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Abstract

In this thesis, we first review some basic concepts in random matrix theory and then
we show how these concepts motivate and help solve two independent problems. The
first result is a Gaussian central limit theorem for eigenvalue statistics of inhomogeneous
matrix models which interpolate between Wigner matrices and certain patterned random
matrices. The second result is a non-asymptotic concentration inequality for the operator
norm of random matrices with sub-Gaussian entries.
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Chapter 1

Introduction and Background

1.1 What is a Random Matrix?

The field of random matrix theory began in the 1920s when Wishart introduced ran-
dom matrices in mathematical statistics in [Wis28]. However, the field gained popularity
after Wigner used ensembles of random matrices to study the nuclei of heavy atoms in
[Wig51] and [Wig55]. The study of random matrices has since evolved from just being
a mathematical tool into a field of its own, with applications in mathematics, physics,
finance, computer science, and more. For more applications of the theory of random
matrices, see [EW13] and the references therein.

So what is a random matrix? It is simply a matrix-valued random variable, or in other
words, a matrix whose entries are random variables. In the background of this entire
thesis, there is a probability space (Ω,F ,P) on which all random variables are defined.
We will not directly refer to this probability space, but implicitly all probabilities are
with respect to (Ω,F ,P). We will also assume all random variables are real-valued unless
otherwise noted. Hence given n2 random variables {Xij}1≤i,j≤n, an n× n random matrix
X is

X =


X11 X12 . . . X1n

X21 X22 . . . X2n
...

...
. . .

...
Xn1 Xn2 . . . Xnn

 . (1.1)

When studying random matrices, we are often interested in understanding the eigen-
values of the given matrix. Similar questions can be asked about the eigenvectors (see
[OVW16] for a review of this area), though they are much less understood. Eigenvectors
will not be considered in this thesis and instead we will focus on the eigenvalues of ran-
dom matrices, and in order to study them, we encapsulate them in the empirical spectral
distribution.

Definition 1.1.1. Let X be an n×n Hermitian random matrix with eigenvalues λ1, . . . , λn.
Then the empirical spectral distribution (ESD) of X is the random probability measure on
R defined as µX = 1

n

∑n
i=1 δλi

.

In other words, given a random matrix, we define a random probability measure on R
that puts a point mass of 1

n at each eigenvalue (counted with multiplicity) of the associated
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random matrix. Note that X is assumed to be Hermitian, so all of its eigenvalues are real
and thus µX is a probability measure on R. A similar construction works for non-symmetric
matrices, and in this case the ESDs will be probability measures on C. However, for the
majority of this thesis we will be considering symmetric random matrices unless otherwise
noted, and hence all ESDs are measures on the real line.

The distribution of µX is a probability measure on the space of probability measures
on R. An important consequence of this definition is that for any f ∈ C(R), we have∫
R f dµX = 1

n

∑n
i=1 f(λi) as random variables, and one can talk about convergence of

ESDs. In order to understand the limiting behavior of the eigenvalues of a random matrix,
we study the empirical spectral distribution of a sequence of matrices as the dimension
tends to infinity. In other words, given a sequence of (square) random matrices Xn ∈
Mn×n(R), the limiting empirical spectral distribution is defined as µ := limn→∞ µXn .
This convergence of measures is defined weakly, and the type of weak convergence (e.g.
convergence in probability or almost sure convergence) is dependent on the context. Hence
we say that µXn converges to µ weakly in probability (resp. almost surely) if for all
f ∈ Cc(R),

∫
R f dµXn converges to

∫
R f dµ in probability (resp. almost surely).

One of the beautiful phenomena in random matrix theory is that often the limiting
empirical spectral distribution turns out to be deterministic. We will see examples of
this in Sections 1.2 and 1.3. The goal of the remainder of this introduction is to briefly
introduce the reader to some of the important areas in random matrix theory in order to
place the body of this thesis within a broader context. The main theorems in Chapter 2
pertain to models that interpolate between the ensembles discussed in Sections 1.2 (Wigner
matrices) and 1.3 (certain types of patterned random matrices). Section 1.4 describes a
sub-field of random matrix theory known as non-asymptotic random matrix theory, and
techniques from this area are used to prove the main theorems in Chapter 2. Finally, the
main result in Chapter 3 is purely non-asymptotic.

1.2 Wigner Matrices and the Semicircle Law

In this section we review a couple of benchmark results in random matrix theory, then
describe how they relate to the main results in this thesis. We will not provide any proofs,
though they can be found in Chapters 1 and 3 of [AGZ10].

The first main result is Wigner’s semicircle law, and in order to state it we need to define
Wigner matrices. In words, Wigner matrices are symmetric matrices with the maximum
amount of independence among the entries, but to be more precise, let {Yij}1≤i≤j≤n be
independent identically distributed random variables. Then define Yn entry-wise as

(Yn)ij =

{
Yij i ≤ j

Yji i > j
. (1.2)

Written out in a matrix,

Yn =


Y11 Y12 Y13 . . . Y1n
Y12 Y22 Y23 . . . Y2n
Y13 Y23 Y33 . . . Y3n

...
...

...
. . .

...
Y1n Y2n Y3n . . . Ynn

 . (1.3)
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For simplicity, we will further assume that E[Yij ] = 0 and E[(Yij)
2] = 1. Wigner’s

semicircle law is a statement about the limiting empirical spectral distribution of matrices
of the above type, so we need to take the dimension to infinity. However, an observant
reader may have already seen the following issue: if we take n → ∞, the largest eigenvalue
of Yn will tend to ∞ as well. This is easily seen by the fact that if λ1, . . . , λn are the
eigenvalues of Yn (with λn the largest in magnitude) nλ2

n ≥ λ2
1 + · · · + λ2

n = Tr(Y 2) =∑n
i,j=1 Y

2
ij , and

∑n
i,j=1 Y

2
ij grows like n2 as n → ∞ by the strong law of large numbers.

