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1 Introduction

1.1 Main results

In this thesis, we study optimal couplings in the non-commutative probability space (Mn(C), tr)
extending from discussions in papers [GJNS21], [HM11], and [MR19]. We will provide motivations
and background information, connect their results by filling in intermediate steps, and come up with
a new concrete example of their existence claims.

Non-commutativity requires us to use more abstract tools to describe random variables and their
joint distributions. Therefore, optimal coupling in non-commutative probability spaces is formulated in
more algebraic terms compared to in classical probability spaces, where we seek a product probability
measure with fixed marginals that achieves optimal L2 distance between the marginals. The problem
of optimally coupling matrix tuples X,Y ∈ Mn(C)msa requires us to find a tracial von Neumann algebra
(C, τ) and unital trace-preserving ∗-homomorphisms α, β : Mn(C) → C that achieve

inf

m∑
j=1

∥α(Xj)− β(Yj)∥2τ , or equivalently, sup

m∑
j=1

⟨α(Xj), β(Yj)⟩τ .

Moreover by a calculation in Proposition 2.2, it often reduces to achieve

sup
Ψ∈FM(Mn(C))

m∑
j=1

⟨Ψ(Xj), Yj⟩tr,

where FM(Mn(C)) is the set of factorizable maps Mn(C) → Mn(C). Every Ψ ∈ FM(Mn(C)) is of
the form β∗ ◦α, and we say it factorizes through C. Details are given in Definition 2.5, 2.11, 2.16, and
2.17.

In [GJNS21] (Abstract), the authors point out that two non-commutative laws that can be realized
in finite-dimensional algebras may still require an infinite-dimensional algebra to optimally couple.
This is done by studying the existence of factorizable maps between finite-dimensional algebras that
factorize through an infinite-dimensional algebra. In [HM11] (Theorem 5.6), the authors give concrete
examples of factorizable maps that cannot be expressed by any convex combinations of automorphisms
of Mn(C), meaning those factorizable maps cannot factorize through the same matrix algebra Mn(C),
so we need to embed into a tracial von Neumann algebra of a larger dimension. Moreover in [MR19]
(Theorem 4.1), the authors give concrete examples of factorizable maps that cannot factorize through
any finite-dimensional C∗-algebra, and in fact they factorize through the hyperfinite type II1 factor.
However, none of those papers give a concrete example of a pair of tuples in Mn(C)m whose optimal
coupling is achieved by the factorizable maps they describe.

In this thesis, we will construct a pair of matrix tuples X,Y ∈ M3(C)9sa and prove that we must
embed them into a larger tracial von Neumann algebra to achieve the infimum above, thus optimally
coupling X and Y . More specifically, we have X,Y ∈ M3(C)9sa and Φ ∈ FM(M3(C)), factorizing
through (M3(C)⊗M3(C), tr⊗ tr), that satisfy the following equality/inequality:

sup
U∈U(3)

9∑
j=1

⟨UXjU
∗, Yj⟩tr = sup

Ψ∈conv(Aut(M3(C)))

9∑
j=1

⟨Ψ(Xj), Yj⟩tr

< sup
Ψ∈FM(M3(C))

9∑
j=1

⟨Ψ(Xj), Yj⟩tr =
9∑

j=1

⟨Φ(Xj), Yj⟩tr.

Note the first line of the inequality corresponds to the optimal coupling by embedding into the same
matrix algebra M3(C), and the second line of the inequality correspond to the optimal coupling by
embedding into all possible tracial von Neumann algebras. Details are given in Section 4.2.

Spoiler alert: X = (X1, . . . , X9) will be 9 matrices that form an orthonormal basis of M3(C)sa, and
Y = (Y1, . . . , Y9) will be given by (N(X1), . . . , N(X9)), where N is a special linear transformation on
the vector space M3(C)sa relating to a “normal vector” that witnesses a strict separation.

Why do we care about such an example? It is also shown in Section 4.1 of this thesis that the
optimal coupling of two tuples in M2(C)sa is always achieved by embedding into the same algebra
M2(C)sa, thus given by conjugating some unitary U ∈ U(2). Therefore, one might suspect whether it
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suffices to couple the tuples in the algebra they come from. However, our example shows it is not even
sufficient in rank n = 3. We will get a better coupling by embedding into a larger matrix algebra, and
we will show it is the optimal coupling among all embeddings into tracial von Neumann algebras.

In section 2, we rigorously discuss von Neumann algebras (aka W ∗-algebras), non-commutative
probability spaces (and their analogies to classical probability spaces), and factorizable maps. We also
supply a list of notations used extensively in this thesis at the end of this section.

In section 3, we study optimal couplings given by unitary conjugation. We present detailed com-
putations in rank n = 2.

In section 4, we study optimal couplings given by more general factorizable maps, and in Theorem
4.7 we present our new example explicitly.

The tools we mainly use come from operator algebras and functional analysis. More specifically,
these include Hilbert spaces, bounded linear operators, von Neumann algebras, conditional expecta-
tions, tensor products, homomorphisms of ∗-algebras, linear isomorphisms, Hilbert projection theorem,
Hahn-Banach separation theorem, Skolem–Noether theorem, Schur–Weyl duality, etc.

1.2 Motivation

We explain the motivation of this study from two perspectives: why we study optimal coupling,
and why we care about non-commutative probability spaces (NCPSs).

First we take a step back and introduce optimal transport. Optimal transport in mathematics,
and related fields like economics and physics, is the study of efficiently allocating resources. We give a
relatable example of an optimal transport problem in the COVID era: suppose we haveN orders of food
ready in N different restaurants, and N UberEats drivers across the city ready for delivery. We also
have a numerical cost function c(x, y) representing the cost (in time, distance, etc.) of sending driver
x to restaurant y. The problem is to send those drivers to those restaurants (more precisely: pair each
driver with a restaurant) so that the average cost is minimized. It is clear that optimal transport has
important real-world applications. Mathematically, it has an abstract formulation borrowing language
from probability theory: given two probability measures µ, ν on metric spaces X,Y respectively, and
a measurable cost function c : X×Y → [0,∞], the optimal transport problem is to find a measureable
transportation map T : X → Y that “transports” µ to ν (ν(B) = µ(T−1(B)) ∀ν-measurable B ⊆ Y )
with lowest average cost of transportation, meaning that it achieves the infimum

inf

{∫
X

c(x, T (x))µ(dx)

}
.

The above formulation is due to French mathematician Monge in the late eighteenth century, and is a
natural extension from the food delivery example we gave: X,Y are set to be integers {1, . . . , N} with
µ, ν being the uniform probability measure. This will require the transportation map to be a bijection
(pairing) between drivers and restaurants, and our integral degenerates to a sum. However natural
this formulation is, it is technically ill-posed. For example if one probability measure has point mass
and the other does not, then no transportation map exists, and the infimum would be infinity. One
way to get around with this is to consider an alternative setup, the Kantorovich’s formulation: the
optimal transport problem is to find a probability measure γ on X × Y with marginals µ on X and ν
on Y , also called a transportation plan, that achieves the infimum

inf

{∫
X×Y

c(x, y) γ(dx, dy)

}
.

In this formulation, there always exists a transportation plan γ taken to be the product measure µ⊗ ν
on the product space X × Y . Moreover, given a transportation map T , we can always translate it to
a transportation plan γT defined by

γT (A×B) = µ(A ∩ T−1(B)).

It follows that γT (A × Y ) = µ(A), γT (X × B) = ν(B), and by testing on indicators of product
measurable sets, ∫

X×Y

1A×B(x, y) γT (dx, dy) =

∫
X

1A×B(x, T (x))µ(dx).
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By Dynkin’s multiplicative systems theorem ([Kem21] Lecture 14.1),∫
X×Y

c(x, y) γT (dx, dy) =

∫
X

c(x, T (x))µ(dx),

and thus we have a more general formulation (transportation plan always exists) of the same problem
and it is consistent (the integrals are equal) when a transportation map exists.

The reason we introduce optimal transport is due to its connection with optimal coupling of random
variables. A coupling of two random variables on two different spaces is realizing them as a joint
distribution in the product space, such that the two marginals of the joint distribution match the
distributions of the two random variables, respectively. The problem of optimally coupling two random
variables is just to find an optimal transportation plan between their distributions, with a specific cost
function relating to Lp norms.

Now that we revealed the importance of optimal coupling by its connection with optimal transport,
we explain our other motivation: what are NCPSs, and why do we care about them?

Recall in a classical probability space, we have the triple (Ω,F ,P), a space of outcomes, a space of
events, and a probability measure. We study random variables as (Borel-)measurable (complex val-
ued) functions X : Ω → C. It is inherent in this measure-theoretic setup that the multiplication of our
random variables is automatically commutative. As we witness plenty of instances of mathematicians
generalizing mathematical concepts through many levels of abstraction in all branches of mathematics,
it is also the case in probability theory. After John von Neumann founded the study of operator alge-
bras through the von Neumann algebras in the 1930s, von Neumann algebras are considered to be the
non-commutative version of measure theory, which becomes the tool we use to study non-commutative
probability theory, just like their commutative counterparts. However, in contrast to classical proba-
bility theory where our basic constructs are events and probabilities, in non-commutative probability
theory, our basic constructs are (a non-commutative algebra of) “random variables” and their “ex-
pectation”, so the triple (Ω,F ,P) is replaced by a tracial von Neumann algebra (A, τ). Hence we can
study how various concepts in classical probability theory transfer to non-commutative probability
theory, including probability distribution, independence, conditional expectation, limit laws, and of
course, (optimal) coupling of random variables.

