
LINSCAN - A Linearity Based Clustering Algorithm

Andrew Dennehy

Abstract

DBSCAN is a very powerful algorithm for clus-
tering in domains where few assumptions can be
made about the structure of the data. In this pa-
per, we hope to leverage these strengths for more
specialized clustering tasks where the standard al-
gorithm fails. In particular, by embedding points
as normal distributions approximating their local
neighborhoods and leveraging a distance function
derived from the Kullback Leibler Divergence, we
hope to create an algorithm which can distinguish
highly linear clusters that are spatially close but
have orthogonal covariances. We then apply this
to the identification of slip faults via measuring
seismic activity.

1. Introduction
Many existing clustering algorithms require some prior
knowledge of the dataset and are limited in the possible
shapes they can identify. For example, both K-Means Clus-
tering and GMM Expectation Maximization require a prior
estimate of the number of clusters existing in the dataset
and struggle to distinguish clusters with complicated in-
teractions. For example, these algorithms would struggle
to distinguish between a cluster and a surrounding ring of
points.

In contrast, DBSCAN iteratively generates clusters by lever-
aging a heuristic for the local behavior of clustered points.
In particular, its designers equated clusters to connected
regions of high density (Ester et al., 1996). Thus, by identi-
fying points whose local neighborhoods are highly dense,
we can generate clusters with little prior knowledge about
their possible shapes by iteratively growing clusters from
those points. Furthermore, it is done in a way where the
number of clusters comes out of the process, rather than
being a parameter itself.

In this paper, we seek to leverage this characterization of
clusters using distance measures other than Euclidean dis-
tance. In particular, we hope to develop an algorithm which
can delineate between multiple highly linear clusters which
are nearby in space but have nearly orthogonal covariances.

1.1. Notation

Here we summarize notation that will be used throughout
the rest of the paper:

1. For ε > 0, we let Bε(x) be the open ball of radius ε
centered at x (in the standard Euclidean norm).

2. For finite A ⊆ Rd,

(a) µA ∈ Rd is the sample mean of A
(b) Σ2

A ∈ Rd×d is the sample covariance of A

3. Given µ ∈ Rd and Σ ∈ Rd×d with Σ symmetric posi-
tive definite,N (µ,Σ) is the multivariate Gaussian with
mean µ and covariance Σ.

4. For two probability measures P and Q on the same
space X , we write P � Q if P is absolutely con-
tinuous with respect to Q, meaning that for any
Q−measurable A ⊆ X , A is P−measurable and if
Q(A) = 0 then P (A) = 0.

5. If P � Q, dP
dQ is the Q-almost everywhere unique

function such that for Q−measurable A ⊆ X

P (A) =

∫
A

dP

dQ
dQ

6. We write P ∼ Q if P and Q are equivalent, meaning
P � Q and Q� P .

7. We let ‖A‖F := tr(ATA) denote the Frobenius norm.

8. For positive definiteA, ‖x‖A :=
√
xTAx is the elliptic

norm defined by A.

9. We let P(X) be the set of probability distributions over
X .

1.2. Motivating Problem

This work was motivated by the desire to isolate highly lin-
ear clusters in point clouds and distinguish clusters which
were close in physical space but had different local direc-
tions. This originated with the goal of designing an algo-
rithm to identify slip faults based on locations of seismic
activity. Importantly, because slip faults being perfectly

LINSCAN - A Linearity Based Clustering Algorithm

linear, corollary seismic activity be close to linear after ac-
counting for noise.

To highlight the insufficiency of existing algorithms for
this task, consider Figure 1a. Note how there are clearly
highly linear clusters and highly nonlinear clusters, as well
as locations (in particular near (-.4,-.6)) where two highly
linear clusters intersect obliquely. Figure 1b shows the
results obtained by applying DBSCAN (described in the
next section) to the data. Note how both the linear and
nonlinear clusters are identified, how highly linear clusters
are conjoined with highly nonlinear clusters, and how we
see no separation between the intersecting linear clusters.

Figure 1. Test Data
(a) Data

(b) DBSCAN Results

2. Background: DBSCAN
2.1. The Algorithm

We begin by providing a description of DBSCAN. The main
principle behind DBSCAN is that clusters are equivalent to
connected regions of high density. Thus, the most natural
way to identify clusters is to search for points whose local
neighborhoods contain a high density of points from the

dataset and inductively grow clusters from those points.