Hence we introduce the following scaling to define Wigner matrices.

Definition 1.2.1. Let Yn be the sequence of matrices defined above. Then a Wigner
matrix Xn is defined as n−1/2Yn.

The n−1/2 scaling may seem a bit peculiar, though it turns out that this is appropriate.
For a simple argument explaining why, see section 1 of [Kem13]. This n−1/2 scaling will
appear in multiple places throughout this thesis, and in the Wigner case it turns out that
the n−1/2 scaling forces the limiting ESD to have compact support.

We are now ready to state the main theorem of this section, which is Wigner’s semicircle
law.

Theorem 1.2.2. Let Xn be a sequence of Wigner matrices as defined above, and let µXn

be the associated empirical spectral distribution. Then as n → ∞, µXn converges weakly
almost surely to the semicircle law σ, where σ is the following (deterministic) probability
measure on R:

σ(dx) =
1

2π

√
(4 − x2)+dx. (1.4)

The measure σ defined above has a density whose graph is a (scaled) semicircle of
radius two centered at zero, hence the name “the semicircle law”. Figure 1.1 contains a
plot of the histogram of the eigenvalues of a 4000×4000 Wigner matrix, and the structure
of the spectrum is apparent. The above theorem is a statement about eigenvalues in the
“bulk”, i.e. about an order n number of eigenvalues. One can also study “local” statistics,
in which one considers the behavior of small fractions of eigenvalues or even individual
eigenvalues.

An example of a local result is the Tracy-Widom Law, which describes the behavior
of the largest eigenvalue of certain types of Wigner matrices. The semicircle law hints
that the top eigenvalue converges to +2, but we can study this convergence directly and
further understand how the largest eigenvalue fluctuates around +2. The model we will
consider here is the Gaussian Unitary Ensemble (GUE).

Definition 1.2.3. For k ≥ j ≥ 1, let {Zjk} and {Z ′
jk} be two independent families of

N(0, 1) random variables. Then define the n × n Hermitian complex matrix Xn whose
entries are

[Xn]jk = [Xn]kj = n−1/2 1√
2

(Zjk + iZ ′
jk), 1 ≤ j < k ≤ n (1.5)

[Xn]jj = n−1/2Zjj , 1 ≤ j ≤ n. (1.6)

The above sequence Xn is called a Gaussian Unitary Ensemble GUEn.
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Figure 1.1: A histogram of the eigenvalues of a 4000 × 4000 Wigner matrix. Image taken
from [Kem13].

Remark 1.2.4. The name Gaussian Unitary Ensemble comes from the fact that the joint
law of the entries is invariant under conjugation by unitary matrices.

Theorem 1.2.5. Let λn be the largest eigenvalues of a GUEn. Then the limiting CDF of
n2/3(λn − 2) is given by

lim
n→∞

P(n2/3(λn − 2) ≤ t) = exp

(
−
∫ ∞

t
(x− t)q(x)2 dx

)
. (1.7)

Here, q is a solution of the Painlevé II equation q′′(x)−xq(x)+2q(x)3 = 0. Asymptotically,
as x → ∞, q(x) is approximately the Airy function, which is the solution of the ODE
u′′(x) = xu(x).

Remark 1.2.6. Here, we considered complex matrices (the GUEn) but analogous Tracy-
Widom-type results hold for real matrices (the Gaussian Orthogonal Ensemble) and ma-
trices with quaternion entries (the Gaussian Symplectic Ensemble).

The above statement is fully local, as it describes the behavior of a single eigenvalue as
the dimension tends to infinity. Further, instead of describing the deterministic limiting
value of λn, the Tracy-Widom law describes the fluctuations of λn about its limit (with
the appropriate scaling). In Chapter 2, the two main theorems are in some way a mixture
of the semicircle law and the Tracy-Widom law. In Chapter 2, we study the eigenvalues
in the bulk (i.e. we study all eigenvalues a once), and we prove two theorems about how
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Figure 1.2: The eigenvalues of an unnormalized GUEN (i.e. without the N−1/2 scaling).
Here, N denotes the size of the matrix, and α denotes the variance of the entries (in
the context of this section α = 1) The density of eigenvalues in the bulk is given by the
semicircle ρN (λ), and the fluctuations of the top eigenvalue are shown in color. Over a
scale of O(N−1/6) (which in the further N−1/2 normalized case is N−2/3), the maximum
eigenvalue has the Tracy-Widom distribution, which is depicted in red. Image taken from
[NM11].

certain statistics of theses eigenvalue fluctuate around their means. In particular, we study
the fluctuations of linear eigenvalue statistics.

Definition 1.2.7. Let λ1, . . . , λn be the eigenvalues of an n × n matrix Xn. Then for a
fixed test function f , the linear eigenvalue statistics are defined as

n∑
i=1

f(λi). (1.8)

Note that the linear eigenvalue statistics for a random matrix Xn and a test function
f are precisely the same as integrating f against the ESD (up to a factor of n). Hence,
when f = xp for some p ∈ N, these linear eigenvalue statistics return the moments of the
ESD (multiplied by n).

When we describe their fluctuations, we get a result of the form

φ(n)

(∫
R
f(x) dµXn −

∫
R
f(x) dµ̄n

)
n→∞−−−→ Y, (1.9)

where φ(n) describes some appropriate scaling, µ̄n is an “averaged” empirical spectral
distribution, and Y is a limiting random variable that describes the fluctuations. Note
that µ̄n is an “average” measure in the sense that E[

∫
R f(x) dµXn ] =

∫
R f(x) dµ̄n, and its

existence follows from the Riesz Representation Theorem.