One reason to study NCPSs is due to their significant applications in physics. This brings us to a
historical review of the beginning of the study of quantum mechanics and quantum information theory.
Uncoincidentally, von Neumann was also the first to establish a mathematically rigorous framework
of quantum mechanics around 1930 in his papers [vN27a], [vN27c], and [vN27b]. In his formulation,
the state of a quantum mechanical system is an element of a complex Hilbert space, and physical
quantities of interest (position, momentum, etc) are represented by observables, which are self-adjoint
linear operators acting on that Hilbert space. Among various others, the non-commutativity of linear
operators is a precise reflection of the uncertainty principle in quantum mechanics: determination of
the position of a particle prevents determination of its momentum, and vice versa. The rigorous study
of von Neumann algebras was therefore carried out as a special kind of subalgebras of bounded linear
operators on a Hilbert space (von Neumann was also the first one to come up with the abstract and
axiomatic definition of a Hilbert space that we use today). In this way, non-commutative probability
theory becomes the crucial tool in studying the information of the state of a quantum system (known
as quantum information theory), again, just like their classical counterparts. Meanwhile, we will see
in this thesis how coupling of non-commutative random variables relate to factorizable maps, a special
type of quantum channels (a communication channel transmitting quantum information) in quantum
information theory. Our construction of a concrete example of matrix tuples also uses previous results
on quantum channels.

2 Background

In this section, we provide definitions and motivations of optimal coupling in a non-commutative
probability space under the context of operator algebra, reveal their connection to factorizable maps
and quantum information theory, as well as introduce relevant examples and notations that are used
extensively in the rest of the thesis. The readers can refer to the appendix for more details (proofs),
but we also include some excellent introductory texts of the subjects aforementioned. For background
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reference on C∗-algebras, see [Dix69]; for operator algebras, see [Zhu93], [KR83], [Tak02]; for W ∗-
algebras, see [Sak71]; for introduction to free probability, see [VDN92]; for introduction to quantum
information theory, see [Wil13], [Wit20].

2.1 Non-commutative probability space (NCPS)

In essence, we want to extend the notion of a probability space into one that allows the random
variables to be potentially non-commutative. Similar to using the language of measure theory to
study probability theory, we use the language of tracial W ∗-algebra, a non-commutative analogue of
measure theory, to study non-commutative probability. We start with some definitions from [GJNS21]
(Definition 2.1-2.11) or standard textbooks in functional analysis and operator algebra.

Definition 2.1 (unital ∗-algebra). A unital ∗-algebra is a untial algebra A over C closed under ∗-
operation. That is, for arbitrary a, b ∈ A, α ∈ C,

• (a∗)∗ = a;

• (ab)∗ = b∗a∗;

• (αa+ b)∗ = αa∗ + b∗.

Definition 2.2 (weak operator topology). Let {Tn}∞n=1 and T be bounded linear operators on a
Hilbert space H, then Tn → T in the weak operator topology (WOT) if

lim
n→∞

⟨Tnξ, η⟩ = ⟨Tξ, η⟩

for arbitrary ξ, η ∈ H.

Definition 2.3 (W ∗-algebra). A W ∗-algebra (von Neumann algebra) A is a unital ∗-algebra of
bounded linear operators on a Hilbert space such that A is closed under WOT.

There are other analytical or abstract characterizations of W ∗-algebras due to von Neumann’s
bicommutant theorem and a theorem of Sakai [Sak71], respectively.

Definition 2.4 (trace). Let A be a W ∗-algebra, then a faithful normal trace on A is a linear functional
τ : A → C such that

• unital: τ(1) = 1;

• positive: τ(a∗a) ≥ 0 for all a ∈ A;

• faithful: τ(a∗a) = 0 if and only if a = 0;

• tracial: τ(ab) = τ(ba) for all a, b ∈ A;

• τ is weak-∗ continuous.

Note that the last condition insisting on τ being continuous in the weak-∗ topology is slightly
weaker than in the weak operator topology, but it gives a non-commutative analogue of dominated
convergence in measure theory (more about this analogue in Section 2.1.1).

Definition 2.5 (NCPS). A non-commutative probability space is a tracial W ∗-algebra (A, τ), where
A is a W ∗-algebra and τ is a faithful normal trace.

Definition 2.6 (Non-commutative polynomial algebra). We denote by C⟨x1, . . . , xm⟩ the universal
unital algebra generated by variables x1, . . . , xm. As a vector space, C⟨x1, . . . , xm⟩ has a basis consisting
of all products xi1 · · ·xil for l ≥ 0 and i1, . . . , il ∈ {1, . . . , d}. We equip C⟨x1, . . . , xm⟩ with the unique
∗-operation such that (xi1 · · ·xil)

∗ = x∗
il
· · ·x∗

i1
.

Definition 2.7 (Non-commutative law). the ∗-distribution λa,a∗ of a is the collection of all joint
moments of a and a∗. More specifically, λa,a∗ is a linear functional on C⟨x, y⟩ satisfying λa,a∗(p(x, y)) =
τ(p(a, a∗)) for all p ∈ C⟨x, y⟩.
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Definition 2.8 (non-commutative law of a self-adjoint m-tuple). Let (A, τ) be a NCPS. Let X =
(X1, . . . , Xm) ∈ L∞(A)msa. Then we define λX : C⟨x1, . . . , xm⟩ → C by λX(p) = τ(p(X1, . . . , Xm)) for
p ∈ C⟨x1, . . . , xm⟩.

Notation 2.9. In a NCPS (A, τ), ⟨a, b⟩τ = τ(b∗a) gives an inner product on A. Let ∥·∥τ be the

induced norm of the inner product space (A, ⟨·, ·⟩τ ). We denote the Hilbert space Hτ = A∥·∥τ , as the
Cauchy completion of the metric induced by the norm ∥·∥τ . Abusing notations from measure theory,
we also denote L2(A) = Hτ , and think of L∞(A) = A (as an isomorphic copy) being a subspace of

L2(A) due to the embedding in the Cauchy completion A ̂−−−→ Hτ .

Now that we have a Hilbert space, we can talk about subspaces (sub-W ∗-algebras) and orthogonal
projections (conditional expectations).

Definition 2.10 (conditional expectation). Let (A, τ) be a NCPS, and B ⊆ A is a sub-W ∗-algebra (so
(B, τ |B) is a non-commutative probability subspace). Then there exists a map EB : A → B uniquely
determined by τ(EB(a)b) = τ(ab) for all a ∈ A, b ∈ B. Moreover, EB satisfies the following properties:

• EB is a B-B bimodule map: EB(a1ba2) = a1EB(b)a2 for all a1, a2 ∈ A and b ∈ B;

• EB is unital: EB(1) = 1;

• EB is trace-preserving: τ ◦ EB = τ ;

• EB respects ∗-operation: EB(a
∗) = EB(a)

∗ for all a ∈ A,

• let PB denote the orthogonal projection between Hilbert (sub)spaces L2(A) → L2(B), then the
following diagram commutes:

A L2(A)

B L2(B)

̂
EB PB

̂
We call this map EB the conditional expectation onto the non-commutative probability subspace
(B, τ |B).

Next, we provide the definition of the NCPS inclusion map as an adjoint to a conditional expecta-
tion.

Definition 2.11 (NCPS embedding). Given NCPSs (A, τA) and (C, τC), a NCPS embedding is a
unital trace-preserving ∗-homomorphism ιA : A → C. More specifically:

• ιA(1A) = 1C ;

• τA = τC ◦ ιA;

• ιA(a
∗) = ιA(a)

∗ for all a ∈ A;

• ιA is an algebra homomorphism.

We conclude this section with the following proposition relating conditional expectation and NCPS
embedding ([GJNS21] Lemma 2.13) and provide its proof:

Proposition 2.1. Any NCPS embedding ιA : A → C extends to an isometry L2(A) → L2(C), whose
adjoint restricted to C is the conditional expectation C → A.

Proof. We prove ιA is an isometry A → C, because ιA is a trace-preserving ∗-homomorphism:

∥ιA(a)∥2L2(C) = τC(ιA(a)ιA(a)
∗) = τC(ιA(a)ιA(a

∗)) = τC(ιA(aa
∗)) = τA(aa

∗) = ∥a∥2L2(A).

Therefore, ιA can extend uniquely to L2(A) since A is dense in L2(A). Finally, we note

⟨ιA(a), c⟩L2(C) = ⟨a, PA(c)⟩L2(A) ∀a ∈ L2(A), c ∈ L2(C).

Hence ιA = P ∗
A|A.
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2.1.1 Analogies to classical probability spaces

Recall that a classical probability space is a triple (Ω,F ,P), where Ω is a set of outcomes, F ⊂ 2Ω is
a sigma-algebra, and P is a probability measure on F . We study (complex-valued) random variables as
(Borel-)measurable functions X : (Ω,F) → C. We have, based on an integratablity condition, spaces
of random variables Lp(Ω,F ,P), two of which are particularly interesting: L2(Ω,F ,P) is a Hilbert
space, and L∞(Ω,F ,P) is a W ∗-algebra.

In fact, a classical probability space (Ω,F ,P) can be recovered by the pair (A, τ), where A =
L∞(Ω,F ,P) and τ(X) = E[X] =

∫
Ω
X dP. The sigma-algebra F is encoded as indicators 1E , which

are projections (self-adjoint idempotents) in the algebra A, and set union (addition), complement
(additive inversion), intersection (multiplication) also transfer, although do not coincide with the
usual operations in A. The probability measure P of an event in F is given by τ evaluated at the
corresponding projection in A.

One can easily verify that, after identifying the ∗-operation as complex conjugation, the pair (A, τ)
is a commutative version of a NCPS defined above. τ being unital comes from the classical axiom
that requires a probability measure P to have total mass 1; τ being positive faithful comes from
classical integration theory applied to the linear functional E; and τ being weak-∗ continuous is like
the dominated convergence theorem in classical probability theory.

Therefore conversely, we can think of a (unital faithful normal) tracial W ∗-algebra as an extension
of the theory of classical probability spaces that allows multiplication in the algebra of random variables
to be potentially non-commutative.