Assume we have a dataset X = {x1, ..., xm} ⊆ Rd. Then,
for ε > 0 we let

Rε : X → P(X)

x 7→ X ∩Bε(x)

So, Rε(x) is the set of points in X within ε of x. Letting
#A be the number of elements in A for any finite set A,
DBSCAN works as follows:

1. Initialize n = 0 and N = ∅. n is the index of the
cluster we want to make, and N represents the set of
noise points.

2. Pick any point x ∈ X that is not labeled as noise (i.e.
not contained in N) and is not in any cluster (i.e. not
contained in Cn for any n).

3. If #Rε(x) < minPts, add x to N then go to step two,
as this means that the density of data points around
x is insufficient to consider x clustered. Otherwise,
start a new cluster Cn and set Cn = {x}. Then, let
S = Rε(x) \ {x} be the set of candidate points for
addition to the cluster.

4. For each point y ∈ S, if #Rε(y) < minPts, add y
to N and remove y from S. Otherwise, we add y to
Cn, remove y from S, and add Rε(y) to S. In other
words, if the neighborhood around y is not sufficiently
dense, label y as a noise point. Otherwise, add the
neighborhood around y to the set of candidate points.

5. Repeat step 4 until S is empty.

6. If #Cn < minPts, then label all the points in Cn
as noise and restart from step 2. Otherwise, the
cluster Cn is sufficiently large, so we keep it. If
X \ (N ∪

⋃n
k=0 Ck) is nonempty, set n← n+ 1 and

repeat from step 2. Otherwise, terminate the algorithm.

Note that the algorithm will always terminate in finite time
because in each loop, at least one point is labeled as either
noise or a clustered point and then never considered again.
Also note that in step 4 we never have to consider the case
where Rε(y) contains points from Ck for k < n, since any
point that is reachable fromCk is always labeled as either an
element of Ck or noise. In either case, it is never considered
again. DBSCAN is described more succinctly in Algorithm
1 (see supplemental document).

DBSCAN satisfies a few important properties. Specifically,
because x ∈ Rε(y) if and only if y ∈ Rε(x), the same
clusters will be formed regardless of how the points in X
are ordered (up to a reordering of the clusters). Furthermore,

LINSCAN - A Linearity Based Clustering Algorithm

we do not need to specify the number of clusters beforehand,
and all of the operations are highly efficient so long as
one can efficiently calculate Rε(x). This makes DBSCAN
useful for large, noisy datasets in cases where we have little
prior knowledge about the structure of the data.

2.2. Remarks

Note that the choice to use Euclidean distance with DB-
SCAN is somewhat arbitrary choice. The stability of the
algorithm only depends on the fact that our distance function
is symmetric, so if we define a notion of density of neighbor-
hoods in terms of another symmetric, non-negative function,
the algorithm should maintain its stability. Importantly, the
function does not need to satisfy the triangle inequality, so
we can work with non-metrics.

2.3. Related Work

The idea of extending DBSCAN to domains where we seek
linearity is not entirely new. Previously, an algorithm called
ADCN was developed to solve this problem by redefining
the search neighborhoods from circles to ellipses whose ec-
centricity reflect the local covariance of the point (Mai et al.,
2016). In practice, ADCN performs as well as DBSCAN in
many tasks and performs better in cases where clusters are
locally linear in otherwise highly noisy datasets.

However, ADCN is not well-suited for our task in partic-
ular because it does not provide the desired separation of
obliquely intersecting linear clusters. On the contrary, it can
make these intersections more likely, say with a T-shaped
intersection, where one cluster can accidentally bisect the
other. Furthermore, this process is non-symmetric, meaning
that in certain cases the clustering behavior may be incredi-
bly unstable to permutations of the points. LINSCAN, by
contrast, solves both of these problems.

3. LINSCAN
3.1. The Embedding

LINSCAN seeks to keep the advantages DBSCAN provides
while applying it to the task of distinguishing highly linear
clusters. To do this, we embed data points into P(Rd),
the space of probability measures on Rd, and then cluster
the data using a notion of distance between distributions.
Letting eccPts ∈ N and defining Rm(x) be the m-nearest
neighbors to x in the X , we define a mapping

x ∈ X 7→ N
(
µReccPts(x),ΣReccPts(x)