1.3 Some Other Types of Patterned Random Matrices

While Wigner matrices play an important role in the study of random matrices, the
field is not limited solely to models with independent entries. In [Bai99], Bai proposed the
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study of the limiting ESD of certain types of patterned random matrices with additional
linear structure among the entries, and in [BDJ06], Bryc, Dembo, and Jiang provided
solutions to these problems. In particular, they studied the limiting empirical spectral
distributions of random Toeplitz, Hankel, and Markov matrices. The precise definitions
of Toeplitz and Hankel models are given below and will be provided again later on when
necessary (Markov matrices are not relevant to this work).

Definition 1.3.1. An n× n symmetric random Toeplitz matrix Tn is defined as follows.
Let X0, X1, X2, . . . be independent random variables. Then

Tn =



X0 X1 X2 · · · Xn−2 Xn−1

X1 X0 X1 · · · Xn−3 Xn−2

X2 X1 X0 · · · Xn−4 Xn−3
...

...
...

. . .
...

Xn−2 Xn−3 Xn−4 · · · X0 X1

Xn−1 Xn−2 Xn−3 · · · X1 X0


. (1.10)

In other words, (Tn)ij = X|i−j|.

Definition 1.3.2. An n×n random Hankel matrix is defined as follows. Let X1, X2, . . . , X2n−1

be independent random variables. Then

Hn =


X1 X2 X3 · · · Xn−1 Xn

X2 X3 X4 · · · Xn Xn+1

X3 X4 X5 · · · Xn+1 Xn+2
...

...
...

. . .
...

...
Xn Xn+1 Xn+2 · · · X2n−2 X2n−1

 (1.11)

In other words, (Hn)ij = Xi+j−1.

Bryc, Dembo, and Jiang showed that when the entries have mean zero and variance
1
n , the limiting spectral distribution for Toeplitz and Hankel matrices is a nonrandom,
symmetric distribution with unbounded support. Since then, the spectra of patterned
random matrices have been extensively studied (see the book of Bose [Bos18] and the ref-
erences therein). Chapter 2 concerns generalized versions of random Toeplitz and Hankel
matrices, as well as generalized versions of other patterned models, namely circulant, re-
verse circulant, and symmetric circulant matrices (which are defined in Chapter 2). These
generalized models interpolate between Wigner matrices and the corresponding patterned
random matrices. These are the types of matrices that we will prove a fluctuations result
for their linear statistics.

1.4 Non-Asymptotic Random Matrix Theory

In the above sections, we have discussed “classical” random matrix theory. This theory
involves specialized models (usually assuming i.i.d. entries), and the ensembles in question
are usually highly structured and invariant as the dimension tends to infinity. For example
any Toeplitz matrix has independent diagonals and identically distributed entries along
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each diagonal, and this condition is invariant as n → ∞. In classical random matrix
theory, we can usually find exact asymptotics of the limiting spectral distribution (and a
variety of other quantities of interest).

There is, however, another sub-field of random matrix theory, in which researchers
study random matrices of a fixed dimension. This area is called non-asymptotic random
matrix theory. Researchers in this area study highly inhomogeneous random matrices
of a fixed dimension, and instead of getting exact results in the limit, they prove high
probability estimates (that depend on the dimension).

In this section we will give a quick overview of some of the results in non-asymptotic
random matrix theory (relevant to this thesis) and how they can be used to further un-
derstand the spectrum of random matrices. For a detailed introduction to the field, see
the surveys of Tropp [Tro15] and Vershynin [Ver12], and the book by Vershynin [Ver18].

A large part of non-asymptotic random matrix theory is bounding the largest singular
value (either in expectation or with high probability) of a random matrix, and one of the
approaches to doing this is through matrix concentration inequalities. This theory exploits
the principle that in practice, most random matrices X of interest can be written as a
sum of independent random matrices in the following way

X =
k∑

i=1

Zi (1.12)

where Zi are independent random matrices of common dimension. Trivially, we can write
any random matrix in this form with k = 1, but in many cases k can be large and depend
on the dimension. In these scenarios, we can get useful bounds on the largest singular
value. We will see many examples of this phenomenon applied to patterned random
matrices later on in this thesis, but the following is an example of how this idea is applied
to Wigner matrices:

Example 1.4.1. Let Eij ∈ Mn(R) for 1 ≤ i ≤ j ≤ n be defined by

(Eij)kl =

{
n−1/2 (i, j) = (k, l) or (i, j) = (l, k)

0 otherwise.
(1.13)

Now for 1 ≤ i ≤ j ≤ n, let Xij be independent, identically distributed random variables
with mean 0 and variance 1. Then any Wigner matrix can be written as

∑
1≤i≤j≤nXijEij

where. Here, {XijEij}1≤i≤j≤n is a set of independent random matrices.

Then matrix concentration inequalities can bound how much the operator norms of
matrices that can be written in the form of equation (1.12) differ from their means. In
other words, they provide tail estimates of the form

P(||X − E[X]|| ≥ t) ≤ . . . (1.14)

where the expectation of a matrix is taken entry-wise. In the situations considered in this
thesis, we assume that the entries of the random matrices are centered, so E[X] is just the
zero matrix.

The ideas and main results in matrix concentration inequalities have their roots in the
analogous theory for real-valued random variables. Concentration inequalities for sums
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of independent random variables have been extensively studied, and important results
in this area include the simple Markov and Chebyshev inequalities, as well as Bernstein
inequalities and Chernoff bounds. Many of these have matrix analogues which are used to
bound the operator norm of random matrices, as is evidenced in the following comparison
between Bernstein inequalities for real valued random variables and matrices taken from
[Tro15].

