
Discrete Fourier Transform over

Schurian Schemes

Hantao Yu

Department of Mathematics

University of California, San Diego

Supervisor

Kiran Kedlaya, Chris Umans (Caltech)

In partial fulfillment of the requirements for the degree of

Honors Bachelor of Science in Mathematics

June, 2022



2



Acknowledgements

First of all, I would like to thank Prof. Chris Umans for advising me in

this research project. Chris is a wonderful advisor who convinces me

to study theoretical computer science in graduate school. His passion

and dedication have always been inspiring.

Second of all, I would like to thank Prof. Kiran Kedlaya for teaching

me commutative algebra and number theory, and making this thesis

possible. I always learn new things when talking to him.

I am grateful to Prof. Shachar Lovett, Prof. Daniel Rogalski, Prof.

Steven Sam, and Prof. Jiapeng Zhang for teaching me various topics in

mathematics and computer science. I am also grateful to Max Hopkins

and Ruth Luo for advising my research projects.

In addition, I want to thank all my friends for their support.

Finally, I would like to thank my parents for their enormous amount

of support and encouragement throughout my undergraduate years.



Abstract

The Discrete Fourier Transform (DFT) is a fundamental linear map

that can be defined with respect to any finite group. Recent work [1]

has obtained fast algorithms for computing the DFT over any finite

group of order n, using approximately O(nω/2) arithmetic operations,

where ω is the exponent of matrix multiplication.

In this work, we consider the DFT over more general algebraic ob-

jects, association schemes, which contain groups as a special case. In

this more general setting, even the basic recursive algorithm encoun-

ters complications. In this paper we focus on Schurian association

schemes, which can be defined by a group G and a subgroup H. We

obtain several algorithms for computing the DFT with respect to these

schemes. For a Schurian scheme of rank n, each one can potentially

have a complexity close to O(nω/2) (which is optimal if ω = 2), with a

multiplicative overhead that depends on structural properties of the G

and H. In particular, our algorithms work well in any of the following

five situations:

1. NG(H) has small index.

2. There exists proper subgroup L containingH such that LNG(H) =

G.

3. There exists large normal proper subgroup P containing H.

4. There exists normal proper subgroup P and subgroup K, both

containing H, such that PK = G.

5. There is a large normal subgroup N contained in H.

In order to obtain these algorithms, we work out an explicit description

of the irreducible representations of the Schurian association scheme



defined by G and H, in terms of the irreducible representations of G,

which may be of independent interest.



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main technique ideas . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Association schemes, adjacency algebras, and DFTs 7

2.1 Irreducible representations and the DFT . . . . . . . . . . . . . . . 8

2.2 Double coset algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Representations of double-coset algebras 12

4 Subscheme Reductions 20

4.1 Single Subscheme Reduction . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Double Subscheme Reduction . . . . . . . . . . . . . . . . . . . . . 21

5 Recursive Algorithms 25

5.1 First Recursive Algorithm . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Second Recursive Algorithm . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusions 31

References 32

iv



Chapter 1

Introduction

1.1 Background

The DFT dates back to Cooley-Tukey and probably even further. It has many

applications in signal processing, fast matrix multiplication, polynomial multi-

plication etc. When people talk about the DFT they often implicitly mean the

DFT with respect to a cyclic group. In fact the DFT makes sense with respect

to any finite group. To state it we need the notion of irreducible representations

of a the group G. A d dimensional representation is a homomorphism from the

group G into the group of invertible d×d matrices; it is irreducible if there are no

invariant subspaces. A finite group G has a finite set of inequivalent irreducible

representations, denoted Irr(G).

Given a vector α ∈ C[G], the DFT with respect to G is a linear transform that

takes c to

DFT(α) =
∑
g∈G

cg
⊕

ρ∈Irr(G)

ρ(g).

It is known that ∑
ρ∈Irr(G)

(dim ρ)2 = |G|,

and thus the trivial algorithm takes O(|G|2) time because we are summing up

|G| matrices and each has |G| nonzero entries. In contrast, the classical FFT

algorithm computes a DFT with respect to the cyclic group of order n = 2k in

O(n log n) time. Efforts beginning in the 1980s [2, 3] have aimed to extend this to

1



1.1 Background

general groups. Recently, [1] achieved O(|G|ω/2+o(1)) time algorithms for all finite

groups, where ω is the exponent of matrix multiplication.

The most general setting in which one can describe a DFT is the case of finite

dimensional semi-simple algebras over C. Such an object is specified by a basis

b1, . . . , bn and structure constants pi,j,k ∈ C with multiplication defined by

bibj =
n∑

k=1

pi,j,kbk.

If the algebra A is semi-simple, then it has a finite set of irreducible representations

Irr(A), and it makes sense to compute a DFT with respect to A: given a vector

α ∈ Cn, a DFT with respect to A with its basis b1, . . . , bn is a linear transform

that takes α to
n∑

i=1

αi

⊕
ρ∈Irr(A)

ρ(bi)

Notice that in the case of groups the group algebra C[G] is semi-simple and the

natural basis is the basis of group elements, with multiplication according to the

group multiplication law. Once again the trivial algorithm takes O(n2) operations,

and we aim to achieve O(nα+o(1)) operations, where with α close to one.

Association schemes are a well-studied generalization of groups with an asso-

ciated semisimple algebra called the adjacency algebra, and in this paper we aim

to find fast DFT algorithms with respect to this adjacency algebras. We suc-

ceed in doing so for certain association schemes called Schurian schemes; these

are defined in terms of a pair of groups H ⊆ G, and our algorithms are fast when

there is an intermediate sequence of subgroups between H and G satisfying certain

conditions.

Fast DFT algorithms are typically recursive and in the case of groups, they

descend from the full group to subgroups. The analogous strategy for association

schemes already encounters significant difficulties. We overcome them in certain

cases and in the next section we describe the challenges in more detail, and our

ideas for overcoming them.

2



1.2 Main technique ideas

1.2 Main technique ideas

A fast recursive DFT with respect to a semisimple algebra A, with basis b1, . . . , bn,

generally works by identifying a closed subalgebra A′ spanned by {bi : i ∈ S}

for a set S ⊆ [n]. It performs a DFT recursively with respect to A′ and then

combines these to obtain the final result. In order to combine the A′-DFTs, we

need to identify a set of algebra elements (“translations”) t1, t2, . . . , tk with the

key property that

{bitj : i ∈ S, 1 ≤ j ≤ k}

linearly spans all of A.