)
Thus, we embed each point in the dataset as the normal dis-
tribution best approximating its eccPts-nearest neighbors,
which allows us to cluster the points based on the local co-
variance of the data. To perform clustering in this space, we

define a distance function by

D(P,Q) =
1

2

∥∥∥Σ
−1/2
Q ΣPΣ

−1/2
Q − I

∥∥∥
F

+
1

2

∥∥∥Σ
−1/2
P ΣQΣ

−1/2
P − I

∥∥∥
F

+
1√
2
‖µP − µQ‖Σ−1

Q

+
1√
2
‖µP − µQ‖Σ−1

P

where P = N (µP ,ΣP) and Q = N (µQ,ΣQ) for positive
definite ΣP and ΣQ. Note that this function is symmetric
and D(P,Q) = 0 if and only if P = Q. Although D does
not satisfy the triangle inequality and is thus not a metric,
later we will discuss an approximate form of the triangle
inequality which D does satisfy.

While other distance functions exist which have a closed
form for Gaussians, D satisfies certain properties which are
specifically useful for our purposes. In particular, consider
the Wasserstein-2 distance, given by

W2(P,Q)2 = ‖µP − µQ‖22

+ tr

(
ΣP + ΣQ − 2

(
Σ

1/2
Q ΣPΣ

1/2
Q

)1/2
)

While this is a metric, note that the distance between the
means and covariances are independent, whereas D pun-
ishes differences in mean more heavily in directions orthog-
onal to the local linearity of the point. Furthermore, the
Wasserstein-2 distance punishes differences in covariances
at most polynomially in the magnitude of the eigenvalues,
whereas D punishes orthogonal covariance inversely to the
size of the minimum eigenvalues for high eccentricity clus-
ters, which can grow quite rapidly.

3.2. Motivating the Definition of D

We recall that on a probability space X , the Kullback-
Leibler Divergence between two probability measures P
and Q with P � Q is defined by

KL(P |Q) =

∫
X

log

(
dP

dQ

)
dP

Note the importance of the condition that P � Q, since
by the Radon-Nikodym Theorem dP

dQ exists and is finite
Q-almost everywhere if and only if P � Q.

In particular, if X = Rd and

P = N (µP ,ΣP) Q = N (µQ,ΣQ)

LINSCAN - A Linearity Based Clustering Algorithm

then

KL(P |Q) =
1

2
log
|ΣQ|
|ΣP |

+
1

2
tr(Σ−1

Q ΣP − I)

+
1

2
(µP − µQ)TΣ−1

Q (µP − µQ)

where |Σ| is the determinant of Σ.

Next, one can show (see supplemental document) that if∥∥∥Σ
−1/2
Q ΣPΣ

−1/2
Q − I

∥∥∥
F
< 1

then

KL(P |Q) =
1

4

∥∥∥Σ
−1/2
Q ΣPΣ

−1/2
Q − I

∥∥∥2

F

+ o

(
tr

((
Σ
−1/2
Q ΣPΣ

−1/2
Q − I

)3
))

+
1

2
(µP − µQ)TΣ−1

Q (µP − µQ)

So, we can define an approximation of KL(P |Q) by

M(P |Q) =
1

4

∥∥∥Σ
−1/2
Q ΣPΣ

−1/2
Q − I

∥∥∥2

F

+
1

2
(µP − µQ)TΣ−1

Q (µP − µQ)

This motivates the symmetric distance function

D(P,Q) =
1

2

∥∥∥Σ
−1/2
Q ΣPΣ

−1/2
Q − I

∥∥∥
F

+
1

2

∥∥∥Σ
−1/2
P ΣQΣ

−1/2
P − I

∥∥∥
F

+
1√
2
‖µP − µQ‖Σ−1

Q

+
1√
2
‖µP − µQ‖Σ−1

P

obtained by taking the square root term-wise of M(P |Q)
and M(Q|P) and then adding them together.

3.3. Local Behavior of D

While D does not satisfy the triangle inequality, one can
show that it satisfies a relaxed version, as follows:

Theorem 3.1 Let P = N (µP ,ΣP), Q = N (µQ,ΣQ),
and K = N (µK ,ΣK), and let ε > 0. If D(P,Q) ≤ ε
and D(Q,K) ≤ ε, then

D(P,K) ≤ D(P,Q) +D(Q,K)

+
√

2ε+
√

2ε
√

1 + ε+ ε2 + E(P,Q,K)

where E(P,Q,K) = 0 if ΣP , ΣQ, and ΣK commute.

A proof of this theorem can be found in the supplemental
document. Importantly, this shows that for small values of
ε, D behaves approximately like a metric, which allows us
to bound the diameter of any cluster in terms of ε and the
number of steps between points in the cluster. This ensures
that points whose local neighborhoods are nearly orthogonal
are not clustered together.

