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Abstract

In this thesis, we review the construction of the Kakeya sets, and its applications
to fundamental concepts of real and harmonic analysis. In particular, we use the
Kakeya sets to deepen our understanding of the conditions needed for the Lebesgue
Differentiation Theorem to hold, as well as when multiplier operators can be extended
to LP — LP bounded operators.
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1 Introduction

The study of analysis is often saturated with lots of fine detail due to the existence of “patho-
logical objects” that yield counterintuitive results. The construction of these pathological
objects are often quite complicated, and Kakeya sets are no exception to this rule. We shall
see its applications in certain facets of analysis, so the reader should at least be equipped
with some working knowledge of measure theory, functional analysis and LP spaces before
we proceed. In particular, we shall often note the following remark:

Remark 1.1. C=(R"?) := C*(R") n C.(R") is dense in LP(R™) with respect to the LP norm
for allpe[1,00), and dense in Co(R™) with respect to the uniform norm where C.(R") is the
space of compactly supported functions on R™, Co(R™) is the space of continuous functions on
R™ that vanish at infinity, and C*=(R™) is the space of smooth, i.e. infinitely differentiable,
functions on R™.

The proof of the above remark is omitted because it is quite involved (see [1] Proposition
8.17). However, one should be able to see, at least intuitively, why it is true.

Now, the avid learner of analysis may well be familiar with the Fundamental Theorem of
Calculus, a theorem that identifies differentiation as the inverse operator of integration. In
the world of measure theory, there is another notion of differentiation in terms of measures.
One can show that for a locally integrable function f, taking averages of f over shrinking
balls centered at some x in R™ will most likely result in convergence to f(x). Formally,

Theorem 1.2. If fe L, (R"), then

| 1 i
RO fBT(O)f(X‘Y) dy = f(x)

for almost every x € R, where m is the Lebesque measure and B,(0) is the open ball of
radius v centered at 0.

Although this is a neat result, the averages need not be taken over balls in R”, nor do they
need to contain x itself (but they ought to be close to x). Folland shows that if a collection
of subsets {E, },s0 of R® have bounded eccentricity [1], the result above will still hold. Such
collections are defined as follows:

Definition 1.3 (Nicely Ordered Shrinking Sets). A collection of nicely ordered shrinking
sets is a collection of measurable subsets {E,},so of R™ such that

1. E.c B.(0) for all >0, and
2. there exists o> 0 such that m(E,) > a-m(B,(0)) for all r > 0.

The more general theorem involving nicely ordered shrinking sets is known as the Lebesgue
Differentiation Theorem. It is stated below:



Theorem 1.4 (Lebesgue Differentiation Theorem). If f e L} (R") and {E,} 5o is a collec-
tion of nicely ordered shrinking sets, then

i s [ G- y) dy = 1)

for almost every x € R™,

The construction of nicely ordered shrinking sets can still be quite restrictive since they
necessitate indexing by positive real numbers (hence the name ‘nicely ordered’). However,
it is entirely possible to come up with collections that are not indexed by the positive reals,
but may still satisfy suitable criteria for the Lebesgue Differentiation Theorem to hold (after
generalizing the notion of limits). In that regard, we will provide a generalized version of
the Lebesgue Differentiation Theorem in Section 1.3.

Nevertheless, the conditions for nicely ordered shrinking sets are certainly sufficient, so one
might wonder to what extent are the conditions necessary. In that regard, we shall find a
collection of subsets that will cause the Lebesgue Differentiation Theorem to fail, and in the
process use Kakeya sets to prove the result.

1.1 Basic Weak L? Theory and Introduction to Maximal Opera-
tors

Some of our analysis will be on operators on functions. In that regard, it is useful to know
some basic definitions and concepts related to such operators. We begin by introducing
a relaxed version of the LP norm, aptly named the weak LP functional. The following
definitions can be found from [1].

Definition 1.5 (Weak LP). Let f be a measurable function on some measure space (X, M, u).
Then,

)‘f : (0700) - [O’ oo]
a v u(lfI((a; 00]))

15 called the distribution function. If the measure space is R™, we will always assume
w=m. The distribution function defines the weak LP functional for each p € (0,00) like
s0:
1/p
[flopw = (Supap/\f(a)) :

a>0

The space of all measurable functions LP*(u) with [ f]pew < 0o is the weak LP space.

One should note that [-]z»w is not a norm because it can be easily checked that it does
not satisfy the triangle inequality. However, [-]z»w can still be used to endow LP% with a
topology in a similar fashion to how metrics induce metric topologies, i.e. the topology of
Lrw is generated by sets of the form {g € LPv : [f - g]ppw < 7} for f e LP¥ and r > 0.



This makes LP* a topological vector space. Note also that [-]isw < || z» which means that
Lpc Lpw,

Some of the operators on functions that we will work with will be non-linear, but will still
share some useful properties with linear operators.

Definition 1.6 (Sublinear Operators and Boundedness Conditions). Let T': V - LO(Y, N, v)
where V is a vector subspace of LO(X, M, ). Then, T is sublinear iff

[T(f + | <Tf|+|Tg| for all f,g €V, and
2. |T(cf)| =c|Tf| for all f,geV and ¢ > 0.

Furthermore, T is strong type (p,q) with p,q € [1, c0] iff

1. T is sublinear,
2. Lr(p) eV, and

3. T(LP(u)) € LY(v); in particular, there exists A >0 such that | T f|re < Al flle» for all
felr(p).

Similarly, T is weak type (p,q) with pe[1,00] and g€ [1,00) iff

1. T 1is sublinear,
2. LP(u) <V, and

3. T(LP(u)) € Le*(v); in particular, there exists A >0 such that [T f]rew < A|fllze for
all fe o).

We say that T is weak type (p,o0) iff T is strong type (p, o0).

Remark 1.7. [t is often more practical to show that an operator T is weak type (p,q) for
some p € [1,00] and q € [1,00) by showing that there exists A> 0 such that Ars(a) < 2| f||1,
for all « >0 and f € LP(u). One can easily verify that this is equivalent to the third weak
type condition in the definition above.

An important type of operator is known as the maximal operator. The following definition
is inspired by [3].

Definition 1.8 (Maximal Operator). Let u be a o-finite measure on R™. Then,
Ayt IO(R") » LO(RY)
1o [1rC=9)l duy)

is the absolute expectation of f with respect to ;1. Note that A, is defined on L°(R")
because A, f is measurable for all measurable f by the Tonelli Theorem.



Let C be a collection of positive o-finite measures on R™. Suppose sup . A, f € L°(R™) for
all f €V where V is some vector subspace of LO(R™). Then,

Me :V - LO(R™)
frsup Ay f
ueC

1s a maximal operator on V induced by C.

Remark 1.9.

1. (Mef)7((a, 00]) = Upee (Auf) = ((a, 00]) for all a € R.

(a) If C is countable, then (Mcf)'((a,o0]) is measurable for all measurable f and
a € R since o-algebras are closed under countable unions. Hence, M¢ would be a
mazximal operator on LO(R™).

(b) If A, f is continuous for all f €V and peC, then (Mcf) 1 ((a,00]) is open thus
measurable for all f €V since topologies are closed under arbitrary unions. Hence,
M would be a mazimal operator on V.

2. One can easily verify that absolute expectations and mazimal operators are sublinear.

3. Warning: Not every collection of o-finite measures on R™ will induce a mazimal
operator on a non-trivial subspace of LO(R").

It is worthwhile to ponder upon which o-finite measures ;1 and which measurable functions
[ result in A, f being continuous. Since the Lebesgue Differentiation Theorem is concerned
with taking averages of functions over subsets of R”, we will mostly work with finite measures
of the following form:

Definition 1.10 (Conditional Lebesgue Measure). Let E be a measurable subset of R™ with
non-zero finite measure. Then,
m(-nE)

m(E)

1s the Lebesgue measure conditioned on E.

mpg =

The definition of the conditional Lebesgue measure is akin to the definition of conditional
probability. Furthermore, one should notice that

J 160 mit) = s [ 700 dx

whenever the integral can be evaluated. On that note, it is not hard to see that for certain
measurable F, A, f will “smooth out” some measurable f.

Proposition 1.11. Let U be a measurable subset of R™ such that

1. m(U) >0,



2. m(0U) = 0 where U = U \ U®, and
3. U s bounded.

Then, A, f is continuous for all f € L}, (R™). Therefore, if C € {my : m(U) > 0,m(0U) =
0,U is bounded}, then Mc is a mazimal operator on L}, (R™) by Remark 1.9.

PROOF. Let f e L} (R"), and let {x,};2, be a sequence of points converging to some x € R™.

Given that (OU)¢ = (U)¢ uU® is open, we have that for each y € R™ such that x -y ¢ U,
there exists N € N for which

1. x,-ye(U)Cifx-ye(U)°, or
2. xp—yeUciftx—-yeU°

thus xu(xx —y) = xv(x-y) for all £ > N. Since m(90U) = 0, this means that xy(x --) =
Xv(x —-) almost everywhere.

Now, given that x; — x, there exists N € N such that x; € B;(x) for all £k > N. By the
boundedness of Bj(x) and U, there exists a compact set K such that y,x; —y € K for all
k> N and y € U. Hence, |f - xx|xv(xx —-) < |f - xk| € L}(R") for all £ > N. This (on
top of almost everywhere convergence) will enable the use of the Dominated Convergence
Theorem. On that note,

(A 1)) = s [ 1 Xl =3)xo () dy (for all k2 N)
- 5 [ U xdmwo-y) ay

(by commutativity of convolutions of L! functions)

1
- . -v)d
> ) f |f - xxl(y)xv(x-y) dy
(by the Dominated Convergence Theorem)

= (Amy ) (%)

By the arbitrariness of {x,};2, and f e L; (R"), we are done. O
It is also worthwhile to consider conditions needed for maximal operators to satisfy some
boundedness conditions as discussed above. Note that if B = {mp, (o) : 7 > 0}, then Mg is a
maximal operator on L} (R™) by Proposition 1.11. Mg is known as the Hardy-Littlewood
Maximal Operator. We shall later prove that Mpg is weak-type (1,1). On a slightly more
general note, if C is a collection of finite positive measures supported in a fixed compact set
such that M¢ is a maximal operator on some V 2 LP(R") for some p € [1,00) and M f does
not diverge almost everywhere for each f e LP(R"), then M, will also be weak-type (p,p)

3]-
The proofs of Mg and M. having weak boundedness will actually be very different. However,
they will both incorporate the use of some covering lemmas. In particular, the Vitali
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Covering Lemma will be used to prove weak boundedness of Mg, and a lemma that
is akin to the Borel-Cantelli Lemma (to which we shall call the Pseudo-Borel-Cantelli
Lemma [3]) will be used to prove weak boundedness of M. The Vitali Covering Lemma
roughly states that any collection of balls in R™ admits a subcollection of disjoint balls with
comparable measure, and the Pseudo-Borel-Cantelli Lemma roughly states that if the sum of
measures of sets diverges, then there is a way to cover R” by translating the sets strategically.
These lemmas are stated and proved below.

