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Abstract

In this paper, we propose a factor-augmented regression model with dependent noise,
which combines dimension reduction and regression analysis. Existing research mainly
focuses on independent noise but overlook the natural dependence structure in real
applications. To this end, our model bridges the gap by relaxing the condition and
introducing more practical dependence structures and moment assumptions. In par-
ticular, we use a regularization technique to address the high-dimensional regression
issues and establish the estimation consistency. Furthermore, we conduct a simulation
study concerning different dependencies in the noise to validate the convergence rate
of our estimators and apply our proposed approach to the real U.S. macroeconomic
dataset for its practical efficacy in capturing complex dynamics.



Chapter 1

Introduction

1.1 Background

In the contemporary landscape of data-driven research and analysis, the proliferation
of high-dimensional data has emerged in various industries such as finance, medical
imaging, and astronomy. However, traditional analysis has limitations in terms of
dealing with high-dimensional data due to the complexity of matrix decomposition.
In response, factor modeling has gained prominence as a viable alternative for ad-
dressing the challenges posed by high-dimensional data. Stock and Watson [1998]
and Stock and Watson [2002b] as groundbreaking and pioneer work of factor model
first introduce a method to extract and analyze information from a large number of
economic time series data to estimate the state of the economy and predict business
cycle fluctuations. Specifically, factor model is in a form X = FB⊤ + U where
F is factor, B is loading matrix, and U is noise. By capturing common features,
namely factors, the factor model lets X be decomposed and reveals latent factors
that make complex high-dimensional data more interpretable. Alternative methods
such as Principal Component Regression (PCR) and Ridge Regression (RIDGE) have
a similar goal to achieve dimensionality reduction for high-dimensional data.

The factor model finds wide applications across diverse domains, notably emerging as
a crucial component within the financial arena. In this context, historical endeavors
have often aimed to identify an exhaustive set of features capable of comprehensively
measuring overall economic activity. Nevertheless, these features are correlated, which
leads us to the Fama-French three-factor model Fama and French [2004] that has been
widely used in asset pricing analysis. Building upon the traditional Capital Asset
Pricing Model (CAPM) Jagannathan et al. [1995], the Fama-French model extends
the explanatory power of asset returns by incorporating three additional factors that
capture additional sources of risk and return: (1) SMB represents the outperformance
of small versus big companies, which accounts for the size of firms, (2) HML stands
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CHAPTER 1. INTRODUCTION 2

for the outperformance of high book/market versus low book/market companies, and
(3) the third factor r− rf is the difference between the expected return of the market
and the risk-free rate, which measures the excess return on the market. Thus, the
Fama-French three-factor model, more generally, the factor model, effectively reduces
the computation cost and makes high-dimensional data more approachable.

While the factor model succeeds in seizing common factors, it falls short in explaining
how they act in the response variable, or the regression model. As a result, the
Factor Augmented Regression Model (FARM) is an extension of the traditional factor
model [Bai and Ng, 2002, Fan et al., 2011]. As is introduced in Fan et al. [2023],
FARM incorporates both the latent factor and the idiosyncratic component into the
covariates, and it is in a form

Y = Fγ +Uβ + e,

where F is the latent factor, U is the idiosyncratic component and ε ∈ R is the
random noise that is independent of F and U . Nevertheless, high-dimensional data
is often sparse and only has a few active elements, so it presents a challenge to
FARM since regression can lead to overfitting by incorporating inactive elements,
consequently yielding inaccurate results. Thus, regularization techniques such as
RIDGE and Elastic Net are needed to employ, and in our paper, we primarily focus
on LASSO.

1.2 Contribution

LASSO stands for Least Absolute Shrinkage and Selection Operator, which extends
the linear regression model by introducing an additional l1 penalty term based on the
absolute values of the coefficients, and it is in a form

Q(β, λ) = Q(β) + λ|β|1 =
n∑
i=1

(yi − x⊤
i β)

2 + λ|β|1,

where β is the coefficient and λ is the regularization parameter that controls the
level of regularization applied. The effectiveness of FARM with regularization is
confirmed by Stock and Watson’s work, in which they used a U.S. macroeconomic
dataset and demonstrated how a massive amount of variables could be reduced to
just a few. Therefore, compared to the regression model, LASSO achieves a balance
between model simplicity and accuracy while also promoting sparse models with fewer
parameters Huang et al. [2008]. In addition, we want to emphasize our assumptions.
Many scholars have often employed stringent assumptions in factor models or FARM,
assuming that the noise is mutually independent. However, inspired by Breitung and
Tenhofen [2011] which expands the factor model and introduces the correlation in
the idiosyncratic component, we introduce a milder condition for the noise in FARM.
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Specifically, we consider the noise to be dependent and follow an autoregressive (AR)
process. Furthermore, we assume the error to be i.i.d and independent to F and U .

1.3 Structure

The paper is organized as follows. Chapter 2 illustrates the regular assumptions and
corresponding properties in the Factor Model, introduces our dependence measure on
the noise, and establishes the LASSO estimators’ statistical properties of the Dynamic
Factor Augmented Regression model. Chapter 3 presents the simulation results using
the Dynamic Factor regression model with different dependencies ϕ = 0.1, 0.9. In
addition, we work on a real U.S. macroeconomic dataset to evaluate our model in
Chapter 4, and we also discuss the data background and potential reasons for the ups
and downs in the graphs. Lastly, the conclusion and discussions are in Chapter 5.