2.1.2 Example: matrix algebra with normalized trace

In addition to (L∞,E) of a classical probability space being a commutative example of a NCPS, we
provide a non-degenerate example that we study in this thesis: (Mn(C), tr), where Mn(C) denotes the
n by n matrices with complex entries and tr denotes the normalized trace 1

n Tr : X 7→ 1
n

∑n
j=1 Xjj . In

this case the ∗-operation is given by conjugate transpose (adjoint). One can verify Mn(C) ∼= B(Cn),
and Mn(C) is closed under WOT, so Mn(C) is a W ∗-algebra. One can also verify tr is a unital positive
faithful trace. Hence (Mn(C), tr) is indeed a NCPS.

2.2 Coupling of random variables

In this section we will define coupling of random variables. In fact, the more precise terminology
would be coupling a pair of laws realized by a pair of random variables having those laws, respectively.

2.2.1 Motivation: coupling of two real-valued random variables

We recall coupling in classical probability space to motivate our discussion of coupling in a NCPS.
Intuitively, coupling takes two probability measures as the input and gives a probability measure on
the product probability space as the output, whose marginals are the inputs.

Definition 2.12 (coupling of probability measures). Given two probability measures µ and ν on
(Ω,F), a coupling of µ and ν is a pair of random variables (X,Y ) on (Ω×Ω,F ⊗F) whose marginals
are µ and ν, respectively.

The intuition we get from this definition is that: a coupling of a pair of random variables requires
a common probability space (in this case the product space) with our pair of random variables sitting
inside. Now that we have a common probability space, we can talk about some quantities using their
joint relation obtained from the coupling.

Definition 2.13 (2-Wasserstein distance). The 2-Wasserstein distance between two probability mea-

sures µ and ν is d
(2)
W (µ, ν) = inf{∥X − Y ∥2 : (X,Y ) is a coupling of µ and ν}.

In the literature of optimal transport theory, the 2-Wasserstein distance relates to Kantorovich’s
formulation of the optimal transportation problem (with cost function being the L2 norm ∥·∥2), which
amounts to finding a probability measure on the product space that achieves the infinum above. More
precisely, given a pair of laws, we want a common probability space and a joint law that achieves
minimum cost. This motivates our formulation of optimal coupling in a NCPS.
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2.2.2 Optimal coupling of two tuples of random variables in a NCPS

The non-commutative analogue of optimal coupling was first studied in [BV01] (Section 1.1).

Definition 2.14 (coupling of non-commutative laws). Let µ and ν be non-commutative laws. A
coupling of µ and ν is a triple (C, X, Y ) where (C, τ) is a NCPS and X,Y ∈ L∞(C)msa have laws µ, ν,
respectively.

Why can we require our random variables realizing the non-commutative laws to be self-adjoint?
For general X = (X1, . . . , Xm) ∈ L∞(C)m, we can write Xj = Aj + iBj where Aj = (Xj +X∗

j )/2 and
Bj = (Xj − X∗

j )/2i. The law (∗-distribution) of each Xj is described by joint moments of Xj and

X∗
j , so we can equivalently consider the tuple X ′ = (A1, . . . , Am, B1, . . . , Bm) ∈ L∞(C)2msa , because the

tuples (X1, . . . , Xm), (X1, . . . , Xm, X∗
1 , . . . , X

∗
m), and (A1, . . . , Am, B1, . . . , Bm) all generate the same

W ∗-algebra.

Definition 2.15 (non-commutative 2-Wasserstein distance). The non-commutative 2-Wasserstein dis-
tance between two non-commutative laws is

d
(2)
W (µ, ν) = inf

{
∥X − Y ∥L2(C)msa

: (C, X, Y ) is a coupling of (µ, ν)
}
.

Definition 2.16 (optimal coupling). A coupling (C, X, Y ) of (µ, ν) is optimal if ∥X − Y ∥L2(C)msa
=

d
(2)
W (µ, ν).

Here is how we understand optimally coupling tuples of random variables (instead of
non-commutative laws) as an optimization problem from the definitions above: given a pair of random
variables in a pair of NCPSs: X ∈ L∞(A, τA)

m
sa and Y ∈ L∞(B, τB)msa, we want a common NCPS (C, τC)

and NCPS embeddings ιA : A → C and ιB : B → C such that ∥ιA(X)− ιB(Y )∥L2(C)msa
is minimized

(over all possible common NCPSs and embeddings) and thus equals d
(2)
W (Law(X),Law(Y )).

Proposition 2.2. Equivalently, we can maximize the real-valued quantity

⟨ιA(X), ιB(Y )⟩L2(C)msa
=

m∑
j=1

⟨ιA(Xj), ιB(Yj)⟩L2(C)sa .

Proof. Note, because Xj , Yj are self-adjoint and ιA, ιB are trace-preserving ∗-homomorphisms,

∥ιA(X)− ιB(Y )∥2L2(C)msa
=

m∑
j=1

∥ιA(Xj)− ιB(Yj)∥2L2(C)sa

=

m∑
j=1

∥ιA(Xj)∥2L2(C)sa − ⟨ιA(Xj), ιB(Yj)⟩L2(C)sa − ⟨ιB(Yj), ιA(Xj)⟩L2(C)sa + ∥ιB(Yj)∥2L2(C)sa

=

m∑
j=1

∥Xj∥2L2(A)sa
− 2⟨ιA(Xj), ιB(Yj)⟩L2(C)sa + ∥Yj∥2L2(B)sa

=∥X∥2L2(A)msa
+ ∥Y ∥2L2(B)msa

− 2

m∑
j=1

⟨ιA(Xj), ιB(Yj)⟩L2(C)sa ,

and ∥X∥2L2(A)msa
and ∥Y ∥2L2(B)msa

are constants depending on Law(X) and Law(Y ), respectively.

Proposition 2.3. Suppose X ∈ L∞(A, τA)
m
sa and Y ∈ L∞(B, τB)msa are optimally coupled in a common

NCPS (C, τC). Let a = (a1, . . . , am), b = (b1, . . . , bm) ∈ Rm. Then X + a and Y + b are optimally
coupled.

Proof. Again, because Xj , Yj are self-adjoint, ιA, ιB are trace-preserving ∗-homomorphisms, and τC is

8



a unital linear functional,

⟨ιA(X + a), ιB(Y + b)⟩L2(C)msa
=

m∑
j=1

⟨ιA(Xj + aj), ιB(Yj + bj)⟩L2(C)sa

=

m∑
j=1

⟨ιA(Xj) + aj , ιB(Yj) + bj⟩L2(C)sa

=

m∑
j=1

⟨ιA(Xj), ιB(Yj)⟩L2(C)sa + τC(ajιB(Yj)
∗) + τC(ιA(Xj)bj) + τC(ajbj)

=⟨ιA(X), ιB(Y )⟩L2(C)msa
+

m∑
j=1

ajτC(ιB(Y
∗
j )) + bjτC(ιA(Xj)) + ajbj

=⟨ιA(X), ιB(Y )⟩L2(C)msa
+

m∑
j=1

ajτB(Yj) + bjτA(Xj) + ajbj .

Note the summation over j on the last line is just a constant depending on X,Y and a, b, so maximiz-
ing ⟨ιA(X + a), ιB(Y + b)⟩L2(C)msa

is equivalent to maximizing ⟨ιA(X), ιB(Y )⟩L2(C)msa
. By the previous

Proposition 2.2, the statement is proved.

2.3 Factorizable maps

Factorizable maps were first introduced and studied in [AD06] (Definition 2.6).

Definition 2.17 (factorizable map). Let (A, τA), (B, τB) be NCPSs. A linear map Φ : A → B is
factorizable if there exists a NCPS (C, τC) and NCPS embeddings ιA : A → C and ιB : B → C such
that Φ = ι∗B ◦ ιA, where ι∗B is the conditional expectation adjoint to ιB. We say Φ factorizes through
(C, τC) if there exists ιA and ιB as above.

Notation 2.18. We denote the space of factorizable maps from the NCPS (A, τA) to (B, τB) by
FM(A,B). We denote by FMmat(A,B) the set of maps that factorize through a matrix algebra C,
denote by FMfin(A,B) the set of maps that factorize through a finite-dimensional C∗-algebra C, and
denote by FMC(A,B) the set of maps that factorize through the algebra C. When A,B refer to the
same NCPS, we simply use the notation FM(A).

A simple yet non-trivial example of a factorizable map is Φ : Mn(C) → Mn(C), X 7→ UXU∗

where U ∈ U(n). In this case we start from NCPSs (A, τA) = (B, τB) = (Mn(C), trn), and embed
them into the same space (C, τC) = (Mn(C), trn). Using the notations introduced above, we say
Φ ∈ FMMn(C)(Mn(C)). This Φ comes from the identity NCPS embedding and a ∗-isomorphism as
the other NCPS embedding. We will rigorously see this in Proposition 3.1.

Proposition 2.4. We summarize some facts about factorizable maps stated in [GJNS21] (Proposition
5.3), [MR19] (Theorem 4.1):

• FM(A,B) and FMfin(A,B) are convex sets;

• FMmat(A,B) ⊊ FMfin(A,B), and conv(FMmat(A,B)) = FMfin(A,B);

• FMfin(Md(C),Md(C)) ⊊ FMfin(Md(C),Md(C))
weak-∗

for dimensions d ≥ 11;

• FM(A,B) is weak-∗ closed;

• FM(A) is closed under composition.

The reason why factorizable maps are relevant and important to optimal coupling is the following:
given a pair of random variables in a pair of NCPS: X ∈ L∞(A, τA)

m
sa and Y ∈ L∞(B, τB)msa, asking

for an optimal coupling of X and Y is equivalent to finding Φ ∈ FM(A,B) such that

⟨Φ(X), Y ⟩L2(B)msa
= sup

Ψ∈FM(A,B)

⟨Ψ(X), Y ⟩L2(B)msa

9



by Proposition 2.2.
We conclude this section with a lemma that will be useful later.