Lemma 1.12 (Vitali Covering Lemma). Let B be some collection of balls in R™. For all
¢ < m(Upes B), there exists a finite subcollection By € B of disjoint balls such that ¢ <

3"m(UB€30 B) = 3" ZBEBU m(B)

PROOF. Let ¢ < m(Uges B). By the regularity of the Lebesgue measure, there exists a
compact K € Upges B) such that m(K) > ¢. Since B is an open cover of K, there exists a
finite subcover B’ := {By,..., By} (of which we may assume to be ordered by non-increasing
measure) of K. Let j; =1, and let j;+1 > j; be the smallest index such that Bj,,, n(B;, u---u
B,,) = @ if it exists. Since B’ is finite, the inductive definitions of the j;’s must terminate.
Let By be the collection of all Bj,’s (note that By is also a mutually disjoint collection of
balls). By our construction, we have that for any By € By \ B, there exists j; < ¢ for which
B;, n By + @. Note that m(B ) > m(By) by the ordering, so if 3B denotes the 3-fold scaling
of a ball B from its center, then B, € 3B;,. In that regard, K ¢ Ugep B € Upes, 38 which
means that

c<m(K)$m( U BB)

BEBO
m( U B) (from the scaling of the balls)
BEBO
=3" Y m(B). (by dsjointedness of the balls)
BeBy
By the arbitrariness of ¢, we are done. O]

Lemma 1.13 (Pseudo-Borel-Cantelli Lemma). Let K ¢ R™ be a compact set. Let {E;}%2,
be a collection of measurable subsets of K such that Y72, m(Ej;) = co. Then, there exists
{x;}52, € R™ such that m(R™ ~ N2, U2, (Ej +%5)) = 0.

PROOF. We begin by extracting disjoint subsequences {F; ]}°° for i e N from {E; };‘;1 such
that the sum of measures of terms in each subsequence is also mﬁmte Let jo =1. Given that
>%2, m(Ej) = oo, there exists {j;}2°, € N with j; > j;_; for all i e N such that ¥3=" m(E;) > 1.
Let J; = {ji-1,...,j;i — 1} for each i € N and let {p;}32, be the enumeration of primes.
Then, UpZ, Jpr is countable for each 7 € N. Let m; : N - U2, Jix be an order-preserving
bijection for each i. Then, F;; = E ;) for i,j € N yields the desu"ed result. Note that
m:N2 > Ny7:(i,7) » m(j) is an injective function because Upe, pr nUr, o = @ for all
io # 1. ’

Now, R™ can be partitioned into countably many unit cubes, and the cubes can be enumer-
ated in a way such that each cube appears infinitely often in the sequence (consider the index
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sequence (1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,...)). Let {Q;}32, be such an enumeration. We
will inductively show that there exists {VU};"’1 c R” such that m(Qi NUR (Fij+viy)) =0
for each ¢ € N. Let v;; =0 for all 7 e N. Fix ¢ e N and suppose v;1,...,V; ;-1 € R" have been
determined for some j € N. Let G;; = @Q; \ ( ik +Vix) and let n;; = xq,, * X-F, ;- By

the Tonelli Theorem,
f iy dm=m(Gy;) -m(F; ;).

Note that regardless of 4, 7, if @; N (K +x) = & for some x € R", then G, ; n (F} ; +x) =& by
containment, and so xea, , (-)x-£,, (X =) = Xa,, (") XF, ;+x(-) =0 which means that 7; ;j(x) = 0.
In that regard, supposing that K is contained in a cube of side length r € N by compactness,
we have that supp(7; ;) is contained in a cube C' of side length 7 +1 = s (+1 is from the unit
cube @;). Note that C' can thus be partitioned into s unit cubes {Cy};.,. Hence,

m(G’L] zg)‘fﬁzy dX f T/Z](X
k 1

which means that there exists 1 < k" < s* for which kaJ ni;(x) dx > s -m(G; ;) - m(F; ;).
Given that Cj is a unit cube, there exists v € Cy for which m(G,;n (F,; +v)) =n;;(v) 2
kaf ni;(x) dx > s -m(G, ;) -m(F;;). Letting v, ; = v completes our inductive definition of
v;; and G, ; for all j € N. By the arbitrariness of 7, we have indeed defined v, ; and G, ; for
all 4,5 e N. Now, let H, ; = anUk ((Fi g +viy) for all 4,5 € N. Then,

m(H; ) m(H; 1) +m(Gijn (Fij+vij))
m(H;j-1) +s™"-m(Gij) -m(F ;)
= m(Hm_l) +s7" - (1=m(H; 1)) -m(Fij)

which means that m(H, ;) —m(H; ;-1) > s(1 - m(H;;-1)) - m(F;;) for all 4,5 € N. Given
that m(H; ;) <m(Q;) =1 and H, j_, € H;; for all 4, j, we have that {m(H,;)}32, is increasing
and bounded above 1 which means that hm]_,oo m(H; ;) <1 for all i. Observe that

oo oo

lim m(H, ;) Z m(H; ;) —m(H; ;1)) > s Z (1=m(H;j-1)) - m(Fi;).

J—oo —

If lim; oo m(H; ;) < 1, then there exists € > 0 such that 1 -m(H, ;) > ¢ for all j. However,
this would mean that the sum on the right would diverge to co thus lim; . m(H; ;) = o
which is a contradiction. Therefore, m(Q; n U3, (Fi; + Vi) = limjLem(H; ) = 1 for all
i € N. Given that m(Q;) = 1, our desired result m(Q; \ U, (Fi; +vi;)) = 0 is achieved.

Finally, let x; = v-1(;) if j € 7(N?) and x; = 0 otherwise. Then, each Ej, + x;, corresponds
exactly to some F; ; +v;; (for k € W(N2)) In that regard, for any k € N, U, (E; +x;) will
only exclude finitely many F;; + x; ;’s thus finitely many );’s will not be covered almost
everywhere. However, given how the );’s are enumerated, each unit cube in R” will still
be covered almost everywhere by the remaining (inﬁnitely many) F,; +x;;’s. Therefore,
m(R™ N~ M2, U () +x5)) = 0. O

Proposition 1.14. Let Mg be the Hardy-Littlewood maximal operator as defined above.
Then, Mg is weak-type (1,1).



PROOF. Let a >0, let f e LY(R"), and let ¢ < Apqzr(a). By Remark 1.9, we have that for
each x € (Mgf) 1 ((a, 0]), there exists r > 0 such that (A, f)(x) > . In particular,

BTx(O)
1 . .
a < (AmB,.xm)f)(X) = m LT " |f(x-y)| dy (by translation invariance of m)
1/
= dy. by symmetry of the ball
(B o0 [f (¥l dy (by sy y )

Observe that {B,, (x):x € (Mpf) ' ((a,00])} is an open cover of (Mgf)~1((«, oo]). Hence,
there exist xy,...,X; such that

k
c<3my’ m(B,,, (X)) (by the Vitali Covering Lemma (Lemma 1.12))
i=1
30 &
(S| '
3o &
<— f lf(y)| dy (as noted in the inequality above)
Q=1 Y Brx, (xi)
< 3E||f||L1. (since the balls are disjoint by the lemma)

Given that ¢ < £ f||;» whenever ¢ < Apy,z(cv) by the arbitrariness of ¢, it must be the case
that Aggp(@) < £ f[ 1. By the arbitrariness of a and f, we are done. O

Proposition 1.15. Let pe [1,00), and let K € R"™ be compact. Let C ¢ {p measure: u(R") =
w(K) < oo} be such that Mc is a mazimal operator on some V 2 LP(R™). Suppose for each
f e Lr(R") that m ((Mcf)1([0,00))) >0. Then, Mc is weak type (p,p).

PROOF. Define A\, g(a) = m(E n|g|((a, c0])) for measurable functions g and sets E. Let
Q@ =1[0,1)", and let B € R” be a ball such that Q U (K +x) ¢ B for all x € R" such that
Qn (K +x) # @ (note that B exists due to boundedness of ) and K).

We will first show that M¢ is weak type (p,p) with respect to our modified distribution
function A, rp for functions f e LP(R") supported on @, and then extend the weak result
to the main result. To that end, suppose on the contrary that for all C' > 0, there exist a >0
and f e LP(R™) with supp(f) ¢ Q such that A r,p(a) > S| f|7,. Then, there exist ay > 0

and g € LP(R™) with supp(gx) € @ such that A.g, 5(ax) > i—i”gk”%p for each k € N. Let
k
hy = l’;i: for each k € N. Then,

ok ok
m(B) 2 Aeny,B(k) = AtegeB(on) > @”gkﬂip = ﬁ”hk”’ip >0
k

for all ke N. Given that A.n, (k) € (0,m(B)], we have that N, = [m] is defined
chy,B\F)

for each k € N. Let m: N - N be such that 7(k) = j whenever Y7/ N; < k < ¥/, N;. Then

. 1
since N > SV )] for all k,

Mchy,

Z )‘Mchw(k),B(W(k)) = Z NiAmeny,B(k) 2 Z 1 =00
k=1

k=1 k=1
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p
Given that ||}, < &m(B), that 51V < & and that Nj <
C"k>

W+1f0rallkeN,

we also have that

d > Ihelb s = (1+m kp
5 ol = 3Nl < 5 (g, ) ¢ 5 GO
k=1 Mch kB( ) k=1
Now, let fi = |hruy| and Ej = Bn|Mc fi|™ ((7(k), 0o]) for all k € N. Note that (Mc fi)(x) =
supuecf|h7r(k)(x -y)| dp(y) = (Mchary)(x) for all x € R® which means that E; = B n
[Mchzy| ((m(k), 00]) for all k e N. Hence, Y32, m(Ey) = X525 Aen, ,,8(7(k)) = 0o and
et el = izt |y s < 0. By the Pseudo-Borel-Cantelli Lemma (Lemma 1.13), there
exists {x;}52, € R such that m(R" ~ ;2 U2, (E) +%;)) = 0. Let 7y(x) =x-v for x,v e R",
and let F' = sup,y fr © 7x,. Then,

(MeF) o) =sup [ 1F (=)l dp(y) =sup

skljlg(fk 0Ty, ) (x = y)| duly)

ueC
> sup |k o T, | (x—y) du(y) (since fi, >0 for all k)
neC keN
- SUp(Me(fi 0 7)) (%)

Let x € M2, U2 (5 +x;). Then, x e U2, (E; +x;) for all k£ e N. Hence, for each k € N, there
exists ji > k such that x € F;, +x;,. Since x € IJj, +X;,, then x - x;, € F;, which means that
(Mc(fi, ©7x;,))(x) > 7(jx) for each k € N. Observe that as k — oo, 7(ji) —~ oo since 7 and
ji. are both unbounded and increasing. Hence, (Mc(fj, © 7x;, ))(x) = o0 and (McF)(x) >
sUPgeny (Me(fr © 7x, ) ) (x) = oo. By the arbitrariness of x, it follows that (McF)(x) = oo
almost everywhere on R™. However, |F|P = supy|fe © Tx, [P € Yhei | [ © Tx, [P which implies
that F' e LP(R") as

o0
IENT: < 30 1o 7 Z | ellz < oo
k=1

Given that this violates the condition that M f is finite on sets of positive measure for
each f € LP(R"), we must conclude by contradiction that there exists C' > 0 such that
Aers(@) < Z|f|, for all a >0 and f e LP(R"™) with supp(f) € Q.