1.4 Notation

In this section, we want to introduce notations that will be consistently employed

throughout this paper. For any vector µ = (µ1, . . . , µp)
⊤ ∈ Rp, |µ|2 = (

∑p
i=1 µ

2
i )

1
2 ,

|µ|∞ = maxi |µi|. Denote λj(A) as the j-th largest eigenvalue of a nonnegative defini-
tive matrix A, |A|2 be the spectral norm of a matrix A, and |A|F be the Frobenius
norm of A. For a random variable X, denote ∥X∥p = (E|X|p)1/p. In addition, we
let [m] = {1, . . . ,m} for m ∈ Z. Let ∥Z∥ψ2 = inf {t > 0 : E exp (Z2/t2) ⩽ 2} be the
sub-Gaussian norm of a scalar random variable Z and ∥Z∥ψ2 = sup|x|2=1 ∥Zx∥ψ2 be
the sub-Gaussian norm of a random vector Z. Denote I{·} and IK as the indicator
function and the identity matrix in RK×K , respectively. For a matrix A = [Ajk],

we define ∥A∥F =
√∑

jk A
2
jk as its Frobenius norm, and ∥A∥max = maxjk |Ajk| and

∥A∥∞ = maxj
∑

k |Ajk| are its element-wise max-norm and matrix ℓ∞-norm, respec-
tively. In addition, denote λmin(A) and λmax(A) to be the minimal and maximal
eigenvalues of A, respectively. |A| is the cardinality of set A. For {an}n⩾1 , {bn}n⩾1

to be two positive sequences, we denote an = O (bn) if there exists a positive constant
C such that an ⩽ C ·bn and we write an = o (bn) if an/bn → 0. Similarly, the notations
an = OP (bn) and an = oP (bn) remain the same as previously mentioned, besides the
relationship of an/bn holds with high probability.



Chapter 2

Dynamic Factor Augmented
Regression Model

This section introduces a regularized estimation method for the factor-augmented
sparse linear model and delivers the statistical properties. In general, suppose that we
observe n independent and identically distributed (i.i.d.) random samples {(xt, Yt)}nt=1

from (x, Y ), which satisfy that

xt = Bft + ut and Yt = f⊤
t γ

⋆ + u⊤
t β

⋆ + et, t = 1, . . . , n, (2.1)

where f1, . . . ,fn ∈ RK , u1, . . . ,un ∈ Rd are i.i.d. realizations of f , u, respectively. In
our framework, we can extend the original i.i.d. condition for e to follow a wide class
of dependent structure. In addition, we can rewrite (2.1) in a more compact matrix
form as follows,

X = FB⊤ +U ,

Y = Fγ⋆ +Uβ⋆ + e, (2.2)

where X = (x1, . . . ,xn)
⊤, F = (f1, . . . ,fn)

⊤, U = (u1, . . . ,un)
⊤, Y = (Y1, . . . , Yn)

⊤

and e = (e1, . . . , en)
⊤. Throughout the whole paper, we assume we only get access

to observations {(xt, Yt)}nt=1. Both the latent factors F and the idiosyncratic compo-
nents U are unobserved and need to be estimated from the observed predictors X.
Thus, we shall first introduce the method of estimating F and U , then establish the
theoretical properties.

2.1 Factor Estimation

Suppose we observe n independent and identically distributed (i.i.d.) random samples
x1, . . . ,xn ∈ Rd from the factor model

xt = Bft + ut, (2.3)

4



CHAPTER 2. DYNAMIC FACTOR AUGMENTED REGRESSION MODEL 5

where f1, . . . ,fn and u1, . . . ,un are i.i.d. realizations of f and u, respectively. Recall
that the latent variables (ft,ut) are not observed under the factor model (2.3) and
only the predictor variable x is observable. More specifically, for any non-singular
matrix S ∈ RK×K , we have x = Bf + u = (BS)(S−1f) + u. To resolve this issue,
we impose the following conditions [Bai, 2003, Fan et al., 2013]:

Cov(f) = IK and B⊤B is diagonal.

Consequently, the constrained least squares estimator of (F ,B) based on X is given
by

(F̂ , B̂) = argmin
F∈Rn×K ,B∈Rd×K

d∑
i=1

n∑
t=1

(xit − b⊤i ft)
2

subject to n−1F⊤F = IK and B⊤B is diagonal.

The columns of F̂ /
√
n are the eigenvectors corresponding to the largestK eigenvalues

of the matrix XX⊤ and B̂⊤ = (F̂⊤F̂ )−1F̂⊤X = n−1F̂⊤X. And the least squares
estimator for U is given by Û = X − F̂ B̂⊤ = (In − n−1F̂ F̂⊤)X.

Now we first introduce some regularity conditions following from Fan et al. [2023].

Assumption 2.1 (Factors). There exists a positive constant c0 < ∞ such that
∥f∥ψ2 ≤ c0.