In the case of a finite group G, the subalgebra is given by a subgroup H, and

the translations can easily be taken to be a set of distinct coset representatives of

H in G.

In the present case of association schemes, it is not hard to identify the analog

of a subgroup; this is called a closet set in the association scheme literature. But

given a rank n association scheme and rank k closed set, we don’t even know if

there exists, in general, a set of n
k
translations with the required spanning property

(as there are in the group case). In this paper, we find that in the special case of

Schurian association schemes defined by H ⊆ G, with some additional properties

involving intermediate subgroups, there is an explicit description of a small set

of translations with the required spanning property (although not, in general, as

small as the optimal n
k
).

Even when one has a set of translations, the recursive algorithm must perform

a linear transformation determined by the way in which the

{bitj : i ∈ S, 1 ≤ j ≤ k}

linearly span A. A general linear transformation at this step would already cost

O(n2) operations which is as bad as the trivial algorithm, so we need to carefully

choose our translations so that this linear transformation can be computed rapidly.

In the cases we study in this paper, we are able to show that the support of bitj is

at most one, for each i, j, and this implies that the linear transformation can be

computed in linear time.

3



1.3 Main results

1.3 Main results

To state our main results, we need notation for double-cosets: given a group G

and subgroups H,K we denote by K\G/H the set of K,H double cosets in G.

We will substitute H\G/H by G//H for simplicity.

Our key contributions include a way to reduce a G//H-DFT to a G-DFT

and use it to design our subscheme reductions. Furthermore, we give two re-

cursive algorithms that work in different scenarios. Throughout this paper, we

use DC(G//H) to denote the complexity of computing a G//H-DFT.

Theorem 1.3.1 (Reduction to Group-DFTs). A DFT over C[G//H] can be com-

puted using the same number of operations as a DFT over C[G].

Theorem 1.3.1 helps us reduce a G//H-DFT to a G-DFT. One immediate

consequence is that if N is a subgroup of H, then a G//N -DFT will give us a

corresponding G//H-DFT with no cost. Formally,

Theorem 1.3.2. If N ⊂ H, then

DC(G//H) ≤ DC(G//N).

However, this reduction does not necessarily give us a proper set of translations

as in the group case. We show that in certain scenarios, we could find proper

translations to apply our subscheme reductions.

Theorem 1.3.3 (Single Subscheme Reduction). If H < K ◁ G, then

DC(G//H) ≤ |G/K|DC(K//H) +O(|G/K||G//H|ω/2+ϵ)

for any ϵ > 0.

Our Single Subscheme Reduction works well if there exists a large normal

subgroupK containingH. In that case, |G/K| is small so our algorithm is efficient.

Some examples include p-groups, where we are guaranteed a subnormal series

containing H by keep taking the normalizer and recurse on the subnormal series.

However, this is not the case for many G,H, so we design the Double Subscheme

4



1.3 Main results

Reduction to tackle the cases when no large normal subgroup K containing H

exists.

Theorem 1.3.4 (Double Subscheme Reduction). If there exists subgroups K,P

both containing H such that K is normal in G and KP = G, then

DC(G//H) ≤ |P//H|·DC(K//H) + |K//H|·DC(P//H)+

O
(
|G//H|ω/2+o(1)+(|P//H||K//H|)ω/2+o(1)

)
.

For Double Subscheme Reduction, we do not require K to be large. It is

effective for groups including the wreath-product of a large simple group with Sn.

Besides subscheme reductions, we find two natural recursive algorithms de-

pending on the normalizer of H. If NG(H) has small index in G, H is close to

being normal, and we show that

Theorem 1.3.5 (First recursive algorithm). Given H ◁ K < G,

DC(G//H) ≤ |K\G/H||K/H|ω/2+ϵ+O(|K\G/H||G//H|
ω
2
+ϵ)

for all ϵ > 0.

When NG(H) is small (but not H itself), then for certain groups we can find a

small index subgroup L such that LNG(H) = G, leading to our second recursive

algorithm:

Theorem 1.3.6 (Second recursive algorithm). If there exists a subgroup L such

that H ⊂ L and LNG(H) = G, then

DC(G//H) ≤ |G/L|DC(L//H) + |G/L||G//H|ω/2+ϵ

for all ϵ > 0.

In other words, if L is “orthongonal” to NG(H), then we could use L//H to do

the recursive algorithm even when L is not normal in G.

5



1.4 Related work

1.4 Related work

Beth[2] and Clausen[3] initiated the research program of trying to obtain fast

DFTs with respect to any finite group in 1980s. Initially, fast algorithms for

abelian groups and some special classes like supersolvable groups and symmetric

groups. The goal is to obtain “near-linear” algorithms, meaning the algorithm

takes O(|G|1+o(1)) operations. The algorithms of computing DFTs usually involve

matrix multiplications, so we usually consider algorithms with O(|G|ω/2+o(1)) for

ϵ > 0 operations as good ones as when ω = 2 these algorithms will be near-linear.

Baum [4] achieved near-linear algorithms for abelian and supersolvable groups, and

Clausen[3] achieved near-linear algorithms for symmetric and alternating groups.

Later in 1998, Maslen [5] gave an improvement of computing DFTs over symmetric

groups.

Groups with no large subgroups such as SL2(Fq) are the problematic for the

basic recursive algorithms. Recently, Hsu and Umans[1] devised the “double sub-

group” reduction which handles these cases, and this led to the first improvement

on the exponent for general groups. They were able to achieve O(|G|ω/2+ϵ) for

linear groups, and O(|G|
√
2) for all finite groups. In 2019, Umans[6] extended

this work to handle all finite groups with exponent ω/2, by devising a more com-

plicated “triple subgroup” reduction, thus concluding the research of DFTs over

finite groups. Interestingly these last two results rely on the Classification Theo-

rem to obtain certain structural properties needed for the algorithms, for all finite

groups.

Moving beyond groups to association schemes, there has been comparatively

little work. In 2016, Maslen, Rockmore, and Wolf [7] computed the DFT over

semi-simple algebras including Brauer algebra, BMW algebra and Temperley-Lieb

algebra. However, no work has directly target the DFTs over the double coset

algebra, i.e. Schurian scheme.

6



Chapter 2

Association schemes, adjacency

algebras, and DFTs

In this section we give some basic definitions and background content on Associ-

ation schemes and their adjacency algebras.

