarding the symmetric functions h;(x) and e;(x) admit
the following identities:

S m =] ; _1Iit and 3 eyt = [(1 + ) (51)

n>0 i>1 n>0 i>1

Proof. This is virtually the same proof as exhibit in 4.1.3 and 4.1.1, but now we are able to make
sense of h,,e, as symmetric functions, i.e a symmetric polynomials in infinitely many variables.
Thus, one does not have to truncate the product at a finite step n. [ |

We now introduce a generalization of the elementary symmetric functions e; and the homoge-
neous symmetric functions h;. Let A € T. Then, we define

e\ = e)\16>\2 e (52)
ha = hyhy, - - (53)

Recall that a partition A = (Ay, Ag,---) € T is such that Ay > Ay > -+ and \; = 0 for all but
finitely many .

Theorem 4.3.4. The following collections form a Z bases for A. The symmetric functions {ex}rex
(respectively, {hx}rex), is a Z basis for A.
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Proof. Recall that the collections {eg-n)}?:l, {hg-n) [y {sg\n)},\er form Z bases for A,. Using, the

identities 44, 45, we see that {e{” : Ahas at most n columns}, and {h{"” : Ahas at most n rows}
are Z bases for A,. Apply 4.3.1. [ |

Proposition 4.3.5. The following identity holds in the ring of symmetric functions:

D _sa(@)saly) = D ha(@)ma(y) (54)

AeY AeY

Proof. Using 4.3.3 and the cauchy identity 4.2.4 (for the ring of symmetric functions), we see that

Z sa(z)s\(y) = HH . —1xiyj = H (Z hk(x)?ﬁ:) = Z ha(z)my(y) (55)

AET i=1 j=1 j=1 \k>0 AEY

4.4 Hall inner product

As discussed in the previous section, the collections of schur polynomials {s)} ey form a Z basis for
A, the ring of symmetric functions. But so does the other collections {e)}rer, {mataer, {hr}rer-
In the beginning of our discussion of symmetric polynomials, we have mentioned that our main
object of study would be the schur polynomials, but such a focus has not yet been justified.

We will now see how the collection of schur polynomials {s)}er, form a orthonormal basis for
A under the hall inner product. We create the hall inner product so that the basis {h)} ey and
{my} ex are duals to one another.

Definition 4.4.1 (Hall Inner Product). Define (-,-) to be the bilinear map from A — R such that
it acts on the basis elements {my},ex, {ha}rer as follows:

1 if A=
== {12

This definition completely defines the inner-product on A, as each symmetric function f € A
has a unique representation in terms of {m,},er and {h)}rer. Now, to conclude that this is indeed
an inner product, we have to check that it is positive definite (i), symmetric (ii), and linear in the
first argument (iii). Note that (iii) follows right away from the very requirement of its definition,
i.e that the map is bilinear. To check (i) and (ii) we will prove a proposition first:

(56)

Proposition 4.4.2. Let A\, ;s € A. Then (sy, s,) = dxu-

Proof. Write sy = y axph, and s, = > .y b,pm,. Then, we have

(5x:50) = O anphp, Y buwmy) = ay ((h,,,Zmey>> => a, <Z bw,(hp,my>) (57)

peYT veY peY veY pEYT veY
= E :a/\p (E :b;w5/w> = E :aApbup (58)
peEY veY peEY
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Now, using 4.3.5, we also see that

Z hp(z)m,(y) = Z sp()s,(y) = Z [(Z ap,\h)\(x)> (Z b/wmu(y)>] (59)

peY peY peY AEY neY
= Y apby =1 iff p=2\ (60)
peY
Now putting lines 58, 58 together, we get the desired equality. [ |

Proposition 4.4.3. The hall product defined above is an inner product.