Compare this to the best results proven previously for the
approximate triangle inequality of the KL-Divergence be-
tween Gaussians in Zhang et al., which was of exponential
order (Zhang et al., 2021).

Numerically this bound does not seem to be tight. To see
this, Figure 2 plots D(X,Y) +D(Y,Z) on the x axis and
D(X,Z) on the y axis for an ensemble of randomly gener-
ated Gaussians on R2. If D satisfied the triangle inequality,
one would expect that all the points to be below the line
y = x. Instead, they seems to lie below a curve of degree
between 3

2 and 2, leading to the conjecture that an upper
bound on the order of εδ for some δ ∈

[
3
2 , 2
]

is possible.
Since we care about the behavior at small scales, this would
be a much stronger statement than the current bound, which
is on the order of ε.

3.4. The Algorithm

With the previous sections in mind, defining LINSCAN is
quite simple. We begin by embedding each point xi as a
multivariate Gaussian Pi by

xi 7→ Pi := N
(
µReccPts(xi),ΣReccPts(xi)

)
Then, we run DBSCAN on P = {Pi} with Euclidean dis-
tance replaced by D(·, ·), so that

Rε(P) := {Q ∈ P|D(P,Q) < ε}

and cluster X based on the results. The full process is
described in Algorithm 2 (see supplemental document).

4. Numerical Results
In practice, we have discovered that some clusters with
sufficiently high spacial density can develop even without
being sufficiently linear. To counter this phenomenon, we
can apply a linearity condition to the clusters at the end. In
the case of R2 we set a minimal threshold on the correlation
of the clusters and discard any clusters which do not meet
the threshold.

Figure 3a shows the results of applying LINSCAN to the
same data as in Figure 1a, Figure 3b shows the clusters with
the noise points removed, and Figure 3c shows the results
of removing clusters with correlation less than 1

2 . Note
the separation of clusters in the bottom left and top left in
comparison to the results from DBSCAN.

LINSCAN - A Linearity Based Clustering Algorithm

Figure 4 shows the results of applying LINSCAN to real
data representing seismic activity recorded in Southern Cal-
ifornia. Not only does LINSCAN identify linear clusters,
it is also able to identify them at multiple distinct scales
simultaneously.

Figure 5 shows the example of two noisy lines intersecting
orthogonally. Note that LINSCAN is the only algorithm
which is able to distinguish between the two.

References
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. A density-

based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data
Mining, KDD ’96, pp. 226–231. AAAI Press, 1996.

Mai, G., Janowicz, K., Hu, Y., and Gao, S. Adcn:
An anisotropic density-based clustering algorithm. In
Proceedings of the 24th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Informa-
tion Systems, SIGSPACIAL ’16, New York, NY, USA,
2016. Association for Computing Machinery. ISBN
9781450345897. doi: 10.1145/2996913.2996940.

Zhang, Y., Liu, W., Chen, Z., Li, K., and Wang, J. On
the properties of kullback-leibler divergence between
gaussians, 2021. URL https://arxiv.org/abs/
2102.05485.

Acknowledgements
I would like to thank my advisor Dr. Alexander Cloninger
for his support throughout this project. Further, I would like
to thank Dr. Yuri Fialko for bringing to our attention the
initial problem from which this project arose.

Figure 2. Triangle Inequality

Figure 3. Test Data
(a) LINSCAN Results

(b) LINSCAN Results with Noise Removed

(c) LINSCAN Results with Low-Correlation Clusters
Removed

LINSCAN - A Linearity Based Clustering Algorithm

Figure 4. Real Data
(a) Data

(b) LINSCAN results

(c) LINSCAN Results with Noise Removed

(d) LINSCAN Results with Low-Correlation Clusters
Removed

Figure 5. Crossing Lines
(a) Data

(b) DBSCAN results

(c) LINSCAN Results

LINSCAN SUPPLEMENTAL DOCUMENT

1. Approximation of KL(P |Q)

First, log |A| is the logarithm of the product of the eigenvalues of A, which is the same as the sum
of the logarithms of the eigenvalues. Therefore,

log |A| = tr(log(A))

where log(A) is the matrix logarithm, i.e. the solution B to

A = eB :=

∞∑
n=0

Bn

n!

