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CHAPTER 1

INTRODUCTION

1.1 Background

Let A be any set and define the sum set as A+A := {x+y : x,y ∈A}, what structural

information about A can we deduce from the behavior of the sum set? For example, if

A⊂ Z and |A| =m, then the Freiman’s Theorem states, roughly, that when |A+A| is not

much larger than A, A must effectively contained in a generalised arithmetic progression.

The exact statement is as follows.

1.1.1 Theorem. Let C be a constant. There exist constants d0 and K depending only on

C such that whenever A is a subset of Z with |A| =m and |A+A| ≤Cm, there exist d≤ d0,

an integer x0 and positive integers x1, · · · ,xd and k1, · · · ,kd such that k1k2 · · ·kd ≤Km and

A⊂ {x0 +
d∑

i=1
aixi : 0 ≤ ai < ki(i= 1,2, ...,d)}

The same is true if |A−A| ≤ Cm.

This beautiful result can be generalised in many directions. For instance, let A+n :=

{x+n,x ∈ A} we can ask what structure A must possess if each A+ in∩A+ jn is not a

small set for most pair (i, j)). As we will see, this will be a crucial step of proving the

following Szemerédi’s Theorem.

1.1.2 Theorem. Let k be a positive integer and let δ > 0. There exists a positive integer

N =N(k,δ) such that every subset of the set {1,2, ...,N} of size at least δN contains an

arithmetic progression of length k.

Another possibility is to consider A as a subset of a (possibly non-abelian) group

G. We say that A has bounded doubling if |A ·A| ≤K|A| for some K =O(1), where
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A ·A= {ab : a,b ∈ A} and |A| is the cardinality of A. Then we can try to classify what

a set with bounded doubling property looks like. One result of this type is the famous

Gromov Theorem, which states as follows.

1.1.3 Theorem. Every finitely generated group of polynomial growth is virtually nilpo-

tent.

The goal of this thesis is to present proofs of 1.1.2 and 1.1.3.

1.2 Ideas to prove the Szemerédi’s Theorem

We start with Theorem 1.1.2, the first observation is that a random subset A ⊂

{1,2, ...,N} of cardinality δN contains an arithmetic progression of length k almost surely

for all k. There are many ways to define what “random” means mathematically. For

example we may assume the set is uniformly generated, let random variable X be the

number of k-term arithmetic progressions in A, then

E(X) =
∑
P

δk

where P is any k-term arithmetic progression in {1,2, ...,N}. Therefore E(X) → ∞, so

P(X > 0) = 1 almost surely.

The randomness condition is more like an independence relation among different sets.

For example, given a probability measure µ on {1,2, ...,N}, then for a random generated

set we should expect set A and A+n are independent sets, and therefore

µ(A∩ (A+n)) = µ(A)µ(A+n).

On the other hand, if A is not randomly generated, then those sets must share some

correlations from which we may extract arithmetic progressions. Again, there are different

ways to make correlations mathematically precise. But to define it properly requires deep

tools from other fields because this is where we need to build the structure on a random

chosen set.

1.3 The Ergodic Theoretic Approach

Let us say we have a reasonable measure µ on N and µ(A)> 0, to find k-term arithmetic

progressions in A it is natural to look at the set Ank
= A∩A+n∩ ·· · ∩A+ (k− 1)n. If

for some n, µ(Ank
) > 0 then ∃a ∈ N s.t a ∈ Ank

̸= ∅ and a,a+n, · · · ,a+ (k− 1)n will be
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our progression. As we have discussed, if A is randomly generated then each A+ in and

A+ jn should be independent, therefore

µ(Ank
) = µ(A)µ(A+n) · · ·µ(A+(k−1)n) = µ(A)k > 0

We may expect that A+ in and A+ jn should have some correlations if they are

not independent, but it is possible that 1
N

∑N−1
n=0 µ(A∩A+ n) → µ(A)2. This weaker

independence is the notion of randomness we will use. In ergodic theory this notion

corresponds to the weak-mixing system. Let T denote the shift operator. With tools from

ergodic theory (which is probably some generalisation of the law of large numbers), we

can show that

liminf
n→∞

1
N

N−1∑
n=0

µ(A∩Tn(A) · · ·∩T (k−1)n(A)) → µ(A)k > 0

as desired.

Now we can investigate what if T is not weak-mixing. With some technical work we

can assume µ(A∩TnA) converge to zero in density, see 2.1.1. Therefore

1
N

N−1∑
n=0

|µ(A∩TnA)−µ(A)µ(TnA)|2 → δ > 0

It is usually better to think of the functional space defined on N rather than only

subsets of it because there are more tools to study the former. For example, in L2 space

we can generalize the notion of inner product in Euclidean space which allow us to discuss

different modes convergence and L2 decomposition. The idea of weakly convergence,

which means that ⟨fn,g⟩ → ⟨f,g⟩, is not available if we only look at sets. For this reason

we restate the above condition as:

For each function f with positive mean regarding the measure µ, and for all function

g ∈ L2,
1
N

N−1∑
n=0

∣∣∣∣∣⟨Tnf,g⟩
∣∣∣∣∣−

∫
f
∫
g → δ > 0 (1.3.1)

and we want to prove that

liminf 1
N

∫
X
f ×Tnf ×·· ·×T (k−1)nfdµ > 0

The exact definitions can be found in chapter 2.

Now the ergodic theory comes in. Equation 1.3.1 will imply that there are many

pairs of {m,n} s.t ⟨Tmf,Tnf⟩ > 0 (see lemma 2.1.3). The main result is that there

is always an nontrivial almost periodic function g s.t ⟨f,g⟩ > 0 (see theroem 3.0.1 and
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3.0.2). Here almost periodic means that for any ϵ > 0 {n : ∥Tnf −f∥L2 < ϵ} has bounded

gap. The proof is based on the following idea from ergodic theory: If T is measure

preserving(
∫
Tfdµ=

∫
fdµ for all f), for any function f the ergodic average

gN := lim
N→∞

1
N

N−1∑
n=0

Tnf

will be more and more T -invariant because

lim
N→∞

∣∣∣∣∣TgN −gN

∣∣∣∣∣= lim
N→∞

1
N

∣∣∣∣∣TNf −f

∣∣∣∣∣→ 0

as Tnf −f is bounded (see theorem 2.2.2). This will help us to find the almost-periodic

function g.

The final step returns to a combinatorial argument that loosely speaking extract arith-

metic progressions from almost periodic functions.

Finally, we have not specify the measure we are discussing, because the existence of

certain measure is already an nontrivial question. First of all, how to actually define a

measure on N? We also need the measure µ to be invariant under the shift operator

T ,(meaning µ(A) = µ(T−1A)) because the whole idea of ergodic theory is based on mea-

sure preserving systems. We will construct such a measure at the beginning of chapter

3.

1.4 The Fourier Analytic Approach

There are also Fourier analytic and the Combinatorial approach to Theorem 1.1.2, how-

ever, these appracohes will not be discussed in great details in this thesis. These are

certainly interesting in their own right and they provide more quantitative results, which

is missing from the Ergodic theory approach. It is worth mentioning that Gowers uses

a combination of Fourier analysis and additive combinatorics (the Freiman problem) to

give a significant improvement of 1.1.2, which is the best known bound to date.