Proof. As argued, we check that it is positive definite and symmetric. Let u,v € A. Then, using
the fact that {s,},cr is a basis for A, write u = Zu a,s, and v = Y b,s,. Then, the following
chain of equalities show the desired result:

(w,v) = ay, <Z b (5, sy>) => a, (Z byéw) => a, (Z bl,5W> (61)

peY veYl pneYT veYl peY veY
-5 (St = e ©
veYl neY

This shows that the product )( is symmetric as required. Now, we will show that it is positive
definite. Consider u as above. Then,

(u,u) = Z a, (Z a,(Sus sl,>> = Z az >0 (63)

pEY veYl peY

Furthermore, (u,u) = 0 iff {a,} = 0, which happens iff v = 0. Hence, the hall product is an inner
product on A as required [ |

As promised, we have the proposition, whose proof is immediate from the above two propositions.

Proposition 4.4.4. {s)} ey is a orthonormal basis for A under the hall inner product.

4.5 Littlewood-Richardson Coefficients

In the last section, we showed that {s)}rer forms orthonormal Z basis for A. Hence, any element
u € A can be uniquely determined by its hall inner product with any schur polynomial, i.e (u, sy).
But how exactly can we go about multiplying schur functions?

Well, since A is a ring, given two schur functions sy, s, on A, then s)s, € A and hence, it can
be expressed as a linear combination of {s,},er. Denote these coefficients by {CKM}VET.

S\, = Zcius,, (64)
veY
These coefficients are of extreme importance in the understanding of schur polynomials. So much

so that they receive a special name: The Littlewood-Richardson Coefficients.
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There are many ways one can go about arriving at them. For instance, we can just declare them
to satisfy 64 above. This is completely fine, since we already know that the schur functions are a
basis for the space. However, this gives poor insight what they actually reveal about A and pu.

For the purposes of highlighting the combinatorics of the tableaux, we will pretend that defining
these directly is not possible. Instead, starting with partitions A, 1, andv, we will construct ¢,
using our knowledge of the combinatorics of tableaux. Only after that, we will show said coefficients
satisfy 64.

To start off, we will need the following lemma, which ties the RSK correspondence with skew
tableaux.

Lemma 4.5.1. Suppose the lexicographic array w = (3% 270 on) is associated with the tableaux

(P, Q) via the RSK correspondence. Let T be any tableau and let
T'=((T+ v) ¢ vg) 4 v_1) < v,

and place uy, - - - ,u, successively in the new boxes. Then, the entries uy, - -+ ,u, form a skew tableau

S with shape T"/T and Rect(S) = Q.

Proof. In the interest of time and conciseness, we will not produce a proof of this fact, but one can
be found in [1], page 50. |

Now, fix three partitions A - n,u = m,v Fr. We want to know how many ways can we choose
tableau 7" on A and U on u such that rect(T'«U) =T -U = V. Obviously, this wouldn’t be possible
if either of r = n 4+ m or A C v failed. By our discussion of rect(T * U) presented in 7?7, this is
equivalent to ask the number of skew tableaux on the shape A x p whose rectification is R. Our
aim with this discussion is to show that the number of ways to do the latter is the same as the
number of skew tableaux on the shape /A such that its rectification is p. To make this precise, we
introduce the following notation.

For any tableau U, on p and Vj) on v, we set

S(v/\, Uy) = {skew tableaux S on the shape v/\| Rect(S) = Uy} (65)
T (A, 1, Vo) = {pairs of tableaux (T,U) |T'on \,Uonu, and T -U = V,} (66)

Proposition 4.5.2. Fiz A\, u, and v partitions. Then, for any tableau Uy on p and Vo on v Then,
we have

[SW/A Ul = [T, Vo) (67)

Proof. Tt suffices to construct a bijective correspondence between the two sets. We will show how
to go from (T,U) € T (A, p, Vp) to a unique element S € S(v/A\, Up). Let (T,U) € T(A, u, Vp) and

consider the lexicographic array w = (! 2 " 4. ) corresponding to it under RSK 3.1.3. Let
T'=((T+ v) ¢ vg) 4 v_1) < v,

and, let S as in lemma 4.5.1. Then, by the lemma, S has shape that of 7"/T = V; /T, which is
precisely v/\, because Vo =T =T - U. Since the two rowed array completely determines S, and is
unique for each pair (U, Up), we see that this is a bijection. [ |
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What is remarkable about 4.5.2 is how the sizes of S(v/\, Uy) and T (A, i, Vp) are not dependent
on our choice of tableaux Uy and Vj, as long as these tableaux are on the appropriate shape, namely
A, i and v.