We are now ready to prove the main result; let Q, = Q +2, let B, = B+z, and let [, == {w €
Z": By N B, + @} for each z € Z". Then, {Qy}zz~ is a mutually disjoint covering of R and
there exists M € N such that |I,| = M for all z € R” since the balls have uniform size and are
arranged in a lattice. Now, let f e LP(R™). Then,

M X) = su X — du(y) =su X — d
(Mcf)(x) SPfIf y)| du(y SPfZGZZ:n(foz y)| du(y)

<Y osup [ |fxe.l (x=y) du(y) = Y (Me(f-xq.))(x)

zeZn HeC zeZ™

for all x € R™ for each z € Z". As proven above (and by translation invariance of m), there
exists C' > 0 such that Age(fxo, )8, () € S| f - x@, |7, for all @ >0 and z € Z". Note also
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that Ate(fas,).Bw S AMe(fs,),B. T0T all W,z € Z™ because supp(Me(f - xq,)) € B, for each
z € 7Z". Hence,

Aer(@) € 30 Ater,s,(a) (since Uezn Bz = R™)
VAL
< Z )\ngzn Mc(f~XQw),Bz(&) (Since MCf < ZWGZ” MC(f : XQZ))
zE€L™
= Z )\Zwelz MC(f'XQw)sz(a) (Since Supp(MC(f . XQw)) c BW)
zE€L™
(6%
< Z Z )\MC(f'XQw)aBz (M)
zeZ™ wely,
(since | Ewer, Me(f - Xqu )™ ({e, 00]) € Uwer, IMc(f - xau )| (57, 00]))
C

> 2 a—)p”f'XQwHip

zeZn we[z ( M

CM

Z If-xo, %,  (since each | f-xq,|%, is counted exactly M times)

zeZ"

CM

(since the @,’s were mutually disjoint)

for all @ > 0. By the arbitrariness of f, we indeed have that [Mcf]rpw < A| f|r» for all
f e LP(R") where A = {/CMP+! so we are done. O

1.2 Introduction to Nets

Some operators are defined by evaluating limits over collections of sets. For the case of some
countable collections, one may define the limit by using sequential convergence. For the case
of nicely ordered shrinking sets, although not necessarily countable, one may simply adopt
the e-d definition of convergence since the sets are indexed by real numbers r > 0. However,
there are many collections of sets that may not be indexed as nicely, so we will need a more
general notion of sequential convergence. To that end, we begin by introducing directed
sets, of which can be interpreted as the analog of N in the context of sequences.

Definition 1.16 (Directed Set). A set A endowed with a binary relation $ is a directed
set iff

1.

N

1s reflexive, i.e. for allae A, a S a,
2. 5 s transitive, i.e. for all o, B,v€ A, if a S and B <7y, then a Sy, and
3. for all a, B € A, there exists v € A such that a S~y and B Sy

We shall also write o 2 8 to mean 3 S a.
Much like how N defines sequences by mapping the naturals to some set X, we can use

directed sets to define nets, a more general notion of sequences, by mapping elements of
directed sets to elements of X. Formally,

12



Definition 1.17 (Nets). Let A be a directed set and let X be a set. A net in X is a map
A—> X, avw x,, and it is notated as (Ta)aen-

One should note that N itself is a directed set under the usual ordering, so a sequence is a
type of net (obviously, not all nets are sequences). Now, if X is a topological space, we can
thus define a more general notion of convergence using nets.

Definition 1.18 (Convergence of Nets). Let X be a topological space, and let A be a directed
set. Let (To)aea be a net in X. Then,

1. {Za)aea is eventually in some E € X iff there exists ag € A such that x, € E for all
a2, and

2. (2a)aca converges to some x € X iff for every open U 3z, (x4)aea is eventually in U.

We can also define the limsup and liminf of nets in R in a similar fashion to sequences.

Definition 1.19 (limsup and liminf of Nets). Let A be a directed set, and let (x4)aea be a
net in R. Then,

liminf z, = supinf 23, and
acA aeA BRa

lim sup z,, = inf sup 3.
acA aeA Bza

Remark 1.20.

1. Let (24)aea be anet in R, and let x € R. Then, (x4)aea converges to z iff liminf e 4 x4 =
lim sup g To-

2. Let (x4)aea be a net in a metric space (X, d), and let x € X. Then, (Tq)aea converges
to z iff limsup, 4 d(zq, ) = 0.

1.3 The Generalized Lebesgue Differentiation Theorem

Recall that the diameter of a set E in a metric space (X,d) is defined as diam(FE) :=
SUpP, yep d(z,y), i.e. the supremum of distances between two points in £. We shall use di-
ameters to formalize the notion of shrinking sets since differentiation in measure involves
taking averages of a function over regions decreasing in size.

Definition 1.21 (Shrinking Sets). A collection of shrinking sets is a collection of mea-
surable subsets C of R™ such that

1. m(E) € (0,00) for all E€C,
2. E € Brdiam(r)(0) for all E€C and some k >0, and
3. for all r >0, there exists E € C such that diam(E) <.

13



A collection of shrinking sets is a directed set under $ where E $ F iff diam(E) > diam(F)
for all E, F ¢ R™. Hence, if (g)ge is a net in a topological space X and converges to some
r € X, we write

lim xp-=u=x,
diam(E)—-0

and if (xg)pec is a net in R, we write

liminf zg:=1lim mf rE, and
diam(E)—-0 EeC

limsup xg =limsupzg.
diam(E)—-0 EeC

Using the language of nets, we can generalize the notion of nicely ordered shrinking sets so
that indexing by 7 > 0 is no longer necessary.

Definition 1.22 (Nicely Shrinking Sets). A collection of nicely shrinking sets is a col-
lection of measurable subsets C of R™ such that

1. C is a collection of shrinking sets, and

2. there ezists a> 0 such that m(E) > a-diam(E)"™ for all E €C.

Using this definition of nicely shrinking sets, we will now prove the Generalized Lebesgue
Differentiation Theorem. The proof is similar to Folland’s proof of the Lebesgue Differ-
entiation Theorem [1].

Theorem 1.23 (Generalized Lebesgue Differentiation Theorem). If f € L} (R™) and C is a

collection of nicely shrinking sets, then

ffxydy f(x)

d1am(E)—>0 m

for almost every x € R™.

PROOF. Note that if f e L] (R"), then f- XBx € L'(R) for all N e N. If we can show
that the Generalized Lebesgue Differentiation Theorem holds for L!'(R") functions, then

= n . 1
]Ql {XGR :diar}f(%ﬁo m(E) [E(f'XBN(O))(X—y) dy = (f-xBN(m)(x)}

has full measure since it is an intersection of full measure sets. Hence, for every x in the
above set, i.e. almost everywhere, there exists N € N such that x € By(0) and

1
I N A N Y AL ———
diaml(rg)eom(E) Ef(X y) Y diaml(rél)_)o E(f XBN+1(O))(X Y) Yy
diam(FE)<1

(since x —y € By,1(0) for all y € E € Bgiam(r)(0) € B:1(0) with diam(FE) < 1)
() () = ().
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In that regard, it suffices to show that the Generalized Lebesgue Differentiation Theorem
holds for f e LY(R").

Let Mg be the Hardy-Littlewood maximal operator. Recall from Proposition 1.14 that Mg
is weak type (1,1). Now, let f e L'(R") and let £ > 0. Since f € L'(R"), there exists a
continuous g € L'(R") such that ||g - f||z1 < & by Remark 1.1. Note that

) ) 1
limsup (Anm, (g9 -9(x)))(x) < limsup —fsuplg(x—.V)—g(X)l dy
diam(B)—0 diam(B)—-0 m(B) B yeB

= limsup sup|g(x-y)—-g(x)|=0 (by the continuity of g)
diam(B)—0 yeB

for all x € R® where B ranges in B. Hence,

limsup (A (f = f(x)))(x) < limsup [(Amplf = 9]) (%) + (Amslg = 9()]) (%) +1g(x) = f(x)]]

diam(B)—0 diam(B)—0
(note that A,,,c = c for all constants c)

< (Mplf =g (x) +1f - gl(x)

for all x € R" where B ranges in B. Let F(x) = imsupgiam(py-o(Ams|f = f(x)])(x) for all
x € R™ (we will not need to assume it is measurable). Then,

F~'((a,00]) € (Mslf =gl +|f = gD ((a, o0])

e (Malf =) (50 ) el =al (5]
for all @ > 0. Note that

2 a 2 2¢
m||f - ‘1((9,001)):—[ —dxg—f -gl(x) dx < —,
(|f 4 2 a J|f-gl " ((§,00]) 2 a JNf-gl"((5,°]) 1= 91(x) a

and there exists A > 0 such that m((Mg|f = g|)71((%,00])) < 22| f - gl < 2% for all
a > 0 since Mp is weak type (1,1). By the arbitrariness of ¢, we have that F~!((a, ])
is contained in a set of measure less than 27’45 + %6 for all € > 0 for each a > 0. In that
regard, F'~1((a, c0]) must be contained in a null set for each a > 0, so it is measurable (by
completeness of the Lebesgue measure) and it has zero measure. Hence, m(F~1((0, c0])) =
m(F1(Up2y (5, 90])) = m(Up2y F~1(3,00])) = 0 since unions of null sets are null sets. This
means that

limsup (A, (f - f(x)))(x) =0

diam(B)—0

for almost every x € R” where B ranges in B. Given that C is a collection of nicely shrinking
sets, we have that

) 1 )
Jmaup | [ fx=y) dy - £(x)| < Jimsup (A, (= £(9))(x)
< @ dhm( %I)IEO(AMBk.dmm<E)<0> (f = F(x))(x)

(by the nicely shrinking properties)
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< MBUOD i up (A (F — £(3))) () = 0

Q diam(B)—0
(since the diameters of shrinking sets can get arbitrarily small)

for almost every x € R® where B ranges in B and F ranges in C. By the arbitrariness of f,
we are done. 0

At this point, we will begin introducing other topics unrelated to the Lebesgue Differentiation
Theorem that Kakeya sets are also applicable to. If you would like to see more immediate
results about the Lebesgue Differentiation Theorem, you are welcome to skip to the next
section.

1.4 Introduction to the Fourier Transform

The Fourier transform is an important linear operator that is used often in harmonic anal-
ysis. It is also frequently used in some areas of partial differential equations. In this thesis,
we will specifically look at its interactions with multiplier operators. Most definitions and
theorems in this subsection can be found in [1] and [2].

Notation 1.24. We write
f:R*>C
£ v/f(x)e_sz'X dx,
and similarly
fv ‘R" > C
xo (%) = [ (€)e< dg
for some f e LO(R™) if the integrals exist for all £ € R™.
The notations above, in essence, are the Fourier transform and its inverse respectively (al-
though we shall later define it specifically for L!'(R") functions). We will not be able to
draw out any useful properties by taking the above transform over functions without suit-
able restriction of the space of functions. With that being said, we will find that the above

transform behaves much more nicely when acting on L!'(R") functions as hinted earlier.
Before we list these properties out, we shall first introduce some new definitions.

Definition 1.25 (Translation, Dilation and Rotation). We shall later derive some identi-
ties that involve translations, dilations and rotations of L*(R™) functions and the Fourier
transform. We thus define

1. (1yf)(x) = f(x-Yy), i.e. the translation of f byy, and
2. (0uf)(x) = f(tx), i.e. the dilation of f byt
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3. (pof)(x) = f(Ox), i.e. the rotation of f by O.

forall f:R" - C, x,y e R", t >0 and orthogonal transformations O. Note that we previously
used T as a translation function on R™, but we shall now see it as a transform instead.

Notation 1.26. We will also often write

G =101

for o : R* - C and t > 0. One can easily check that scaling in this manner preserves the
value of the integral if ¢ is also integrable.