Association schemes are objects that have been well studied after Bose and

Shimamoto introduced the concept in 1952 [8]. They generalize groups, and are

defined as follows:

Definition 2.0.1 (Association Scheme). A association scheme consists of a set

X with a partition of X ×X into n+ 1 binary relations R = {R0, . . . , Rn} which

satisfy:

1. R0 = {(x, x) : x ∈ X}

2. The dual relation of Ri, defined by {(x, y) : (y, x) ∈ Ri} is in R.

3. If (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri and (z, y) ∈ Rj is

a constant pijk called the intersection number depending only on i, j, k (and

not x, y).

For example, any group G is an association scheme there is a relation Rg for

each g ∈ G defined as

Rg = {(gh, h) : h ∈ G}

Clearly this satisfies the first axiom; the second one is satisfied because Rg−1 is

the dual of Rg; and the third axiom is routine to check.

7



2.1 Irreducible representations and the DFT

A broad class of association schemes are the Schurian association schemes,

which are defined in terms of groups:

Definition 2.0.2 (Schurian association scheme). Given a group G with a subgroup

H, let X be the set of left-cosets of H in G. Group G acts transitively by left-

multiplication on X and one can extend this to an action on X ×X by having G

act identically on each copy of X. The orbits of this action form an association

scheme, called the Schurian scheme of G,H.

One can define an algebra from any association scheme called the adjacency

algebra. This is simply the matrix algebra generated by the natural incidence

matrices, one for each relation in the scheme; i.e., each relation Ri defines an

|X|×|X| adjacency matrix Ai where

Ai(x, y) =

1, if (x, y) ∈ Ri

0, otherwise

Observe that the intersection numbers pijk become the structure constants of mul-

tiplication in the adjacency algebra:

AiAj =
n∑

k=0

pkijAk

as a consequence of the third axiom.

2.1 Irreducible representations and the DFT

A representation of an algebra A is a homomorphism from A into matrices Cd×d.

The dimension of such a representation is d. Such a representation naturally acts

on Cd, and it is said to be irreducible if there is no invariant subspace under this

action. Two representations ρ, τ are equivalent if they have the same dimension

and there is a change of basis matrix T ∈ Cd×d such that ρ(x) = Tτ(x)T−1.

For this work, the key fact is that adjacency algebras of association schemes are

semisimple which means that each such algebra A has a finite set of inequivalent

irreducible, representations ρ1, . . . , ρk with dim(A) =
∑
i

dim(ρi)
2.

8



2.2 Double coset algebras

We now can define the DFT with respect to an association scheme:

Definition 2.1.1. Let A be an association scheme with relations R0, R1, . . . Rt

and associated incidence matrices A1, . . . , At, and let Irr(C[A]) be the complete

set of inequivalent, irreducible representations of its adjacency algebra C[A]. The

associated DFT is the linear map that takes α ∈ Ct to

t∑
i=1

αi

⊕
ρ∈Irr(C[A])

ρ(Ai)

Observe that this map can easily be computed with O(t2) operations, by simply

writing out the big sum for each matrix entry, since
∑
j

dim(ρj)
2 = t+1. Our goal

will be to compute it using closer to O(t) operations, which would be optimal. We

present several algorithms that work well in different scenarios in Chapter 4 and

Chapter 5.

2.2 Double coset algebras

Our algorithms will make heavy use of the fact that the adjacency algebra of

a Schurian association scheme of G,H is isomorphic to the H,H-double coset

algebra, which we define next.

Definition 2.2.1. For a group G and subgroups H,K ⊂ G, the (H,K)-double

coset of x ∈ G is

HxK = {hxk : h ∈ H, k ∈ K}

When H = K, HxH are called the H-double coset of x. The set of all (H,K)-

double cosets is denoted as H\G/K, and we use G//H as shorthand for H\G/H.

Here are some useful properties of double cosets:

1. The double coset HxK is an equivalence class that partitions G. In other

words, x ∼ y iff HxK = HyK.

2. If H = {1}, then H\G/K = G/K.

3. If H ◁ G, then HxK = x(HK) so H\G/K = G/(HK) (HK is a subgroup

of G because H is normal). In particular, if H < K, H\G/K = G/K.

9



2.2 Double coset algebras

It is not hard to verify that the product of two double cosets (HxH) · (HyH)

(counting group elements in their multiplicities) is an integer linear combination

of H,H-double cosets; hence the H,H-double cosets generate an algebra, denoted

C[G//H].

The double coset algebra G//H forms a Schurian scheme on the set of single

G/H cosets where each double coset HgH correspond to a binary relation Rg:

(xH, yH) ∈ Rg iff x−1y ∈ HgH.

In other words,

Rg = {(xH, yH) : Hx−1yH = HgH}.

Recall that multiplication is the same as in the algebra: for any HaH,HbH ∈

G//H,

Ra ·Rb =
∑

Rc∈G//H

pabcRc,

where we use pabc as a shorthand for pRa,Rb,Rc for simplicity.

Note that the group G is an association scheme in this framework by taking H

to be the trivial subgroup, and also that if H is normal in G, then this association

scheme is isomorphic to the quotient group G/H (because the H,H double cosets

coincide with H-cosets in this case). The following is a standard fact that can be

verified by writing out the product of two double-cosets:

Proposition 2.2.2. The adjacency algebra of the Schurian association scheme

defined by G,H is isomorphic to the (H,H)-double coset algebra in G.

For the remainder of this paper, we will explicitly describe our DFTs for

Schurian association schemes defined by G,H as DFTs over the H,H-double coset

algebra; i.e. given α ∈ C[G//H], we wish to compute

∑
b∈G//H

αb

⊕
ρ∈Irr(C[G//H])

ρ(b).

In the group case, any product of h, k ∈ G will have a single support, namely

hk. However, this is not the case in the double coset algebra. For anyHaH,HbH ∈

10



2.2 Double coset algebras

G//H,

Ra ·Rb =
∑

Rc∈G//H

pabcRc.

It is routine to check that pabc ̸= 0 iff HcH ⊂ HaHbH. In other words, the

support of Ra · Rb is all the Rc such that HcH ⊂ HaHbH. Given that, we can

show a useful fact that will be used later: if HaH = aH ⊂ K where H is normal

in K, then Ra ·Rb will have a single support, namely Rab, for any Rb ∈ G//H.

Proposition 2.2.3. If HaH ∈ K//H where H is normal in K, then Ra · Rb has

a single support for any Rb ∈ G//H.