1.4.1 Theorem (Gowers). For every positive integer k there is a constant c = c(k) > 0

such that every subset of {1,2, ...,N} of size at least N(loglogN)−c contains an arithmetic

progression of length k. Moreover, c can be taken to be 2−2k+9 .

Here we will discuss the special case when k = 3, in this case the Fourier transform

provide a direct way to compute the number of length 3 arithmetic progressions in a set.
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We consider A as subset of ZN and write ω for the number exp(2πi/N). Recall that

the discrete Fourier transform for a function f : ZN → C is

f̂(r) =
∑

s∈ZN

f(s)ω−rs

Let 1A be the indicator function, then the number of length 3 arithmetic progression

in A is just ∑n1+n3=2n2 1A(r)1A(r)1A(−2r), which can be conveniently written in Fourier

coefficients because

∑
r∈ZN

1̂A(r)1̂A(r)1̂A(−2r)

=
∑

r∈ZN

( ∑
n1∈ZN

1A(n3)ω−rn1
)( ∑

n1∈ZN

1A(n3)ω−rn3
)( ∑

n2∈ZN

1A(n2)ω2rn2
)

= 1
N3

∑
r∈ZN

∑
n1,n2,n3∈ZN

1A(n1)1A(n2)1A(n3)ωn1rωn2(−2r)ωn3r

= 1
N2

∑
n1,n2,n3∈ZN

1A(n1)1A(n2)1A(n3)
∑

r∈ZN

ωr(n1+n3−2n2)

= 1
N2

∑
n1+n3=2n2

1A(n1)1A(n2)1A(n3)

(1.4.1)

Observe that∑
r∈ZN

1̂A(r)1̂A(r)1̂A(−2r) =1̂A(0)3 +
∑
r ̸=0

1̂A(r)1̂A(r)1̂A(−2r)

=d(A)3 +
∑
r ̸=0

1̂A(r)1̂A(r)1̂A(−2r)

where d(A) is the density of the set A. If 1̂A(r) is very small for all r, then
∑

r∈ZN

1̂A(r)1̂A(r)1̂A(−2r) ≈ d(A)3 > 0

which gives positive number of 3-term arithmetic progressions. If there is a r s.t 1̂A(r) is

reasonably large, say ∣∣∣1̂A(r)
∣∣∣= ∣∣∣∣∣ ∑

s∈ZN

1A(s)ω−rs

∣∣∣∣∣> δ > 0

Because of the cycling nature trigonometric function, we use a pigeonhole argument to

show that Z/NZ can be split into the union of arithmetic progressions P1 ∪P2 · · · s.t each

Pj has almost same length and ω−rs are almost constant in each Pj . Then

δ <

∣∣∣∣∣ ∑
s∈ZN

1A(s)ω−rs

∣∣∣∣∣≤∑
i

∣∣∣∣∣ ∑
s∈Pi

1A(s)ω−rs

∣∣∣∣∣≈∑
i

∣∣∣∣∣ ∑
s∈Pi

1A(s)
∣∣∣∣∣

we can then show that for some Pj ∈ {1,2, · · · ,N} the density of set A in Pj is larger

than in {1,2, · · · ,N}. Apply this argument repeatedly to get Pj ,P
′
j , · · · s.t the density of
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A in Pm
j keeps increasing and eventually we will obtain our 3-term arithmetic progression

in one of the Pm
j .

When k > 3, there is no formula to count the number of k-term arithmetic progression

as equation 1.4.1. We will also encounter many other practical difficulties to apply the

density increment argument. For more details, see [5]

1.5 Ideas to prove the Gromov Theorem

Now we move to Theorem 1.1.3. Here too, one hopes to get an insight to structural

properties of a group using functions defined on it. Let us recall the following classical

result:

1.5.1 Theorem (Choquet, Deny). Every bounded harmonic function on an abelian group

is constant.

The idea of studying behaviors Harmonic functions largely come from differential

Geometry. In [6], Tobias H. Colding and William P. Minicozzi proved the following

theorem.

1.5.2 Theorem. For an open manifold with nonnegative Ricci curvature the space of

harmonic functions with polynomial growth of a fixed rate is finite dimensional.

There is also a classical result claiming that given (M,g) a non-compact and connected

complete Riemannian manifold of dimension n≥ 3. If the Ricci curvature is non-negative,

then the Bishop—Gromov volume comparison tells that the volume growth is at most

Euclidean,

lim
r→∞

V ol(B(o,r))
rn

= ρ ̸= ∞

Although there is no obvious analogous concept of curvature in group theory, we can

study the analogous harmonic functions on groups in hope to obtain structural informa-

tion. The method of Kleiner considers the linear space of Lipschitz harmonic functions

on the finite generated group G. For a finite generated sets S, f is harmonic if

f(g) = 1
|S|

∑
s∈S

f(gs)

for all g ∈G, and Lipschitz means ∣∣∣∣∣f(g)−f(gs)
∣∣∣∣∣< C
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for all g ∈ G, s ∈ S, and C < ∞. He proves that when the group is of polynomial

growth the linear space must be non-trivial and finite dimensional. Since the group acts

on the harmonic functions by left translation, the finite dimensional space will give a

representation of the group, which we can use to derive the nilpotent structure we want.
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CHAPTER 2

Functional Theory

2.1 L2 space, Mode of convergence, and Conditional Expectation

Definition 2.1.1 (Mode of Convergence). Let v0,v1, . . . be a sequence in a normed vector

space V . Let v ∈ V .

1. (Usual convergence in norm) We say that limn→∞vn = v if limn→∞ ∥ vn −v ∥= 0.

2. (Convergence in density) We say that vn converges to v in density, denoted D−

limn→∞vn = v, if for any ϵ > 0, the set {n ∈ N :∥ vn −v ∥≥ ϵ} has upper density zero.

3. (Cesàro convergence) We say that vn converges to v in a Cesàro sense, denoted

C− limn→∞vn = v, if limN→∞
1
N

∑N−1
n=0 vn = v.

4. (Cesàro supremum) Define C− supn→∞vn = limsupn→∞ ∥ 1
N

∑N−1
n=0 vn ∥

Here we collect some standard result that connect different mode of convergence.

2.1.2 Proposition. Let v0,v1,v2, · · · be a bounded sequence of vectors in a normed vector

space V , and let v ∈ V . Then the following are equivalent:

• C-limn→∞ ∥vn −v∥ = 0.

• C-limn→∞ ∥vn −v∥2 = 0.

• D-limn→∞ vn = v.

The following lemma says that if vn does not converge in the Cesàro sense, then vectors

within the sequence must share some correlations. In fact, this is the only analytical tool

we need to prove 1.1.2.