We shall now scope out some useful properties of f for f € L'(R"). The following lemma
will help us to understand some fundamental properties of f, and give us a way to pass
derivatives through integrals.

Lemma 1.27. Let (X, M, ) be a measure space, let f € LO(X xR"™) be such that f(-,y) €
LY(u) for each y = (y1,...,yn) € U where U CR™ is open, and let

F:U-C
y ff(m’) du(z).

1. Suppose f(z,-) is continuous on U for all x € X and that there exists g € L'(u) such
that |f(z,y)| < g(x) for all (x,y) € X xU. Then F is continuous.

2. Suppose %’; exists for some 1 < j < n and that there exists g € LY(u) such that
|§—Jj(a:,y)| < g(x) forall (x,y) € XxU. Then, g—;; exists and %(Y) =/ g—lz(a:,y) du(z)
forally eU.

PROOF.
1. Let {yx};2, €U be a sequence that converges to some y € U. Then,

%im F(yy) = f ]}im f(z,yx) du(z)  (by the Dominated Convergence Theorem)
= f flz,y) du(x) = F(y). (by continuity of f(z,-) for all z € X)

By the arbitrariness of {y};2,, we indeed have that F' is continuous.

2. Let {y¥}z2, € p;(U) be a sequence that converges to some y9 € p;(U) where p; is the
projection onto the j-th coordinate. Given that p; is an open map, there exists € > 0

small enough and N € N such that y¥ € B.(y?) € p;(U) whenever k> N. On that note,
we have that

f(xaylv"'7yl‘€7"'yn) _f(xvylw"ay(‘)a"'ayn) af
2 kE_,0 : < sup a_(mvy) Sg(.iE)
Yi =Y y;eB= () | 7Y
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by the mean value theorem whenever k > N. Hence,

OF 0 _ F(y,yh oy - F(oyn, 00 tn)
_(y17"'7yj7"'7yn):hm k 0
dy; hoveo Y ~Y;
f‘r7y7"‘7yl'€7"'yn _fxayw"?y[')?"wyn
= %EE,( —— )k_g . e
Yi —Y;

(by the Dominated Convergence Theorem)

of
:‘/‘ayl(x7y17"'ay_(j)a""yn) du(x)
J
By the arbitrariness of {yf},‘:;l, we see that the derivative commutes with the integral.

]

Corollary 1.28. Let f € L'(R"). Then, [ ¢ Cy(R™) where Cy(R") is the space of bounded
and continuous functions on R™. Furthermore, | fll. < |fllz: where ||| is the uniform norm.

PROOF. It is clear that { = f(x)e "> is continuous for all x € R", and that |f(x)e™¢*| =
|f(x)] € L'(R") for all (x,&) € R?". Hence, f is continuous on R™ by Lemma 1.27.

Finally, || f]l. = SUDgegn 17| < [1f(x)| dx = || f]l: < o0 s0 f is also bounded. O

We will later prove a slightly stronger result than Corollary 1.28. For now, we have enough
tools to derive some basic properties of taking the transform in Notation 1.24 on L!'(R")
functions.

Lemma 1.29. Let f,g € L'(R"), let p; be the projection onto the j-th coordinate for 1 < j <n,
and let id be the identity map on R™. Then,

;y? = e 2myid T gnd Tyfz (emf) for all y € R".

o f = (f)t for all t >0 where (f); is as in Notation 1.26.
p’O\f = poffor all orthogonal transformations O.
Frxg=Fg.

[ Jg dm=[ fgdm.

If pjf € LY(R™) for some 1< j<n, then g—gf; exists and g—gj = =2mip; f.

7. If f e Co(R™) and 68_9{]' e LY(R") for some 1< j<n, then gfj = 27rz'pjf.

S S e v~

PROOF.

1. Observe that

GHE) = [ fx-y)emiex ax
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:ff(x)e—QWi§~(x+y) dx
_ e Te),
and that

/ f e~ 2mi(€-y)x

(by translation invariance of m)

/f 27szx —27rz§x dx

— (62my1df)( )
for all y, & e R™.
. Observe that

for all £ e R™ and t > 0.

. Observe that for all orthogonal transformations O,

(7oF)(©) = [ F(Ox)ew dx
[ Fyemeos ay
- [ r(wezmoe au
= pof (&)

for all £ € R™.
. Observe that

(T+9)() = (x-y)g(y) dy) e 2miEx gy

(©)g(y)e ™Y dy = f(£)g(&)

for all £ € R™.
. Observe that

(by scaling with x = %)

(by letting u = Ox)

(since O preserves dot products)

(x —y)e 2mie(xy) dx)g(y)e 2m&Y dy  (by Fubini’s Theorem)

[ F©a© dc= [ [ reeme ix)gle) de

= /f( )(/ (&)emiex df) dx (by Fubini’s Theorem)
g



6. Note that |a%j(f(x)e‘2”5'x)| = |- 2mix; f(x)e 2"x| = 27|z, f(x)| for all (x,&) € R?" and
27|p; f| € L*(R™) by the assumption. Hence, by Lemma 1.27,

of o 4
G2 = [ G (1090 ax
:—2m‘[xjf(x)e_2”5'x dx

= ~2nip; f (€)
for all £ e R™.
7. Observe that
8% /] gjj O da; d(xk)k?ﬁj (by Fubini’s Theorem)

=f([f(x)e‘%if'x]::i;+27ri§jff(x)e_2’”5'x dxj) A( T ) s

(by integration by parts)

= 2mig; [/ f(x)e™2™ da; d(xy,) ke (since f e Cy(R™))
= 27m'§jf(§ ) (by Fubini’s Theorem)

for all £ € R™.
O

The last part of Lemma 1.29 gives us a clue as to how we can tighten the space of ffor
f e LY(R™). This is indeed captured by the Riemann-Lebesgue Lemma, of which is stated
and proved below.

Lemma 1.30 (Riemann-Lebesgue Lemma). Let f € L'(R"). Then, f e Cy(R™).

PROOF. There exist fi € C*(R") with | fx — f||z2 < + for all k € N by Remark 1.1. Observe
that

76)] = |§||£fk< o)< H 2 &) (since [€] < S, I6,)
n 5\
= E1| Z; 2%”8—?(@‘ (by Lemma 1.29.7)
j= J
< %K' i % (by Corollary 1.28)
j= il

for all £ e R* ~ {0} and k € N. Hence, we indeed see that fj, € Co(R™) for all k € N since we
already know that fi € Co(R"). Note also from Corollary 1.28 that |[fx = fllu = | = /llu <
Ife = fllz: for all k € N, so by the squeeze theorem we have that f, — f in the uniform norm.
Since Cy(R") is closed under the uniform norm, we conclude that f e Co(R®). O
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The Riemann-Lebesgue Lemma thus defines the Fourier transform and its “inverse”:
Definition 1.31 (Fourier Transform and Inverse). We define
F: LY(R") - Cy(R™)
=T
to be the Fourier transform. Similarly, we define
F1: LYR™) - Co(R™)
fef

to be the Inverse Fourier transform. Note that the Inverse Fourier transform is not
actually the inverse of the Fourier transform.

More care is needed to check when the Inverse Fourier transform actually behaves like an
inverse. Before that discussion, we shall first identify a function that remains fixed under
the Fourier transform. This property will be useful for us later.

Lemma 1.32. Let ¢(x) = e for all x e R*. Then, ¢ = ¢.

PROOF. Let p; be the projection onto the j-th Coordlnate for 1 < j < n. Clearly, qb,p]qb, s

L'(R") nCy(R") for all 1< j <n. Note also that 5 = = emX” for all x e R". Hence,

¢(
€, (ig—g) = 27@% ¢(1 B gg (&) (by the product rule)
&28 ;(m) p;9() (by Lemma 1.29.6)
~2n 528 = );@z(o fsince 2% = ~2rap,0)
@% - mfﬂﬁ(f) (by Lemma 1.29.7)

for all £ e R™ and for all 1 < j <n. Since all partial derivatives of %5 are zero, it must be the
case it is constant. In that regard,

by Fubini’s Theorem. Rearranging the above gives our desired result, so we are done. O]

The following lemma gives a useful way to approximate functions via convolutions with
functions that progressively focuses their ‘masses’ at the origin. We shall see later that
approximating in this manner will allow us to verify the invertibility of the Fourier transform
under some nice conditions.
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Lemma 1.33. Letpe [1,00), and let f € LP(R™). Let ¢ € L'(R™) be such that [ ¢ dm =c e C.
Then,

lin 1/ * 6= el = 0.
PROOF. Observe that
[rox) =ef(x) = [ Jx=9)anly) dy -1 () [ o(y) dy
- [(F(x=y) - D) dy (since [ ¢ dm = [ 6, dm)
- [ (x=tw) = £(x))é(w) du

(by scaling with y = tu; note that t* from scaling cancels out ¢t from ¢;)

= [ ()9 = F())6(w) du

for all x € R™. Hence, by Minkowski’s inequality for integrals, we have that

If * = cf1n < f 17 f = Flloolo(w)] du.

We will now show that |7 f — f|lz» converges to 0 for any u € R*. Let € > 0. Given that

f € LP(R™), there exists g € C.(R™) such that |g - f||z» < § by Remark 1.1. Note then

that if B,(0) contains the support of g (by boundedness of its support), then B,y (0) also

contains the support of 7,9 for all ¢ > 0. Hence, K = B, 4(0) 2 Uye[o,1] Br+tju/(0) contains
the support of 7,49 — g whenever t € [0,1]. On that note,

0 Iriag =gl = [ Iriag = g dm
< | 7iug - glfom (K)

for all t € [0,1]. Hence, by the squeeze theorem and uniform convergence of 7,9 to g, we
have that limy.g |7ug — ¢|lz» = 0. In that regard, there exists ¢ € (0,1] small enough such
that |79 = gl z» < 5. Thus,

I7iuf = Fllee < I7a(f = Dllee + I70ug = gllze + g = Flle <&

Therefore, by the arbitrariness of ¢ and u, we indeed have that lim,_q || 7yuf — f|r = 0 for all
u e R™.

Now, note that |7 f — fllze|@(0)| < 2| f|zr|¢(u)| for all u e R™ and that 2|| f| ze|¢| € L' (R™).
Therefore, by the Dominated Convergence Theorem,

tim 1 + &= cflles = [ limIraf = flslo(u)] du=0.

We are now ready to invert the Fourier transform.
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Theorem 1.34 (Fourier Inversion Theorem). Let f € L'(R™) be such that Fe LY (R"). Then,
f(x) = (f)V(x) for almost every x e R™ and (f)¥ = fV.

PROOF. Let ¢ be the Gaussian function as in Lemma 1.32. Note that [¢ dm =1 as
noted in the end of the proof of that proposition. Let ¢; be as in Notation 1.26. Let
Gxt (&) = e2mEx(5,0) (&) for all x,& e R™ and ¢ > 0. Then,

Fai(y) = (n8id) (y) (by Lemma 1.29.1)
= (5:6)(y - x)
= (@)uly - x) (by Lemma 1.29.2)
= oy -x) = gu(x-y) (by Lemma 1.32)

for all x,y € R® and ¢ > 0. Now, given that limy_ || f * gb% — flzr by Lemma 1.33, there
exists a subsequence {f * ¢ E };‘:’1 that converges to f almost everywhere. Note also that
i

17(€)gx2(E)] = |F (€)™ kP < |F(€)| € LL(R") for all x,£ € R™ and ¢ > 0 by our assumption.
Hence, for almost every x € R?,

£ = lim £+ 6, (x)

= lim f(y);c/@‘;kzj(y) dy

j—>o0

= lim ff(f)gx%(g) d¢ (by Lemma 1.29.5)
Jj—o00 Tkj

e Sl _
= f lim f(&)e*™ e 5 d¢ (by the Dominated Convergence Theorem)
‘]—>°°
- [ T g = (D).
Since f¥(x) = f(-x) for all x € R”, it follows that (f)¥ = ¥ so we are done. O

Remark 1.35. Since LP spaces are technically spaces of equivalence classes functions (so that

they can be viewed as complete, normed vector spaces), we can see that F is an automorphism
on {feL'(R"): feL'(R")}.