Proof. By our argument above, the support of Ra · Rb is all the Rc such that

HcH ⊂ HaHbH = HabH as a ∈ K. That means Rab is the only support for

Ra ·Rb.

11



Chapter 3

Representations of double-coset

algebras

In this section we work out a concrete and explicit description of the irreducible

representations of double coset algebra C[G//H] in terms of the irreducible repre-

sentations of G, by choosing a favorable basis.

We are given a group G and a subgroup H. Recall that a d-dimensional

representation ρ of G acts naturally on V = Cd. It a basic fact of representation

theory, that the restriction of ρ to H decomposes as the direct sum of irreps of

H. Concretely, this means that there is some basis for V in which the matrix

ρ(h) is block diagonal (for all h ∈ H), with block sizes that correspond to the

irreps of H occurring in the restriction of ρ to H. One can choose this favorable

basis with respect to each irrep ρ ∈ Irr(G), and the resulting basis is called an

H-adapted basis. This will be the basis we choose to work in for this section, and

the subsequent sections that depend on it.

In general, an irrep ρ of G acting on V , when restricted to H, will decompose

into 0 or more trivial irreps of H, and other irreps of H. We need to single out

the part of the direct sum decomposition of V corresponding to the trivial irreps;

we will call this V0. In other words, V = V0 ⊕ V1 and in an H-adapted basis, ρ(h)

acts trivially on V0 for all h ∈ H. When H is clear from context, will always use

V0 to refer to this direct-summand of the vector space.

We have the following lemma regarding H,H-invariant functions:

Lemma 3.0.1. Let α ∈ C[G] be H,H-invariant (i.e., αh = α = hα for all h ∈ H)

12



and let ρ ∈ Irr(G) act on V = V0 ⊕ V1. Then

ρ(α) =
∑
g∈G

αgρ(g)

acts by 0 on V1.

Proof. Because α is H,H-invariant, letting w = 1
|H| ·

∑
h∈H

h, we have

ρ(α) = ρ(wαw) = ρ(w)ρ(α)ρ(w).

The restriction of ρ to H decomposes into irreps of H. Now, for τ ∈ Irr(H), we

have τ(w) = 0 if τ is not the trivial irrep; if it is the trivial irrep, then τ(w) = 1.

Since we are working in an H-adapted basis, ρ restricted to H respects the direct

sum decomposition of V = V0⊕V1 described above, and we have just argued that

it acts by 0 on V1.

Recall that ρ respects the direct sum decomposition since we are working in an

H-adapted basis, i.e, ρ is block-diagonal. In concrete terms, the above lemma then

implies that the block in ρ(α) corresponding to V1 is zero, so the only non-zeros

in ρ(α) are in the block corresponding to V0.

Let d be the dimension of V0. We define a map ρH from G//H into invertible

d×d matrices as follows: given a double coset b ∈ G//H, define the H,H-invariant

function wb =
∑
g∈b

g, and then define

ρH(b) = ρ0(wb),

where ρ0 is the part of ρ acting on V0, the direct summand corresponding to the

occurrences of the trivial irrep of H in the restriction of ρ to H. Extend ρH linearly

to C[G//H].

A key observation is that as one runs through all irreps ρ of G, the ρH are

exactly the irreps of C[G//H].

Lemma 3.0.2. Let ρ ∈ Irr(G) and define the map ρH from C[G//H] into invertible

matrices as above. Then ρH is a representation of C[G//H].

13



Proof. We need to show that ρH is a homomorphism; for this it suffices to show

that

ρH(b)ρH(c) = ρH(bc),

where b, c are double cosets in G//H. Letting wb and wc be the H,H-invariant

functions on G corresponding to the double cosets b and c, as above. By the

definition of ρH , we have

ρH(b)ρH(c) = ρ0(wb)ρ0(wc) = ρ0(wbwc).

We know that bc =
∑

d∈G//H

pb,c,dd for non-negative integers pb,c,d (the intersection

numbers), and thus

wbwc =
∑

d∈G//H

pb,c,dwd.

Therefore,

ρ0(wbwc) = ρ0

 ∑
d∈G//H

pb,c,dwd

 = ρH(bc).

Also, we show that ρH is exactly all the representations of C[G//H]. We need

a useful lemma:

Lemma 3.0.3. Let

C[G]H = {α ∈ C[G] : α is H,H-invariant}.

Then C[G]H is a C-algebra and C[G]H ∼= C[G//H] as C-algebras. Moreover, the

isomorphism φ : C[G//H] → C[G]H can be described as follows. For any α ∈

C[G//H], let φ(α) ∈ C[G]H such that for any g ∈ G, φ(α)g = αb where g ∈ b,

b ∈ G//H. φ−1 is defined reversely.

Proof. It is not hard to check C[G]H is a C-algebra. We show that φ is a algebra

isomorphism:

1. For any α, β ∈ C[G//H], we need to show φ(αβ) = φ(α)φ(β). Because φ

is linear, wlog we can assume α, β ∈ G//H. Let x = φ(αβ), y = φ(α)φ(β).

14



Then

yg =
∑
hk=g

φ(α)hφ(β)k

and that

xg = pα,β,b

where g ∈ b ∈ G//H. But pα,β,b =
∑
hk=g

φ(α)hφ(β)k comes from the multipli-

cation of double coset algebra.

2. φ is a bijection. If φ(α) = φ(β) for some α, β ∈ C[G//H], then for any

b ∈ G//H we have

αb = φ(α)g = φ(β)g = βb

for any g ∈ b so α = β. Thus φ is injective. Furthermore, for any η ∈ C[G]H

we can construct α ∈ C[G//H] such that for any b ∈ G//H

αb = ηg

for any g ∈ b. The fact that η is H,H-invariant guarantees this construction

is well defined. Then φ(α) = η. Therefore φ is surjective.

Lemma 3.0.4. The set {ρH : ρ ∈ Irr(G)} is exactly the set of inequivalent irre-

ducible representations of C[G//H].

Proof. By Lemma 3.0.2, we know ρH is a representation of C[G//H]. Under the H-

adapted basis, for each ρH , 1 ≤ i, j ≤ dim(ρH), we can define ρH,i,j : C[G//H] → C

to be

ρH,i,j(b) = [ρH(b)]ij.

We claim that

{ρH,i,j : ρ ∈ Irr(G), 1 ≤ i, j ≤ dim(ρH)}

is a basis for all functions from C[G//H] to C (which is isomorphic to C[G//H]).