Theorem 1.4.2. (Bernstein Inequality for real-valued random variables)
Let S1, . . . , Sn be independent, centered, real random variables, and assume that each

one is uniformly bounded:

ESk = 0 and |Sk| ≤ L for each k = 1, . . . , n (1.15)

for some L > 0. Then if Z =
∑n

k=1 Sk, let ν(Z) denote the variance of Z:

ν(Z) = EZ2 =
n∑

k=1

ES2
k . (1.16)

Then

P(|Z| ≥ t) ≤ 2 exp

(
−t2/2

ν(Z) + Lt/3

)
for all t ≥ 0. (1.17)

With this in mind, there is also the following Matrix Bernstein Inequality, which is
strikingly similar.

Theorem 1.4.3. (Bernstein Inequality for matrices)
Let S1, . . . ,Sn be independent, centered random matrices with common dimension d1×

d2, and assume that each one is uniformly bounded

ESk = 0 and ||Sk|| ≤ L for each k − 1, . . . , n. (1.18)

Then let

Z =

n∑
k=1

Sk, (1.19)

and let ν(Z) denote the matrix variance statistic of Z:

ν(Z) = max{||E(ZZ∗)||, ||E(Z∗Z)||} (1.20)

= max

{∥∥∥∥∥
n∑

k=1

E(SkS
∗
k)

∥∥∥∥∥ ,
∥∥∥∥∥

n∑
k=1

E(S∗
kSk)

∥∥∥∥∥
}
. (1.21)

Then

P(||Z|| ≥ t) ≤ (d1 + d2) · exp

(
−t2/2

ν(Z) + Lt/3

)
for all t ≥ 0. (1.22)

This correspondence between matrix and ordinary concentration inequalities appears
in non-asymptotic random matrix theory quite frequently, and we prove such an example in
Chapter 3. The result in Chapter 3 resembles the Matrix Bernstein Inequality, though the
models considered in the chapter are constructed as series of independent sub-Gaussian
random variables multiplied by deterministic matrices. Further, the main theorem in
Chapter 3 has an analogue for real-valued sub-Gaussian random variables, much like the
relation between the Matrix Bernstein Inequality and Bernstein Inequality for real-valued
random variables.
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1.5 Outline of Main Results

This thesis contains two papers which appear in Chapters 2 and 3. The first result
pertains to how the eigenvalues for certain types of random matrices fluctuate around
their averaged empirical spectral distribution. This result is a central limit theorem for
statistics related to the eigenvalues of generalized patterned random matrices. The matri-
ces considered in Chapter 2 (defined in 2.1) are highly inhomogeneous in their correlation
structure, and in order to get a handle on their eigenvalues we employ combinatorial ar-
guments and non-asymptotic techniques. To the best of our knowledge, this is the first
type of result where a Gaussian central limit theorem for these eigenvalue statistics has
been proved for inhomogeneous random matrices.

The second paper is a purely non-asymptotic result. It is a concentration inequality
for random matrices that can be constructed as a series of sub-Gaussian random vari-
ables multiplied by deterministic Hermitian matrices. Similar types of results have been
proven for random matrices with Gaussian and Rademacher entries (both of which are
sub-Gaussian), but our result applies in full generality to all sub-Gaussian random vari-
ables. The key tool in this paper is a bound on the matrix moment generating function
using the moment bounds of sub-Gaussian random variables.
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Chapter 2

Fluctuations of Eigenvalues for
Random Matrices with Correlated
Entries

2.1 Introduction

In this paper, we study the fluctuations of linear statistics of eigenvalues for patterned
random matrix models with correlated entries. If Xn is an n×n random matrix, its linear
eigenvalue statistics are defined as

n∑
i=1

f(λi) (2.1)

where λ1, . . . , λn are the eigenvalues of Xn and f is a fixed test function.
The linear eigenvalue statistics of various random matrix models have been extensively

studied in the literature. One is often interested in the fluctuations of linear statistics, and
Gaussian central limit theorem results for various random matrix models have recently
been proved. For fluctuations results for Wigner matrix models, see [Cha09], [AZ06],
[Joh98], [Sos02], [SS98], [Shc11], [LP09], and [SW13] and the references therein. For
random Toeplitz matrix models, see [Cha09] and [LSW12], and for circulant matrices see
[AS17] and [AS18]. For a non-Gaussian fluctuations result, see [SMS22] for an example
with odd monomial test functions and random Hankel matrices. The fluctuations of
eigenvalues for symmetric circulant and reverse circulant matrices were studied in [MS21]
and [AS17].

To the best of our knowledge, the current linear statistics fluctuations results in the
literature do not consider any models in which the matrix entries are allowed to have some
general correlation structure. In this paper, we study the linear statistics of models that
resemble the symmetric random Toeplitz, circulant, reverse circulant, symmetric circulant,
and Hankel models, except we allow correlations among certain entries. This work is a
generalization of Section 4.3 of [Cha09] and the related results in [AS17].

The random Toeplitz model with correlated entries is defined as follows, and is a
more general version of the model studied in [FL13]. The corresponding circulant, reverse
circulant, symmetric circulant, and Hankel models with correlated entries are defined in
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Section 2.1.1.

Definition 2.1.1. For n ∈ N, a random matrix X = Xn is called a random Toeplitz
matrix with correlated entries if it is symmetric and has identically distributed, independent
diagonals up to symmetry. The entries of X are assumed to satisfy E(Xij) = 0.