Notation 1.36. We write LL(R") = {f € L'(R") : f € LY(R")}, i.e. the space of integrable
functions whose Fourier transforms are also integrable.

We will often use L1(R") as an intermediate space to prove results. In particular, we will
extend operators initially defined on L% (R™) to operators on other LP spaces. The following
lemma makes this idea more concrete.

Lemma 1.37. Let (X,|-|x) and (V,||y) be complete, normed vector spaces. LetV be a
dense subspace of X, and let T be a bounded linear operator from V to Y. Then, T extends
uniquely to a bounded linear operator T from X to Y with the same operator norm (we will
generally use™ to denote an extension of an operator unless otherwise stated).

Furthermore, if T is a linear isometry on V and T(V) is dense in Y, then T is an isometric
isomorphism.
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PROOF. Observe that for any Cauchy sequence {z;}52, ¢V, we have that |Tz; - T'zxy <
clx; - ax|x for all j,k € N for some ¢ > 0 by boundedness, which means that {T'z;}%, is also
a Cauchy sequence in Y. By the completeness of Y, we define Tz to be the limit of Tx;
for any Cauchy sequence {z; };’jl c V converging to x € X (it is clear that this extension is

well defined). Furthermore, |Tz||y < ¢l|z||lx for all € X iff |Tw|y < ¢|v||lx for all v € V by
density, so the operator norm remains the same. Now, suppose 7T’ was another extension
of T'. Then, T'x - Ty = lim ;e T"x; — im0 ij = limj e T'xj — Tx; = 0 for all Cauchy
sequences {x; };‘:’1 c V converging to x € X. Hence, the extension is indeed unique.

Suppose T is linear isometry on V, and that T'(V) is dense in ). Note that T, 7! are isometric
isomorphisms between V and T'(V). Now, T extends (like in the previous paragraph) as
an isometry since [Tz|y = |1imj e T2y = imj e |72y = limj.e |2,z = |22 for all
Cauchy sequences {z; };’21 c V converging to x € X by the continuity of norms. The same
applies to T-' : T(V) - X. Furthermore, T Tz = 7’?‘_ilimj_,°c> Txj = imj e T 1Tx; =
lim;_,e z; = x and TT 1y = lim; e TT7 y; = lim;, & y; = y for all Cauchy sequences {z;}5
V and {y;}%2, € T(V) converging to x € X and y € Y respectively, so we are done.

Jl—

D

Jj=1=

As Lemma 1.37 suggests, we will need L%.(R") to be dense in LP(R") if we want to be able
to extend any operators defined on L% (R").

Lemma 1.38. L-(R") is dense in LP(R") for all p € [1, 00) with respect to the LP norm for
all pe[l,00).

PROOF. Let f e LL(R"). Note that C(R") is closed under multiplication by polynomials
and differentiation, and that C'°(R") ¢ L'(R") n Cy(R™). Hence, for any & € R* \ B;(0),

-~ 1 P
= gy (DTN
9 n+1
\ipg) @I (since [¢] 2 1)
2 n+l n
<\ € 1™ > 15, F(€)] (since €] < X7 1 165,1)
J1=1
2 n+1 n
S 1 n+1
1+ €] jl,...%ﬂ_l 1651+ F(O)]
n+1
2 n 1 8n+1f
- by L 1.29.
1+¢ jl’"%il N @riy* ox,,0x, (f)‘ (by Lemma 1.29.7)
1 -1 n an+1f
™" ——| - by Corollary 1.28
(]‘+|€|)n+1 jl,...,jzn+1=1 81']'1"'81']'”*_1 Il ( y y )
8n+1

Let ¢c:=q 13" |z1. Then,

Fosinen=t o

JIr@ndes [ f@ldes [ i) de
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Cc

<ITham(Bu(O)) + [, e
< flm(Bi(0)) [W ¢ < oo,

Hence, f e L'(R") as well. Therefore, C=(R") ¢ LY (R") by the arbitrariness of f.

Now, by the Fourier Inversion Theorem (Theorem 1.34), we have that (F~1f)(x) = f(x) for
almost every x € R® for each f e LL(R"). Since F-1T € Cy, we have that f e L (R") for all
feL%(R"). Hence, LL(R") ¢ Ll(]R")mL‘”(R”) Note also that if f € L'(R*)nL>(R"), then
IflP=|flP~*-|f] < ||f||p 1|f| e L'Y(R"). In that regard, L'(R") n L*(R") ¢ LP(R"). Therefore,
Ce(R") ¢ LL(R") ¢ LP(R") which means that L-(R") is dense in LP(R"™) with respect to
the LP norm by Remark 1.1. O

We are now ready to extend the Fourier Transform. One should observe that we cannot
extend it from L!(R"), but we can extend it from L!'(R") n L2(R") by using the fact that
it extends from L-(R"). This will essentially allow us to view the Fourier Transform as an
operator on L?(R"), but we will make a small distinction since we extended it from a strict
subspace of L'(R"). This extension theorem is known as the Plancherel Theorem.

Theorem 1.39 (Plancherel Theorem). F(L'(R") n L?2(R")) ¢ L*(R") and F|p1(rr)nr2(rn)
extends uniquely to a unitary isomorphism P on L>(R"). We call P the Plancherel trans-
form.

PROOF. Let LL-(R"). By Lemma 1.38, we have that L-(R") is dense in L2(R") with respect
to the L? norm. Let f,g € L%(R"). By the Fourier Inversion Theorem (Theorem 1.34), we

have that N _
30 = [ F00e e ax = [ GO0 dx =) (©) = 9(6)

for almost every £ € R®. Hence, by Lemma 1.29.5, we have that

ffgdm=ff§dm=fﬁdm

which means that F| LL(rn) Dreserves the L? inner product on X by the arbitrariness of f,g.
In that regard, F[.1 (gny is an isometry. Furthermore, since .7-"|L}T(Rn)(L}(]R”)) = LL(R")
by Theorem 1.34, it follows that F| LL(R") extends uniquely to an isometric isomorphism
fmn) on L?(R") by Lemma 1.37. In particular, an) is unitary on L2(R") by the
continuity of inner products.

Now, since L% (R") ¢ L'(R") n L2(R"), we will need to show that ]—'mnﬂLl(Rn)an(Rn) =
Flri®nynr2(rny to conclude that P is indeed a unitary isomorphism on L?(R") since P is
supposed to be the extension of F|ii(gnynr2(mny. In that regard, let f e L'(R™) n L?(R")
and let ¢ be the Gaussian function as in Lemma 1.32. Then, f * ¢, € LL(R") for all
t > 0 where ¢, is as in Notation 1.26 because f * ¢, € L'(R") by Young’s mequahty, and
Txdy = for = t"foa0p = t- ”f(q5)1 t- ”fgzﬁl = J6,6 € L'(R") by Lemmas 1.29.2,4 and
1.32 and the boundedness of f. Hence, ]-"|L;(Rn) f=limyLo f* ¢y = (limyg f * ) = f (with
respect to the L? norm) by Lemma 1.33 and continuity of the Fourier transform. By the
arbitrariness of f, we are done. O
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Remark 1.40. Many authors initially define the Fourier transform on LL-(R"™) (or on a
finer space of functions called the Schwartz space) instead of on L*(R™) like above. If F was
defined on L%-(R™) instead, then there would be no need to introduce the Plancherel transform
P. Note that by our current definition of F and P, Ff is defined and Pf is not defined
when fe LY(R™) N L2(R").

1.5 The Ball Multiplier

Recall from Notation 1.36 that L-(R") = {f ¢ LY(R") : f e LY(R™)}. This makes the
following operator well defined.

Definition 1.41 (Multiplier Operator). Let m € L>°(R"). Then,

Ty : L=(R™) - L*(R™)

fe(mf)?

18 the multiplier operator with symbol m, and m is a multiplier.

From the definition above, we can see the multipliers are essentially bounded functions that
perturb the frequency space of a function. As we did for the Fourier Transform, we can also
extend multiplier operators to L? bounded linear operators.

Remark 1.42. Note that by the Plancherel Theorem (Theorem 1.39) and Hélder’s inequality,
T fllzz = Imfllee < mlle=flzz = lmlcellfllzz for all f e LE(R"). Hence, Ty, always
extends to an L?>(R") — L2(R") bounded linear operator by Lemmas 1.37 and 1.38 (note
also that T, f € L2(R™) nCy(R™) for all f e LL(R")).

In that regard, we will, from now on, identify the extension T, with the multiplier operator
T

Lemma 1.43. Let (X, |- |x) and (Y, |y) be complete, normed vector spaces. Let V be a
dense subspace of X, and let T be a bounded linear operator fromV to Y. Let R be a bounded
linear operator from Y to Y, and let S be a bounded linear operator from X to X such that
S(V)=V. Then, RTS = RTS where™ has the meaning in Lemma 1.37.

PRrROOF. Observe that RT'Sx = limj,e RT'Sx; = Rlimj o T Sx; = RT Sz for all Cauchy
sequences {x; }j‘:’l c V converging to x € X. O

Corollary 1.44. T,, = P~'mP where P is the Plancherel transform as defined in the
Plancherel Theorem (Theorem 1.39).

PROOF. By the Plancherel Theorem (Theorem 1.39), we have that P-mPf = P~1(mf) =
(mf)Y for all feLL(R") (note that mf e L'(R") n L2(R") since f € L!(R") and by Remark
1.42). Given that P(L%(R")) = LL(R"), it follows from Lemma 1.43 that T,,, = P-'mP. O
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Multipliers help enrich our understanding of the Fourier transform by serving as tools to make
sense of how we may extend the Fourier Inversion Theorem (Theorem 1.34) to functions in
Lr(R"). Consider the Bochner-Riesz operators given by

5 . Iy |§|2 ’ 2miEx
(s:6)= [, T (1+ ) enexag
for § >0, r >0 and f € LL(R"). From [3], if we want f = lim, . S?f to hold in the LP
sense when n > 2 (such convergence holds for all p € (1,c0) when n = 1), then it suffices
to make sure S9 can be extended to a bounded operator from LP(R") to LP(R™). If § > 0,
it is necessary that § > max{n - |]l? - 3| - 3,0} for 59 to be L? bounded. However, it is not
known yet whether the condition is sufficient when n > 3. This is known as the Bochner-
Riesz conjecture. On the other hand, if § = 0, then SY can only be bounded from L?(R")
to L2(R™). The proof of this can be found in Section 4. Note that S} is essentially the
multiplier operator whose symbol is the characteristic function of a unit ball.

We will now pay special attention to multipliers that are characteristic functions, as these
shall later help us prove that S} cannot be extended. These operators essentially cut out
portions of the frequency space of functions, and they are notated as follows.