2.1.3 Lemma (Van der Corput). Let v0,v1,v2, . . . be a bounded sequence of vectors in a

real Hilbert space. If

C-suph→∞ C-supn→∞⟨vn,vn+h⟩ = 0

then C-limn→∞ vn = 0.
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Proof. When 0< h <H we have

1
N

N−1∑
n=0

vn = 1
N

N−1∑
n=0

vn+h +O(H
N

)

Averaing over h we obtain

1
N

N−1∑
n=0

vn = 1
N

N−1∑
n=0

1
H

H−1∑
h=0

vn+h +O(H
N

)

By Cauchy-Schwarz,∣∣∣∣∣∣
∣∣∣∣∣∣ 1
N

N−1∑
n=0

vn

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 1
N

N−1∑
n=0

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
H

H−1∑
h=0

vn+h

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+O(H
N

)

= 2
H

H−1∑
h=0

(1− h

H
) 1
N

N−1∑
n=0

⟨vn,vn+h⟩+O(H
N

)

Therefore∥∥∥∥∥C-supn→∞ vn

∥∥∥∥∥
2

≤ 2
H

H−1∑
h=0

(1− h

H
)C-supn→∞⟨vn,vn+h⟩ ≤ 2

H

H−1∑
h=0

C-supn→∞⟨vn,vn+h⟩

letting H → ∞ gives the result.

Definition 2.1.4. (Conditional Expectation) For a probability space (X,χ,µ), and a

measurable function f : X → R. Let χ′ be a sub-σ-algebra of X. Then L2(X,χ′,µ) ⊂

L2(X,χ,µ). The conditional expectation is the orthogonal projection

E(f |χ′) : L2(X,χ,µ) → L2(X,χ′,µ).

So in particular, E(f |χ′) is the unique function in L2(X,χ,µ) such that

⟨f,g⟩ = ⟨E(f |χ′),g⟩

for all g ∈ L2(X,χ′,µ),

Example 1. (Projections from R2 to R)

Consider a function f : R2 →R with a σ-algebra X×Y , then

E(f |X)(x) =
∫

Y
f(x,y)dy

because for any function g ∈ L2(X),

⟨f,g⟩ =
∫

X×Y
fgdydx=

∫
X
g

(∫
Y
fdy

)
dx= ⟨E(f |X),g⟩
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By definition, if g ∈ L2(X,χ′,µ), then for all f ∈ L2(X,χ,µ)

E(fg|χ′) = E(f |χ′)g

This means that we can always take the χ′-measurable component out when computing

the projection. In general,

E(cf +dg|Y ) = cE(f |Y )+dE(g|Y ),∀f,g ∈ L2(X|Y ), c,d ∈ L∞(Y ).

To better manipulate the functional space of conditional expectation we can define an

inner product by

⟨f,g⟩X|Y := E(fg|Y )

With these tools we can define a hilbert module by treating L∞(Y ) as constants.

Definition 2.1.5. (Hilbert module) Let Y = (Y,γ,ν,S) be a factor of (X,χ,µ,T ).Define

the Hilbert module L2(X,χ,µ|Y,γ,ν) (abbreviate as L2(X|Y )) over the commutative von

Neumann algebra L∞(Y,γ,ν) to be the space of all f ∈ L2(X) such that the conditional

norm

∥f∥L2(X|Y ) := E(|f |2|Y )

lies in L∞(Y )

We also have the conditional version of Cauchy-Schwarz inequality.

2.1.6 Lemma. Let X → Y be an extension. Then for any f,g ∈ L2(X|Y ) we have∣∣∣∣∣∣⟨f,g⟩L(X|Y )

∣∣∣∣∣∣≤ ∥f∥L2(X|Y )∥g∥L2(X|Y )

almost everywhere.

2.2 Measure Preserving Systems

A measure-preserving dynamical system is a system (X,χ,µ,T ) with the following struc-

ture:

• X is a set.

• χ is a sigma algebra on X.

• µ : χ→ [0,1] is a probability measure so µ(X) = 1 and µ(∅) = 0.
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• ∀A ∈ χ,µ(T−1(A)) = µ(A)

The first result of measure preserving system is the following Poincaré Recurrence

Principle, which is an infinite version of the Pigeonhole principle. (All proofs of theorems

in this and next section can be found in [1])

2.2.1 Theorem. (Poincaré Recurrence) If T is measure-preserving, and a set E ∈ X

with µ(E) ≥ 0, then Tn(x) for almost all x ∈X should return infinitely often to E. More

precisely, there exists a measurable set F ⊆E with µ(F ) = µ(E) with the property that for

every x ∈ F there exist integers 0< n1 < n2 < .. . with Tnix ∈ E for all i≥ 1.

2.2.2 Theorem. Von Neumann’s mean ergodic theorem(holds in Hilbert spaces)

Let U be a unitary operator on a Hilbert space H. (U∗ is the adjoint of U that satisfies

⟨Ux,y⟩ = ⟨x,U∗y⟩, U is unitary if UU∗ = I ) Let P be the orthogonal projection onto the

invariant subspace {g ∈H | Ug = g} = ker(I−U). Then, ∀x ∈H, we have:

lim
N→∞

1
N

N−1∑
n=0

Unx= Px

where the limit is with respect to the norm on H. In other words, the sequence of

averages

1
N

N−1∑
n=0

Un

converges to P in the strong operator topology.

The sum limN→∞
1
N

∑N−1
n=0 U

nx is called the ergodic average of the system. Heuristi-

cally, the ergodic average becomes more and more invariant because

U( lim
N→∞

1
N

N−1∑
n=0

Unx)− lim
N→∞

1
N

N−1∑
n=0

Unx= 1
N

(Unx−x) → 0

This allows us to use the ergodic average to approximate typical behaviors in this system.

2.3 Ergodic, Weak Mixing, and Mixing Systems

Definition 2.3.1. (Ergodicity) A measure-preserving system (X,χ,µ,T ) is ergodic if for

any B ∈ χ, T−1B =B implies µ(B) = 0 or µ(B) = 1.

For ergodic systems we can improve the theorem 2.2.2 to the following:
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2.3.2 Theorem. (Birkhoff) Let (X,B,µ,T ) be a measure-preserving system. If f ∈L1(µ),

then

lim
n→∞

1
n

n−1∑
j=0

f(T jx) = f∗(x)

converges almost everywhere to a T -invariant function f∗(x) ∈ L1(µ) and

∫
fdµ=

∫
f∗dµ.

If T is ergodic, then

f =
∫
f∗dµ.

almost everywhere.

Example 2. (Bernoulli shift) Consider the the set of possible outcomes of the infinitely

repeated toss of a fair coin. The outcome can be described by an infinite sequence

(x0,x1, · · ·), which lives in the product space X = {0,1}N. Denote µ the usual product

measure on X. The left shift map σ :X →X defined by

σ(x0,x1, · · ·) = (x1,x2, · · ·)

preserves µ and is ergodic.

Example 3. The circle rotation Rα : T → T is ergodic with respect to the Lebesgue

measure mT if and only if α is irrational.

The two examples still differs fundamentally even if both are ergodic. For the second

example, we can predict the behavior of the system after knowing enough values of it.

But no matter how many values we know about the first system, the next value is still

completely arbitrary. This suggests that we need a stronger notion to distinguish between

these two examples.

Definition 2.3.3. (Mixing) A measure-preserving system (X,χ,µ,T ) is mixing if for any

two sets A,B ∈ χ,

lim
n→∞µ(A∩T−nB) → µ(A)µ(B)

For rotations, take A,B as two small intervals and we can always find some large n s.t

µ(A∩T−nB) = 0. Therefore rotations are not mixing. Think the Bernoulli shift as coin

flips and A,B as events of infinite tosses that fix finite many values, then A is independent
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of T−nB when n is large. Thus µ(A∩T−nB) = µ(A)µ(B) which means the Bernoulli shift

is mixing.