Assumption 2.2 (Factor Loadings). There exists a constant c0 > 1 such that d/c0 ≤
λmin(B

⊤B) ≤ λmax(B
⊤B) ≤ dc0 and |B|max ≤ c0.

Assumption 2.3 (Idiosyncratic Error).

1. There exists a positive constant c1 < ∞ such that ∥u∥ψ2 ≤ c1. If let Σ =
Cov(u), then E|u⊤u− tr(Σ)|4 ≤ c1d

2.

2. There exist a positive constant c2 < 1 such that c2 ≤ λmin(Σ), |Σ|1 ≤ 1/c2 and
min1≤k,ℓ≤dVar(ukuℓ) ≥ c2.

Remark 2.1. Assumptions 2.1–2.3 are standard assumptions in the studies of large
dimensional factor models. We refer to Bai [2003], Fan et al. [2013] and Fan et al.
[2023] for more details.

Next, we provide the theoretical results related to consistent factor estimation in the
following proposition which directly follows from Proposition 2.1 in Fan et al. [2023].

Theorem 2.1 (Proposition 2.1 in [Fan et al., 2023]). Assume that log n = o(d). Let
H = n−1V −1F̂⊤FB⊤B, where V ∈ RK×K is a diagonal matrix consisting of the first
K largest eigenvalues of the matrix n−1XX⊤. Then, under Assumptions 2.1-2.3, we
have
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1. |F̂ − FH⊤|2F = OP(n/d+ 1/n).

2. For any I ⊂ {1, 2, . . . , d}, we have

max
ℓ∈I

n∑
t=1

|ûtℓ − utℓ|2 = OP(log |I|+ n/d).

3. |H⊤H − IK |2F = OP(1/n+ 1/d).

4. maxℓ∈[d] |b̂ℓ −Hbℓ|22 = OP{(log d)/n}.

Remark 2.2 (Consistency of K). In practice, the number of latent factors K is
typically unknown and it is an important issue to determine K. There have been
various methods proposed in the literature to estimate the number K [Ahn and
Horenstein, 2013, Bai and Ng, 2002, Fan et al., 2022, Lam and Yao, 2012]. Our
theories always work as long as we replace K by any consistent estimator K̂, i.e. we
only require

P(K̂ = K) → 1, as n → ∞.

2.2 Estimation of Regression Parameters

The high dimension time series where the dimension d can be much larger than
the sample size n implies that only a few predictors could be contributed and the
true parameter vector can be assumed as a sparse vector. Then the estimator for
the unknown parameter vectors β⋆ and γ⋆ of our factor augmented linear model is
defined as follows:

(β̂λ, γ̂) = argmin
β∈Rd,γ∈RK

{
1

2n
|Y − Ûβ − F̂ γ|22 + λ|β|1

}
, (2.4)

where λ > 0 is a tuning parameter. It is hard to directly get the solution of γ first.
Therefore, we need to find an equivalent formula of the loss function (2.4). Projecting
onto the column space of F̂ , we can get the residuals of the response vector Y given
by

Ỹ = (In − P̂ )Y ,

where P̂ = n−1F̂ F̂⊤ is the corresponding projection matrix. Recall that Û = (In −
P̂ )X implies F̂ are perpendicular to Û , i.e. F̂⊤Û = 0. Hence, the solution of (2.4)
is equivalent to

β̂λ = argmin
β∈Rd

{
1

2n
|Ỹ − Ûβ|22 + λ|β|1

}
,

γ̂ = (F̂⊤F̂ )−1F̂⊤Y = n−1F̂⊤Y .

In the next subsection, we will discuss the LASSO estimator.
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2.2.1 LASSO estimator

LASSO, namely Least Absolute Shrinkage, and Selection Operator, serves as a reg-
ularization technique within linear regression in the high dimensional scenario. Its
primary objective is to introduce a regular assumption of parameter sparsity to the
model by adding a penalty term to the loss function of the Ordinary Least Squares
(OLS) method. Suppose that we have n covariates with d-dimension xij and n cor-
responding responses yi. If we consider an intercept β0 in the linear model [Huang
et al., 2008] given by

yi = β0 +
d∑
j=1

xijβj + εi, i = 1, 2, . . . , n.

The estimator β̂lasso can be represented as follows:

β̂lasso =argmin
β

n∑
i=1

(
yi − β0 −

d∑
j=1

xijβj

)2

subject to
d∑
j=1

|βj| ≤ t.

When we consider the concept of constrained optimization, the LASSO estimate is
also equivalent to Lagrangian form [Zou, 2006]

β̂lasso = argmin
β

1

2

n∑
i=1

(
yi − β0 −

d∑
j=1

xijβj

)2

+ λ
d∑
j=1

|βj|

 ,

Here, we can denote |β|1 :=
∑d

j=1 |βj| and |y−Xβ|2 =
∑n

i=1

(
yi − β0 −

∑d
j=1 xijβj

)2
.

Therefore, it can be regarded as a constrained optimization problem to find the opti-
mal solution. Furthermore, LASSO aims to control the absolute size of the coefficients
βj. Specifically, λ measures the connection between LASSO and the Lagrangian form,
and when λ is small, the constraint is loose, enabling more coefficients to maintain
non-zero terms, and vice versa.