Notation 1.45. If the multiplier is a characteristic function x g for some measurable E ¢ R?,
we write Sg =T, .

Remark 1.46 (Ball Multiplier Operator). Sg,(0) = Sy is the ball multiplier operator.

We will now derive some basic properties of these multiplier operators whose symbols are
characteristic functions to conclude this section.

Lemma 1.47. Let E ¢ R" be measurable and let f € L2(R™). Then,

1. Sp = 1_ySgTyf = Sg and Sgsy = FWIASE (e 2V ) for all y € R*, where E +y is
a translation of E by y (note that the first equality implies that translation commutes

2. Sig = 0;SEbi1 for allt >0, where tE is a scaling of E by t.

3. Sog = porSgpo for all orthogonal transformations O, where OF s a rotation of E by
0

4. If {Ej};‘z’l 1s an increasing collection of subsets in R", i.e. FEy € Fy € ..., such that
E=U3, Ej, then Spf =limje S, f with respect to the L? norm.

5. If E=EyxEy and f = fifs where By € R™ | Ey € R™ are measurable and f € L2(R™),
fo € L2(R"2) (with ny +ng =n), then Sgf = Sk, f1- Sk, fo.

Proor. By Lemma 1.43, it suffices to check that the operators in 1,2 and 3 are equal on
LL(R").
F
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1. Observe that

(rySery ) () = [ TFEQ)emele ag

= [ e 2mEY F(£) 24y (¢ (by Lemma 1.29.1)
E
= (Sef)(x),
and that
(Spg) () = [ F()emie de
E+y
= f Ty G(€)eFriEyIx g¢ (by translation invariance of m)
E

— e27riy-x /;(emg)(f)e%%x d£
— 627riy-x(SE( -27iy- ldg))( )
for all x,y e R and g € LL(R").
2. Observe that
(Sipg) () = [ F€)emex dg
— [(g)l(U)€2Wiu'tx du
E t

(by scaling with & = tu; (fq‘)% has the meaning in Notation 1.26)
- / 51g(u)emintx gy (by Lemma 1.29.2)
E t
= (0:5E019) (x)

for all x e R", g e LL(R") and ¢ > 0.

3. Observe that for all orthogonal transformations O,

(Sorg)(x) = [ g(e)ee de
- f F(On)e?™0ux du (by letting u = OT¢)

f ,Oog 27riu-OTx du
(By Lemma 1.29.3 and since O preserves dot products)

= (porSEpog)(x)

for all x e R” and g € LL(R").

4. Let u(F) = [L|Pf]* dm for all measurable F' ¢ R". Note that p is a finite measure
since P f e L2(R"). In that regard,

lim |Sgf - Sg, flr2 = im [P~ (xeg, P 2 (by Corollary 1.44)
j—oo j—eo
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= ]lljg x5z P Sl
(by the Plancherel Theorem (Theorem 1.39))
= lim \/u(E N Ej) =0.
j—o0

(by continuity from above and since p is finite)

5. By Lemma 1.38, there exist sequences {gx}32, € LL(R™) and {hy};2, ¢ LE(R"2) such
that f1 = limy_e gr and fo = limy_, . hy with respect to the L? norm. Hence,

| f1fe = grhullee = | f1(f2 = i) + hie(f1 = gi) || 2
<[ Cf2 = P) 2z + 1 Pe (fr = gi) | 22
=\ fillzzl f2 = Pellze + | el 22l fr = 9xllz2- (by the Tonelli Theorem)

by L? convergence of g, and hy, it is clear that the right hand side converges to
0 (one can easily check that |hg|zz = |fellzz by L? convergence as well). Hence,
f =limy_ e grhy with respect to the L? norm by the squeeze theorem (note also that
grhy € LE(R") for all k € N by Fubini’s theorem; in particular, gl = Gihi). On that
note,

Spf= ]}l_)fglo Se(gehi)

= lim i (&) (&) e*m s dg (where & = (&1,62))

k—oo E1xEs
= lim [ @ie)em e dg [ R(e)ene ag,
k—oo JFy By
(by Fubini’s theorem; note that id = id; x ids)

= %l_glo SE, Gk - Se, I
=Seg f1-Se, f2

so we are done.

2 The Kakeya Sets

To understand the importance of the conditions for nicely shrinking sets, we first turn our
attention to the Kakeya Needle Problem. A Kakeya set or Besicovitch set is a set in
R™ such that it contains a unit line segment in any orientation, and the Kakeya Needle
Problem asks whether there is a Kakeya set of minimum area in R”. As we shall see later,
there is indeed no minimal Kakeya set, and the infimum of measures of all Kakeya sets is
0. In this section, we only construct Kakeya sets in R2. In particular, these constructions
can have arbitrarily small measures. The first construction involves partitioning a triangle
into subtriangles, and then translating the subtriangles to maximize the degree of overlap
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Figure 2.1: The triangle (left) is partitioned into subtriangles (middle) to produce the
Perron Tree (right).

between them. This construction is called a Perron Tree, and an example is provided in
Figure 2.1.

The second construction involves placing rectangles into each subtriangle of the Perron Tree.
The union of these rectangles also form a Besicovitch set. In that regard, we shall call it
a Rectangular Besicovitch set. Although the Perron Tree is easier to describe, the
Rectangular Besicovitch set is more useful for proving other results. Both constructions can
be found in [3], but I have included more detail on how the sets can be constructed. Before
proceeding with the formalization of the constructions, we shall first familiarize ourselves
with some notation:

Notation 2.1.

1. AABC cR? is a (solid) triangle with vertices at A, B,C € R2.

2. ABcR" is a line segment between A and B.

9. AB = B - A is the direction vector from A to B in FEuclidean space.

4. | -1 s the usual Euclidean norm.
Definition 2.2 (Perron Tree). Let N e N and € (3,1). A (N,a)-Perron Tree Py (AABC) ¢
R? generated by a triangle AABC is constructed in the following manner:

Let to,t1,...,tov € AB evenly partition the line segment AB with ty = A and tex = B, and
let Ag; =1t;-1, Boj=1t; and Cyj = C for each 1 < j <2N. We then inductively define the
following for each 1<i< N and 1< j <2V

_ lj+2i‘1—1J

Cij i

>
V; = (1 - CK)BZ'_LQ'LA,

Aij = Airg +cigvi,

Bij = Bi1j+¢ijvi,

Cij = Ciorg + iy Vi,

where |-| is the floor function. From this, we make the following definitions for each 0 <i < N
and 1< 5 <2N:

1. T%a(AABC’) =AA, ;B ;Ci; is the (i,j)-th subtriangle of Py .(AABC).

30



2. Sy (AABC) = U, T (AABC) is the i-th stage of Py (AABC).
3. D is the intersection of the line segments AC and B;onCion.

4. Hiy ,(AABC) = AAB; yx D; is the i-th heart of Py .(AABC).

The (N,a)-Perron Tree is thus Py (AABC) = Sy (AABC). When N =1, we also
define Eo(AABC) =Py o(AABC) N H] (AABC) to be the a-ears of AABC.

Co,; Do Cia C12C13 Cig

4

Dy
Ao Ap 2 Aoz Ao 4 Aig Aip Az Ay
By By By 3 By Bi1 Bip B3 By
S0, (AABC) S, (AABC)
'q 17

Coa Co3 Caa Cop

D,

A1 AggAsz Ay y
By1 By2Bs3 Bay
S2,(AABC)

1

Figure 2.2: Three stages of PQ,%(AABC’) with A =(0,0), B =(4,0) and C =(3,2).

Remark 2.3. One can easily deduce with reference to Figure 2.2 that

1. AABC' =S} (AABC) =H}, (AABC).
2. Ai,l = A and Ci,l = C and Bi,l = B071 fO’/’ all 0 <1< N.
8. Hy ,(AABC) is similar to AABC for each 0< i< N.

To prove that the measures of Perron Trees can get arbitrarily small, we first need to calculate
the measures of certain components of the Perron Trees. These calculations are highlighted
in the following two lemmas.

Lemma 2.4. Let AABC ¢ R?, N € N and o € (3,1). Then, m(Hy ,(AABC)) = a2 -
m(AABC) for each heart of Py (AABC).
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PROOF. Note that for any 1 <i < N, ¢;on = [%J = [2N-1 4+ 1 - 271] = 2N~ and that

2N=1||B;_q 9 A| = | Bi—1.2v A|| as can be observed from the above example. This fact combined

with the inductive definitions of the vertices, gives us B;onv = Bj_jon +2V"1(1 - ) B;_1 91 A =

Bi—l,QN + (1 - O[)Bi_LQNA which means that Bi72NA = (1 - (]_ - CY))BZ‘_LQNA = Q- Bi—LQNA
- - A

and so [Biov Al = a - | By on Al Given that each HYy  (AABC) is similar to AABC, it

follows that m(H}y ,(AABC)) = a? - m(HyL (AABC)). Since HY, ,(AABC) = AABC, we

conclude that m(H), ,(AABC)) = a? - m(AABC) for each heart of Py ,(AABC). O

Lemma 2.5. Let AABC c R? and o€ (3,1). Then, m(Eo(AABC)) = 2(1-a)? m(AABC)
and m(P1o(AABC)) = (a?+2(1 - a)?) -m(AABC).

PROOF. Let ¢ be the line parallel to AB passing through D;. Let M; be the intersection
of ¢ and ALQCLQ, and let M2 be the intersection of ¢ and B1710171. Then, ADlMQCLl
and AM;D,C,, are similar to AA;1B;1C11 and AA; 3B 2Cy 2 respectively. Note that
——— EE— e —— B E—

||D1M2|| = (1 - Od) . ”AI,lBl,l” and ”MlDl” = (1 - Oé) . ||A172B1:2”' Hence, m(ADlMQCLl) =
(1 - ()4)2 : m(AALlBLlCLl) and TTL(AMlDlCLQ) = (1 - 04)2 : m(AALgBLQCLQ). Given that
m(AALlBMCLl) = m(AALQBLQCLQ) = w, then m(ADlMQCLl @] AMlDlCLQ) = (1 -
a)2-m(AABC).

Chp Ci

Ay Ais By, By

Figure 2.3: PL%(AABC’) with A =(0,0), B=(4,0) and C = (3,2). The shaded region is
Es(AABC).

Let N; be the intersection of A;;Ci; and A;3C)2, and let Ny be the intersection of
By 2C1 2 and By ;C4 ;. Observe that AM,; D,C' 5 and ADyM,C' 4 are congruent to AD; MyN,
and AM; DNy respectively. Therefore, m(E,(AABC)) = m(AD,MyCy 3 0 AM;D,Cy ) +
m(AM1D1N1 @) ADlMQNQ) = 2(1 - Oé)2 . m(AABC)

Finally, m(P,,(AABC)) = m(H] ,(AABC))+m(E.(AABC)) = (a?+2(1-a)?)m(AABC)
by Lemma 2.4. O

Theorem 2.6 (Perron Tree Estimate). Let N € N, « € (%,1) and AABC ¢ R2. Then,
m(Pyo(AABC)) < (a2 +2(1 - a)) -m(AABC).
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PrOOF. We can view Py ,(AABC) as a union of H%Q(AABC) and ears generated by
2i-tuples of subtriangles. An example is provided in Figure 2.4.

Figure 2.4: P3,%(AABC) with A =(0,0), B =(4,0) and C = (3,2). The shaded regions are
bounded or equal to the correspoinding measures.