Lemma 2.5. If Φ ∈ FM(A,B), then Φ(a∗) = Φ(a)∗ for all a ∈ A. In particular, this means a = a∗

implies Φ(a) = Φ(a)∗.

Proof. Write Φ = ι∗B ◦ ιA = EB ◦ ιA, where ιA : A → C and ιB : B → C are NCPS embeddings, and
EB : C → B is the conditional expectation. Since conditional expectations respects ∗-operation and
NCPS embeddings are ∗-homomorphisms, we have

Φ(a∗) = EB(ιA(a
∗)) = EB(ιA(a)

∗) = EB(ιA(a))
∗ = Φ(a)∗,

and hence a = a∗ implies
Φ(a) = Φ(a∗) = Φ(a)∗.

2.4 Miscellaneous notations

We supply a list of other notations/definitions used in this thesis.

Notation 2.19 (trace). We denote by Tr the unnormalized trace and tr the normalized trace of a
matrix algebra. In case of ambiguity, we will add a subscript to Tr or tr to distinguish traces of different
matrix algebras.

Notation 2.20 (matrix transpose). We denote by Mn(C) → Mn(C), a 7→ at the matrix transpose
(ajk)

n
j,k=1 7→ (akj)

n
j,k=1.

Notation 2.21 (bounded linear operators). Let V be a normed vector space. We denote by B(V ) =
{T is a linear transformation V → V : ∥T∥op < ∞} the bounded linear operators on V .

Notation 2.22 (commutant). Let A be an algebra, and B ⊆ A be a subset. We denote by B′ = {a ∈
A : ab = ba ∀b ∈ B} the commutant of B. We denote by B′′ = (B′)′ the double commutant of B.

Notation 2.23 (automorphism group). We denote by Aut(A) the automorphism group of an algebra
A, which contains all the isomorphisms A → A. In the case when A is a ∗-algebra, we also require the
algebra isomorphisms to respect the ∗-operation.

Notation 2.24 (convex hull). We denote by conv(A) the convex hull of a subset A inside a vector
space V , which contains all the convex combinations c1a1+ · · ·+ cnan such that n ∈ N, c1, . . . , cn ≥ 0,
c1 + · · ·+ cn = 1, and a1, . . . , an ∈ A.

Notation 2.25. Let A be a ∗-algebra, and u ∈ A. We denote by Adu the map A → A, x 7→ uxu∗.

Notation 2.26 (unitary group). We denote by U(n) = {U ∈ Mn(C) : UU∗ = 1n = U∗U} the unitary
group on Mn(C).

Notation 2.27 (special unitary group). We denote by SU(n) = {U ∈ Mn(C) : UU∗ = 1n =
U∗U,det(U) = 1} the special unitary group on Mn(C).

Notation 2.28 (special orthogonal group). We denote by SO(n) = {U ∈ Mn(R) : UU t = 1n =
U tU,det(U) = 1} the special orthogonal group on Mn(R).

Notation 2.29 (matrix units). We denote by ejk the matrix in Mn(C) that has 1 at entry (j, k) and
0 at all other entries. We denote by

Bn = {ejk}1≤j,k≤n

an orthonormal basis of Mn(C) as a C-vector space, and we denote by

Bn,sa = {ejj}1≤j≤n ∪ { 1√
2
(ejk + ekj)}1≤j<k≤n ∪ { i√

2
(ejk − ekj)}1≤j<k≤n

an orthonormal basis of Mn(C)sa as a R-vector space (both equipped with the inner product induced
by Trn).

10



3 Optimal couplings and unitary conjugation

In this section, we always assume we are given fixed X = (X1, . . . , Xm), Y = (Y1, . . . , Ym) ∈
Mn(C)msa. Recall the simple example we gave in Definition 2.17 of factorizable maps: AdU : Mn(C) →
Mn(C) where U ∈ U(n). In fact, they are the only kind of Φ ∈ FM(Mn(C)) that factors through
the same algebra Mn(C). We will first demonstrate why this is true, and then use this proposition to
study optimal couplings given by unitary conjugation.

Proposition 3.1. The automorphisms on Mn(C) are completely described by unitary conjugation on
Mn(C). Moreover, they are exactly the factorizable maps Mn(C) → Mn(C) that factorize through
Mn(C):

{AdU : U ∈ U(n)} = Aut(Mn(C)) = FMMn(C)(Mn(C)).

Proof. We first show {AdU : U ∈ U(n)} ⊆ Aut(Mn(C)). Fix U ∈ U(n), then for arbitrary A,B ∈
Mn(C),

AdU (A+B) = U(A+B)U∗ = UAU∗ + UBU∗ = AdU (A) + AdU (B),

AdU (AB) = U(AB)U∗ = (UAU∗)(UBU∗) = AdU (A)AdU (B),

AdU (A
∗) = UA∗U∗ = (UAU∗)∗ = AdU (A)∗,

and AdU is bijective with inverse AdU∗ , so AdU is a ∗-isomorphism Mn(C) → Mn(C). Hence AdU ∈
Aut(Mn(C)).

Conversely, fix ρ ∈ Aut(Mn(C)). We quote the Skolem–Noether theorem to conclude that ρ is
inner, so ρ(X) = PXP−1 for some invertible P ∈ Mn(C). ρ respects the ∗-operation, so

PX∗P−1 = ρ(X∗) = ρ(X)∗ = (PXP−1)∗ = (P−1)∗X∗P ∗ = (P ∗)−1X∗P ∗,

where in the last equality, complex conjugation commutes with inverse because

P ∗(P−1)∗ = (P−1P )∗ = 1∗n = 1n = 1∗n = (PP−1)∗ = (P−1)∗P ∗.

Hence for all X ∈ Mn(C), PX∗P−1 = (P ∗)−1X∗P ∗, so P ∗PX∗ = X∗P ∗P . From this we conclude
P ∗P ∈ Mn(C)′. We have Mn(C)′ = C1n because by direct computation, if D ∈ Mn(C) satisfies
(by linearity it suffices to hold for matrix units ejk) Dejk = ejkD, then D can only have non-zero
entries in its diagonal and [D]jj = [D]kk. By iterating through all different pairs 1 ≤ j ̸= k ≤ n,
we have D = λ1n for some λ ∈ C. Moreover, we can assume P ∗P = λ1n for some λ ≥ 0 because
λ = trn(λ1n) = trn(P

∗P ) ≥ 0 since trn is positive. In addition, we have λ ̸= 0 because if otherwise
P ∗P = 0, then P has to be the zero matrix, which is not invertible, contradictory to our assumption.
Finally, we let Q = 1√

λ
P , then Q−1 =

√
λP−1, and Q∗ = 1√

λ
P ∗ = 1√

λ
λP−1. Putting this together,

ρ(X) = PXP−1 = QXQ−1 with Q∗Q = 1n = QQ∗, so ρ = AdQ with Q ∈ U(n).
Then we show Aut(Mn(C)) ⊆ FMMn(C)(Mn(C)). Fix ρ ∈ Aut(Mn(C)). Note ρ and the identity

map idMn(C) are both NCPS embeddings Mn(C) → Mn(C), and the conditional expectation adjoint
id∗Mn(C) = idMn(C). Hence ρ = idMn(C) ◦ρ = id∗Mn(C) ◦ρ ∈ FMMn(C)(Mn(C)).

Conversely, fix Φ ∈ FMMn(C)(Mn(C)). By definition, Φ = ρ∗2 ◦ ρ1, where ρ1, ρ2 are NCPS em-
beddings Mn(C) → Mn(C). By Proposition 2.1, ρ1, ρ2 are isometric, so in particular they are injec-
tive. Since Mn(C) is finite dimensional, the injective ∗-homomorphisms ρ1, ρ2 are thus isomorphisms
Mn(C) → Mn(C). By our previous results, we can assume ρ1 = AdU1 and ρ2 = AdU2 for some
U1, U2 ∈ U(n). For arbitrary X,Y ∈ Mn(C),

⟨Φ(X), Y ⟩ = ⟨ρ1(X), ρ2(Y )⟩ = ⟨U1XU∗
1 , U2Y U∗

2 ⟩ = ⟨U∗
2U1XU∗

1U2, Y ⟩ =
〈
AdU∗

2 U1(X), Y
〉
.

Hence Φ = AdU∗
2 U1 ∈ Aut(Mn(C)).

By the previous proposition, the reduced problem we are considering in this section is finding
U ∈ U(n) that achieves (because U(n) is compact and U 7→ ⟨UXU∗, Y ⟩tr is continuous in U) the
supremum:

sup
U∈U(n)

⟨UXU∗, Y ⟩tr = sup
U∈U(n)

m∑
j=1

⟨UXjU
∗, Yj⟩tr.
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Proposition 3.2. Moreover, we have the following:

sup
Φ∈conv(Aut(Mn(C)))

⟨Φ(X), Y ⟩tr = sup
U∈U(n)

⟨UXU∗, Y ⟩tr = sup
U∈SU(n)

⟨UXU∗, Y ⟩tr.

Proof. Fix Φ ∈ conv(Aut(Mn(C))), write Φ =
∑k

j=1 cj AdUj where k ∈ N,
∑k

j=1 cj = 1, and
U1, . . . , Uk ∈ U(n). Then,

⟨Φ(X), Y ⟩tr =

〈
k∑

j=1

cj AdUj
(X), Y

〉
tr

=

〈
k∑

j=1

cjUjXU∗
j , Y

〉
tr

=

k∑
j=1

cj
〈
UjXU∗

j , Y
〉
tr

≤
k∑

j=1

cj sup
U∈U(n)

⟨UXU∗, Y ⟩tr = sup
U∈U(n)

⟨UXU∗, Y ⟩tr
k∑

j=1

cj = sup
U∈U(n)

⟨UXU∗, Y ⟩tr.