Weak mixing system is an intermediate concept between ergodic system and mixing

system.

Definition 2.3.4 (Weak mixing system). A measure preserving system (X,χ,µ,T ) is

weak mixing if

D− limn→∞µ(TnA∩B) = µ(A)µ(B)

for any two sets A,B ∈X , or equivalently,

D− limn→∞⟨Tnf,g⟩ = E(f)E(g)

for any f,g ∈ L2(X).

Example 4. (Interval exchange transformation) Let n > 0 and let π be a permutation

on {1, · · · ,n}. Consider a vector λ = (λ1, . . . ,λn) of positive real numbers (the widths of

the subintervals), satisfying
n∑

i=1
λi = 1

Let

βi =
∑

1≤j<i

λj

and

λϕ = (λπ−11, · · · ,λπ−1m)

Finally define T = T(λ,π), the (λ,π) interval exchange by the formula T(λ,π)x = x−

βi−1(λ)+βπi−1(λπ), then T is weak mixing but not mixing.

Definition 2.3.5. (Weak mixing functions) Let (X,χ,µ,T ) be a measure preserving sys-

tem. A function f ∈ L2(X) is weak mixing if D-limn→∞⟨Tnf,f⟩ = 0.

It can be shown that the following definition is equivalent to 2.3.4.

Definition 2.3.6. A measure preserving system (X,χ,µ,T ) is weak mixing if all functions

f ∈ L2(X) are weak mixing.

In fact, using the Van der Corput lemma one can show that weak-mixing function mix

with any functions.

2.3.7 Theorem. Let (X,χ,µ,T ) be a measure preserving system, and let f ∈ L2(X) be

weak mixing. Then for any g ∈ L2(X) we have

D-limn→∞⟨Tnf,g⟩ = 0 (2.3.1)
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Proof. Since ⟨Tnf,g⟩ is bounded for all n, say by C, and f is weak-mixing, we have

C-limn→∞ C-supn→∞⟨Tnf,g⟩⟨Tn+hf,g⟩⟨Tnf,Tn+hf⟩ ≤ C2 ·C-limh→∞
∣∣∣⟨f,Tnf⟩

∣∣∣= 0.

(2.3.2)

Equation 2.3.1 is equivalent to the following

lim
N→∞

1
N

N−1∑
n=0

∥⟨Tnf,g⟩∥2 = lim
N→∞

1
N

〈
N−1∑
n=0

⟨Tnf,g⟩Tnf,g

〉
→ 0 (2.3.3)

By Cauchy-Schwarz, it suffices to show that C-limn→∞⟨Tnf,g⟩Tnf = 0. This can be

shown by applying the Van der Corput lemma to equation 2.3.2. This completes the

proof.

There are similar results for ergodic systems and mixing systems. In short, for a

measure preserving system (X,χ,µ,T ) and any function f,g ∈ L2(X), the system is

• Mixing if

⟨Tnf,g⟩ →
∫
f
∫
g (2.3.4)

• Weak Mixing if
1
N

N−1∑
n=0

∣∣∣∣∣⟨Tnf,g⟩
∣∣∣∣∣→

∫
f
∫
g (2.3.5)

• Ergodic if
1
N

∣∣∣∣∣
N−1∑
n=0

⟨Tnf,g⟩
∣∣∣∣∣→

∫
f
∫
g (2.3.6)

2.4 Compact Systems

What if a function is not weak-mixing? In other words, what if there exists a δ > 0 s.t

D-limn→∞⟨Tnf,g⟩ ≥ δ (2.4.1)

Again by Van der Corput lemma, we have for some constant cδ,

C-suph→∞ C-supn→∞⟨vn,vn+h⟩ ≥ cδ (2.4.2)

This may make the following definition more natural.

Definition 2.4.1. (Almost periodic functions) Let (X,χ,µ,T ) be a system. We say that

f ∈L2(X) is almost periodic if its orbit {Tnf : n∈Z} is precompact in L2(X) in the norm

topology. Equivalently, f is almost periodic if for every ϵ > 0, the set{n∈Z :∥ f−Tnf ∥≤

ϵ} has bounded gap.

14



Similar to weak mixing system we can define

Definition 2.4.2. (compact system) The system (X,χ,µ,T ) is compact if every f ∈

L2(X,χ,µ) is almost periodic.

In a general measure preserving system, most functions are neither weak-mixing nor

almost periodic, as illustrated by the following example.

Example 5. Consider the skew torus given by (R/Z)2 with the shift map T (y,z) =

(y+a,z+y). So Tn(y,z) = (y+na,z+ny+
(

n
2

)
a). Consider the function f(y,z) = e2πiz,

which will be send to

Tnf(y,z) = e−2πi(n
2)ae−2πinyf

Since when n ̸=m,

⟨Tnf(y,z),Tmf(y,z)⟩ =
∫
T2
e−2πi(n

2)ae−2πinyf × e−2πi(m
2 )ae−2πimyfdydz

=
∫
T
e−2πi(n−m)ydy×

∫
T
eg(n,m,z)dz

= 0

Tnf and Tmf are always orthogonal and therefore f(y,z) is not almost periodic. It

is worth mentioning that f(y,z) is actually a weak-mixing function, which suggests that

the subsystem derived by fixing y-coordinate in the skew torus is weak-mixing.

Now we consider another function g(y,z) = y, so Tng(y,z) = y+na and it is easy to

show that this function is almost-periodic.

Now take h(y,z) = f(y,z)+g(y,z) then this function will be neither weak-mixing nor

almost periodic. Observe that most functions are of this type.

A good example of a compact system is again the circle rotation, which is also an

example of a Kronecker system.

Definition 2.4.3. An (abelian) Kronecker system is a measure preserving system of the

form (G,B,µ,Ta), where (G,+) is a compact abelian metrisable group, B is its Borel

algebra, µ is its Haar measure, a ∈G, and Tax= x+a.

In general, a compact system needs not to be ergodic, but when it is the system must

be equivalent to a Kronecker system.

2.4.4 Theorem. (Halmos and von Neumann)

Every ergodic compact system is equivalent to a Kronecker system.
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2.5 Weak Mixing and Compact Extensions

As mentioned, if we view f as a function of z for fixed y, then it is almost periodic. To

make this precise we need the theory of conditional expectation and extensions of dynamic

systems.

Definition 2.5.1. (Factors and extensions) Let (X,χ,µ,T ) and Y = (Y,γ,ν,S) be mea-

sure preserving systems. An extension (also called a factor map)ϕ :X → Y is a measure

preserving map (i.e. if A ∈ Y , then ϕ−1(A) ∈ X and µ(ϕ−1(A)) = ν(A)) that is shift-

compatible, i.e., ϕ◦T = S ◦ϕ.

Definition 2.5.2. (Conditionally weak mixing function). Let X → Y be an extension

of measure preserving systems. A function f ∈ L2(X|Y ) is conditionally weak mixing

relative to Y if D-limn→∞⟨Tnf,f⟩L2(X|Y ) = 0 in L2(Y ).

Definition 2.5.3. (Conditionally almost periodic function)

A subset E of L2(X|Y ) is said to be conditionally precompact if for every ϵ > 0,we

can find f1, . . . ,fd ∈ L2(X|Y ) so that ∀f ∈ E,min1≤i≤d ∥(f − fi)∥L2(X|Y )(y) ≤ ϵ a.e. for

y ∈ Y .