Hence, by subadditivity and translation invariance of m, we have that

N 2Nfz
m(PN,a(AABC)) < m(H%,a(AABC)) + Z Z m(Ea(H;,_al(AAO,Qi(j—1)+lBO,2ijO)))

i=1 j=1
N N
= OC2N . m(AABC) + Z Z 2(1 - &)2 . a2i_2 . m(AAO,Qi(j—1)+lBO,2ijC)

(by Lemmas 2.4 and 2.5)

M=

=a® -m(AABC) +2(1 - a)? ) o2 2N m(AABy 2:C)

S
1l
—_

(Since ||ABO,2i ” = ||A0’2i(j_1)+1B072ij|| fOI' aH 1 < j < 2N_i fOI' all 1 < 7 < N)

N
=a® - m(AABC) +2(1-a)*) o* - m(AABC)
i=1

—

_ lAB]|

_—
(since |ABy || = 142

IN
—
Q
N
=
+
[\
=
|
Q
e
[]8

a2i_2) -m(AABC)

S
1l
—_

2(1-a)
1+«

.\ 2(1-a)?

) -m(AABC) = (a2N + ) -m(AABC)
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<(a® +2(1-a)) - m(AABQC). (since a > 0)
[

Notation 2.7. For any l,w >0, x € R? and v € S* ¢ R? (with S being the unit circle), we
define R, (x) € R? to be a rectangle with side lengths | and w centered at X, and with the

sides of length | parallel to Ov.

Theorem 2.8 (Existence of the Rectangular Besicovitch set). For all € > 0, there exist
LeN, x;eR? and v; € S for 1 <i <2 such that

1. m(UERY,(x)) <e, and

1,2-L

2. m(UZ,RY , (x;+2v;)) = 1.

1,2-L
The set U2, RY . (x;) is the Rectangular Besicovitch set.

PrROOF. The main idea of the proof is to strategically place the rectangles into each subtri-

angle of the Perron tree. With that in mind, let A = (0,0) B = (%,0) and C = (%,2).

Then, AABC' is an equilateral triangle with height 2 and m(AABC) = %. Given that
limg1 2(1-«) =0 and limy_ a2V =0 for all % < a < 1, there exists N € N large enough and
o very close to 1 such that m(Py(AABC)) < § by Theorem 2.6.

At this point, we want to show that rectangles can fit in the subtriangles by adjusting
the length of the shorter sides of the rectangles by a constant factor. Let L = N + 2, let
M; € An;jBn,; be such that Cy ;M; bisects « By ;Cn ;jAn;, let x; € Cy ;M; be such that
|x;Cn ;| =1, and let v; = LiOng

7 MOl
exists jo such that R, (x;,) ¢ T%ZS(AABC’). Then, the shorter edge of R" , (x;,) that

1,2-L ‘ 1,2-0
is closer to Cly j, must protrude from T (AABC), and intersect the subtriangle at some

points P, € Ay j,Cn.j, and Py € By j,Cn.j,- In that regard, | PP < 27%.

for each 1< j < 2N, Suppose for contradiction that there

Cy 2Jo

Anj, M Bn j,

Figure 2.5: T%:éO(AABC’ ) with the grey rectangle R;’J;,L (x;,) assumed to not fit inside.
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M;,, and that the midpoint of P P, is equal to the
intersection of C’N,JO o and P P,. We shall call this point Py as seen in Figure 2.5.

Note that P, Ps is perpendlcular to Cnj,

Now, sin( < Anjo Bn.joCn.j,) € [\é_, 1] because 2 Ay j,Bn joCn.j, € [5, %], and |An j,Cnl €
(2, %] by how we defined AABC'. By the sine rule, we at least know that

4 sin(<An;, By, Cn.
sin( < Byj,Cnjo Anjo) = 27 - /3 sl e Nao) 5 o1 V3> 27N
3 ||AN7JOCN7.]O ||
Hence,

| PP = | PLo | + (| Po e
1
= 5 . (tan(APOCNJOPl) + taH(LPQCNJOP()))

s
(by simple trigonometry and the fact that |PyCh | = 3)
- tan ( LBNJDCNJOANJO

: 2BN ;o CN jo AN
) (since 2 PyCly ;o P1 = 2 P,Cly j, Py = — 00— )

2
5 Sm( 4BN,J'002N,J'0ANJO) ,, s 4BN,jo2CN,joAN,jo) S 9-N-2 _ oL

However, this contradicts with the fact that ||P1P2|| < 271 so it follows that R}’ Ho(xg) €

TN’J J(AABC) for all 1 < j < 2V, Note that {R12 (x5 + 2Vj)}?ivl is a mutually disjoint
collection because the collection of the reflections of the (N, j)-subtriangles through Cl ; is
also mutually disjoint (and each translated rectangle is contained in its respective reflected
subtriangle).

V UL RY, 4 (%)

Figure 2.6: U R, T (x5) andU R v o(x;+2v;) with N =2 and a = 3. The dotted
grey trlangles are the reﬂectlons through the corresponding Cy ;’s

It follows then that m(U2 12 1 (%x5)) € m(Pyo(AABC)) < £ and m(U2

g (x; +
2v;)) =227k =

12L

Notice that we have essentially proven the theorem except the estimates of the measures are
quartered. Hence, to complete the proof, we will make 3 more ‘sufficiently’ disjoint copies
of the first 2V rectangles by letting x; = x;_o~ + (0,2) and v; == v,_on for all 2V <4 <20 O
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3 Counterexample for the Lebesgue Differentiation The-
orem without nicely shrinking sets

An example of a collection of sets that causes the Lebesgue Differentiation Theorem to fail is
the collection of rectangles centered at the origin. One can easily verify that the rectangles
are not nicely shrinking, which means that the Generalized Lebesgue Differentiation Theorem
would not be applicable. The following theorem is taken from [3] with some added detail in
the proof.

Theorem 3.1. Let p e [1,00), and let R be the collection of rectangles centered at 0 € R2.
Then, there ezists a real valued f € LP(R?) such that

hmsup—ffx y) dy = o0

diam(R)—0 ’ITL

for almost every x € R? with R ranging in R.

PROOF. Let Rs:={R € R :diam(R) < 0} for all 6 > 0. Note that diam(R) is precisely the
length of the diagonal of R, and that for all nets (zg)ger in R,

limsup zg = inf sup xrg = inf sup zg.
diam(R)—0 ReR diam(S)<diam(R) 0>0 ReRs

Hence, it suffices to show that there is a real valued f € LP(R?) such that for almost every
X € R?, supger, ﬁfRf(x—y) dy = oo for all § > 0.

Now, recall the definition of the conditional Lebesgue measure, and let Cs := {mp : R € Rs}
for each 0 > 0. Then, Cs is a collection of finite positive measures supported in a fixed
compact set, and Mg, is a maximal operator on L; (R?) by Proposition 1.11 for each ¢ > 0.
Note that LP(R?) ¢ L; (R?) for all p € [1, 00) by Hélder’s inequality.

We will now show that Me, is not weak type (p,p) for each § > 0 so that we can use
Proposition 1.15 to construct a real valued f as above. To that end, fix § >0, let A >0, and

let o := 4. Then, there exists a Rectangular Besicovitch set E := UQL R‘l’a . (x;) such that

p-1

m(F) < 445 by Theorem 2.8. Hence, ||X 5 E||Lp =m(SE)P = 2 m(E)P < fﬁ: (note that
5P AP

1447
iE is a scaling of E by 12).

Suppose x € SRY" _, (x;+2v;) for some 1 <i < 2L, Let R= 3 mRE, 1a(0) = R;’iz_L_ld(O) € Rs.
27 3

1,2-L
Then,

(Meox ) (0> [ ey dmady) = _m(lR_)
1 [;E Xr(x-y) dy

" m(R)
(by commutativity of convolutions of L! functions)

1 /
> Xr(X-Yy) dy
m(R) 1z R 12 1 (Xi) R( )

Xap(x-y) dy
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m LRy, . (x)n (x- R))

_ 1,2-L
) m(R)
m (%R}”Q,L (x;)n(R+ X))
= ’ (R (since R = -R by symmetry)
0 RVi dRVi x
_m (ERLTL (i) N 5RG, o (%))
) m(R)
Az Vi 12x
~ 02-m (R1727L (Xz) n R6727L+1 (T)) (b scaline b i)
- 144m(R) Y SCating BY 13
0%2-m (R;';,L (X,))
- 144m(R)
(since 2% ¢ R, o (xi+2v;) so RT, 1 (x) & Rg’g,ul(l%") (refer to Figure 3.1))
1 _
=T (since the ratio of measures evaluates to % =)
52715
Ry o (5%)

Figure 3.1: R, ,(x;) URY"

1’2—L (Xl + QVZ) = joQ—L+1 (%X)7

By the arbitrariness of x, we have that

62" .
AMcéx%E(a) 2m (E HleQ_L (xi + 2V¢)) (since a < 75)
2 A Sar
= — = — b Th 28
144 ar 144A (by Theorem 2.8)
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A
> Sl

By the arbitrariness of A and §, we indeed have that M, is not weak type (p,p) for all § > 0.
In that regard, there exists g, € LP(R?) such that (Mc, gx)(x) = oo for almost every x € R?
k
for each k € N by Proposition 1.15 (note that | gx|z» > 0 otherwise g = 0 almost everywhere
which would result in the contradicting statement that M, g, = 0 almost everywhere).
k

We will now complete the proof of the theorem by constructing a real valued f € LP(R?)

that satisfies the hypothesis. Let f; = anlg’“h — for each k € N, and let f = Y peq fe- Then,
Fi2 0, il = 2 M s = 275 s0 [ flo < Z22 [ felleo = 1, and Me, fic= 150 ||L,,Mc19k by

sublinearity of Mg, for each k € N. In that regard, we also have that (Mc¢, fr)(x) = oo for
k 3
almost every x € R? for each k € N.
Now, let F':= 2, (Mc, fr) 1 ({o0}). It is clear that m(R? \ F') = 0 since the intersection of
k

full measure sets has full measure. Hence, for any ¢ > 0, there exists k£ € N such that % <o
which means that

sup

[ rec=y) dy > (Me, ()
ReRy m(R
(since f is positive and the supremum is taken over a smaller collection)

> (Mc%fk)(x) =

for any x € F' so we are done. O

4 Counterexample for the Ball Multiplier

As hinted in an earlier section, the ball multiplier operator cannot be extended to an LP
bounded operator. The following results are from [3], but I have some added some more
detail in the proofs.

Notation 4.1. We write H, = {£ e R": £-u > 0} to be the half open space in R™ with normal
vector u (the dimension of Hy should be obvious from context).

Lemma 4.2. Let p e [1,00]. Suppose there exists A, >0 such that

15810y fllzr < Apl fllzr
for all f e L2(R*)n LP(R"™). Let M €N and let fi,..., far € L2(R*) n LP(R™). Then,

M M
2 1SB.wn il < > P
j=1 Lr j:l Lp
forallr>0 and yq,...,ym € R, and
M M
> 1Sm,, fil? > Sl
j=1 j=1 o




for alluy, ..., uy € S*1 € R™ where S™1 is the unit (n - 1)-sphere.