This implies
sup

Φ∈conv(Aut(Mn(C)))
⟨Φ(X), Y ⟩tr ≤ sup

U∈U(n)

⟨UXU∗, Y ⟩tr.

Conversely, let Q ∈ U(n) be the maximizer of ⟨UXU∗, Y ⟩tr. Then AdQ ∈ conv(Aut(Mn(C))), so

sup
Φ∈conv(Aut(Mn(C)))

⟨Φ(X), Y ⟩tr ≥ sup
U∈U(n)

⟨UXU∗, Y ⟩tr.

For arbitrary U ∈ U(n), let λ = det(U) ̸= 0 because U is invertible. Now consider Q = λ−1/nU ,
then

det(Q) = det(λ−1/nU) = (λ−1/n)n det(U) = λ−1λ = 1.

We also have

|λ|2 = λλ = det(U)det(U) = det(U) det(U) = det(U) det(U
t
) = det(UU∗) = det(1n) = 1.

Writing λ = eiθ, we have

QQ∗ = e−iθ/nUeiθ/nU∗ = 1n = eiθ/nU∗e−iθ/nU = Q∗Q.

Hence Q ∈ SU(n) with ⟨QXQ∗, Y ⟩tr =
〈
e−iθ/nUXeiθ/nU∗, Y

〉
tr
= ⟨UXU∗, Y ⟩tr, and this implies

sup
U∈U(n)

⟨UXU∗, Y ⟩tr ≤ sup
U∈SU(n)

⟨UXU∗, Y ⟩tr.

The converse
sup

U∈U(n)

⟨UXU∗, Y ⟩tr ≥ sup
U∈SU(n)

⟨UXU∗, Y ⟩tr

is clear because SU(n) ⊆ U(n).

3.1 Reduction to rank-one matrices

We have two tools to further reduce the problem for easier computations and possible connections
to vector geometry ideas. One tool is diagonalizing the self-adjoint Xj , Yj , and the other is shifting by
elements in R1n (Proposition 2.3).

If we consider the spectral decomposition of Xj = VjAjV
∗
j and Yj = WjBjW

∗
j , we will have

Vj =

vj1 · · · vjn

, Aj =

αj1

. . .

αjn

,
where {vj1, . . . , vjn} form an orthonormal basis of Cn and αj1, . . . , αjn ∈ R (thanks to Xj being
self-adjoint); similarly for

Wj =

wj1 · · · wjn

, Bj =

βj1

. . .

βjn

.
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Therefore, we have the following:

Xj = VjAjV
∗
j =

n∑
k=1

αjkvjkv
∗
jk, Yj = WjBjW

∗
j =

n∑
l=1

βjlwjlw
∗
jl,

⟨UXU∗, Y ⟩tr =
m∑
j=1

tr(UXjU
∗Yj) =

m∑
j=1

tr(U(

n∑
k=1

αjkvjkv
∗
jk)U

∗(

n∑
l=1

βjlwjlw
∗
jl))

=

m∑
j=1

n∑
k,l=1

αjkβjl tr(Uvjkv
∗
jkU

∗wjlw
∗
jl) =

m∑
j=1

n∑
k,l=1

αjkβjl tr((Uvjk)
∗wjlw

∗
jl(Uvjk))

=

m∑
j=1

n∑
k,l=1

αjkβjl⟨wjl, Uvjk⟩⟨Uvjk, wjl⟩ tr(1n) =
m∑
j=1

n∑
k,l=1

αjkβjl⟨Uvjk, wjl⟩⟨Uvjk, wjl⟩

=

m∑
j=1

n∑
k,l=1

αjkβjl|⟨Uvjk, wjl⟩|2.

Note that the inner product in the last equality is just the usual inner product in Cn.
We can combine these two tools. First we add real multiples of 1n to each Xj and Yj to make their

eigenvalues strictly positive. Then we rename vjk =
√
αjkvjk and wjl =

√
βjlwjl (this makes them no

longer an orthonormal basis of Cn but still an orthogonal basis). Hence it suffices to optimize

⟨UXU∗, Y ⟩tr =
m∑
j=1

n∑
k,l=1

|⟨Uvjk, wjl⟩|2.

3.2 Details of case n = 2

By the discussion in the previous section, we let a, b ∈ Rm where aj and bj are the smaller eigenvalue
of Xj and Yj , respectively. Then we rename X = X − a and Y = Y − b, so X and Y are rank-one
matrix tuples. Hence it suffices to consider X = (x1x

∗
1, . . . , xmx∗

m) and Y = (y1y
∗
1 , . . . , ymy∗m), where

0 ̸= xj , yj ∈ C2. Then similar to the computation we did before, we have the following:

⟨UXU∗, Y ⟩tr =
m∑
j=1

〈
Uxjx

∗
jU

∗, yjy
∗
j

〉
tr
=

m∑
j=1

tr(Uxjx
∗
jU

∗yjy
∗
j ) =

m∑
j=1

|⟨Uxj , yj⟩|2.

3.2.1 Conjugating SO(2) in M2(R)msa
Perhaps conjugating SU(2) in M2(C)msa is still harder to visualize and compute, because an element

in SU(2) involves three real parameters. However, more explicit computation and intuitive conclusion
are possible in the real analogue when we conjugate SO(2) in M2(R)msa.

In addition to the simplification above, we have the following lemma because SO(2) is abelian.

Lemma 3.3. In this case, it suffices to assume x1 = · · · = xm = e1 ∈ R2.

Proof. For each xj , there exists Vj ∈ SO(2) such that xj = ∥xj∥Vje1. (Set the first column in Vj to
be xj/∥xj∥, and then, for example, do Gram–Schmidt process). Now:

⟨UXU∗, Y ⟩tr =
m∑
j=1

|⟨Uxj , yj⟩|2 =

m∑
j=1

|⟨U(∥xj∥Vje1), yj⟩|2

=

m∑
j=1

|⟨∥xj∥VjUe1, yj⟩|2 =

m∑
j=1

|
〈
Ue1, ∥xj∥V ∗

j yj
〉
|2

Hence it suffices to rename yj = ∥xj∥V ∗
j yj and assume xj = e1.
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We use the following bijective parameterization to do the computation explicitly: for each 1 ≤ j ≤

m, let xj = e1, yj = cj

[
cosαj

sinαj

]
, and U =

[
cos θ − sin θ
sin θ cos θ

]
, with αj , θ ∈ [0, 2π], cj > 0. Therefore,

⟨UXU∗, Y ⟩tr =
m∑
j=1

|⟨Uxj , yj⟩|2 =

m∑
j=1

c2j (cos θ cosαj + sin θ sinαj)
2 =

m∑
j=1

c2j cos
2(θ − αj)

=

m∑
j=1

c2j
cos(2θ − 2αj) + 1

2
=

1

2

m∑
j=1

c2j (cos 2θ cos 2αj + sin 2θ sin 2αj + 1)

=A cos 2θ +B sin 2θ + C2,

for constants

A =
1

2

m∑
j=1

c2j cos 2αj , B =
1

2

m∑
j=1

c2j sin 2αj , C2 =
1

2

m∑
j=1

c2j .

If A ̸= 0 or B ̸= 0, denote C1 =
√
A2 +B2, and let ϕ ∈ [0, 2π] be such that sinϕ = A√

A2+B2
and

cosϕ = B√
A2+B2

. Then,

⟨UXU∗, Y ⟩tr = C1(sinϕ cos 2θ + cosϕ sin 2θ) + C2

= C1 sin(2θ + ϕ) + C2.

The computation above reduces maximizing U 7→ ⟨UXU∗, Y ⟩tr over U ∈ SO(2) to maximizing
θ 7→ A cos 2θ + B sin 2θ + C2 (π-periodic) over θ ∈ [0, 2π]. Hence we can conclude, in the non-
degenerate case (A ̸= 0 or B ̸= 0), we will have exactly two maximizers 0 ≤ θmax < θmax + π < 2π,

and U = ±
[
cos θmax − sin θmax

sin θmax cos θmax

]
. In the degenerate case (A = 0 and B = 0), ⟨UXU∗, Y ⟩tr is

constant, and any U ∈ SO(2) is a maximizer.
More intuitively, when m = 2 and c1 = c2 = c, the problem is equivalent to maximizing P (θ) =

cos2(α1 − θ) + cos2(α2 − θ) over [0, 2π]. Setting dP/dθ = 0 and d2P/dθ2 < 0, we have the following:{
sin(2α1 − 2θmax) + sin(2α2 − 2θmax) = 0

cos(2α1 − 2θmax) + cos(2α2 − 2θmax) > 0

The solutions will be θmax = α1/2+α2/2 and θmax+π or θmax−π. Geometrically, the corresponding
U ∈ SO(2) will send e1 to be the angle bisector of y1 and y2.

3.3 Parameterization of SU(2) and SU(3)

At this point, we also want to use Matlab to numerically compute supU∈SU(n)⟨UXU∗, Y ⟩tr for
concrete examples of matrix tuples X,Y ∈ Mn(C)msa, at least for n = 2, 3. To achieve this, we need to
parameterize SU(2) and SO(2) by real variables.

In [Ham15] (Section IV), the author describes a bijective parameterization of SU(2):

U =

[
e−iα cos θ −eiβ sin θ
e−iβ sin θ eiα cos θ

]
,

where (α, β, θ) ∈ D = D1 ∪D2 ∪D3, with

D1 = [−π, π)× [−π, π)× (0, π/2), D2 = [−π, π)× {0} × {0}, D3 = {0} × [−π, π)× {π/2}.