Finally, we now arrive at the Littlewood-Richardson coefficient c5 ,, where

= 1SW/XUo)| = [T(A, 1, Vo)l (68)
With this in mind, we are able to now prove 64.

Proposition 4.5.3. The following identity holds in the ring of symmetric functions:

_ v
S\S, = E CauSv

veY

Proof. Start by looking at the LHS of the equation. The number of times a monomial 2", for some
tableau V on v F r, is precisely the number of times you can find monomials 7,2V, where T is
on An, Uison utF m and r =n+ m. How many times does that actually happen? By 4.5.2
exactly ¢, many times. But this value is independent of the entries in 7', U so that we can gather

terms depending only on v. Summing all possible choices of v we have the desired equality. [ |

Now, we can obtain an alternative representation of the Littlewood-Richardson coefficients via
skew tableaux:

Proposition 4.5.4. The following identity holds in the ring of symmetric functions:

Sy/n = ZCKHS“ (69)

peY

Proof. Recall that s,/x =) ¢ .. VA 2°. Now, look at the RHS of what we want to prove. Fix some
shape p. Then, for some U on p, 2V occur precisely ¢y, on the RHS. Again, by 4.5.2, this is also
the number of skew tableau S of shape v/ such that its rectification is U. Thus, since all such S
will have the same content as in U, then we gather the terms ° on the LHS and the inequality
follows as required. [ |

Remark. Fven though the former two identities are proven for the space symmetric functions, they
do hold for the finitely variable schur polynomials as expected. One just has to restrict the sum over
tableaux, limiting its entries accordingly. That is, for A,,, we have:

S)\(xh T axn)su(xly Tt 7xn> = Z CK#SV(JJ, e >$n) (70)
veYl
Sl//)\(xly'“ 7xn) :Zciusu(l‘h'“ 7xn) (71)
peY

a formal proof of this can be straightforwardly given by applying the canonical projections m, from

A onto A,

Following this trend, we prove the following identity for schur polynomials in A,
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Proposition 4.5.5. The following identity for the schur polynomials in A, ., hold:

8U(«I17 te ,LL’n’yl; e 7ym) - Z CK/,LS)\(I:[; tte 7In)8#(y17 ttt 7ym) (72)
A

Proof. Note that, on the LHS we have the sum of all monomials of the form ", where V is a
tableau with entries in [n + m] of shape v. Fix some V satisfying the latter specifications. Then,
choose any A C v. Then, divide up this tableau into two parts V/A of shape v/\ and V) of shape
A. Note that any integer in content(V /) is strictly greater than that of content(V)), since A C v.
This allows us to expand the RH.S as follows

5V<5U17 Ty Y1, aym) = ZS)\(:M, T 7xn)SV/>\(y17 T vym) (73)
ACv

Applying 71 we are done. [ |

We have now gained thoughtful understanding as how Littlewood-Richardson coefficients arise
in relation to tableaux. Our next step will be to tie these concepts with the Hall inner product.

Recall that, under the hall inner product, the schur functions form an orthonormal basis for the
ring of symmetric functions. Thus, any function f € A, is uniquely determined by its hall inner
product with some schur function s,. That is the linear coefficients {ay,},er, that show up in
(f,sx) = >, @Sy, completely determine f.

Now, as an exercise of thought, imagine that we weren’t able to decide on what what the schur
polynomials for skew tableaux should look like; that is, we could only define the schur polynomials
for tableaux as in 30 but not its generalization 31. Then, the discussion in the preceding paragraph
and 4.5.3 together would allow us to arrive at the definition gave in 31. Why? Let v, A\, u denote
tableaux shapes. Consider the following chain of equalities, where we use 4.5.3 and 4.5.4:

<SV7 S)\Su> = <SV7 Z C?\éuso) = Z Ciuélﬂl = C/V\u = Z Ciada/ﬁ = <Z CKO(SOH Su> = <‘91//)\7 SM) (74)

acYT acY aeY aeY

From this equality, we see yet another consistent way of defining the skew schur polynomials. One
could just declare s,/5 to be the unique symmetric function such that the equality above holds.