PROOF. Let >0 and yq,...,yy € R?. Suppose p < oo. Then,

[ 150NN dx= [ 1635500 )P dx (by Lemma 1.47.2)
= [ (Sp.0)dr F) (W) du (by scaling with x = )
<y [ 16 ) ()P du

(by the assumption; note that 0,1 f € L2(R") n LP(R") as well)
= AP f |f(x)]P dx (by scaling back to x)

which would mean that |[Sg, (o) fllr < Ayl fllor as well for all f e L2(R™) n LP(R").

We will now introduce some more notation. Let S2M-1 ¢ CM be the unit (2M - 1)-sphere.
We endow S?M-1 with the usual spherical measure o. Let (-,-) be the usual Hermitian inner
product on CM  ie. (w,z) = w-Z for all w,z € CM. For any operator T on L?(R"), we
extend its domain and codomain such that T'(g1,...,9m) = (Tg1,-..,Tgn) forall g1,...,gu €
L2(R™) (note that (gi,...,gu) is the map x = (g1(x),...,gm(x))). We also define 3 = e,
where e; = (1,0,...,0) € C™ out of convenience.

Now, let f = (e 2mviidf,  e=2miyaid fy ) Then, (f,w) = Z%l e ?miyid foe L2(R™) n
LP(R™) for all w e S?M-1. Observe also that

155, (0 {£: ) 5] = (3,00 ) ()65} = (S 008 (¢ |H

o0 = e[ £ )|

Given that | Sg, o) (f,w)|lr < Ap|(f,w)|zr for all w e S2M~1 by the assumption, we have that

f /|SBT(0)(f,w X)P dx do(w <Apf f| £(x), W) dx do(w)
§2M-1 §2M-1

by monotonicity. Hence,

[1S5.0b)F [

SB (O)f X )‘
SBT(O)f) X

by linearity. Similarly,

p

(SB,0)f)(x) w) (o) dx
<|<sgr<o>f><x>|’ do(w) d

sA;;flf(X)I’”fSQMI (;Ezil’w)p

by the Tonelli Theorem. Now, for each z € S?M-1  there exists a unitary transformation
U, such that Uzz = e; (think of U, as a rotation). Given that o is rotation invariant and
|det(U,)| =1 for all z € S?M-1 we have that

SBr(O)f X) )

do(w) dx

p

/ |(SB (O)f (X | ,U(SBT(O)E)(x) w dcr(w) dx

[(SB,@f) (X)]" 155 0p

§2M-1
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<4p [I06r [,

J1S.0DEP [ Heww)P dow) dx< g [1eP [ llenw)l do(w) dx

since unitary transformations preserve inner products as well (note that we applied U* to
the terms in the inner products). Given that |{e1,w)[P = [wi|P > 0 for almost every w € S2M-1,
we have that [¢u . [(e1,w)|P do(w) > 0. Hence, by cancellation, we have that

f| S5, (0)f) (X)) dx<Ap/|f )P dx

which means that

since |e?| = 1 for all € R. Therefore,

M . .
Y158, 0y (e7251d f) ]2

j=1

<A,

M
Z |6—27riyj~idfj |2
j=1

M
LR
j=1

Lr Ly Ly

(by Lemma 1.47.1)

M M
H 2 1Sm.wnfil| = \ D €258 oy (et £)2
j=1

Lp J=1 Lp

M
—Ap \‘ Z;|f]|2

Suppose now that p = co. Then, by Lemma 1.47.2, |Sg (0)fllz= = 0SB 0)0r-1 fllz= =
158, 0)0r1 f |1 € As||0,-1 f|| L = Ao | f| L. Note as above that ||Sg, 0)(f,w) |z < Ao (£, w)| L~
since (f,w) e L2(R") n L*=(R"). Hence,

M
— \ Z SBT(O) e 27r1y]1df )|

Lpr Lr

|81|1p||SB @) (F, W) e < Ao sup [{f, W) L=

w|=1

Since we can commute the supremum with the essential supremum, we see that
1S5l I

. (SB,.0))(x) £
One can easily check that sup,., |(%,w)| = SUP||-1 |<%,w)| > 0 for all x e R
since the terms in the inner product have norm 1. Therefore, by cancellation, we have that
11SE, ) flll L= < A ||f][z=. Hence, the same argument towards the end of the case for p < oo
also applies. By the arbitrariness of » and yi,...,yas, we have proven the first part of the

lemma.

Now, let uy,...,uy € S™1. Note that By(Nu;) € By ((N + 1)u;) for all N € N, and
that Hy, = Uy, By (Nuj). Hence, SHa, fi = IMN—0o Spy(vy,) fj With respect to the L? norm
for each j by Lemma 1.47.4. Since L? convergence implies convergence almost everywhere

|SBT(0)f| ) |Sl|lp
w|=1

le 1
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on a subsequence, we can inductively construct a subsequence (by building subsequences
upon subsequences) such that (S Ha, fi)(x) = limye (SBy, (Nyu,))(x) for almost every x e R*
for all j =1,..., M. By continuity of taking powers, sums and absolute values, it follows
that \/Zj-\fl |(SHujfj)(x)|2 = limy_ e \/2%1 |(SBy, (Neuy) f3)(x)[? for almost every x € R™.
Therefore, by Fatou’s Lemma,

< liminf
k—o0

[M
Z|SBNk(NkUJ)f]|2 SA
Jj=1 P

M M
> 1S, fil? > Sl
J=1 Lr J=1 Lp

if p < co. If p = oo, then since \/Zj-‘/;fl |(SBNk(Nkuj)fj)(X)|2 < H\/Z;‘;jl |(SBNk(Nkuj)fj)(x)|2HLw
for almost every x € R” for all k € N, we get the same result as above but with p replaced by
oo. By the arbitrariness of uy,...,uy;, we are done. ]

Lemma 4.3. Let RY e ~v(x0) €R? where N e N, ve St and xg € R2. Then,

|(5HVXR;2_N(xo)) (X)| ﬁXR v Grorav) (X)

for almost every x € R2.

PROOF. Given that X(-11) € LY(R) n L2(R), we have that

o0 . . 2
_v/O X——-—-(_%é)(f)e%rz(-ﬂe)ﬁ dg

L2

- lim ||7> (X(O,w)@)) =P (X0 Ty 2 ) i

(by Corollary 1.44 and the Plancherel Theorem (Theorem 1.39))

2
—27re-id)
L2

- [T lim KT OF( - e dg =0,

by the Dominated Convergence Theorem; note that 1 - e=27id - () pointwise as € | 0
y g

(by the Plancherel Theorem again)

= hm”X(Ooo)?@) (1-e

Hence, S(o, ) X(-1,1) = lim, g fo X1 1)(5)62m(-+i8)5 d¢ with respect to the L? norm. In that

regard, there ex1sts a decreasing sequence {g;}%, ¢ (0,3) such that (S(U7w)x(_%7%))(x) =

lim; e [y X(_%é)(f)ezm(“’af)g d¢ for almost every x € R. Note also that for all € (0, 1)

and x € (1, 00),
oo 1
(/12 6—2m'§y dy) 627ri(x+ia)§ df‘
2

1
‘ f 12 62“(‘””6‘3’)5 d§) dy‘ (by Fubini’s Theorem)

1
A
Ly-x—ie
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1 3 Yy—x [z €
T om .[é (y—x)? +¢e? dy+1 L (y—x)?+¢e? dy‘
1 e, — |
=2 (cp — )2 + €2
(by the mean value theorem where ¢, € (-3, 3))
1
2

1 1
> — (since x —c, > 5 >¢)
4 x — Cy
> 1 (si <+ i<2r)
— since & — ¢, <T+35 <21
87Tx ’ 2

In that regard, |(S(07°°)X(_%7%))( r)| 2 5= for almost every x € (1, 00). Hence,

y ()

|(S(o,oo)X(_%,%)) (x)| > %X(l,w)(x) > %X(g

for almost every x € R. By Lemma 1.47.5, we have that

l\D\Cﬂ

|(S(Oaw)XRX(—%,%)><(—2—N,2—N)) (w1, $2)| = |(5(o,w)X(_%7%)) (21) - (SrX (2 2-my) (x2)|
1

207TX( 5y(71) - X(—2—N,2—N)($2)

(since Sg = PP =1id)
1
207rX(2 Syx(-27N 2" N)(x1=372)

for almost every (z1,25) € R2. It remains to show that rotations and translations preserves
this result (note that (0,00) x R = Hy,, that (-3,1) x (-=27¥,2-N) = R®_,(0), and that

272 1,2°N
(2,2) x (27N, 2°N) = RY, ~(2e1) where e; = (1,0) € R?). In that regard,
1
SHe1 XRilQ_N(o) (x)] 2 207TX312 N(2e1)( x)

1
20 pOTXR N(2e1) (X)

(where v = Oey for some orthogonal transformation O)

~—

| (/)OT SHe, XRL (0)) (x

1
|(SHVXR‘1’72_N (0)) (X) 20_77'XR1 .- N(2V)( ) (by Lemma 1473)
|(7’S YRV )(X)>L(TXV )(X)
0P Hy XRY |\ (0) = 907 \/X0ARY _y(2v)
1
|(SHVXR;2_N(XO)) (%)} 2 SRy rov2v) (X) (by Lemma 1.47.1)
for almost every x € R? so we are done. O]

Theorem 4.4. Let n > 2 and p € [1,00] N {2}. Then, Sp,(0)|r2(rn)nre(rny is not extendable
to a bounded linear operator from LP(R™) to LP(R™).

PROOF. Suppose the operator is extendable with A, as the bounding constant. If we restrict
the domain of the extension back to L2(R") n LP(R"), we see that

IS8 0y fllze < Apll fllzre
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for all f e L2(R") n LP(R"). We will use the Rectangular Besicovitch set to show directly
that the above inequality cannot hold.

Suppose p < 2. Then, there exists a Rectangular Besicovitch set E = U R, b 7. (x;) such
2p

that m(F) < (207“4 )2 " by Theorem 2.8. Hence,

1 LY &1
207 207r U1R12 (x5 +2v;) x [0,1] =
J

j; 207 XRLjQ_L (xj+2v;)x[0,1]n~2
p

(by Theorem 2.8)

oL 1 2
= \ jzzl (ﬂ) XR‘1,72—L (x]'+2Vj)X[O71]n72

Lp

2L 2 oL 2
S \ j; SHv]- XR‘I,’JQ_L (xj) . X[071]n—2 JZL ]_XR\ll’jQ_L (xj) . SR'nﬁZX[O’l]an
Lpr p
(by Lemma 4.3; note that Sgn-2 = PP =id)
2L 2
= \ Z SH(V o)XR LG0T (by Lemma 1.47.5; note that 0 € R"~2)
J=1 Ip
1
oL % p
<A \l 2R el (ZXR EANCHE LR ) (by Lemma 4.2)
=t v L
1 2L g %
< Ayl X Expoan-2| ’7% (Z XR L R0 2) (by Hélder’s inequality)
Lh
A 2 || 2 : A 2 1
= 2 v = 2 _—
pm(E) = ;XRITQ_L<xj)x[o,1]n-2 . pUE) < oo

which is a contradiction. In that regard, Sg, (0)| L2(Rmynze(rny 18 Not extendable if p < 2.

Suppose p > 2. Let g be the conjugate exponent of p (i.e. ¢= p ; note that ¢ € [1,2)). Note
that operators are bounded L? — L? iff they are bounded L9 — Lq (see [2] Theorem 2.5.7).
However, we already proved that this is not possible in the earlier case (note that ¢ < 2).
Therefore, by contradiction, we are done. O]
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