Note that it is vital to choose appropriate t since if t is sufficiently small, it will lead
to some coefficients being exactly 0 and thereby achieve covariates selection. The
standard tuning parameter s = t/

∑p
j=1 |β̂j|. In general, we can use k-fold cross-

validation to choose a suitable λ. When applying 10-fold cross-validation, a value
of ŝ ≈ 0.36, for example, results in the four coefficients approach 0 [Hastie et al.,
2009]. Hence, LASSO is a powerful regularization technique that balances predictive
accuracy and variable selection.

Then, we discuss and compare the approaches for the regression model: Ridge re-
gression and LASSO. Suppose the input matrix X is an orthonormal matrix, the two
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procedures have explicit solutions. Ridge regression is also a regularization regression
model with l2 penalty, i.e.

β̂ridge = argmin
β

1

2

n∑
i=1

(
yi − β0 −

d∑
j=1

xijβj

)2

+ λ

d∑
j=1

|βj|2
 ,

Each method applies a simple transformation to the least squares estimate βj, as
detailed in Table 2.1 .

Estimator Formula

LASSO sgn(β̂j)(|β̂j| − λ)+
Ridge β̂j/(1 + λ)

Table 2.1: Estimators of βj in the case of orthonormal columns ofX. λ is the constant
chosen by the corresponding techniques; sgn denotes the sign of its argument (±1),
and x+ denotes “positive part” of x.

Next, we use a figure to illustrate their relationship. Figure 2.1 depicts the LASSO
(left) and Ridge regression (right) when there are only two parameters (i.e. two
dimensions in the figure). The residual sum of squares can be regarded as a series of
elliptical contours, centered at the least squares estimator. The constraint region for
Ridge regression is the disk |β|22 = β2

1 + β2
2 ≤ t2, while that for lasso is the diamond

|β|1 = |β1|+ |β2| ≤ t. Both methods find the first point where the elliptical contours
reach the constraint region. The disk can have usual solutions, while the diamond
has corners; if the solution occurs at a corner, then it has one parameter βj equal to
zero. When d > 2, there are many more opportunities for the estimated parameters
to be zero (see Tibshirani [1996]).

2.2.2 Dependence Measure

Traditionally, Fan et al. [2023] considered the i.i.d realization of noise e which has
finite sub-Gaussian norm. Therefore, we introduce a mild condition for the random
noise. In general, some studies adopted the mixing conditions such as the α-mixing
in the literature like Fan et al. [2013]. They consider ft and ut as a stationary
time series with zero mean. Let F0

−∞ and F∞
T denote the σ-algebras generated by

{(ft,ut) : t ≤ 0} and {(ft,ut) : t ≥ T} respectively. They define the mixing coeffi-
cient

α(T ) = sup
A∈F0

−∞,B∈F∞
T

|P(A)P(B)− P(A ∩B)|

In our paper, to make the dependence measure easier to implement, we will introduce
the framework in Wu and Wu [2016]. Let εt, t ∈ Z be i.i.d random variables and
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Figure 2.1: Estimation picture for the LASSO (left) and Ridge regression (right).
Shown are the contours of the error and constraint functions. The solid blue areas
are the constraint regions |β|1 = |β1|+ |β2| ≤ t and |β|22 = β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.

corresponding σ-field F t
s = (εs, εs+1, . . . , εt) generated by the innovations εs, . . . , εt.

Set F t := F t
−∞. Assume that the stationary time series {et}t has causal form

et := g(F t) = g(. . . , εs, εs+1, . . . , εt) (2.5)

where g(·) are real-valued corresponding measurable functions such that et can be
well-defined. Following Wu [2005] and Wu and Wu [2016], given the causal form
(2.5), if ∥et∥q < ∞ for some q ≥ 1, we can define the functional dependence measure
as

δt,q = ∥et − e∗t∥q = ∥et − g(F t,{0})∥q = ∥g(F t)− g(F t,{0})∥q,

where the coupled processes are e∗t = g(F t,{0}) with

F t,{0} = (. . . , ε−1, ε
′
0, ε1, . . . , εt−1, εt)

where ε′0 is i.i.d copy of ε0. We can assume this kind of short-dependence given by

∆0,q :=
∞∑
t=0

δt,q < ∞

For fixed m, ∆m,q measures the cumulative effect of ε0 on {et}t≥m. Assume that
the geometric moment contracting (GMC) condition is satisfied for each component
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process: There exists a constant ρ ∈ (0, 1) such that

∥e·∥q := sup
m≥0

ρ−m
∞∑
t=m

δt,q < ∞ (2.6)

Now we introduce the extension of dependence-adjusted norm following from Wu and
Wu [2016].

Definition 2.1. A (weakly) one-dimensional stationary time series {Xt}t≥1 ∈ Lq
holds for all q ≥ 2 and, for some ν ≥ 0, define the following dependence-adjusted
Orlicz norm as

∥X.∥ψν := sup
q≥2

q−ν∥X.∥q = sup
q≥2

q−ν
∞∑
t=0

∥Xt −X∗
t ∥q (2.7)

We can provide a formal assumption for et below.