In [Bro88] (Section II), the author describes a parameterization of SU(3):

U =

u11 u12 u13

u21 u22 u23

u31 u32 u33

 ,
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where

u11 = cos θ1 cos θ2e
iϕ1 ,

u12 = sin θ1e
iϕ3 ,

u13 = cos θ1 sin θ2e
iϕ4 ,

u21 = sin θ2 sin θ3e
−i(ϕ4+ϕ5) − sin θ1 cos θ2 cos θ3e

i(ϕ1+ϕ2−ϕ3),

u22 = cos θ1 cos θ3e
iϕ2 ,

u23 = − cos θ2 sin θ3e
−i(ϕ1+ϕ5) − sin θ1 sin θ2 cos θ3e

i(ϕ2−ϕ3+ϕ4),

u31 = − sin θ1 cos θ2 sin θ3e
i(ϕ1−ϕ3+ϕ5) − sin θ2 cos θ3e

−i(ϕ2+ϕ4),

u32 = cos θ1 sin θ3e
iϕ5 ,

u33 = cos θ2 cos θ3e
−i(ϕ1+ϕ2) − sin θ1 sin θ2 sin θ3e

−i(ϕ3−ϕ4−ϕ5),

with 0 ≤ θ1, θ2, θ3 ≤ π/2, 0 ≤ ϕ1, . . . , ϕ5 ≤ 2π.

4 Optimally coupling matrix tuples in a larger algebra

In this section, we remove the requirement that Φ ∈ FMMn(C)(Mn(C)). In fact, we are looking for
examples of finite-dimensional matrix tuples whose optimal coupling requires embedding into a matrix
algebra of larger dimension, or even an infinite dimensional W ∗-algebra. In other words, we want to
find matrix tuples X,Y ∈ Mn(C)msa such that

sup
Φ∈conv(Aut(Mn(C)))

⟨Φ(X), Y ⟩tr < sup
Φ∈FMmat(Mn(C))

⟨Φ(X), Y ⟩tr,

or even
sup

Φ∈FMfin(Mn(C))
⟨Φ(X), Y ⟩tr < sup

Φ∈FM(Mn(C))
⟨Φ(X), Y ⟩tr.

We will start with cases n = 2 and n = 3. They are easier to analyze and to compute in an
optimization program. It turns out that they already produce some interesting results.

4.1 The case n = 2

By Theorem 5.10 in [Kü85], maps in FM(M2(C)) fall in a larger class of maps (unital completely
positive trace-preserving maps) given by an average of unitary conjugation in the sense of integrating
against some measure. Hence FM(M2(C)) ⊆ conv(Aut(M2(C))). Note conv(Aut(M2(C))) is already
closed in the norm topology on B(M2(C)), since B(M2(C)) is finite-dimensional, by an argument in
[HM11] (in between Corollary 2.3 and Proposition 2.4). Therefore FM(M2(C)) ⊆ conv(Aut(M2(C))).

Moreover, we showed in Proposition 3.1 Aut(M2(C)) = FMM2(C)(M2(C)) ⊆ FM(M2(C)), and by
Proposition 2.4 FM(M2(C)) is convex, so conv(Aut(M2(C))) ⊆ FM(M2(C)). Hence we have

FM(M2(C)) = conv(Aut(M2(C))).

This means for matrix tuples X,Y ∈ M2(C)msa, their optimal coupling is always achieved by conju-
gating some unitary matrix U ∈ SU(2) because, by Proposition 3.2,

sup
Φ∈FM(M2(C))

⟨Φ(X), Y ⟩tr = sup
Φ∈conv(Aut(M2(C)))

⟨Φ(X), Y ⟩tr = sup
U∈SU(2)

⟨UXU∗, Y ⟩tr,

which can be directly optimized in a Matlab program.

4.2 The case n = 3

In this case, there exist matrix tuples X,Y ∈ M3(C)msa such that

sup
Φ∈conv(Aut(M3(C)))

⟨Φ(X), Y ⟩tr < sup
Φ∈FMmat(M3(C))

⟨Φ(X), Y ⟩tr.
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We will provide a concrete example of X,Y ∈ M3(C)9sa based on ideas from Lemma 5.7 in [GJNS21].
The construction can be summarized as follows:

We use a map Φ ∈ FMmat(M3(C)) \ conv(Aut(M3(C))). Note conv(Aut(M3(C))) is closed in the
norm topology on B(M3(C)) for the same reason as in the case n = 2. Now we consider the real
vector space H = LR(M3(C)sa,M3(C)sa), the set of R-linear transformations M3(C)sa → M3(C)sa.
In particular, H contains maps in FM(M3(C)) restricted to M3(C)sa, because factorizable maps will
take self-adjoint elements to self-adjoint elements by Lemma 2.5. Moreover, we equip H with the inner
product ⟨·, ·⟩H induced by the trace

TrH(Ψ) =
∑

b∈B3,sa

⟨Ψb, b⟩Tr3 .

This makes K = conv(Aut(M3(C))) (also restricted to M3(C)sa) a closed convex subset of the topo-
logical vector space H. Then we find the projection of Φ ∈ H onto K in light of the Hilbert projection
theorem (see A.1). Now we are at a good position to apply the Hahn-Banach separation theorem (see
A.3), which will give us a strict inequality, because we are separating a closed convex set and a point
outside. Finally, we make use of a linear isomorphism ρ : H → (M3(C)sa ⊗R M3(C)sa)∗ to obtain our
desired matrix tuples.

We first write down relevant definitions. We will use those to find a map

Φ ∈ FMmat(M3(C)) \ conv(Aut(M3(C)))

and its projection onto K.

Definition 4.1 (Holevo–Werner channels). ([HM15] Equation 4.10 and 4.11) For each integer n ≥ 2,
the Holevo–Werner channels W+

n ,W−
n ∈ B(Mn(C)) are defined to be:

W+
n (x) =

1

n+ 1

(
Trn(x)1n + xt

)
, W−

n (x) =
1

n− 1

(
Trn(x)1n − xt

)
, x ∈ B(Mn(C)).

Alternatively, they can be expressed as:

W+
n (x) =

1

2n+ 2

n∑
j,k=1

(ejk + ekj)x(ejk + ekj)
∗, W−

n (x) =
1

2n− 2

n∑
j,k=1

(ejk − ekj)x(ejk − ekj)
∗.

The word channel in this definition refers to quantum channel in quantum information theory, which
is a communication channel transmitting quantum information. Mathematically, quantum channels
are completely positive trace-preserving maps between two operator algebras. We summarize some
useful facts about Holevo–Werner channels stated in [HM15]:

Proposition 4.1.

• [HM15, Corollary 5.7]: For 0 ≤ λ ≤ 1, λW+
3 +(1−λ)W−

3 ∈ FM(M3(C)) if and only if λ ≥ 2/27.

• [HM15, Corollary 4.11]: For 0 ≤ λ ≤ 1, λW+
3 + (1− λ)W−

3 ∈ conv(Aut(M3(C))) if and only if
λ ≥ 1/3 .

Notation 4.2. We denote

Φ =
2

27
W+

3 +
25

27
W−

3 .

By Proposition 4.1, Φ ∈ FM(M3(C)) \ conv(Aut(M3(C))). Moreover by [HM15] (Theorem 5.6), it
has an exact factorization through M3(C)⊗M3(C). Hence it is our candidate for a map in
FMmat(M3(C)) \ conv(Aut(M3(C))).

Definition 4.3 (twirling map). ([HM15] Definition 4.1) The map F : B(Mn(C)) → B(Mn(C))

T 7→
∫
U(n)

AdU T AdUt dU

is called the twirling map, where dU denotes the Haar measure on the unitary group U(n). (For
background information of Haar measure on a compact group, see Chapter 5 Section 11 in [Con85].)
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Although the name twirling map is an intuitive reflection of the nature of the map F , it is entirely
not obvious that the dimension of the image of F is significantly reduced to a constant two. Essentially,
this is a consequence of the Schur-Weyl duality in representation theory, on which we will not expand
in this thesis.

Proposition 4.2. We summarize some useful facts about the twirling map F stated in [HM15]:

• F (conv(Aut(Mn(C)))) ⊆ conv(Aut(Mn(C))) (Proposition 4.2);

• F is a projection of B(Mn(C)) onto the subspace spanned by W+
n and W−

n ;

• F maps factorizable maps to the line segment spanned by W+
n and W−

n (after Lemma 4.4 before
Theorem 4.5).

Proof. We will only provide proof for the second item in this proposition (see Lemma 4.4).

Definition 4.4 (Jamiolkowski transform). ([HM15] Lemma 4.3) The map

B(Mn(C)) → Mn(C)⊗Mn(C)

T 7→ T̂ =
1

n

n∑
j,k=1

T (ejk)⊗ ejk

is called the Jamiolkowski transform.

It turns out that if we normalize traces carefully, the Jamiolkowski transform will preserve the
induced inner products in B(Mn(C)) and Mn(C)⊗Mn(C):

Lemma 4.3. For arbitrary S, T ∈ B(Mn(C)), we have〈
Ŝ, T̂

〉
Trn ⊗Trn

= ⟨S, T ⟩trB(Mn(C))
=

1

n2

∑
b∈Bn

⟨S(b), T (b)⟩Trn .

Proof. We simply do the explicit computation:

〈
Ŝ, T̂

〉
Trn ⊗Trn

=

〈
1

n

n∑
j,k=1

S(ejk)⊗ ejk ,
1

n

n∑
j′,k′=1

T (ej′k′)⊗ ej′k′

〉
Trn ⊗Trn

=
1

n2

n∑
j,k,j′,k′=1

⟨S(ejk), T (ej′k′)⟩Trn⟨ejk, ej′k′⟩Trn =
1

n2

n∑
j,k=1

⟨S(ejk), T (ejk)⟩Trn ,

where the last equality is because Bn = {ejk}nj,k=1 is an orthonormal basis of Mn(C) with ⟨·, ·⟩Trn .
Also,

⟨S, T ⟩trB(Mn(C))
= trB(Mn(C))(T

∗S)

=
1

n2

n∑
j,k=1

⟨T ∗S(ejk), ejk⟩Trn =
1

n2

n∑
j,k=1

⟨S(ejk), T (ejk)⟩Trn .