Then this immediately implies every ρH is irreducible because otherwise, ρH =

τ ⊕ σ but dim(ρH)
2 > dim(τ)2 +dim(σ)2 so we can replace all ρH,i,j with τi,j, σi,j.

We just find a new basis with less elements, which is a contradiction.

15



Because C[G//H] is a semi-simple algebra, and we have found a set of irre-

ducible representations such that

∑
ρ∈Irr(G)

dim(ρH)
2 = |G//H|.

Therefore, {ρH : ρ ∈ Irr(G)} is a complete set of irreducible representations of

C[G//H].

Finally we prove our claim. Again let φ : C[G//H] → C[G]H be the isomor-

phism described in Lemma 3.0.3. Given ρ ∈ Irr(G), we can define ρij as

ρij(g) = [ρ(g)]ij

and extend linearly. We know from representation theory that

{ρij : ρ ∈ Irr(G), 1 ≤ i, j ≤ dim(ρ)}

forms a basis for C[G]. Under H-adapted basis, consider its subset

T = {ρij : ρ ∈ Irr(G), 1 ≤ i, j ≤ dim(ρH)}.

For any g ∈ G, we have

ρij

(
g
∑
h∈H

h

)
=

[
ρ

(
g
∑
h∈h

h

)]
ij

=

[
ρ(g)ρ

(∑
h∈H

h

)]
ij

= |H|[ρ(g)]ij = |H|ρij(g)

where the third equality is because underH-adapted basis, we know from Lemma 3.0.1

that ρ

(∑
h∈H

h

)
acts by 0 on V1. Therefore, for any g ∈ G, h ∈ H,

ρij(gh) =
1

|H|
ρij

(
gh
∑
a∈H

a

)
=

1

|H|
ρij

(
g
∑
a∈H

a

)
= ρij(g).

The computation for ρij(hg) is similar. Thus ρij is H,H-invariant. Furthermore

we claim that T forms a basis for C[G]H . They are linearly independent because

T is a subset of {ρij : ρ ∈ Irr(G), 1 ≤ i, j ≤ dim(ρ)}. We need to show that T

16



spans C[G]H . For any α ∈ C[G]H , we have

α =
∑

ρ∈Irr(G)
1≤i,j≤dim(ρ)

cρ,i,jρij

It suffices to show that cρ,i,j = 0 for all ρij /∈ T . Indeed,

cρ,i,j =
1

|G|
∑
g∈G

αgρij(g)

where ρij is the complex conjugate. One can check for any g ∈ G,

∑
ρ∈Irr(G)

1≤i,j≤dim(ρ)

cρ,i,jρij(g) =
1

|G|
∑

ρ∈Irr(G)
1≤i,j≤dim(ρ)

(∑
a∈G

αaρij(a)

)
ρij(g)

=
1

|G|
∑

ρ∈Irr(G)
1≤i,j≤dim(ρ)

(∑
a∈G

αaρij(a)ρij(g)

)

=
1

|G|
(MM∗)g,g

= 1

where M is the DFT-matrix, which we already know has the nice property that

MM∗ = |G|I

where M∗ is the conjugate transpose of M . Therefore, since α is H,H-invariant,

Lemma 3.0.1 implies that cρ,i,j = 0 for all ρij /∈ T .

Finally, by Lemma 3.0.3, φ−1(T ) is a basis for C[G//H]. For every ρij ∈ T, b ∈

//H,

φ−1(ρij)(b) = ρij(g) =
1

|H|
ρij

(∑
x∈b

x

)
=

1

|H|
ρH,i,j(b).

Therefore,

{ρH,i,j : ρ ∈ Irr(G), 1 ≤ i, j ≤ dim(ρH)}

is a basis for C[G//H].

17



This concrete description allows us to “find” the DFT with respect to C[G//H]

within the DFT with respect to C[G] (by working in an H-adapted basis and

restricting each ρ to ρ0), and this is the basis of the next two algorithms, which

both use the following theorem.

Theorem 3.0.5. A DFT over C[G//H] can be computed using the same number

of operations as a DFT over C[G].

Proof. Let φ be the isomorphism. Given α ∈ C[G//H], we can compute a G-DFT

of φ(α) using an H-adapted basis:

s =
∑
g

φ(α)g
⊕

ρ∈Irr(G)

ρ(g).

Noting that φ(α) is H,H-invariant and recalling the definition of ρ0 above, for

each ρ we can restrict to ρ0 and then to ρH , and all other entries are guaranteed

to be zero, by Lemma 3.0.1.

Moreover these ρH are all the irreps of C[G//H], so we have computed

∑
b∈G//H

αb

⊕
τ∈Irr(G//H)

τ(b) =
∑

b∈G//H

αb

⊕
ρ∈Irr(G)

ρH(b)

=
∑

b∈G//H

αb

⊕
ρ∈Irr(G)

ρ0(wb)

=
∑
g∈G

φ(α)g
⊕

ρ∈Irr(G)

ρ0(g).

The last term in the equation above is exactly the nonzero part of s by our

argument above.

Theorem 3.0.5 is a key theorem for our second and third algorithms. We are

now able to use group-DFTs to compute Schurian scheme-DFTs.

Before we proceed to the subscheme reductions and recursive algorithms, we

show that Theorem 3.0.5 immediately gives us:

18



Theorem 3.0.6 (Theorem 1.3.2). If N ⊂ H are subgroups of G, then

DC(G//H) ≤ DC(G//N).

Proof. Again let φ : C[G//H] → C[G]H be the isomorphism. For any α ∈ G//H,

φ(α) is H,H-invariant, and thus N,N -invariant. Therefore, we could compute a

G//N -DFT with respect to φ(α) which is just the G//H-DFT we want.

19



Chapter 4

Subscheme Reductions

4.1 Single Subscheme Reduction

We now introduce our single subscheme reduction, as an analog of the single

subgroup reduction in [1]. The recursive algorithm has the exact same idea, but

we require our intermediate subgroup K to be normal in G to ensure that all our

vectors are H,H-invariant.

Theorem 4.1.1 (Single Subscheme Reduction). If H < K ◁ G, then

DFT(G//H) ≤ |G/K|DFT(K//H) +O(|G/K||G//H|ω/2+ϵ)

for any ϵ > 0.

Proof. By Theorem 3.0.5, to compute a DFT over G//H is equivalent to compute

a DFT over H,H-invariant α ∈ C[G]. Let g1, . . . , gm be the coset representatives

for G/K, then

α =
∑
g∈G

αg · g =
m∑
i=1

(∑
k∈K

αgikk

)
gi.