An n × n Toeplitz matrix with correlated entries is determined by n independent
random vectors of dimensions varying from 1 through n, {Xk}n−1

k=0 with Xk ∈ Rn−k. Then
the entries of the matrix are given by Xij = [X|i−j|]min(i,j). That is,

X =


[X0]1 [X1]1 [X2]1 · · · [Xn−1]1
[X1]1 [X0]2 [X1]2 · · · [Xn−2]2
[X2]1 [X1]2 [X0]3 · · · [Xn−3]3

...
...

...
. . .

...
[Xn−1]1 [Xn−2]2 [Xn−3]3 · · · [X0]n

 (2.2)

We refer to the vector Xk as the kth diagonal of the correlated Toeplitz matrix.
The most important example is the Gaussian case where the diagonal vectors are all

jointly Gaussian vectors. In this case, the distribution of the entries of the matrix is
completely determined by their covariances. For notation, we use

ck(i, j) = Cov([Xk]i, [Xk]j) = E([Xk]i[Xk]j). (2.3)

Note that the values ck(i, j) also depend on n and they cannot be chosen with complete
freedom, since the (n− k) × (n− k) covariance matrix of each diagonal must be positive
semidefinite. Also, due to the independent diagonals condition the covariance between
any two entries on different diagonals is 0. The covariances between entries in the upper
triangle of an Toeplitz matrix can thus be written as

Cov(Xij , Xkl) = E([X|i−j|]i[X|k−l|]k) = δ|i−j|=|k−l|c|i−j|(i, k), i ≤ j, k ≤ l. (2.4)

As stated above, the covariances ck(i, j) completely determine the distribution of the
entries in the Gaussian case. When ck(i, j) = δij for all i, j, k, we have a Gaussian Wigner
matrix and when ck(i, j) = 1 for all i, j, k, we have a Gaussian symmetric random Toeplitz
matrix. Hence, one can think of correlated Toeplitz matrices as a model that interpolates
between the well-studied Wigner and random Toeplitz matrix models.

In this paper, we prove Gaussian central limit theorems for the linear eigenvalue statis-
tics of random Toeplitz matrices with correlated entries. We also prove a similar result for
correlated versions of circulant, reverse circulant, symmetric circulant, and Hankel matri-
ces (we give precise definitions of these models in Section 2.1.1). We have the following
theorem.

Theorem 2.1.2. Let Xn be an n × n random Toeplitz, circulant or symmetric circulant
matrix with correlated centered Gaussian entries with covariances labeled by ck(i, j). As-
sume that there exists constants m, M ∈ (0,∞) such that m ≤ E(X2

ij) ≤ M for all i, j,
and n. Further, assume that there exists γ > 0 such that ck(i, j) ≥ γ for all i, j, k, and n.
Let p be a positive integer and let Wn = Tr(Xp

n). Then as n → ∞,

Wn − E(Wn)√
Var(Wn)

converges in total variation to N(0, 1). (2.5)
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In the case when Xn is a reverse circulant or Hankel matrix with correlated entries, the
theorem still holds under the further assumption that p is restricted to be an even positive
integer.

The condition on the parity of p is most likely required in the case of the Hankel
matrices with correlated entries. In the uncorrelated model, it was shown in [SMS22] that
the fluctuations of the linear eigenvalue statistics converge to a non-Gaussian limit for odd
monomial test functions. However, it is not clear whether this condition is required in the
reverse circulant case.

Furthermore, the reverse circulant, circulant, and Hankel models with correlated en-
tries (defined in Section 2.4) are not symmetric and hence do not necessarily have real
eigenvalues.

The above theorem allows for very general correlation structures among the diagonals.
The covariances along each diagonal can fluctuate wildly with n, and as long as they
stay bounded away from 0, the Gaussian central limit theorem still holds. The next
theorem examines the fluctuations of the linear eigenvalue statistics in the regime where
the covariances among the entries uniformly converge to 0.

Theorem 2.1.3. Let Xn be an n× n random Toeplitz, circulant, reverse circulant, sym-
metric circulant, or Hankel matrix with correlated centered Gaussian entries with covari-
ances labeled by ck(i, j). Assume that there exists constants m, M ∈ (0,∞) such that
m ≤ E(X2

ij) ≤ M for all i, j and for all n. Further, assume ck(i, j) = o(n−1/3) for all
i, j, k, and n with i ̸= j. Let p be a positive integer and let Wn = Tr(Xp

n). Then as n → ∞,

Wn − E(Wn)√
Var(Wn)

converges in total variation to N(0, 1). (2.6)

The set up of the paper is as follows. We first prove, in detail, Theorem 3.1.3 in the
case when Xn is a random Toeplitz matrix with correlated entries. Thus in Section 2.2
we give an outline of the correlated Toeplitz matrix proof and compute some necessary
bounds on the variance. In Section 2.3 we compute a bound on the operator norm of
an arbitrary Toeplitz matrix with correlated entries and then use this bound to complete
the proof of Theorem 3.1.3. In Section 2.4, we comment on how the Toeplitz proof of
Theorem 3.1.3 can be adapted for each of the other matrix models. In Section 2.5, we
prove Theorem 2.1.3. Finally, in Section 2.6 we conjecture about how Theorem 3.1.3 may
be extended, both by removing the conditions on the covariances and by generalizing to
sub-Gaussian entries.

2.1.1 Definitions of Other Correlated Matrix Models

In this section we define other versions of patterned random matrix models that allow
for correlations among the entries. In [AS17], Adhikari and Saha proved Gaussian fluctua-
tions results for the uncorrelated versions of the following matrices. In all of the following
models, for k = 1, . . . , n, let

ck(i, j) = Cov([Xk]i, [Xk]j) = E([Xk]i[Xk]j). (2.7)
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Reverse Circulant Matrices with Correlated Entries

Definition 2.1.4. An n× n reverse circulant matrix is defined as

RCn =


x1 x2 x3 · · · xn−1 xn
x2 x3 x4 · · · xn x1
x3 x4 x5 · · · x1 x2
...