A function f ∈ L2(X|Y ) is conditionally almost periodic if its orbit {Tnf : n ∈ Z} is

conditionally precompact in L2(X|Y ), and it is conditionally almost periodic in measure

if for every ϵ > 0 there exists a set E in Y with µ(E)> 1−ϵ such that f1E is conditionally

almost periodic.

Definition 2.5.4. An extension X → Y of measure preserving systems is weak mixing

if every f ∈ L2(X|Y )with conditional mean zero (i.e., E(f |Y ) = 0 a.e.) is conditionally

weak mixing. An extension X → Y is said to be compact if every function in L2(X|Y ) is

conditionally almost periodic in measure.

Back to example 5, consider the skew torusX = ((R/Z)2,γ×γ,µ×µ,(y,z) → (y+a,z+

y)) as an extension of Y = (R/Z,γ,µ,y → y+a). Again consider functions f(y,z) = e2πiz

and

Tnf(y,z) = e−2πi(n
2)ae−2πinyf

which lies in the zonotope {cf : c ∈ L∞(Y ),∥c∥L∞(Y ) ≤ 1} and hence f is conditionally

almost periodic. Now approximate any function f(y,z) on the torus by its vertical Fourier

expansions,(i.e. perform the Fourier expansion f(y,z) for fixed y). For each y ∈ Y take the

partial sum of the vertical Fourier expansions, and we obtain a sequence of functions {f}n
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that is pointwise convergent to f . By the Egorov’s theorem, {f}n converge uniformly to f

on the torus except on a set of measure arbitrarily small. This shows that f is conditionally

almost periodic in measure and the extension X → Y is compact.
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CHAPTER 3

The Proof of the Szemerédi Theorem

In order to use tools from the Ergodic theory, we first need to define a measure

preserving action on N. This is constructed in the following way.

Let X0 = {0,1}Z be the full shift on two symbols with shift map T :A→A+1.Define

a point xA in X0 by

xA(n) =


1 if n ∈ A

0 if n /∈ A

(3.0.1)

Now let X denote the smallest closed subset of X0 that is invariant under T and

contains the point xA. Let E denote the cylinder set {x ∈ X|x(0) = 1}, which is both

closed and open (clopen) in X. Then

Tn(xA) ∈ E ⇐⇒ Tn(xA)0 = 1 ⇐⇒ n ∈ E.

Let µN denote the measure on X given by

µN = 1
2N +1

N∑
−N

δT n(x)

where δb is the point mass at b ∈ X. Then µN (E) is the density of A in [−N,N ] and

therefore µN (E)> 0. By Banach-Alaoglu theorem µNj
has a weak limit µ and µ(E) > 0.

µ is T -invariant because

Tµn −µn = 1
2N +1

(
δT n(x) − δT −n(x)

)
−→ 0

Our problem is now transformed to prove that in every measure preserving system

(X,χ,µ,T ), for every positive integer k and any E ∈X with µ(E)> 0, there exists an n

s.t

µ(E∩TnE∩·· ·∩T (k−1)nE)> 0

If this is true, then because E is clopen, the intersection will contain at least a point

T−m(xA). Therefore the arithmetic progression (m+ in)0≤i≤k−1 is contained in A.
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For our purpose we will prove the stronger result

liminf
N→∞

1
N

N−1∑
n=0

µ(E∩TnE∩·· ·∩T (k−1)nE)> 0

or equivalently,

liminf
N→∞

1
N

N−1∑
n=0

∫
X
f ×Tnf ×·· ·×T (k−1)nfdµ > 0

whenever f ∈ L∞(X),f > 0 and E(f)> 0.

It’s not hard to show that this result holds for weak-mixing functions and almost

periodic functions. So our first step is to show that all functions can more or less reduce

to these two types.

3.0.1 Proposition. (Decomposition Theorem) Let X be a measure preserving system.

Then we have

L2(X) =WM(X)
⊕

AP (X)

as an orthogonal direct sum of Hilbert spaces.

First we prove that if f ∈WM(X) and g ∈ AP (X), then ⟨f,g⟩ = 0. This direction is

relatively easy by 2.3.7.

Then we prove that if f is not weak-mixing, then there is a function g ∈AP (X) such

that ⟨f,g⟩ ̸= 0. As discussed under 2.3.7, the equation 2.4.2 is our starting point. But we

still need to develop a robust process to find the hidden almost periodic functions. Notice

that the naive attempt by taking the ergodic average g = lim 1
N

N−1∑
n=0

Tnf will not work

because that limit goes to zero if T is ergodic.

We will going to use the Hilbert-Schmidt operator to find those almost periodic func-

tions. The idea is to first find an operator Φ that sends the bounded image {n : Tnf} to

a precompact set. If Φ further commutes with T , then {n : TnΦf} = Φ{n : Tnf} will be

precompact, so Φf will be almost periodic.

Proof. We now turn to the details of the argument. Let us recall that if H is a Hilbert

space and (ei)i∈I is an orthonormal basis for H, a Hilbert-Schmidt operator on H is an

operator T for which ∑i∈I ||Tei||2 <∞.

We will use the following property of Hilbert-Schmidt operators: If ϕ : H → H ′ is a

Hilbert-Schmidt operator between two Hilbert spaces, then a bounded set in H will be

sent to a totally bounded set in H ′.

Now we consider an adjusted ergodic average

g = lim
N→∞

1
N

N−1∑
n=0

⟨Tnf,f⟩Tnf.
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The limit will be nonzero if f is not weak mixing since

⟨g,f⟩ = lim
N→∞

N−1∑
n=0

|⟨Tnf,f⟩|2 = C-limn→∞ |Tnf,f |2 ̸= 0

If we denote Φf : Φfg = ⟨f,g⟩f , then it is a Hilbert-Schmidt operator because

∑
i

||Φfei||2 =
∑

i

|⟨f,ei⟩|2 ∥ f ∥2= ∥f∥4 <∞

Furthermore, by the Von Neumann’s mean ergodic theorem we know that the limit g

converge to a function invariant under the operator U : Φf → ΦT f , so g commutes with

T .

In view of Proposition 3.0.1, we can always decompose a function f ∈ L2(X) as

f = fW X + fAP , but the established structure is still insufficient to prove the multi-

recurrence principle simply because we have no idea how to estimate cross terms like∫
X fW X1fAP 1fW X2 . . . . This is why we need to define conditionally weak-mixing func-

tions 2.5.2 and almost periodic functions 2.5.3.

With the conditional Cauchy-Schwarz inequality 2.1.6 we have the following analog of

the Decomposition Theorem 3.0.1.

3.0.2 Proposition. As L∞(X)-modules, we have

L2(X|Y ) =WM(X|Y )
⊕

AP (X|Y ) (3.0.2)

So we can always extract a compact factor out from any function. Keep on apply-

ing this proposition we will eventually obtain the following tower like structure for any

measure-preserving system.

3.0.3 Theorem. (Furstenberg-Zimmer). Let (X,χ,µ,T ) be a measrue preserving system,

then there exists a sequence of measure preserving subsystems Yi of X such that

X → Yα → ·· · → Y1 → Y0

is a chain of extensions where Y0 is the trivial system. Furthermore, Yi+1 → Y i is compact

and X → Yα is weak mixing. (α may be infinite).