Hence the lemma is proved.

Moreover, we observe the following: if we plug in the same operator T ∈ B(Mn(C)), we get that
the Jamiolkowski transform is an isometry between B(Mn(C)) and Mn(C)⊗Mn(C) with the induced
norms. In particular, this implies it is injective. Because it is also a linear transformation between
vector spaces of the same dimension n4, the Jamiolkowski transform is a linear isomorphism. We
proceed to prove that the twirling map F is an orthogonal projection.

Lemma 4.4. If we denote p+ = n(n+1)
2 Ŵ+

n and p− = n(n−1)
2 Ŵ−

n , E the conditional expectation
(trace-preserving orthogonal projection) Mn(C) ⊗ Mn(C) → Cp+ + Cp−, then the following diagram
commutes:
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B(Mn(C)) Mn(C)⊗Mn(C)

B(Mn(C)) Mn(C)⊗Mn(C)

̂
F E

̂
and hence, F is the orthogonal projection of B(Mn(C)) onto the linear span of W+

n and W−
n .

Proof. We first point out that p+, p−, and E were introduced and defined differently in [HM15]

(Equation 4.2 and 4.4) but later proved to correspond with Ŵ+
n , Ŵ−

n , and a conditional expectation,
respectively in the way stated above. In particular, p+ and p− are projections that add up to the
identity, so E is indeed a conditional expectation. In this thesis, we choose to define those objects
directly so that it is easiest to build upon their results and suit our needs.

The fact that F̂ (T ) = E(T̂ ) is proved in [HM15] (Lemma 4.4). We proceed to prove F is an orthog-
onal projection, which comes from the fact that E is an orthogonal projection and the Jamiolkowski
transform is a linear isomorphism that keeps inner products. More specifically: let T ∈ B(Mn(C)) and
S ∈ CW+

n + CW−
n be arbitrary, then by the previous Lemma 4.3,

⟨T, S⟩trB(Mn(C))
=

〈
T̂ , Ŝ

〉
Trn ⊗Trn

=
〈
E(T̂ ), Ŝ

〉
Trn ⊗Trn

=
〈
F̂ (T ), Ŝ

〉
Trn ⊗Trn

= ⟨F (T ), S⟩trB(Mn(C))
.

Hence F is the orthogonal projection B(Mn(C)) → CW+
n + CW−

n .

Proposition 4.5. Let N = W−
3 −W+

3 , Φ = 2
27W

+
3 + 25

27W
−
3 , then we have

sup
K∈K

⟨K,N⟩H < ⟨Φ, N⟩H.

Proof. Note that Φ ∈ CW+
3 +CW−

3 , and by Proposition 4.1, Φ ∈ FMmat(M3(C))\conv(Aut(M3(C))),
so Φ ∈ H \ K. We claim the unique closest point to Φ in the closed convex subset K is

PK(Φ) =
1

3
W+

3 +
2

3
W−

3 .

To see this, we first compute, for arbitrary K ∈ K,

∥K − Φ∥2H = ∥(K − F (K) + F (K))− (Φ− F (Φ) + F (Φ))∥2H
= ∥(K − F (K))− (Φ− F (Φ))∥2H + ∥F (Φ)− F (K)∥2H
= ∥K − F (K)∥2 + ∥Φ− F (K)∥2H,

because F is an orthogonal projection onto CW+
3 + CW−

3 and Φ ∈ CW+
3 + CW−

3 . Hence we know
PK(Φ) is in the line segment spanned by W+

3 and W−
3 , because if otherwise, then

∥F (PK(Φ))− Φ∥2H < ∥PK(Φ)− F (PK(Φ))∥2H + ∥F (PK(Φ))− Φ∥2H = ∥PK(Φ)− Φ∥2H.

Since we know PK(Φ) ∈ K therefore factorizable, then by Proposition 4.2, F (PK(Φ)) ∈ K, and
F (PK(Φ)) is in the line segment spanned by W+

3 and W−
3 . Hence the above inequality will con-

tradict PK(Φ) being closest to Φ in K. Finally by Proposition 4.1, in the line segment spanned by W+
3

and W−
3 (λW+

3 +(1−λ)W−
3 as λ goes from 0 to 1), 1

3W
+
3 + 2

3W
−
3 is the first map in K, hence proving

the claim.
Now by a simplified version of the Hahn-Banach separation Theorem A.3, we have

sup
K∈K

⟨K,Φ− PK(Φ)⟩H < ⟨Φ,Φ− PK(Φ)⟩H,

but note that N = W−
3 −W+

3 is just a positive scalar multiple of Φ − PK(Φ) =
7
27W

−
3 − 7

27W
+
3 (to

make later calculations easier), so the proposition is proved.

Before finally constructing our matrix tuples, we need this lemma giving us a linear isomorphism
ρ : H → (M3(C)sa ⊗R M3(C)sa)∗.
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Lemma 4.6. Let V and W be finite-dimensional R-vector spaces, equipped with inner products ⟨·, ·⟩V
and ⟨·, ·⟩W respectively. We denote dim(V ) = n and dim(W ) = m. Then the map ρ : L(V,W ) →
(V ⊗W )∗

ρ(Ψ)(v ⊗ w) = ⟨Ψ(v), w⟩W
is a linear isomorphism.

Proof. ρ is clearly a linear homomorphism because ⟨·, ·⟩W is bilinear, so linear in the first component.
Note that since L(V,W ) and (V ⊗W )∗ both have dimension nm, it suffices to show ρ is an injective.

Let ρ(Ψ) ∈ (V ⊗ W )∗ be the zero map, so ρ(Ψ)(v ⊗ w) = ⟨Ψ(v), w⟩W = 0 for all v ∈ V and
w ∈ W . Toward contradiction, assume Ψ is not the zero map in L(V,W ), then there exists v ∈ V

such that Ψ(v) ̸= 0. This implies ρ(Ψ)(v ⊗ Ψ(v)) = ⟨Ψ(v),Ψ(v)⟩W = ∥Ψ(v)∥2W > 0, contradictory to
ρ(Ψ) ∈ (V ⊗W )∗ being the zero map. This proves injectivity.

Theorem 4.7. We have a concrete example of matrix tuples X,Y ∈ M3(C)9sa such that

sup
Ψ∈conv(Aut(M3(C)))

⟨Ψ(X), Y ⟩tr3 < ⟨Φ(X), Y ⟩tr3 = sup
Ψ∈FM(M3(C))

⟨Ψ(X), Y ⟩tr3 ,

with

Φ =
2

27
W+

3 +
25

27
W−

3 ,

as defined in Notation 4.2. They are

X1 = e11, Y1 =
1

3
13 − e11,

X2 = e22, Y2 =
1

3
13 − e22,

X3 = e33, Y3 =
1

3
13 − e33,

X4 =
1√
2
(e12 + e21), Y4 = − 1√

2
(e12 + e21),

X5 =
1√
2
(e13 + e31), Y5 = − 1√

2
(e13 + e31),

X6 =
1√
2
(e23 + e32), Y6 = − 1√

2
(e23 + e32),

X7 =
i√
2
(e12 − e21), Y7 =

i√
2
(e12 − e21),

X8 =
i√
2
(e13 − e31), Y8 =

i√
2
(e13 − e31),

X9 =
i√
2
(e23 − e32), Y9 =

i√
2
(e23 − e32).

Proof. Define v : H → M3(C)sa ⊗R M3(C)sa,

S 7→
∑

b∈B3,sa

b⊗ S(b).

Then we have

sup
Ψ∈K

ρ(Ψ)(v(N)) = sup
Ψ∈K

∑
b∈B3,sa

⟨Ψ(b), N(b)⟩Tr3 = sup
Ψ∈K

∑
b∈B3,sa

⟨N∗Ψ(b), b⟩Tr3 = sup
Ψ∈K

⟨Ψ, N⟩H

<⟨Φ, N⟩H =
∑

b∈B3,sa

⟨N∗Φ(b), b⟩Tr3 =
∑

b∈B3,sa

⟨Φ(b), N(b)⟩Tr3 = ρ(Φ)(v(N)).
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We want to construct X,Y ∈ M3(C)msa such that

⟨H(X), Y ⟩Tr3 =

m∑
j=1

⟨H(Xj), Yj⟩Tr3 =
∑

b∈B3,sa

⟨H(b), N(b)⟩Tr3 = ρ(H)(v(N)) ∀H ∈ H.

Then by multiplying 1/3 to normalize trace, we get the strict separation

sup
Ψ∈conv(Aut(M3(C)))

⟨Ψ(X), Y ⟩tr < ⟨Φ(X), Y ⟩tr.