...
...

. . .
...

...
xn x1 x2 · · · xn−2 xn−1

 (2.8)

In other words, (RCn)ij = x(i+j−1) mod n. The (j + 1)-th row is obtained by shifting the
j-th row by one position to the left.

In order to introduce the correlations, we have n independent centered random vectors
Xk ∈ Rn for k = 1, . . . , n. Then the random reverse circulant matrix with correlated
entries can be written as

Xn = n−1/2


[X1]1 [X2]1 [X3]1 · · · [Xn−1]1 [Xn]1
[X2]2 [X3]2 [X4]2 · · · [Xn]2 [X1]2
[X3]3 [X4]3 [X5]3 · · · [X1]3 [X2]3

...
...

...
. . .

...
...

[Xn]n [X1]n [X2]n · · · [Xn−2]n [Xn−1]n

 (2.9)

Circulant Matrices with Correlated Entries

Definition 2.1.5. An n× n circulant matrix is defined as

Cn =


x1 x2 x3 · · · xn−1 xn
xn x1 x2 · · · xn−2 xn−1

xn−1 xn x1 · · · xn−3 xn−2
...

...
...

. . .
...

...
x2 x3 x4 · · · xn x1

 (2.10)

In other words, (Cn)ij = x(j−i+1) mod n. The (j+1)-th row is obtained by shifting the j-th
row by one position to the right.

In order to introduce the correlations, we have n independent centered random vectors
Xk ∈ Rn for k = 1, . . . , n. Then the random circulant matrix with correlated entries can
be written as

Xn = n−1/2


[X1]1 [X2]1 [X3]1 · · · [Xn−1]1 [Xn]1
[Xn]2 [X1]2 [X2]2 · · · [Xn−2]2 [Xn−1]2

[Xn−1]3 [Xn]3 [X1]3 · · · [Xn−3]3 [Xn−2]3
...

...
...

. . .
...

...
[X2]n [X3]n [X4]n · · · [Xn−1]n [X1]n

 (2.11)
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Symmetric Circulant Matrices with Correlated Entries

Definition 2.1.6. An n× n symmetric circulant matrix is defined as

SCn =


x0 x1 x2 · · · x2 x1
x1 x0 x1 · · · x3 x2
x2 x1 x0 · · · x4 x3
...

...
...

. . .
...

...
x1 x2 x3 · · · x1 x0

 (2.12)

In other words, (SCn)ij = xn
2
−|n

2
−|i−j||. The (j + 1)-th row is obtained by shifting the j-th

row by one position to the right.

In the correlated model (similar to the uncorrelated model), the structure of the ran-
dom matrix slightly depends on the parity of n. When n is odd we have n independent
centered Gaussian random vectors Xk ∈ Rn for k = 1, . . . , n. When n is even, we have
n−1 independent Gaussian random vectors Xk ∈ Rn for k = 1, . . . n2 −1, n2 +1, . . . n and 1

independent Gaussian random vector Xn/2 ∈ Rn/2. Then the random symmetric circulant
matrix with correlated entries can be written as

Xn = n−1/2


[X0]1 [X1]1 [X2]1 · · · [X2]n−1 [X1]n
[X1]1 [X0]2 [X1]2 · · · [X3]n−1 [X2]n
[X2]1 [X1]2 [X0]3 · · · [X4]n−1 [X3]n

...
...

...
. . .

...
...

[X1]n [X2]n [X3]n · · · [X1]n−1 [X0]n

 (2.13)

The following example exhibits the difference in structure due to the parity of the size
of the matrix.

Example 2.1.7. We have

X4 =
1

2


[X0]1 [X1]1 [X2]1 [X1]4
[X1]1 [X0]2 [X1]2 [X2]2
[X2]1 [X1]2 [X0]3 [X1]3
[X1]4 [X2]2 [X1]3 [X0]4

 and X5 =
1√
5


[X0]1 [X1]1 [X2]1 [X2]4 [X1]5
[X1]1 [X0]2 [X1]2 [X2]2 [X2]5
[X2]1 [X1]2 [X0]3 [X1]3 [X2]3
[X2]4 [X2]2 [X1]3 [X0]4 [X1]4
[X1]5 [X2]5 [X2]3 [X1]4 [X0]5


(2.14)

Hankel Matrices with Correlated Entries

Definition 2.1.8. An n× n Hankel matrix is defined as

Hn =


x1 x2 x3 · · · xn−1 xn
x2 x3 x4 · · · xn xn+1

x3 x4 x5 · · · xn+1 xn+2
...

...
...

. . .
...

...
xn xn+1 xn+2 · · · x2n−2 x2n−1

 (2.15)

In other words, (Hn)ij = xi+j−1.
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In order to introduce the correlations we have n vectors Xk ∈ Rk for k = 1, . . . , n and
n−1 vectors Xk ∈ R2n−k for k = n+1, . . . 2n−1. Then the Hankel matrix with correlated
entries is

Xn = n−1/2


[X1]1 [X2]1 [X3]1 · · · [Xn−1]1 [Xn]1
[X2]2 [X3]2 [X4]2 · · · [Xn]2 [Xn+1]1
[X3]3 [X4]3 [X5]3 · · · [Xn+1]2 [Xn+2]1

...
...

...
. . .

...
...