Such a matrix exists and is unique for any positive definite matrix. In particular, if A = QΛQT for
orthogonal Q and diagonal Λ,

logA = Q log(Λ)QT

where log Λ is the diagonal matrix given by applying the logarithm entrywise to each diagonal entry.
Given this,

log
|ΣQ|
ΣP

= log |ΣQ| − log |ΣP |

= tr (log(ΣQ)− log(ΣP))

Next, for any positive definite matrices A and B,

tr (log(AB)) = tr(log(A)) + tr(log(B))

log(A−1) = − log(A)

Furthermore, if ‖A− I‖F < 1, then the sum

∞∑
n=1

(−1)k+1 (A− I)k

k

1

2 LINSCAN SUPPLEMENTAL DOCUMENT

converges in ‖·‖F to log(A). Combining all of this, if
∥∥∥Σ
−1/2
Q ΣPΣ

−1/2
Q − I

∥∥∥ < 1 then

tr (log(ΣQ)− log(ΣP))

= − tr
(

log
(

Σ
−1/2
Q

)
+ log (ΣP) + log

(
Σ
−1/2
Q

))
= − tr

(
log
(

Σ
−1/2
Q ΣPΣ

−1/2
Q

))
= − tr

 ∞∑
k=1

(−1)k+1

(
Σ
−1/2
Q ΣPΣ

−1/2
Q − I

)k
k



= −
∞∑
k=1

(−1)k+1

tr

((
Σ
−1/2
Q ΣPΣ

−1/2
Q − I

)k)
k

= − tr
(

Σ
−1/2
Q ΣPΣ

−1/2
Q − I

)
+

1

2
tr

((
Σ
−1/2
Q ΣPΣ

−1/2
Q − I

)2
)

+ o

(
tr

((
Σ−1/2
q ΣPΣ

−1/2
Q − I

)3
))

= − tr
(

Σ
−1/2
Q ΣPΣ

−1/2
Q − I

)
+

1

2

∥∥∥Σ
−1/2
Q ΣPΣ

−1/2
Q − I

∥∥∥2

F
+ o

(
tr

((
Σ
−1/2
Q ΣPΣ

−1/2
Q − I

)3
))

where in the last line we used the fact that Σ
−1/2
Q ΣPΣ

−1/2
Q − I is symmetric and for any symmetric

matrix A

tr(A2) = tr(ATA) = ‖A‖2F
Next, note that

tr(Σ−1
Q ΣP − I) = tr(Σ

−1/2
Q ΣPΣ

−1/2
Q − I)

So, combined with the prior derivations,

1

2
log
|ΣQ|
|ΣP |

+
1

2
tr(Σ−1

Q ΣP − I)

=
1

4

∥∥∥Σ
−1/2
Q ΣPΣ

−1/2
Q − I

∥∥∥2

F
+ o

(
tr

((
Σ
−1/2
Q ΣPΣ

−1/2
Q − I

)3
))

from which the rest of the approximation follows.

2. Proof of Relaxed Triangle Inequality

We recall that

D(P,Q) =
1

2

∥∥∥Σ
−1/2
Q ΣPΣ

−1/2
Q − I

∥∥∥
F

+
1

2

∥∥∥Σ
−1/2
P ΣQΣ

−1/2
P − I

∥∥∥
F

+
1√
2
‖µP − µQ‖Σ−1

Q
+

1√
2
‖µP − µQ‖Σ−1

P

These terms are all nonnegative, so if D(P,Q) ≤ ε then each term is at most ε. To show the relaxed
triangle inequality, we define

D1(P,Q) :=
∥∥∥Σ
−1/2
Q ΣPΣ

−1/2
Q − I

∥∥∥
F

+
∥∥∥Σ
−1/2
P ΣQΣ

−1/2
P − I

∥∥∥
F

and

D2(P,Q) := ‖µP − µQ‖Σ−1
Q

+ ‖µP − µQ‖Σ−1
P

so that

D(P,Q) =
1

2
D1(P,Q) +

1√
2
D2(P,Q)

LINSCAN SUPPLEMENTAL DOCUMENT 3

Then,

D2(P,K)

= ‖µP − µK‖Σ−1
K

+ ‖µP − µK‖Σ−1
P

≤ ‖µP − µQ‖Σ−1
K

+ ‖µQ − µK‖Σ−1
K

+ ‖µP − µQ‖Σ−1
P

+ ‖µQ − µK‖Σ−1
P

= D2(P,Q) +D2(Q,K) + ‖µP − µQ‖Σ−1
K
− ‖µP − µQ‖Σ−1

Q
+ ‖µQ − µK‖Σ−1

P
− ‖µQ − µK‖Σ−1

Q

Note that

‖µP − µQ‖Σ−1
K
− ‖µP − µQ‖Σ−1

Q

=
∥∥∥Σ
−1/2
K (µP − µQ)