Assumption 2.4 (Dependent Noise).

1. (et)t≥1 is weakly stationary with mean 0, i.e. Eet = 0 for any t ≤ T .

2. Eetuit = Eetfjt = 0 for all t ≤ T , i ≤ p and j ≤ K.

3. If (et)t≥1 ∈ Lq holds for all q > 2 and, for some ν ≥ 0,

∥e.∥ψν := sup
q≥2

q−ν∥e.∥q < ∞.

Moreover, there exists some 0 < ρ < 1 and ν ≥ 0 such that ∥e·∥ψν < ∞.

Before discussing the theoretical properties of β and γ, we introduce some important
and useful lemmas based on the dependence structure.

Lemma 2.1 (Theorem 3 from Wu and Wu [2016]). Under Assumption 2.4, let Sn =∑n
t=1 et and α = 2/(1 + 2ν). Then for x > 0, there exists a positive constant Cα only

depending on α such that

P
(
Sn/

√
n ≥ x

)
≤ Cα exp

(
− xα

2eα∥e.∥αψν

)
.

Lemma 2.2. Let Sn =
∑n

i=1 ei. Denote δi,q := ∥ei − ei,{0}∥q. For any m ≥ 0, define
ei,m = E(ei|εi−m+1, . . . , εi), Sn,m =

∑n
i=1 ei,m and ∆m,q =

∑∞
j=m δj,q. Under the same

condition as Lemma 2.1, for any x > 0,

P
(
(Sn − Sn,m)/

√
n ≥ x

)
≤ Cα exp

(
− xα

Cρ,αραm/2∥e.∥αψν

)
,

where α = 2/(1 + 2ν) and Cρ,α only depends on α and ρ.
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2.2.3 Estimation Error

In general, when we discuss the sparsity of parameters, we usually introduce a cone
set to study its properties. Therefore, for any subset S ⊂ {1, 2, . . . , d}, define a convex
cone C(S, 3) := {δ ∈ Rd : |δSc |1 ≤ |δS |1}. Given the parameter in assumptions, we
also write

Vn,d =
n

d
+

√
log d

n
+

√
n log d

d
(2.8)

Now, we provide some technical lemmas helpful to establish the estimation error of
β̂ and γ̂.

Lemma 2.3. Assume that λ ≥ 2
n
|Û⊤(Ỹ − Ûβ∗)|∞ and for some positive constant

κ (S∗, 3),

κ (S∗, 3) := min
S∗⊂{1,...,p},|S∗|≤s

min
0 ̸=v∈C(S∗,3)

v⊤Σ̃v

|v|22
> 0.

Then we have β̂λ − β∗ ∈ C (S∗, 3),

|β̂λ − β∗|2 ≤
3λ
√
|S∗|

κ (S∗, 3)
and |Û(β̂λ − β∗)|22 ≤

9nλ2 |S∗|
κ (S∗, 3)

.

Lemma 2.4. Under Assumption 2.1-2.3, for any vector φ ∈ RK with |φ|2 = O(1),
we have

|Û⊤Fφ|∞ = OP(Vn,d). (2.9)

Lemma 2.5. Under Assumptions 2.1-2.3, we have

|Û⊤Û −U⊤U |max = OP

(n
d
+ log d

)
.

Proof of Lemma 2.3, 2.4, 2.5. See the proof in Fan et al. [2023].

Lemma 2.6. Under the Assumptions 2.1-2.4, there exists a positive constant C > 0
such that

(i) |F⊤e|2 = OP(
√
n),

(ii) |U⊤e|∞ = OP(
√

n(log d)1+2ν).

Proof of Lemma 2.6. (i) By the relationship between l2 norm and l∞ norm, we have

|F⊤e|2 =

∣∣∣∣∣
n∑
t=1

ftet

∣∣∣∣∣
2

≤
√
K

∣∣∣∣∣
n∑
t=1

ftet

∣∣∣∣∣
∞

.
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Since Assumption 2.1 implies ∥fjt∥2 ≤
√
2Kc0 for some K > 0, we can get

∞∑
t=m

∥fjtet − fjte
∗
t∥τ =

∞∑
t=1

∥fjt(et − e∗t )∥τ

≤
∞∑
t=1

∥fjt∥2∥et − e∗t∥q ≤
√
2Kc0∆0,q,

Thus, by Lemma 2.1, for x > 0, we have

max
i

P

(∣∣∣∣∣ 1n
n∑
t=1

fitet

∣∣∣∣∣ ≥ x

)
≤ C exp{−C ′(

√
nx/∥e.∥ψν )

2/(1+2ν)},

where constants C,C ′ only depend on ν. Using the Bonferroni inequality,

P(
∣∣F⊤e

∣∣
2
≥ x) ≤ P

(
√
Kmax

i≤K

∣∣∣∣∣
n∑
t=1

fitet

∣∣∣∣∣ ≥ x

)

≤ Kmax
i

P

(∣∣∣∣∣ 1n
n∑
t=1

fitet

∣∣∣∣∣ ≥ x/(
√
Kn)

)
.