Now it only remains to show that SZ property lifts through both weak-mixing and

compact extensions.

3.0.4 Theorem. If (X,χ,µ,T ) → (Y,γ,ν,S) is a compact extension and Y is SZ, then

X is SZ.
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We want to show that ∀f ∈ L∞(X) with E> 0 we have

liminf
N→∞

1
N

N−1∑
n=0

∫
X
fTnf . . .T (k−1)nfdµ > 0 (3.0.3)

Actually we will prove a stronger result states as follows.

3.0.5 Proposition. Let X → Y be a weak mixing extension. Let k≥ 1. Let a1, · · · ,ak ∈Z

be distinct non-zero integers, and f1, · · · ,fk ∈ L∞(X). Then

C-limn→∞

(∫
X
T a1nf1 · · ·T aknfkdµ−

∫
Y
Sa1nE(f1|Y ) · · ·SaknE(fk|Y )dν

)
= 0

in L2(X).

With this proposition it is easy to deduce that X is SZ from Y is SZ,

Proof. First we have∫
X
T a1nf1 · · ·T aknfkdµ=

∫
Y
E(T a1nf1 · · ·T aknfk|Y )(y)dν

WLOG we can assume that E(fi|Y ) = 0 and it is sufficient to show that∫
Y
E(T a1nf1 · · ·T aknfk|Y )(y)dν = 0

We proceed by using induction on k. When k = 1, the Mean Ergodic Theorem (Theorem

2.2.2) gives

C-limn→∞(T a1nf1|Y ) = E(f1|Y )

Since X → Y is a weak-mixing extension, for all i= 1,2, · · · ,k

D-limn→∞⟨Tnfi,fi⟩L2X|Y = 0

We now would like to apply the van der Corput lemma. Denote vn = T a1nf1 · · ·T aknfk,

then in L(X|Y ), we have

⟨vn,vn+h⟩L2(X|Y ) = ⟨T a1nf1 · · ·T aknfk,T
a1(n+h)f1 · · ·T ak(n+h)fk⟩L(X|Y )

= E
(

k∏
i=1

(T ainfiT
ai(n+h)fi)|Y

)

= E
(

k∏
i=1

T ain(fiT
aihfi)|Y

)

So,

C-suph→∞ C-supn→∞⟨vn,vn+h⟩L2(X|Y )

= C-suph→∞ C-supn→∞E
(

k∏
i=1

T ain(fiT
aihfi)|Y

)
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By the conditional Cauchy-Schwarz inequality (Lemma 2.1.6),

E
(

k∏
i=1

T ain(fiT
aihfi)|Y

)
≤ E

(
k−1∏
i=1

(T ain(fiT
aihfi))2|Y

)1/2
E
(

(T akn(fkT
akhfk))2|Y

)1/2

Since the last term is bounded and E(fi) ≥ 0, it is suffice to show that

C-suph→∞ C-supn→∞E
(

k−1∏
i=1

T ain(fiT
aihfi)|Y

)
= 0

By induction, taking fiT
aihfi as the new function, we have

C-limn→∞

(
k−1∏
i=1

T ain(fiT
aihfi)|Y

)
=

k−1∏
i=1

E(fiT
aihfi)

As each E(fiT
aihfi) is bounded, say by M , we have

C-suph→∞

k−1∏
i=1

E(fiT
aihfi) ≤Mk−2 C-suph→∞E(f1T

a1hf1|Y )

but E(f1T a1hf1|Y )L2(X|Y ) = ⟨T a1hf1,f1⟩L2(X|Y ) converge to zero in density, so the above

equation converge to zero.

3.0.6 Theorem. If (X,χ,µ,T ) → (Y,γ,ν,S) is a compact extension and Y is SZ, then

f is SZ in X.

Let us elaborate on the statement of the theorem. We have that Y is SZ, so for any

set A⊂ Y with ν(A)> 0 and all large K,

liminf
N→∞

1
N

N−1∑
n=0

ν
(
A∩Tn(A)∩·· ·∩T (K−1)n(A)

)
> 0; (3.0.4)

moreover, ∀f ∈ L∞(X) nonegative with E(f) > 0, we can find f1, . . . ,fd ∈ L2(X|Y ) so

that ∀n ∈ N,

min
1≤i≤d

∥(Tnf −fi)∥L2(X|Y )(y) ≤ ϵ (3.0.5)

a.e. for y ∈ Y . Our goal is to use this and prove

liminf
N→∞

1
N

N−1∑
n=0

∫
X
fTnf . . .T (k−1)nfdµ > 0 (3.0.6)

for all k ≥ 1.

But equation 3.0.5 is not easy to use. Ideally we want it to hold for a fixed function fj

and the set of n will form an arithmetic progression. This is where we need the following

results from combinatorics.
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3.0.7 Theorem (Van der Waerden’s theorem). If the natural numbers are written as a

disjoint union of finitely many sets,

N = C1 ⊔C2 ⊔·· ·⊔Cr

then there must be one set Cj that contains arbitrarily long arithmetic progressions.

With Van der Waerden’s theorem at hand, for each y ∈ Y we can find an arithmetic

progression Py = {ay,ay + ry · · ·ay +(k−1)ry} so that

∥T ay+iryf −fj∥L(X|Y )(y)< ϵ (3.0.7)

Our strategy is now as follows:

E(T ayfT ay+ryf . . .T ay+(k−1)ryf |Y )(y) ≈ E(T ayfk|Y )(y), (3.0.8)

Hence we may hope to conclude that

liminf
N→∞

1
N

N−1∑
n=0

∫
X
fTnf . . .T (k−1)nfdµ= liminf

N→∞

1
N

N−1∑
n=0

∫
Y
E(fTnf . . .T (k−1)nf |Y )(y)dν

≈ liminf
N→∞

1
N

N−1∑
n=0

∫
Y
E(fk|Y )dν > 0

(3.0.9)

However, there is still a major issue in this argument because the arithmetic progression

Py we use in equation 3.0.9 depends on y. To make the above argument work, we need to

find a fixed arithmetic progression. To this end, we have to choose our progression more

carefully in the first place and then apply the pigeonhole principle.

The argument is explicated below. Before proceeding to the formal proof of Theo-

rem 3.0.6, however, we present a sketch of the proof of Theorem 3.0.7. Even though the

proof can be found in the literature, we present the sketch here both for the convenience

of the reader and also to highlight the role of combinatorics even in this ergodic theoretic

approach.

Sketch of the proof. Let W (l,k) denote the smallest number N s.t any k-colouring of the

segment of positive integers [1,N ] contains a monochromatic l-term arithmetic progres-

sion. So if we consider a very large interval [1,MN ], then any coloring will give many

l-term arithmetic progressions. Those progressions may form a l+1-term arithmetic pro-

gression if we choose our M properly. To make this precise, we say that r different l-term

arithmetic progressions A1,A2, · · · ,Ar, where

Ai = {ai + jdi : j ∈ [0, l−1]}, i ∈ [1, r],
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is color-focused on a positive number m if

1) Each Ai is entirely in one color, and Ai and Aj have different colors if i ̸= j.