∥∥∥
2
−
∥∥∥Σ
−1/2
Q (µP − µQ)

∥∥∥
2

≤
∥∥∥Σ
−1/2
K (µP − µQ)− Σ

−1/2
Q (µP − µQ)

∥∥∥
2

=
∥∥∥(Σ

−1/2
K − Σ

−1/2
Q

)
(µP − µQ)

∥∥∥
2

=
∥∥∥(Σ

−1/2
K Σ

1/2
Q − I

)
Σ
−1/2
Q (µP − µQ)

∥∥∥
2

≤
∥∥∥Σ
−1/2
K Σ

1/2
Q − I

∥∥∥
2

∥∥∥Σ
−1/2
Q (µP − µQ)

∥∥∥
2

=
∥∥∥Σ
−1/2
K Σ

1/2
Q − I

∥∥∥
2
‖µP − µQ‖Σ−1

Q

≤
∥∥∥Σ
−1/2
K Σ

1/2
Q − I

∥∥∥
2
ε

Now, note that
∥∥∥Σ
−1/2
K Σ

1/2
Q − I

∥∥∥
2

is the square root of the maximal eigenvalue of

(Σ
−1/2
K Σ

1/2
Q − I)T (Σ

−1/2
K Σ

1/2
Q − I)

Therefore, ∥∥∥Σ
−1/2
K Σ

1/2
Q − I

∥∥∥
2

=

√∥∥∥(Σ
−1/2
K Σ

1/2
Q − I)T (Σ

−1/2
K Σ

1/2
Q − I)