Now we choose a suitable x = C
√
n. For all large enough C > 0,

K exp{−C(x/
√
Kn∥e.∥ψν )

2/(1+2ν)} → 0.

(ii)Similarly, we can get

∞∑
t=m

∥ujtet − u∗
jte

∗
t∥τ ≤ C∆0,q,

where τ = 2q/(2 + q). Thus, by Lemma 2.1 and Bonferroni inequality, for x > 0, we
have

P

(
max
i≤d

∣∣∣∣∣
n∑
t=1

uitet

∣∣∣∣∣ ≥ x

)
≤ dmax

i
P

(∣∣∣∣∣
n∑
t=1

uitet

∣∣∣∣∣ ≥ x

)
≤ dC exp{−C ′(x/

√
n∥e.∥ψν )

2/(1+2ν)},

where constants C,C ′ only depend on ν. Now, we can choose a large enough x =
C(log d)1/2+ν

√
n. For all large enough C > 0,

d exp{−C ′(x/
√
n∥e.∥ψν )

2/(1+2ν)} = O

(
1

d

)
.
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Lemma 2.7. Under Assumptions 2.1-2.4, for any set S ⊂ {1, 2, . . . , p} with

|S∗|
(
1

d
+

log d

n

)
→ 0, (2.10)

there exists a constant κ(S, 3) > 0 such that

v⊤Σ̃v

|v|22
≥ κ(S, 3) = λmin(Σ)

4
,

with a high probability.

Lemma 2.8. Under Assumptions 2.1-2.4, we have

|(Û −U)⊤e|∞ = OP

(√
n

d
+
√

log d

)
.

Proof of Lemma 2.7, 2.8. See the proof in Fan et al. [2023].

Lemma 2.9. Under Assumptions 2.1-2.4, we have

|Û⊤(Ỹ − Ûβ∗)|∞ = OP

(√
n(log d)1+2ν + Vn,d|φ∗|2

)
.

Proof of Lemma 2.9. By Lemma 2.4,2.6 and 2.7, we have |Û⊤Fφ∗|∞ = OP(Vn,d|φ∗|2)
and

|Û⊤e|∞ ≤ |(Û −U )⊤e|∞ + |U⊤e|∞ = OP

(√
n(log d)1+2ν

)
.

Thus, combining the two inequalities implies

|Û⊤(Ỹ − Ûβ∗) = |Û⊤e+ Û⊤Fφ∗|∞ ≤ |Û⊤e|∞ + |Û⊤Fφ∗|∞
= OP

(√
n(log d)1+2ν + Vn,d|φ∗|2

)
.

Now we state the main result concerning estimation consistency under the new As-
sumptions 2.1-2.4.

Theorem 2.2 (Theorem 2.2 in Fan et al. [2023]). If φ∗ = γ∗ −B⊤β∗, then under
Assumptions 2.1-2.4, we have

|γ̂ −Hγ∗|2 = OP

{
1√
n
+

(
1√
n
+

1√
d

)
|φ∗|2 +

(√
log |S⋆|

n
+

1√
d

)
|β∗|1

}

where S∗ = {j : β∗
j ̸= 0, 1 ≤ j ≤ p} and |S∗| is cardinality of set S∗.
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Proof of Theorem 2.2. Apply similar proof in Fan et al. [2023].

Theorem 2.3. If

|S∗|
(
1

d
+

log d

n

)
→ 0,

then under Assumptions 2.1-2.4, choosing appropriate λ ≥ 2
n
|Û⊤(Ỹ − Ûβ∗)|∞, we

have β̂λ − β∗ ∈ C(S∗, 3) and

|β̂λ − β∗|2 = OP

(√
|S∗|(log d)1+2ν

n
+

Vn,d|φ∗|2
√
|S∗|

n

)
(2.11)

where Vn,d is defined in (2.8).

Proof of Theorem 2.3. Applying Lemma 2.3 with Lemma 2.7 and 2.9 and using the
fact that |v|2 ≤

√
|v||v|1 can obtain (2.11).



Chapter 3

Simulation

For data generation, we set the number of factors K = 2, dimension of covariate
d = 100, sparsity s = 3. We select the corresponding number of observations n
according to the ratio s

√
(log d)1+2ν/T that takes uniform grids in [0.30, 0.60]. We

replicate the experiment 500 times. In addition, we assume the noise follows the
linear Autoregressive (AR) model with MA(∞) representation, i.e.

et = ϕet−1 + εt =
∞∑
k=0

ϕkεt−k, t = 1, . . . , n

where ϕ satisfies |ϕ| < 1 and the innovation εt follows the Gaussian distribution
N (0, 0.52). We generate every entry in factors F and idiosyncratic error U following
from the standard Gaussian distribution, every entry in factor loadings B following
from the uniform distribution Unif(−1, 1). Moreover, according to the linearity of
noise, we can choose the dependency ϕ to be 0.1 and 0.9. Specifically, since the
variance of et is

Var(et) =
σ2
ε

1− ϕ2
=

0.52

1− ϕ2
,

ϕ = 0.1 and 0.9 imply the dependence within the noise and their standard deviations
are far away from F and U . We compared the results under ϕ = 0.1 and ϕ = 0.9.
Then, we rescale the et by standardizing their corresponding standard deviation to
0.5.