[Xn]n [Xn+1]n−1 [Xn+2]n−2 · · · [X2n−2]2 [X2n−1]1

 (2.16)

2.2 Proof of Theorem 1.2 for Toeplitz Models: Outline and
First Steps

This section and the following section are devoted to proving Theorem 3.1.3 for random
Toeplitz matrices with correlated entries.

In order to prove the theorem we use the technique of [Cha09], in which Chatterjee gave
a method for proving central limit theorems for linear statistics of eigenvalues of random
matrices via second order Poincaré inequalities. Let (Xij)1≤i,j≤n be a collection of jointly
Gaussian random variables with n2×n2 covariance matrix Σ. Let X = n−1/2(Xij)1≤i,j≤n.
Then we have the following proposition.

Proposition 2.2.1. (Proposition 4.4. of [Cha09]) Take an entire function f and define
f1, f2 as

f1(z) =

∞∑
m=1

m|bm|xm−1 f2(z) =

∞∑
m=2

m(m− 1)|bm|zm−2 (2.17)

where f(z) =
∑∞

m=0 bmzm. Let λ denote the operator norm of X. Let a = (Ef1(λ)4)1/4 and
b = (Ef2(λ)4)1/4. Suppose W = ReTrf(X) has finite fourth moment and let σ2 = Var(W ).
Let Z be a normal random variable with the same mean and variance as W . Then

dTV (W,Z) ≤ 2
√

5||Σ||3/2ab
σ2n

(2.18)

We use this proposition to prove Theorem 3.1.3. Here we consider monomials, so
f = xp, f1 = pxp−1, and f2 = p(p− 1)xp−2, and X will be an n× n Toeplitz matrix with
correlated entries (which we denote as Xn) with covariances in [γ, 1]. We need to bound
three terms, ||Σ|| (where || · || is the operator norm), ab, and σ2. The bound for ||Σ|| is
almost the same as in [Cha09] for random Toeplitz matrices, and the argument for bound-
ing σ2 from below is also modeled off of Chatterjee’s argument with some modifications
to deal with the covariances. The bound for ab is new, and in order to bound the term
we need to employ the matrix concentration inequalites in [Tro18].

For completeness, we give the proof of the bound on the operator norm of the covariance
matrix Σ via the Gershgorin circle theorem.

Lemma 2.2.2. For any n × n random Toeplitz matrix with correlated entries with Σ as
above, ||Σ|| ≤ 2Mn.
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Proof. Let σij,kl = Cov(Xij , Xkl), so σij,kl = 0 if |i − j| ̸= |k − l| and if |i − j| = |k − l|,
σij,kl ≤ 1. By the Gershgorin circle theorem, if λ1 . . . λn2 are the eigenvalues of Σ, we have

||Σ|| = max(|λm|) ≤ sup
1≤i,j≤n

n∑
k,l=1

|σij,kl|. (2.19)

For any fixed i, j, there are at most 2n values of k, l such that |i− j| = |k− l|. Hence each
term in the maximum is bounded by 2Mn (the M factor comes from applying Hölder’s
inequality to each ck(i, j)) and thus so is ||Σ||.

As mentioned above, the proof for bounding the variance from below is similar to
Chatterjee’s argument for random Toeplitz matrices. The main difference is employing
Wick’s theorem to show that the covariances of products of the entries are positive, and
then using the bound γ to show the variance grows at least linearly.

Remark 2.2.3. This is the only part of the proof that uses the lower bound γ of the co-
variances. This bound is sufficient to get linear growth of the variance, but may not be
necessary. However, one cannot drop all conditions on the covariances and still main-
tain linear growth of the variance (see Corollary 1 or Theorem 2 of [SS98], in which σ2

converges to a finite limit for the Wigner matrix model).

Lemma 2.2.4. With Wn as in Theorem 1.2 for the Toeplitz model with correlated entries,
Var(Wn) ≥ Kn for some constant K that only depends on p and γ.

Proof. It suffices to prove the lemma under the assumption that all of the entries are
standard Gaussian random variables. In the case when they are not, normalize each entry
and factor out the normalization coefficients and apply the same argument (see the proof
of Theorem 4.2 in [Cha09]).

We first show that products of the entries all have nonnegative covariances. In this
proof, Xij := (Xn)ij where Xn is the correlated Toeplitz matrix. For any collections of
non-negative integers (αij)1≤i≤j≤n and (βij)1≤i≤j≤n we have

Cov
(∏

X
αij

ij ,
∏

X
βij

ij

)
= E

(∏
X

αij+βij

ij

)
− E

(∏
X

αij

ij

)
E
(∏

X
βij

ij

)
(2.20)

and by the independent diagonals condition, these products factor as (with k = j − i and
using the fact that Xji = Xij)

E
(∏

X
αij+βij

ij

)
−E

(∏
X

αij

ij

)
E
(∏

X
βij

ij

)
=

n−1∏
k=0

E
(∏

X
αij+βij

ij

)
−

n−1∏
k=0

E
(∏

X
αij

ij

)
E
(∏

X
βij

ij

)
(2.21)

where the products on the right hand side inside the expectation are now taken over all
1 ≤ i ≤ j ≤ n such that j − i = k. We show that for each k, the term in the product on
the left is at least its corresponding term on the right. Fix k (so all i, j below are such
that j − i = k) and consider

E
(∏

X
αij+βij

ij

)
− E

(∏
X

αij

ij

)
E
(∏

X
βij

ij

)
. (2.22)
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Then since the Xij are centered multivariate Gaussian random variables, by Wick’s theo-
rem if