∥∥∥
2

=

√∥∥∥Σ
−1/2
K ΣQΣ

−1/2
K − Σ

−1/2
K Σ

1/2
Q − Σ

1/2
Q Σ

−1/2
K + I

∥∥∥
2

≤
√∥∥∥Σ

−1/2
K ΣQΣ

−1/2
K − I

∥∥∥
2

+
∥∥∥2I − Σ

−1/2
K Σ

1/2
Q − Σ

1/2
Q Σ

−1/2
K

∥∥∥
2

≤
√∥∥∥Σ

−1/2
K ΣQΣ

−1/2
K − I

∥∥∥
2

+
∥∥∥I − Σ

−1/2
K Σ

1/2
Q

∥∥∥
2

+
∥∥∥I − Σ

1/2
Q Σ

−1/2
K

∥∥∥
2

=

√∥∥∥Σ
−1/2
K ΣQΣ

−1/2
K − I

∥∥∥
2

+ 2
∥∥∥I − Σ

−1/2
K Σ

1/2
Q

∥∥∥
2

=

√∥∥∥Σ
−1/2
K ΣQΣ

−1/2
K − I

∥∥∥
2

+ 2
∥∥∥Σ
−1/2
K Σ

1/2
Q − I

∥∥∥
2

Solving this for
∥∥∥Σ
−1/2
K Σ

1/2
Q − I

∥∥∥
2
, we get∥∥∥Σ

−1/2
K Σ

1/2
Q − I

∥∥∥
2
≤ 1+

√
1 +

∥∥∥Σ
−1/2
K ΣQΣ

−1/2
K − I

∥∥∥
2
≤ 1+

√
1 +

∥∥∥Σ
−1/2
K ΣQΣ

−1/2
K − I

∥∥∥
F
≤ 1+

√
1 + ε

So,

‖µP − µQ‖Σ−1
K
− ‖µP − µQ‖Σ−1

Q
≤
∥∥∥Σ
−1/2
K Σ

1/2
Q − I

∥∥∥
2
ε ≤ ε+ ε

√
1 + ε

4 LINSCAN SUPPLEMENTAL DOCUMENT

A similar statement holds for ‖µQ − µK‖Σ−1
P
− ‖µQ − µK‖Σ−1

Q
, so

D2(P,K) ≤ D2(P,Q) +D2(Q,K) + 2ε+ 2ε
√

1 + ε

Next,∥∥∥Σ
−1/2
P ΣKΣ

−1/2
P − I

∥∥∥
F
−
∥∥∥Σ
−1/2
Q ΣKΣ

−1/2
Q − I

∥∥∥
F
−
∥∥∥Σ
−1/2
P ΣQΣ

−1/2
P − I

∥∥∥
F

≤
∥∥∥Σ
−1/2
P ΣKΣ

−1/2
P − Σ

−1/2
Q ΣKΣ

−1/2
Q

∥∥∥
F
−
∥∥∥Σ
−1/2
P ΣQΣ

−1/2
P − I

∥∥∥
F

≤
∥∥∥Σ
−1/2
P ΣKΣ

−1/2
P − Σ

−1/2
Q ΣKΣ

−1/2
Q − Σ

−1/2
P ΣQΣ

−1/2
P + I

∥∥∥
F

=
∥∥∥(I − Σ

−1/2
Q ΣPΣ

−1/2
Q

)(
I − Σ

−1/2
K ΣQΣ

−1/2
K

)
+ Σ

−1/2
K ΣPΣ

−1/2
K − Σ

−1/2
Q ΣPΣ

−1/2
Q Σ

−1/2
K ΣQΣ

−1/2
K

∥∥∥
F

≤
∥∥∥I − Σ

−1/2
Q ΣPΣ

−1/2
Q

∥∥∥
F

∥∥∥I − Σ
−1/2
K ΣQΣ

−1/2
K

∥∥∥
F

+
∥∥∥Σ
−1/2
K ΣPΣ

−1/2
K − Σ

−1/2
Q ΣPΣ

−1/2
Q Σ

−1/2
K ΣQΣ

−1/2
K

∥∥∥
F

≤ ε2 +
∥∥∥Σ
−1/2
K ΣPΣ

−1/2
K − Σ

−1/2
Q ΣPΣ

−1/2
Q Σ

−1/2
K ΣQΣ

−1/2
K

∥∥∥
F

A similar argument shows∥∥∥Σ
−1/2
K ΣPΣ

−1/2
K − I

∥∥∥
F
−
∥∥∥Σ
−1/2
Q ΣPΣ

−1/2
Q − I

∥∥∥
F
−
∥∥∥Σ
−1/2
K ΣQΣ

−1/2
K − I

∥∥∥
F

≤ ε2 +
∥∥∥Σ
−1/2
P ΣKΣ

−1/2
P − Σ

−1/2
Q ΣKΣ

−1/2
Q Σ

−1/2
P ΣQΣ

−1/2
P

∥∥∥
F

Combining these,

D1(P,K) ≤ D1(P,Q) +D1(Q,K) + 2ε2

+
∥∥∥Σ
−1/2
K ΣPΣ

−1/2
K − Σ

−1/2
Q ΣPΣ

−1/2
Q Σ

−1/2
K ΣQΣ

−1/2
K

∥∥∥
F

+
∥∥∥Σ
−1/2
P ΣKΣ

−1/2
P − Σ

−1/2
Q ΣKΣ

−1/2
Q Σ

−1/2
P ΣQΣ

−1/2
P

∥∥∥
F

Next, if [A,B] = AB −BA is the commutator of A and B,∥∥∥Σ
−1/2
K ΣPΣ

−1/2
K − Σ

−1/2
Q ΣPΣ

−1/2
Q Σ

−1/2
K ΣQΣ

−1/2
K

∥∥∥
F

≤
∥∥∥Σ
−1/2
K ΣPΣ

−1/2
K − Σ

−1/2
K Σ

−1/2
Q ΣPΣ

−1/2
Q ΣQΣ

−1/2
K

∥∥∥
F

+
∥∥∥Σ
−1/2
K Σ

−1/2
Q ΣPΣ

−1/2
Q ΣQΣ

−1/2
K − Σ

−1/2
Q ΣPΣ

−1/2
Q Σ

−1/2
K ΣQΣ

−1/2
K

∥∥∥
F

=
∥∥∥Σ
−1/2
K ΣPΣ

−1/2