In Figure 3.1 and 3.2, the red lines represent the estimation results using our model
while the blue lines denote the results using the traditional LASSO method. The
means of the distance between our estimators and true parameters approaches 0.2,
while the others are above 0.6. Also, the standard deviation for our estimators is less
than that for traditional LASSO estimators. Therefore, we find that our estimators
outperform the original LASSO estimators even though the dependency is stronger.

15
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Figure 3.1: Accuracy for β̂λ with dist(β̂λ, β
⋆) := |β̂λ − β⋆|1 based on 500 replication

under dependency of noise ϕ = 0.1.
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Figure 3.2: Accuracy for β̂λ with dist(β̂λ, β
⋆) := |β̂λ − β⋆|1 based on 500 replication

under dependency of noise ϕ = 0.9.



Chapter 4

Real Data Analysis

4.1 Background and Motivation

In this section, we introduce a macroeconomic dataset named FRED-MD [McCracken
and Ng, 2020] to evaluate the performance of our model. There are 210 quarterly
U.S. macroeconomic variables in this dataset. They exhibit correlation since they
relate to various aspects of the economy thus driven by similar factors. In our study,
we pick out 2 variables named All Employees: Retail Trade (Thousands of Persons)
and GOV:FED as our response variables while letting the rest be the covariates.
Specifically, USTRADE stands for All Employees: Retail Trade (Thousands of Per-
sons); GOV:FED represents Real Government Consumption Expenditures and Gross
Investment: Federal (Percent Change from Preceding Period).

We choose quarterly data fromMarch 1967 to December 2019 and apply recommended
transformations to the data. When discussing prediction and inference of real data
analysis, some scholars tend to select more compact, stationary, or even normally
distributed data; however, such data options are invariably limited. Therefore, unlike
Fan et al. [2023], which excludes the period from November 2007 to July 2010 due to
the global financial crisis causing significant financial breaks and rendering the data
non-stationary, we believe that after performing transformations, such as (code: 1 =
no transformation, 2 = first difference ∆xt, 3 = second difference ∆2xt, 4 = log(xt),
5 = first difference of logged variables ∆ log(xt), 6 = second difference of logged
variables ∆2 log(xt)), the data will be stationary. Specifically, we apply code 5 to
”USTRADE” and code 1 to ”GOV:FED”. Moreover, we can check QQ plots of these
response variables before the inference and prediction to determine whether they
approximately follow a Gaussian distribution. Thus, we incorporate all periods in
our analysis.

We employ models PCR, LASSO, and RIDGE to illustrate the performance of our
proposed model. Using the moving window approach with a window size w of different

17
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months, we analyze and compare the prediction results obtained by employing these
models. For example, given the window size w = 120, for each period and model, we
utilize the panel data indexing from 1 for each of the one time periods, for all 120,
we use the 120 previous observation pairs {(xt−120, Yt−120) , . . . , (xt−1, Yt−1)} to train

a model and output a prediction Ŷt and in-sample mean Ȳt =
1

120

∑t−1
i=t−120 Yi. We

evaluate the model prediction by introducing out-of-sample R2 given by

R2 := 1−
∑T

t=121(Yt − Ŷt)
2∑T

t=121(Yt − Ȳt)2
,

where T denotes the number of total data points in a given period.

4.2 Discussion

We pick up two target response variables and check their normal QQplot in the whole
period: from March 1967 to December 2019. Obviously, from Figure 4.1 and 4.2, we
can conclude that the two variables we select do follow a Gaussian distribution. It is
because we use some tricky methods to make them more stationary than the original
one. It also implies the big economic crisis does not affect this kind of economy index
roughly.
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Figure 4.1: Normal QQPlot of ”USTRADE” data in periods: from March 1967 to
December 2019
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Figure 4.2: Normal QQPlot of ”GOV:FED” or ”Gov:Fed” data in time periods: From
March 1967 to December 2019

Then, we select the time window as w = 90 to run the code. Table 4.1 implies that
the national data as a response variable is much more stationary and follows a normal
distribution approximately. Also, our model displays higher R2 compared to other
methods. For instance, GOV:FED has R2 = 0.950 in our model while R2 is 0.945,
0.100, 0.048 under other models, respectively; USTRADE has R2 0.950 in our model
while R2 is 0.926, 0.624, 0.586 under other models, respectively.

Data DFARM LASSO RIDGE PCR
GOV:FED 0.950 0.945 0.100 0.048
USTRADE 0.950 0.926 0.624 0.586

Table 4.1: Out-of-sample R2 for predicting GOV:FED and USTRADE data using
different models in different time windows quarterly from March 1967 to December
2019.

Finally, we present the out-of-sample prediction results for the ’PCDGx’ dataset using
the optimal window size. Our model (red dashed line) demonstrates the closest align-
ment with the true observed values, particularly in capturing peaks, and then followed
by LASSO, exhibiting commendable performance. The moving average performs the
worst, with almost a flat line around the value 0.