Hence we let m = |B3,sa| = 9. Fix an ordering of B3,sa = {b1, . . . , b9}, and let Xj = bj , Yj = N(bj)
for 1 ≤ j ≤ 9 to make the equality hold for all H ∈ H. If we do the computation explicitly, we will
get a concrete example as claimed (up to a normalization constant to make it look nice). We showcase
three representative items:

N(x) = W−
3 (x)−W+

3 (x)

=
1

3− 1

(
Tr3(x)13 − xt

)
− 1

3 + 1

(
Tr3(x)13 + xt

)
=

1

4
Tr3(x)13 −

3

4
xt,

N(ejj) =
1

4
13 −

3

4
ejj ,

N

(
1√
2
(ejk + ekj)

)
= − 3

4
√
2
(ejk + ekj),

N

(
i√
2
(ejk − ekj)

)
=

3i

4
√
2
(ejk − ekj),

and the normalization is multiplying by 4/3.
Now for the equality, let Ψ ∈ FM(M3(C)) be arbitrary, then since F is the projection onto

CW+
3 + CW−

3 , and N ∈ CW+
3 + CW−

3 ,

⟨Φ, N⟩H − ⟨Ψ, N⟩H = ⟨Φ, N⟩H − ⟨F (Ψ), N⟩H

=

〈
2

27
W+

3 +
25

27
W−

3 , N

〉
H
−

〈
λW+

3 + (1− λ)W−
3 , N

〉
H

=

〈(
λ− 2

27

)
W−

3 −
(
λ− 2

27

)
W+

3 , N

〉
H

=

(
λ− 2

27

)
∥N∥2H ≥ 0,

where the last inequality is from [HM15] Theorem 5.6(2). Namely, if we write
F (Ψ) = λW+

3 + (1 − λ)W−
3 , then we have 2/27 ≤ λ ≤ 1. Taking sup over FM(M3(C)) and using

Φ ∈ FM(M3(C)), we get

⟨Φ(X), Y ⟩tr3 = sup
Ψ∈FM(M3(C))

⟨Ψ(X), Y ⟩tr3 .
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A Appendix

A.1 Hilbert projection theorem

Theorem A.1. [Kem21, Lecture 31.1] Let H be a Hilbert space, K ⊆ H be a closed convex subset.

Let x ∈ H, then ∃!y ∈ K such that ∥x− y∥2 = d(x,K)2 := (infz∈K∥x− z∥)2. Moreover, if K is also a
Hilbert subspace, then y is also the unique element in K such that x− y ∈ K⊥.

Proof. For arbitrary y, z ∈ K,
∥y − z∥2 = ∥(y − x)− (z − x)∥2 = 2(∥y − x∥2 + ∥z − x∥2) − ∥(y − x) + (z − x)∥2 by parallelogram

law. Note ∥(y − x) + (z − x)∥2 = 4
∥∥y+z

2 − x
∥∥2, and y+z

2 ∈ K so
∥∥y+z

2 − x
∥∥2 ≥ d(x,K)2. Therefore

∥y − z∥2 + 4d(x,K)2 ≤ ∥y − z∥2 + 4
∥∥y+z

2 − x
∥∥2 = 2(∥y − x∥2 + ∥z − x∥2).

Existence: let yn ∈ K with ∥x− yn∥2 ≤ d(x,K)2+1/n, then ∥yn − ym∥2+4d(x,K)2 ≤ 2(∥yn − x∥2+
∥ym − x∥2) so ∥yn − ym∥2 ≤ 2(1/n+1/m) → 0 as n,m → ∞. Hence {yn}n∈N is a Cauchy sequence in
the Hilbert space H, so yn → y ∈ H. y is also in K because K is closed. Finally, d(x,K) ≤ ∥x− y∥ ≤
∥x− yn∥+ ∥yn − y∥ → d(x,K), so ∥x− y∥ = d(x,K).

Uniqueness: if d(x,K) = ∥x− y∥2 = ∥x− z∥2, then ∥y − z∥2 ≤ 0 so y = z.
Now for the moreover part, we let y ∈ K be the unique closest point to x ∈ H. For arbitrary

z ∈ K, consider t 7→ α(t) := ∥x− (y + tz)∥2 = ∥x− y∥2 − 2tRe⟨x− y, z⟩ + t2∥z∥2 for t ∈ R. By
definition of y, minα = α(0) so 0 = α′(0) = −2Re⟨x− y, z⟩, hence Re⟨x− y, z⟩ = 0. Similarly, by

considering t 7→ β(t) := ∥x− (y + itz)∥2 = ∥x− y∥2 − 2t Im⟨x− y, z⟩ + t2∥z∥2 for t ∈ R, we have
Im⟨x− y, z⟩ = 0. Therefore ⟨x− y, z⟩ = 0. Conversely, let y ∈ K with x− y ∈ K⊥, then for all z ∈ K,

∥x− z∥2 = ∥(x− y) + (y − z)∥2 = ∥x− y∥2 + ∥y − z∥2 ≥ ∥x− y∥2 since x − y ∈ K⊥ and y − z ∈ K
implies ⟨x− y, y − z⟩ = 0 = ⟨y − z, x− y⟩. Note equality holds if and only if z = y. Therefore y ∈ K
is the unique closest point to x ∈ H.

The consequence of this theorem is H = K ⊕ K⊥ if K ⊆ H is a Hilbert subspace (every x ∈ H
uniquely decomposes into x1 + x2 where x1 ∈ K and x2 ∈ K⊥).

We conclude with a discussion of orthogonal projections in a Hilbert space.

Theorem A.2. [Kem21, Lecture 31.1] Let H be a Hilbert space and K ⊆ H be a closed subspace.
Then there exists a unique linear surjection PK : H → K such that, for x ∈ H:

1. PK(x) is the unique element in K such that ⟨y, PK(x)⟩ = ⟨y, x⟩ for all y ∈ K.

2. PK(x) = x if x ∈ K and PK(x) = 0 if x ∈ K⊥.

3. PK is a self-adjoint idempotent: P 2
K = PK and P ∗

K = PK.

4. PK(x) is the unique element in K that is the closest to x.

5. if L ⊆ K ⊆ H are closed subspaces, then PLPK = PKPL.

6. PK is Lip1-continuous.

We call PK the orthogonal projection of H onto K.

Proof. we prove these one by one:

1. Fix x ∈ H, then the map y 7→ ⟨y, x⟩ is in K∗, so by Riesz representation theorem, ∃!PK(x) ∈ K
such that ⟨y, x⟩ = ⟨y, PK(x)⟩ for all y ∈ K. This also proves PK is linear since inner product is a
sesquilinear form.

2. This follows from the uniqueness in the Riesz representation. This also proves PK is surjective.

3. The first equality follows immediately from item 2. For the second equality, let x, y ∈ H be
arbitrary. We compute ⟨PK(x), y⟩ = ⟨PK(x), PK(y)⟩ + ⟨PK(x), y − PK(y)⟩ = ⟨PK(x), PK(y)⟩ =
⟨PK(x), PK(y)⟩+ ⟨x− PK(x), PK(y)⟩ = ⟨x, PK(y)⟩.

4. This follows from PK(x) being the unique element in K such that x− PK(x) ∈ K⊥ and theorem
A.1.
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5. We first observe PL(x) ∈ L ⊆ K, so PKPL(x) = PL(x). Then we compute

⟨PLPK(x), y⟩ = ⟨PK(x), PL(y)⟩ = ⟨x, PKPL(y)⟩ = ⟨x, PL(y)⟩ = ⟨PL(x), y⟩ ∀x, y ∈ H.

Hence in particular, take y = PLPK(x)− PL(x), then

⟨PLPK(x)− PL(x), PLPK(x)− PL(x)⟩ = 0 ∀x ∈ H,

so PLPK(x) = PL(x) = PKPL(x).

6. Let x ∈ H be arbitrary and write as x = x − PK(x) + PK(x). By othogonality, ∥x∥2 =

∥x− PK(x)∥2 + ∥PK(x)∥2, so ∥x∥2 ≥ ∥PK(x)∥2. Hence for arbitrary x, y ∈ H,

∥PK(x)− PK(y)∥ = ∥PK(x− y)∥ ≤ ∥x− y∥.

A.2 Hahn-Banach separation theorem

Theorem A.3. Let X be a locally convex topological vector space over R. If a ∈ X and B ⊆ X
satisfies:

• a ̸∈ B,

• B is closed and convex,

then a and B are strictly separated: there exists a continuous linear functional f : X → R and s, t ∈ R
such that supb∈B f(b) < f(a) for all b ∈ B. Moreover if X is a Hilbert space with a real inner product,
then f can be given by x 7→ ⟨x, a− PB(a)⟩, where PB(a) denotes the projection of a onto B: the unique
point in B closest to a.

Proof. The general theorem holds for infinite-dimensional topological vector spaces X, following from
the well-known Hahn-Banach theorem in functional analysis (for example see [Con85] Chapter 3 The-
orem 6.2). Thus in this thesis, we only prove the moreover part, which is what we need in section
4.2.

Since B is a closed and convex subset in the Hilbert space X, by the Hilbert projection theorem
A.1, PB(a) is well-defined with the properties stated above. Now let b ∈ B be arbitrary and 0 < t ≤ 1,

∥a− PB(a)∥2 ≤ ∥a− [(1− t)PB(a) + tb]∥2 = ∥t(PB(a)− b) + (a− PB(a)∥2

= ∥a− PB(a)∥2 + ∥PB(a)− b∥2t2 + 2t⟨PB(a)− b, a− PB(a)⟩,

where the inequality is by definition of PB(a) and (1− t)PB(a) + tb ∈ B. This implies

∥PB(a)− b∥2t+ 2⟨PB(a)− b, a− PB(a)⟩ ≥ 0,

taking the limit as t → 0, we get ⟨PB(a)− b, a− PB(a)⟩ ≥ 0, hence

⟨b, a− PB(a)⟩ ≤ ⟨PB(a), a− PB(a)⟩ ∀b ∈ B.

In addition, a ̸∈ B so ⟨a− PB(a), a− PB(a)⟩ = ∥a− PB(a)∥2 > 0. This gives us the full inequality:

⟨b, a− PB(a)⟩ ≤⟨PB(a), a− PB(a)⟩

<
1

2
∥a− PB(a)∥2 + ⟨PB(a), a− PB(a)⟩

<⟨a, a− PB(a)⟩ ∀b ∈ B.

Taking sup over B, we have

sup
b∈B

⟨b, a− PB(a)⟩ ≤
1

2
∥a− PB(a)∥2 + ⟨PB(a), a− PB(a)⟩ < ⟨a, a− PB(a)⟩.
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