Because we parititon G by double K cosets (which is actually single coset when K

is normal in G), our αgik is H,H-invariant. Therefore, for each i, we can compute

si =
∑
k∈K

αgik

⊕
σ∈Irr(K)

σ(k).

Lift si to si by repeating each σ ∈ Irr(K) as many times as it occurs in ρ ∈ Irr(G),

20



4.2 Double Subscheme Reduction

and notice that

DFT(α) =
∑
g∈G

αg

⊕
ρ∈Irr(G)

ρ(g) =
m∑
i=1

si ·

 ⊕
ρ∈Irr(G)

ρ(gi)

 .

Thus we can computem manyK//H-DFTs andm diagonal matrix multiplications

and get

DFT(G//H) = |G/K|DFT(K//H) +O(|G/K||G//H|ω/2+ϵ)

for any ϵ > 0.

The single subgroup reduction is costly when |G/K| is large, i.e. there is no

big normal subgroup K containing H. However, if K does not contain H, then

we would expect KH to be a subgroup strictly larger than K and H.

Just like the single subgroup reduction, our single subscheme reduction is costly

if K is small. That is, if G has no large normal subgroups, the single subscheme

reduction fails to give a fast algorithm. Our “double subscheme reduction” de-

scribed in the next section can be considered as an improvement on this problem.

4.2 Double Subscheme Reduction

In this section we provide the analog of the double subgroup reduction described

in [1], which is intended to deal with the case when G does not have large normal

subgroup.

Given a schurian scheme G//H and H ⊂ K,P ⊂ G with P ◁ G, such that

KP = G, we can compute a G//H-DFT via DFTs with respect to K//H and

P//H.

Theorem 4.2.1. Let H ⊂ K,P ⊂ G be subgroups in G such that P ◁ G, and let

α ∈ C[G] be H,H-invariant and supported on KP . Fix a way of writing g = kp

for each g ∈ KP . Then, we can compute

∑
g=kp∈KP

αg

⊕
σ∈Irr(K),τ∈Irr(P )

σ(k)⊗ τ(p),

21



4.2 Double Subscheme Reduction

by performing |P//H| many |K//H|-DFTs and |K//H| many P//H-DFTs.

Proof. We can write

α =
∑
g∈G

αg · g =
∑

xP∈G/P

x

(∑
p∈P

αxp · p

)
.

Similar as before, αxp is H,H-invariant. We can pick the coset representatives

x such that they are in K and are further also different double coset represen-

tatives for K/H. Indeed, if x1P, x2P are different G/P cosets, then Hx1H ⊂

x1P,Hx2H ⊂ x2P must be different G//H double cosets and thus must also be

different as K//H cosets. This also means |K//H|≥ |KP/P |= |K|/|K ∩ P |.

Extend all such x to the coset representatives y of K//H, and c can be written

further as

α =
∑

yH∈K//H

y

(∑
p∈P

αyp · p

)
.

Since αyp isH,H-invariant, we can perform |K//H|many |P//H|-DFTs to compute

for each yH ∈ K/H :

sy =
∑
p∈P

αyp

⊕
τ∈Irr(P )

τ(p).

We use the notation sy[τ, u, v] to refer to the (u, v) entry of component τ in the

direct sum. Then we perform |P//H| many K//H-DFTs to compute for each

τ ∈ Irr(P ) and u, v ∈ [dim(τ)],

tτ,u,v =
∑
h∈H

sh[τ, u, v]
⊕

σ∈Irr(H)

σ(h).

Note that tτ,u,v[σ, u0, v0] is the ((u0, u), (v0, v)) entry of
∑

k,p cxpσ(k)⊗ τ(p), so we

are done.

Lemma 4.2.2 ([1]). If A is an n1 × n2 matrix, B is an n2 × n3 matrix, and C is

an n3 ×n4 matrix, then the product ABC can be computed by multiplying A⊗CT

(which is an n1n4 × n2n3 matrix) by B viewed as an n2n3-vector.

Corollary 4.2.3 ([1]). If A and C are as above, and n1 = n2, n3 = n4, and we

have several n2×n3 matrices B1, . . . , Bl, then we can compute ABiC for all i from

22



4.2 Double Subscheme Reduction

A⊗ CT , at a cost of

O((n2n3)
ω−1+ϵ ·max{n2n3, l})

operations for all ϵ > 0.

Lemma 4.2.4 ([1]). There is a linear map

φG,K,P :
∏

σ∈Irr(K),τ∈Irr(P )

C(dim(σ) dim(τ))2 →
∏

ρ∈Irr(G)

Cdim(ρ)2

that maps
⊕

σ∈Irr(K),τ∈Irr(P )

σ(k) ⊗ τ(p) to
⊕

ρ∈Irr(G)

ρ(kp) for all k ∈ K, p ∈ P . The

map φG,K,P can be computed using

∑
σ∈Irr(K),τ∈Irr(P )

O

(dim(σ) dim(τ))ω−1+ϵ ·max

dim(σ) dim(τ),
∑

ρ∈Irr(G)

nσ,ρmτ,ρ

+

∑
ρ∈Irr(G)

O(dim(ρ)ω+ϵ)


operations for all ϵ > 0.

Lemma 4.2.5 ([1]). For all finite groups G and subgroups K,P , the expression

in the previous lemma is upper bounded by O((|K||P |)ω/2+ϵ/2 + |G|ω/2+ϵ/2).

Putting everything together, we get our “Double Subscheme Reduction”.

Theorem 4.2.6 (Double Subscheme Reduction). Let G//H be a schurian scheme

and H ⊂ K,P ⊂ G, P ◁ G such that KP = G. Fix a way of writing g = kp for

each g ∈ G. Then

DFT(G//H) ≤ |P//H|·DFT(K//H) + |K//H|·DFT(P//H)+

O
(
|G//H|ω/2+o(1)+(|P//H||K//H|)ω/2+o(1)

)
.

Proof. For any α ∈ C[G] that is H,H-invariant, we first use Theorem 4.2.1 to

compute ∑
g∈G

αg

⊕
σ∈Irr(K),τ∈Irr(P )

σ(k)⊗ τ(p)

by performing |P//H| many K//H-DFTs and |K//H| many P//H-DFTs. Now

23



4.2 Double Subscheme Reduction

apply the linear map ϕG,K,P to obtain

∑
g=kp∈G

αg

⊕
ρ∈Irr(G)

ρ(g)

with the cost indicated in the previous lemma.