2) a1 + ld1 = a2 + ld2 = · · · = ar + ldr =m

The proof is based on a double induction. Note that, for any positive integer k,

W (1,k) = 1 and W (2,k) = k+ 1, so we may induct on l. We also have that W (l,1) is

trivial, but to lift k to any number needs a proper inductive hypothesis.

3.0.8 Lemma. Fix a k≥ 2, for all r≤ k there is an Mr such that any k-colouring of [1,M ]

contains a monochromatic l-term arithmetic progression or r colour-focused (l− 1)-term

arithmetic progressions together with their focus.

Sketch of the proof of the lemma. When r = 1 simply set M = 2W (l− 1,k). When r ≥ 2

consider [1,Mr−1W (l−1,kMr−1)]. Suppose that c is a k-colouring of this interval that does

not contain a monochromatic l-term arithmetic progression. The key argument is: if we

split that interval into consecutive blocks Bi with length Mr−1, since there are only kMr−1

ways to color a block, the coloring c will induce a kMr−1 coloring of [1,W (l−1,kMr−1)]. By

the induction hypothesis, The induced colouring contains a monochromatic (l− 1)-term

arithmetic progression. This implies that there are l−1 blocks Bij ,1 ≤ j ≤ l−1, that are

identically coloured by c and that are equally spaced between each other. From this it is

not hard to find r colour-focused (l−1)-term arithmetic progressions and hence complete

the induction. This concludes the discussion.

The proof of the theorem can be completed using the lemma.

Proof of Theorem 3.0.6. Fix k ≥ 1, and let f ∈ L∞(X) be a nonnegative function with

positive mean. We want to show that

liminf
N→∞

1
N

N−1∑
n=0

∫
X
fTnf . . .T (k−1)nfdµ > 0 (3.0.10)

First, we can normalize f so that ∥f∥L∞ = 1. Choose δ > 0 and consider the subset

A= {y ∈ Y : E(f |Y )(y)> δ}

of Y with ν(A)> 0. Then since the system Y is SZ, we know that for all large K ∈ N,

ν(AnK ) := ν(A∩Tn(A)∩·· ·∩T (K−1)n(A)> 0 (3.0.11)

for all n ∈ Ξ where Ξ ⊂ N has positive lower density. The large number K will be chosen

later to help us find the fixed arithmetic progression.
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For each n with the above property, we want to find a set satisfying (3.0.8). Fix

one such n. The extension X → Y is compact, so there are finite number of functions

f1,f2, . . . ,fd so that for all 0 ≤ a≤K, we will have

min
1≤j≤d

||T anf −fj ||L2(X|Y )(y)< ϵ, ν-a.e. y.

Now choose K large enough so that for each y, by the Van der Waerden’s theorem there

exists a length k arithmetic progression ay,ay + ry · · ·ay + (k− 1)ry ⊂ [0,K] and some

1 ≤ j ≤ d so that

∥T (ay+iry)nf −fj∥L2(X|Y )(y)< ϵ (3.0.12)

The arithmetic progression we obtain depends on y, but since ay, ry ≤ K there must

be a set

Bn ⊂ A∩Tn(A)∩·· ·∩T (K−1)n(A)

with ν(Bn) ≥ ν(AnK )
K > 0 so that ay and ry are defined and are constant on Bn.

Now we have ∥T (a+ir)nf − fj∥L2(X|Y )(y) < ϵ for i = 0,1 · · · ,k− 1. By the triangle

inequality,

∥T (a+ir)nf −T anf∥L2(X|Y )(y)< 2ϵ, ∀y ∈Bn, i= 0,1, · · · ,k−1

Since ∥f∥L∞ = 1,

∥(T anfT (a+r)nf . . .T (a+(k−1)r)nf − (T anf)k∥L2(X|Y )(y) =Ok(ϵ)

So,

E(T anfT (a+r)nf . . .T (a+(k−1)r)nf |Y )(y) ≥ E((T anf)k|Y )(y)−Ok(ϵ)

But we know that E(f |Y )(y)> δ when y ∈Bn, since T is measure preserving we obtain∫
X
fT rnf . . .T (k−1)rnfdµ=

∫
X
T anfT (a+r)nf . . .T (a+(k−1)r)nfdµ

=
∫

X
E(T anfT (a+r)nf . . .T (a+(k−1)r)nf |Y )(y)dy

≥
∫

Bn

E(T anfT (a+r)nf . . .T (a+(k−1)r)nf |Y )(y)dy

≥
∫

Bn

[E((T anf)k|Y )(y)−Ok(ϵ)]dy

≥ ν(Bn)(δk −Ok(ϵ))> 0

The last inequality holds if we choose ϵ small enough. Moreover, the above inequality will

hold for all n that 3.0.11 holds. Therefore, 3.0.10 holds.
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CHAPTER 4

Kleiner’s proof of the Gromov’s Theorem on groups

with polynomial growth

Definition 4.0.1. Let G be a finitely generated group, and let BG(r) ⊂ G be a ball

centered at the identity with respect to a word norm on G. The group G has polynomial

growth if for some fixed d > 0

limsup
r→∞

|BG(r)|
rd

<∞

4.0.2 Theorem (Kleiner). Let G be a group of polynomial growth generated by a finite

symmetric set S of generators. Then the vector space V of Lipschitz harmonic functions

is finite-dimensional.

The polynomial growth implies that bounded doubling happens on most scales, or

|BS(2R)| ≤ C|BS(R)|

for a fixed C and for most R> 0. For simplicity we will assume that bounded doubling is

true for all R> 0. The full proof can be found in Kleiner’s paper [7] with some additional

pigeonhole argument.

The reason that harmonic functions reflect the growth condition of the group lies in

the following lemma.

4.0.3 Lemma. Assume bounded doubling for all R > 0. Let ϵ > 0 be a small parameter,

cover BS(4R) by balls {Bi} of radius ϵR. Suppose that a harmonic function f :G→ R

has mean zero on every such ball. Then one has

∥f∥ℓ2(BS(R)) ≪ ϵ∥f∥ℓ2(BS(4R)) (4.0.1)

This lemma shows that harmonic functions defined on a larger ball BS(4R) can not

vary too much on smaller balls BS(R), which in turn implies the lack of different harmonic
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functions. The proof of the lemma requires two inequalities which we will state later. For

now let’s see how the lemma implies Kleiner’s theorem.

Lemma 4.0.3 implies Theorem 4.0.2. Consider Lipschitz harmonic functions {u1, . . . ,un},

and let V = span{u1, · · · ,un}. Since we only care of dimensions we can assume {u1, . . . ,un}

forms an orthogonal basis of V and all functions vanish at identity. Define the quadratic

form QR on V as

QR(ui,uj) =
∑

BS(R)
uiuj

Our goal is to prove that

lim
n→∞det(QR(ui,uj))1≤i,j≤n −→ 0

which shows that V is finite dimensional as n→ ∞.