What’s more, considering the graph is for the result of ’GOV:FED’ data, which is an
indicator of the government’s real consumption expenditures and gross investment,
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Figure 4.3: Out-of-sample prediction results for ’GOV:FED’ data in periods: from
September 1997 to December 2019. The black line represents the true observed
values, the red dashed line stands for the predictions made by our model, and the
green, purple, blue, and orange dot lines represent the predictions made by using
LASSO, RIDGE, in-sample mean (moving average with the corresponding window
size), and PCR, respectively.

we can discern a strong correlation between the depicted pattern and the economic
conditions during that period. Notably, the year 2008 marked one of the most se-
vere financial crises since the Great Depression. Given this historical context, it
might come as a surprise that the graph shows only minor fluctuations around the
value 5, with the presence of two peaks around 2008. However, ’GOV:FED’ is in-
fluenced by various factors besides the economic cycle, such as government policies,
social demands, and infrastructure needs. On the one hand, governments often adopt
counter-cyclical fiscal policies during crises to increase spending and investment to
offset the negative impact of reduced private sector spending. For instance, intending
to inject capital into the banking system and prevent a collapse of the financial sec-
tor, the U.S. enacted the Emergency Economic Stabilization Act (EESA) in October
2008. On the other hand, there can be lag effects, causing the impact of a financial
crisis to manifest in the graph with a delay. It explains the line’s declining trend from
2010 onward, followed by a gradual resurgence after 2013.

Similarly, we output the out-of-sample prediction outcomes for ’USTRADE’ data
using the optimal window size. While the moving average still yields the weakest per-
formance, the predictions from our model, LASSO, and PCR demonstrate comparable
effectiveness.

In addition, as previously discussed, Figure 4.3 displays a time-delayed reflection of
the economic situation, but Figure 4.4 illustrates a more current state of the economy
since we can see the two most distinct valleys in 2002 and 2008. The year 2002 marks
the worst tumble of the stock market since 1987, while 2008 is the notable financial
crisis as mentioned before. The timely ups and downs could be attributed to the fact
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Figure 4.4: Out-of-sample prediction results for ’USTRADE’ data in periods: from
September 1997 to December 2019. The captions are the same as those in the Previous
Figure.

that ’USTRADE’ is an indicator of the retail trade of all employees, so it is a key
component of consumer spending that indicates shifts in consumer confidence and
disposable income, and thereby it provides a more timely snapshot of the economic
situation.



Chapter 5

Conclusion and Discussion

In the paper, we introduce the Dynamic Factor Augmented Regression Model as an
approach to address the challenges posed by high-dimensional time series data. While
early research often overlooked the natural dependence structure in the model, opting
for independent noise, we extend the model’s conditions and assume the noise follows
an autoregressive (AR) process. Moreover, regularization techniques are incorporated
to address issues arising from regression with high-dimensional data. In the simula-
tion analysis, in contrast to LASSO, our model consistently demonstrates superior
performance in minimizing the L1 estimation error (|β̂λ − β∗|1), regardless of the
strength of the dependency parameter (ϕ = 0.1 or 0.9). Moreover, our model main-
tains an error rate of less than 0.2 even when subjected to increased convergence rates
S
√

(log d)1+2v/n. When our model is tested on authentic US economic data, it closely
follows the actual values, particularly at catching peaks and valleys. The selection of
’GOV:FED’ and ’USTRADE’ as response variables encompasses both macroeconomic
and microeconomic dimensions. While ’GOV:FED’ reflects economic conditions with
a discernible lag effect, ’USTRADE’ provides more immediate insights, enhancing our
model’s ability to predict broader economic trends beyond isolated macro or micro
perspectives. In the future, robustness can also be discussed in our model which
requires more conditions on our data.

22



Appendix A

Real Data Background

FRED-QD is a quarterly frequency companion to FRED-MD. It is designed to emu-
late the dataset used in ”Disentangling the Channels of the 2007-2009 Recession” by
Stock and Watson (2012, NBER WP No. 18094) but also contains several additional
series. The columns denote the following: (i) ID denotes the series number, (ii) SW
ID denotes the series number in SW (2012), (iii) TCODE denotes one of the follow-
ing data transformations for a series x : (1) no transformation; (2) ∆xt; (3) ∆2xt;
(4) log (xt); (5) ∆ log (xt); (6) ∆

2 log (xt). (7) ∆ (xt/xt−1 − 1.0), (iv) SW FACTORS
denotes whether a series was used in SW (2012) when constructing factors (i.e. 1
is yes and 0 is no), (v) FRED MNEMONIC denotes the mnemonic we use for the
dataset, (vi) SW MNEMONIC denotes the mnemonic used in SW (2012), and (vii)
DESCRIPTION gives a brief definition of the series. The series is loosely grouped
based on SW (2012).

Details on the construction of the data will be forthcoming, but a few general com-
ments are in order. First, if the FRED mnemonic does not end in ” x ” then the
series comes directly from the FRED database (e.g. PCECC96; real PCE). Otherwise,
the series is a modified variant of a series from FRED (e.g. PCDGx; nominal PCE
durables are manually deflated using the PCE price index). The exception to this
rule is the S&P data, which is taken from public sources. Lastly, monthly frequency
series are aggregated to a quarterly frequency using averages.

23
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