24



Chapter 5

Recursive Algorithms

5.1 First Recursive Algorithm

Recall that the main obstacle for our subscheme reduction algorithms is that we

could not find appropriate “translation elements”. However, Proposition 2.2.3

shows that if H ◁ K, then we overcome this obstacle as for any b, c ∈ G//H, b · c

has a single support.

We reduce to computing several DFTs over the group NG(H)/H, and this

strategy has small and ”overhead” that is proportional to the number of (NG(H), H)-

double cosets (which is small, e.g., when the index of NG(H) in G is small). We

first state a useful lemma:

Proposition 5.1.1. The cost of multiplying two block diagonal matrices of block

size d1, . . . , dn is

O

( n∑
i=1

d2i

)ω/2+o(1)


Proof. We know the cost to multiply two d × d matrices is dω + o(1). Since the

product of two block diagonal matrices with block size d1, . . . , dn still has the same

25



5.1 First Recursive Algorithm

block structure, we are just multiplying each block matrix, so the total cost is

n∑
i=1

d
ω+o(1)
i ≤

(
max
1≤i≤n

di

)ω−2+o(1) n∑
i=1

d2i

≤

(
n∑

i=1

d2i

)(ω−2)/2+o(1)( n∑
i=1

d2i

)

=

(
n∑

i=1

d2i

)ω/2+o(1)

(5.1)

In the subscheme reductions, we assume that K ◁ G and we were able to

overcome the obstacle. Here we show that we could again overcome the obstacle

when H ◁ K:

Lemma 5.1.2. Let H be a subgroup of group G, define K = NG(H), and let

t1, t2, . . . t|K\G/H| be representative (H,H)-double cosets, one inside each (K,H)-

double coset. Given α ∈ C[G//H], we can compute vectors α(i) ∈ C[K//H] for

which

α =
∑

u∈(G//H)

αuu =
∑
i

 ∑
w∈K//H

α(i)
w w

 · ti (5.2)

using |K\G/H||K//H| operations overall.

Proof. By Proposition 2.2.3, we know w · ti only has a single support, which is in

the same K,H-double cosets as ti, in the double coset. We assign α
(i)
w using the

following algorithm: for any i = 1, . . . , |K\G/H|,

1. For all w ∈ K//H, we “visit” the support u of w · ti.

2. If u has not been visited, assign α
(i)
w = αu/p

u
w,ti

.

3. Otherwise, assign α
(i)
w = 0.

We claim that this assignment will make sure equation 5.2 holds.

First observe that for any w, v ∈ K//H, w·ti and v·tj will have different support

for if i ̸= j. Indeed, the support of w · ti and v · tj are in different K,H double

cosets which form a partition of G. Thus we can look at each i separately. Also,

we show for each u ∈ G//H, the coefficient of u in right hand side of equation 5.2

26



5.1 First Recursive Algorithm

is αu. Assume that u is in the same K,H-double coset as tj. We claim there exists

w ∈ K//H such that w · tj = puw,tj
u and since α

(j)
w w · tj = (αu/p

u
w,tj

)puw,tj
u = αuu,

the coefficients will match, and step 2 ensures that we do not have repetitive

assignments.

Let u = Hu0H,w = Hw0H, tj = Ht0H. Then the support of w · tj is Hw0t0H.

Since u, tj are in the same K,H-double coset, so are u0, t0, which means u0 = kt0h

for some k ∈ K,h ∈ H. Let w0 = k and we have Hw0t0H = Hkt0H = Hkt0hH =

Hu0H.

We give our first recursive algorithm as follows.

Theorem 5.1.3 (First Recursive Algorithm). Given a Schurian scheme G//H,

DC(G//H) ≤ |NG(H)\G/H||NG(H)/H|ω/2+o(1)+O(|NG(H)\G/H||G//H|ω/2+o(1)).

Proof. Let K = NG(H). Since H ⊆ K, each (K,H)-double coset in G is the union

of (H,H)-double cosets. Let t1, t2, . . . t|K\G/H| be representative (H,H)-double

cosets, one inside each (K,H)-double coset. These may be chosen arbitrarily.

Given α ∈ C[G//H], by Lemma 5.1.2 we can write

α =
∑

u∈(G//H)

αuu =
∑
i

 ∑
w∈K//H

α(i)
w w

 · ti (5.3)

for some α(i) ∈ C[K//H] ∼= C[K/H], and these α(i) vectors can be computed from

α in linear time in the output, i.e., using only |K\G/H||K//H| operations.

For each i we compute an (K//H)-DFT to obtain

s(i) =
∑

w∈K//H

α(i)
w

⊕
σ∈Irr(C[K//H])

σ(w).

Let s(i) be the lift of s(i) in which we repeat each σ ∈ Irr(C[K//H]) as many times

as it occurs in the irreducible representations of C[G//H]. Finally, compute

∑
i

s(i) ·

 ⊕
ρ∈Irr(C[G//H])

ρ(ti)

 ,

27



5.2 Second Recursive Algorithm

by multiplying each s(i) on the right and summing the results.

We claim this gives the desired result. We have

∑
i

s(i) ·

 ⊕
ρ∈Irr(C[G//H])

ρ(ti)

 =
∑
i

 ∑
w∈K//H

α(i)
w

⊕
ρ∈Irr(C[G//H])

ρ(w)

 ·

 ⊕
ρ∈Irr(C[G//H])

ρ(ti)


=

∑
i

∑
w∈K//H

α(i)
w

⊕
ρ∈Irr(C[G//H])

ρ(wti)

=
∑

u∈G//H

αu

⊕
ρ∈Irr(C[G//H])

ρ(u).

where the first equality applies the definition of s(i), the second equality uses that

each ρ is a homomorphism, and the final equality follows from Equation (5.3).

Because ∑
ρ∈Irr(C[G//H])

(dim ρ)2 = |G//H|

here we are multiplying block diagonal square matrices with |G//H| nonzero en-

tries, |K\G/H| many times, which takes |K\G/H|·O(|G//H|ω2 +ϵ) time overall, by

Proposition 5.1.1. The Theorem follows.

This algorithm works well when the number of NG(H), H double cosets is

small, which happens in particular, when the normalizer NG(H) has small index

in G, because

|NG(H)\G/H|≤ |G|
|NG(H)|

.

Notice that it is important here for H to be normal in K, otherwise we will not

have single support in all multiplications. The general statement could be false

when H is not normal in K because there is no guarantee that |K\G/H||K//H|≥

|G//H|, which is a necessary condition to find the coefficients for equation 5.2 to

hold.