We have only scratched the surface of the diverse range of combinatorial applications related to
these coefficients. For instance, without much additional work, we can prove the following about
tableaux:

Proposition 4.5.6. The following sets have the same cardinality c5 ,:
1. S(v/u, Ty) for any tableau Ty on A
2. T (, A\, Vo) for any tableau Vi on v
3. S(w/\, Uy for any tableau Uy) on the conjugate diagram fi
4. 7’(5\,,&, Vo for any tableau ffo) on the conjugate diagram v
d.

S\ * u, Vi) for any tableau Vy on v.
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Proof. Note that 1 and 2 have the same cardinality by 4.5.2, simply by switching the roles of A
and p. For (3), simply note that every element of S(v/u, Up) can be made into a unique element of
S(7/\, Uy) by taking its transpose and vice versa. Thus, indeed (3) has cardinality cx,; the latter
then implies (4) has the same cardinality by applying 4.5.2 again.

For (5), recall that:

T (A, w1, Vo) = {pairs of tableaux (T,U) |T'on \,Uonu, and T -U = V,}

Recall also that T"- U is attained precisely by Rect(A * pu) where A p is filled with the entries of T
and U respectively (as discussed in 2.7). But since,

S(A* p,Uy) = {skew tableaux S on the shape A * u| Rect(S) = Vp}

We have a one to one correspondence between these, from which we conclude (5) has the desired
cardinality. [ |

The latter result served to exemplify the endless possibilities for these coefficients. The theory
surrounding these is very rich. For instance, they are of key importance for the results known as
Littlewood-Richardson Rule and Frobenius reciprocity. Furthermore, they also aid in the under-
standing of the tensor product decomposition of Schur Modules, Newell-Littlewood numbers, and
reduced Kronecker coefficients of the symmetric group. For a first exposition to these results, I
would refer the reader to [1], chapters 7 and 8. For a more organic and modern approach, the
reader should visit [9], Chapter 6.

o1



References

1]

2]

[7]

(8]

[9]

William Fulton, Young Tableauz. With applications to representation theory and geometry,
London Math. Society Student Texts 35, Cambridge University Press, 1997.

Richard P. Stanley S. Fomin, Enumerative Combinatorics, Volume 2, Cambridge Studies in
Advanced Mathematics, Cambridge University Press, 1999.

Dan Romik, The Surprising Mathematics of Longest Increasing Subsequences, Institute of
Mathematical Statistics Textbooks, Cambridge University Press, 2015

Chen, et. al Crossings and Nestings of Matchings and Partitions, Trans. Amer. Math. Soc.
359, ArXiv, 2007.

C. Krattenthaler, Growth diagrams, and increasing and decreasing chains in fillings of Ferrers
shapes, Adv. Appl. Math., 37, 2006

D. Armstrong, c¢. Stump, H. Thomas, A uniform bijection between nonnestings and noncross-
ings partitions Trans. Amer. Math. Soc., 365(8), 4121-4151, ArXiv, 2013

Adriano Garsia and A. Goupil Character polynomials, their q-analogs and the Kronecker
product Electronic Journal of Combinatorics, 16, 2009.

Bruce Sagan The Symmetric Group: Representations, Combinatorial Algorithms, and Sym-
metric Functions Springer, New York, 2001

T. Silberstein, F. Sacarabotti, F. Tolli Representation theory of the symmetric groups
: the Okounkov-Vershik approach, character formulas, and partition algebras, Cambridge
Studies in Advanced Mathematics, Cambridge University Press, 2010

[10] Wikepedia. Inverse Limit — Wikipedia, the free encyclopedia. https://en.

wikipedia.org/wiki/Inverse_limit [Last Accessed, Monday, March 30", 2022]

52