K − Σ

−1/2
K Σ

−1/2
Q ΣPΣ

−1/2
Q ΣQΣ

−1/2
K

∥∥∥
F

+
∥∥∥[Σ−1/2

K ,Σ
−1/2
Q ΣPΣ

−1/2
Q

]
ΣQΣ

−1/2
K

∥∥∥
F

=
∥∥∥Σ
−1/2
K ΣPΣ

−1/2
Q Σ

−1/2
Q ΣQΣ

−1/2
K − Σ

−1/2
K Σ

−1/2
Q ΣPΣ

−1/2
Q ΣQΣ

−1/2
K

∥∥∥
F

+
∥∥∥[Σ−1/2

K ,Σ
−1/2
Q ΣPΣ

−1/2
Q

]
ΣQΣ

−1/2
K

∥∥∥
F

=
∥∥∥Σ
−1/2
K

[
ΣP ,Σ

−1/2
Q

]
Σ
−1/2
Q ΣQΣ

−1/2
K

∥∥∥
F

+
∥∥∥[Σ−1/2

K ,Σ
−1/2
Q ΣPΣ

−1/2
Q

]
ΣQΣ

−1/2
K

∥∥∥
F

=
∥∥∥Σ
−1/2
K

[
ΣP ,Σ

−1/2
Q

]
Σ

1/2
Q Σ

−1/2
K

∥∥∥
F

+
∥∥∥[Σ−1/2

K ,Σ
−1/2
Q ΣPΣ

−1/2
Q

]
ΣQΣ

−1/2
K

∥∥∥
F

Similarly,∥∥∥Σ
−1/2
P ΣKΣ

−1/2
P − Σ

−1/2
Q ΣKΣ

−1/2
Q Σ

−1/2
P ΣQΣ

−1/2
P

∥∥∥
F

≤
∥∥∥Σ
−1/2
P

[
ΣK ,Σ

−1/2
Q

]
Σ

1/2
Q Σ

−1/2
P

∥∥∥
F

+
∥∥∥[Σ−1/2

P ,Σ
−1/2
Q ΣKΣ

−1/2
Q

]
ΣQΣ

−1/2
P

∥∥∥
F

LINSCAN SUPPLEMENTAL DOCUMENT 5

So finally, if we let

E(P,Q,K) :=
1

2

∥∥∥Σ
−1/2
K

[
ΣP ,Σ

−1/2
Q

]
Σ

1/2
Q Σ

−1/2
K

∥∥∥
F

+
1

2

∥∥∥[Σ−1/2
K ,Σ

−1/2
Q ΣPΣ

−1/2
Q

]
ΣQΣ

−1/2
K

∥∥∥
F

+
1

2

∥∥∥Σ
−1/2
P

[
ΣK ,Σ

−1/2
Q

]
Σ

1/2
Q Σ

−1/2
P

∥∥∥
F

+
1

2

∥∥∥[Σ−1/2
P ,Σ

−1/2
Q ΣKΣ

−1/2
Q

]
ΣQΣ

−1/2
P

∥∥∥
F

then the theorem follows.
Note we could have defined E in terms of the original Frobenius norm terms and the theorem would

have still held, since if the three matrices commute, those terms would also be 0. However, rewriting
the bound in terms of commutators clarifies the relationship between the size of E and the degree to
which the matrices commute. Furthermore, in the future this form may be more useful in bounding E
for matrices which have similar eigenvectors.

6 LINSCAN SUPPLEMENTAL DOCUMENT

3. Algorithms

Algorithm 1 DBSCAN

Input: Data X = {x1, ..., xm}, ε > 0, minPts ∈ N
Output: Clusters {Ck}
n← 0
N ← ∅
while X \ (N ∪

⋃n−1
k=0 Ck) 6= ∅ do

Pick x ∈ X \ (N ∪
⋃n−1
k=0 Ck)

if #Rε(x) < minPts then
N ← N ∪ {x}

else
Cn ← {x}
S ← Rε(x) \ (N ∪ {x})
while S 6= ∅ do

Pick y ∈ S
if #Rε(y) < minPts then
N ← N ∪ {y}
S ← S \ {y}

else
Cn ← Cn ∪ {y}
S ← (S ∪Rε(y)) \ (N ∪ Cn)

end if
end while
if #Cn < minPts then
N ← N ∪ Cn
Cn ← ∅

else
n← n+ 1

end if
end if

end while

Algorithm 2 LINSCAN

Input: Data X = {x1, ..., xm}, ε > 0, minPts ∈ N, n = 0, N = ∅, eccPts ∈ N
Output: Clusters {Ck}
n← 0
N ← ∅
P ← ∅
for x ∈ X do
µ← µReccPts(x)

Σ← ΣReccPts(x)

P ← N (µ,Σ)
P ← P ∪ {P}

end for
{Dk} ← DBSCAN(P, ε,minPts)
for k ∈ {0, 1, ..., n} do
Ck ← {xi ∈ X : Pi ∈ Dk}

end for