5.2 Second Recursive Algorithm

For any α ∈ C[G//H], Theorem 3.0.5 shows that it suffices to compute

∑
g∈G

φ(α)g
⊕

ρ∈Irr(G)

ρ0(g),

28



5.2 Second Recursive Algorithm

where φ : C[G//H] → C[G]H is the isomorphism. For any intermediate subgroup

H ⊂ P ⊂ G, let g1, . . . , gm be the coset representatives of G/P . Then we can

natually express φ(α) by

φ(α) =
m∑
i=1

βi · gi

where βi ∈ C[P ] ⊂ C[G] and

(βi)p = φ(α)gip

for all p ∈ P . In order to do a recursive algorithm, we need βi to be H,H-invariant

as before. The following lemma shows that this occurs when gi ∈ NG(H) for all i.

Lemma 5.2.1. Suppose P is an intermediate subgroup of H,G. Given H,H-

invariant φ(α) ∈ C[G], for all 1 ≤ i ≤ m, let βi ∈ C[P ] be defined as

(βi)p = φ(α)gip

such that φ(α) =
m∑
i=1

βi · gi. Then if NG(H)P = G, βi is H,H-invariant for all i.

Proof. Because NG(H)P = G, we can pick coset representatives g1, . . . , gm for

G/P such that gi ∈ NG(H) for all i. Then for any a, b ∈ H, 1 ≤ i ≤ m, we have

(βi)apb = φ(α)giapb = φ(α)(giax−1
i )gipb

= φ(α)gip = (βi)p

where the middle equality holds as giag
−1
i ∈ H.

We give our second algorithm for computing aG//H-DFT based on our analysis

above:

Theorem 5.2.2 (Second Recursive Algorithm). Given a Schurian scheme G//H,

if there exists a subgroup P such that H ⊂ P and PNG(H) = G, then

DC(G//H) ≤ |G/P |DC(P//H) +O(|G/P ||G//H|ω/2+ϵ)

for any ϵ > 0.

Proof. Given α ∈ G//H, again it suffices to compute

∑
g∈G

φ(α)g
⊕

ρ∈Irr(G)

ρ(g).

29



5.2 Second Recursive Algorithm

By the previous lemma, we know we can write

φ(α) =
m∑
i=1

βi · gi

where βi ∈ C[P ] are H,H-invariant. Compute m = |G/P | many P//H-DFTs and

lift them just as in Theorem 5.1.3.

30



Chapter 6

Conclusions

In this paper, we give several recursive algorithms to compute the G//H-DFTs.

Our main obstacle is that for any H,H-invariant α ∈ C[G], we want to find the

appropriate translations t1, . . . , tm such that

α =
m∑
i=1

βi · ti,

where βi are also H,H-invariant. We overcome this obstacle in several different

scenrios, and we aim for solving it for arbitary G//H.

31



References

(1) Hsu, C. C.-Y.; Umans, C. A new algorithm for fast generalized DFTs, 2018.

(2) Beth, T., Verfahren der schnellen Fourier-Transformation; Teubner: 1984.

(3) Clausen, M. Theoretical Computer Science 1989, 67, 55–63.

(4) Baum, U. computational complexity 1991, 1, 235–256.

(5) Maslen, D. K. Math. Comput. 1998, 67, 1121–1147.

(6) Umans, C. Fast generalized DFTs for all finite groups, 2019.

(7) Maslen, D.; Rockmore, D. N.; Wolff, S. arXiv preprint arXiv:1609.02634
2016, To appear in Journal of Fourier Analysis and Applications.

(8) Bose, R. C.; Shimamoto, T. Journal of the American Statistical Association
1952, 47, 151–184.

(9) Alman, J.; Williams, V. V. A Refined Laser Method and Faster Matrix
Multiplication, 2020.

(10) Cooley, J. W.; Tukey, J. W. Mathematics of Computation 1965, 19, 297–
301.

(11) Bürgisser, P.; Clausen, M.; Shokrollahi, M. A., Algebraic Complexity The-
ory ; Grundlehren der mathematischen Wissenschaften, Vol. 315; Springer-
Verlag: 1997.

(12) Maslen, D.; Rockmore, D. N.; Wolff, S. Journal of Fourier Analysis and
Applications 2016, 1–59.

(13) Lev, A. Journal of Algebra 1992, 152, 434–438.

(14) Schmidt, J. Computational Group Theory and the Theory of Groups, II
2010, 511, 185.

(15) Carter, R. W., Simple groups of Lie type; John Wiley & Sons: 1989; Vol. 22.

(16) Clausen, M.; Hühne, P. In Proceedings of the 2017 ACM on International
Symposium on Symbolic and Algebraic Computation, ACM: Kaiserslautern,
Germany, 2017, pp 101–108.

(17) Clausen, M.; Baum, U., Fast Fourier transforms ; Wissenschaftsverlag: 1993.

(18) Lafferty, J. D.; Rockmore, D. Experiment. Math. 1992, 1, 115–139.

(19) Le Gall, F. In Proceedings of the 39th international symposium on symbolic
and algebraic computation, 2014, pp 296–303.

(20) Maslen, D. K.; Rockmore, D. N. Journal of Fourier Analysis and Applica-
tions 2000, 6, 349–388.

32



REFERENCES

(21) Rockmore, D. N. Applied and Computational Harmonic Analysis 1995, 2,
279–292.

(22) Maslen, D. K.; Rockmore, D. N. In Groups and Computation II, 1997;
Vol. 28, pp 183–287.

(23) Maslen, D.; Rockmore, D. Journal of the American Mathematical Society
1997, 10, 169–214.

(24) Rockmore, D. N. In Signals, Systems and Computers, 2002. Conference
Record of the Thirty-Sixth Asilomar Conference on, 2002; Vol. 1, pp 773–
777.

(25) Wikipedia List of finite simple groups —Wikipedia, The Free Encyclopedia,
[Online; accessed 30-June-2017], 2017.

(26) Rockmore, D. In Proceedings of the 1995 DIMACS Workshop on Groups
and Computation, 1997, pp 329–369.

(27) Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis ; Cambridge Uni-
versity Press: 1991.

(28) Hsu, C. C.; Umans, C. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, ed. by Czumaj, A., SIAM: 2018, pp 1047–1059.

(29) Czumaj, A., Ed., Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, SIAM: 2018.

33