The Lipschitz condition controls the growth rate of each harmonic function, which

gives

det(QR(ui,uj))1≤i,j≤n =
n∏

i=1
QR(ui,ui) ≪R2n (4.0.2)

By bounded doubling, we can cover BS(4R) by Oϵ(1) balls of radius ϵR. Now V splits

into two types of functions: (1) ui ∈ V has mean zero on all balls of radius ϵR, which are

bounded by lemma 4.0.3. We denote this subspace W . (2) ui ∈ V has nonzero mean on

some balls of radius ϵR. These functions will have dimension Oϵ(1) in space V . Therefore

we obatin

det(QR(ui,uj))1≤i,j≤n =
∏

ui∈W

QR(ui,ui)
∏

ui∈W ⊥
QR(ui,ui)

≤
∏

ui∈W

O(ϵ)Q4R(ui,ui)
∏

ui∈W ⊥
Q4R(ui,ui)

=O(ϵ)n−Oϵ(1) det(Q4R(ui,uj))1≤i,j≤n

(4.0.3)

We can choose small ϵ and as n→ ∞, inequality 4.0.2 and 4.0.3 will force

det(QR(ui,uj))1≤i,j≤n −→ 0.

So we are done.

Definition 4.0.4. Let u :G→ R be a function. The gradient ∇u :G→ RS of u is defined

by the formula

∇u(x) := (u(xs)−u(x))s∈S
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So,

|∇u(x)| := (
∑
s∈S

|u(xs)−u(x)|2)1/2

The Laplacian of a function u :G→ R is defined by the formula

∆u := −∇·∇u

or more explicitly

∆u(x) = 2|S|u(x)−2
∑
s∈S

u(xs).

Now we can state the two inequalities required to prove Lemma 4.0.3, the proofs are

taken from [3].

4.0.5 Lemma (Poincaré inequality). Let f :G→ R, x ∈G, and r ≥ 1. Let

fB(x,r) := 1
|B(x,r)|

∫
B(x,r)

f

be the average value of f on B(x,r). Then

∥f −fB(x,r)∥ℓ2(B(x,r)) ≪ r2

∣∣∣BS(2r)
∣∣∣∣∣∣BS(r)
∣∣∣ ∥∇f(x)∥ℓ2(B(x,3r)) (4.0.4)

Proof. By definition of the gradient, we have the pointwise bound

|f(ygs)−f(yg)| ≤ |∇f(yg)| (4.0.5)

for all y,g ∈G and s ∈ S. Take g ∈BS(2r) and average this in ℓ2 over all y ∈B(x,r), we

conclude that ∑
y∈B(x,r)

|f(ygs)−f(yg)|2)1/2 ≤ ∥∇f∥ℓ2(B(x,3r)). (4.0.6)

Telescoping this using the triangle inequality, we conclude that

∑
y∈B(x,r)

|f(ygs)−f(yg)|2)1/2 ≤ 2r∥∇f∥ℓ2(B(x,3r)) (4.0.7)

for all g ∈BS(2r). Summing in g using the triangle inequality, we conclude that

(
∑

y∈B(x,r)
(

∑
y∈BS(2r)

|f(ygs)−f(yg)|2)1/2 ≤ 2r|BS(2r)|∥∇f∥ℓ2(B(x,3r)) (4.0.8)

But for any y ∈B(x,r), we have

|f(y)−fB(x,r)(y)| ≤ 1
|BS(r)|

∑
z∈B(x,r)

|f(z)−f(y)| ≤ 1
|BS(r)|

∑
g∈BS(2r)

|f(yg)−f(y)|

and the claim follows.
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4.0.6 Lemma (Reverse Poincaré inequality).

∑
y∈BS(x,R)

∣∣∣∇f(y)
∣∣∣2 ≪R−2 ∑

y∈BS(x,2R)

∣∣∣f(y)
∣∣∣2 (4.0.9)

where ∣∣∣∇f(x)
∣∣∣2 :=

∑
S

∣∣∣f(x)−f(xs)
∣∣∣2

Proof. Let ψ :G→R be the cutoff function ψ(y) := max(1− dist(x,y)
2R ,0). Then

f(ys)−f(y) ·ψ2(y) = f ·ψ2(ys)−f ·ψ2(y)+f(ys) · (ψ2(y)−ψ2(ys)) (4.0.10)

We have f(ys) =O(|f(y)|+ |∇f(y)|), and

ψ(ys)−ψ(y) =O( 1
R

).

Multiplying 4.0.10 by f(ys)−f(y) and summing in s, we conclude that

|∇f |2ψ2(y) = ∇(f ·ψ2) ·∇f +O(|S|(|f(y)|+ |∇f(y)|)(ψ(y)
R

+ 1
R2 )).

Summing by parts we have

∑
y∈G

|∇f |2ψ2(y) ≪
∑
y∈G

|fψ2(y)||∇f(y)|+ |S|
R

|(∇f(y)|+ |∇f(y)|)ψ(y)

+ |S|
R2

∑
y∈B(x,2R−1)

|∇f(y)|(|f(y)|+ |∇f(y)|).
(4.0.11)

The first term is zero since f is harmonic. Applying the Cauchy-Schwarz to the second

term we obtain

|S|
R

|(∇f(y)|+ |∇f(y)|)ψ(y) ≤ t
∑
y∈G

|∇f |2ψ2(y)+ 1
t

|S|2

R2
∑
y∈G

(∇f(y)|+ |∇f(y)|)2

for all t > 0. Insert this into equation 4.0.11 we have

(1− t)
∑
y∈G

|∇f |2ψ2(y) ≪
Ct,|S|
R2

∑
y∈G

(∇f(y)|+ |∇f(y)|)2

≤
Ct,|S|
R2 (∥f∥ℓ2(B(x,2R−1)) +∥∇f∥ℓ2(B(x,2R−1)))

(4.0.12)

Choosing small t we get

∥∇f∥2
ℓ2(B(x,R)) ≤ ∥∇f∥ℓ2(B(x,2R−1)) ≪ 1

R2 ∥f∥ℓ2(B(x,2R−1))

and the lemma follows.
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To prove lemma 4.0.3, observe that (f has mean zero on Bi)

∥f∥ℓ2(BS(R)) ≤
∑

i

∑
y∈Bi

(
f(y)−fBi

)2

Applying lemma 4.0.5, we obtain

∥f∥ℓ2(BS(R)) ≤
∑

i

R2

∣∣∣BS(2ϵR)
∣∣∣∣∣∣BS(ϵR)
∣∣∣ ∥∇f(x)∥ℓ2(3Bi)

Using bounded doubling we can refine the family of balls {Bi = B(xi, ϵR)} so that the

triples {3Bi = B(xi,3ϵR)} have bounded overlap. This means that for growth rate d

we can find constant Cd s.t the intersection multiplicity of {3Bi} is less than Cd. Since

3Bi ∈B(4R), we have

∑
i

∥∇f(x)∥ℓ2(3Bi) ≤ Cd∥∇f(x)∥ℓ2(BS(4R))

Applying lemma 4.0.6 for each ball and summing we obtain

∥f∥ℓ2(BS(R)) ≤ Cd

∣∣∣BS(2ϵR)
∣∣∣∣∣∣BS(ϵR)
∣∣∣
∑

i

(ϵR)2∥∇f(x)∥ℓ2(BS(4R))

≪ ϵ∥f(x)∥ℓ2(BS(8R))

(4.0.13)

which completes the proof.

We briefly discuss the remaining proof of the Gromov Theorem, for more details

see T. Tao’s blog [4]. We will first construct a nontrivial Lipschitz harmonic functions,

since group G acts on the space of harmonic functions, we obtain a finite dimensional

representation G → GLn. We can then use this representation to do induction on the

growth rate Rd to prove that G is virtually nilpotent for all d.
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