∑
αij or

∑
βij is odd, then the term on the right is 0. Thus it remains to consider

the case when
∑

αij = 2n and
∑

βij = 2m for some positive integers m,n. For notation
purposes, enumerate the 2n + 2m Xij ’s by X1, . . . X2n+2m such that the first X1, . . . , X2n

correspond to an Xij which is raised to some αij , and X2n+1, . . . X2n+2m correspond to an
Xij which is raised to some βij . Here, P2(k) denotes the set of pair partitions of [k]. In
this case by Wick’s Theorem

E
(∏

X
αij+βij

ij

)
− E

(∏
X

αij

ij

)
E
(∏

X
βij

ij

)
= (2.23)

∑
π∈P2(2(n+m))

∏
{i,j}∈π

E(XiXj) −

 ∑
π∈P2(2n)

∏
{i,j}∈π

E(XiXj)

 ∑
π∈P2(2m)

∏
{i,j}∈π

E(Xi+2nXj+2n)


(2.24)

The map ϕ : P2(2n) × P2(2m) 7→ P2(2(n + m)) where ϕ(π, σ) = π ∪ (2n + σ) (where
addition is done element wise) is an injection. Thus every term in the double sum on the
right has a corresponding term on the left. Since each of the ck(i, j) ≥ 0, E(XiXj) ≥ 0 for
all i, j so equation (2.20) is nonnegative.

Now
Wn = Tr(Xp

n) = n−p/2
∑

1≤i1,...,ip≤n

Xi1i2Xi2i3 . . . Xipi1 . (2.25)

Then since each of the terms above will have positive covariance, for any partition π of
any subset of {1, . . . , n}p,

Var(Wn) = n−pVar

 ∑
1≤i1,...,ip≤n

Xi1i2Xi2i3 . . . Xipi1

 (2.26)

= n−pVar

∑
S∈π

 ∑
(i1,...,ip)∈S

Xi1i2Xi2i3 . . . Xipi1

 (2.27)

≥ n−p
∑
S∈π

Var

 ∑
(i1,...,ip)∈S

Xi1i2Xi2i3 . . . Xipi1

 (2.28)

Now construct a partition by taking distinct positive integers 1 ≤ a1, a2, . . . ap−1 ≤
⌈ n
3p⌉ and let Da1,...,ap−1 be the set of all 1 ≤ i1, . . . ip ≤ n such that ik+1 − ik = ak for

k = 1, . . . , p − 1 and 1 ≤ i1 ≤ ⌈n3 ⌉. Then |Da1,...,ap−1 | = ⌈n3 ⌉ (since the choice of i1 fixes
all other ik). Since the ai’s are distinct, Xikik+1

is independent from Xijij+1 for all j ̸= k.
Thus

Var

 ∑
(i1,...ip),∈D

Xi1i2 . . . Xipi1

 =
∑

(i1,...ip),∈D

∑
(i′1,...,i

′
p)∈D

Cov(Xi1i2 . . . Xipi1 , Xi′1i
′
2
. . . Xi′pi

′
1
).

(2.29)
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Bounding the terms in the sum, using independence and the fact that the Xij are centered,

Cov(Xi1i2 . . . Xipi1 , Xi′1i
′
2
. . . Xi′pi

′
1
) = E(Xi1i2 . . . Xipi1Xi′1i

′
2
. . . Xi′pi

′
1
) − E(Xi1i2 . . . Xipi1)E(Xi′1i

′
2
. . . Xi′pi

′
1
)

(2.30)

= E(Xi1i2Xi′1i
′
2
) . . .E(Xipi1Xi′pi

′
1
) (2.31)

≥ γp (2.32)

Thus (2.29) ≥ γp|D|2 ≥ n2γp

9 .
The number of ways to choose a1, . . . , ap−1 satisfying the restrictions is

⌈ n

3p
⌉(⌈ n

3p
⌉ − 1) . . . (⌈ n

3p
⌉ − p + 2). (2.33)

Since we can assume without loss of generality that n ≥ 4p2, the above quantity can be
lower bounded by (n/12p)p−1 (since ⌈ n

3p⌉ − p + 2 ≥ n
3p − p ≥ n

3p −
n
4p = n

12p). Finally note

that if (a1, . . . , ap−1) ̸= (a′1, . . . a
′
p−1) then Da1,...,ap−1 and Da′1,...a

′
p−1

are disjoint. Then

applying (2.28),

Var(Wn) ≥ n−p np−1

(12p)p−1

n2γp

9
= Kn. (2.34)

The last part of the proof is to get bounds on ab, which is done in the next section.

2.3 Bounding the Spectral Norm of a Gaussian Toeplitz Ma-
trix with Correlated Entries

In order to bound the term ab in (2.18), one must first bound the spectral norm of an
arbitrary random Toeplitz matrix with correlated entries. In order to bound the spectral
norm, the following matrix Khintchine inequality is used from [Tro18]. If H1, . . . ,Hk are
fixed Hermitian matrices of common dimension n, and γ1, . . . , γk are standard normal
random variables, then the random matrix

X =
k∑

i=1

γiHi (2.35)

is called a Hermitian matrix Gaussian series. The following result gives bounds on the
operator norm of such matrices.

Theorem 2.3.1. (Corollary 2.4 of [Tro18]) Consider a Hermitian matrix Gaussian series
X =

∑k
i=1 γiHi with dimension n. Introduce the matrix standard deviation parameter

σ(X) = ||Var(X)||1/2 =

∥∥∥∥∥
k∑

i=1

H2
i

∥∥∥∥∥
1/2

. (2.36)

Then
1√
2
· σ(X) ≤ E||X|| ≤

√
e(1 + 2 log n) · σ(X) (2.37)

were || · || denotes the spectral norm.
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With this in mind, we can then get a bound on the spectral norm.

Theorem 2.3.2. If Xn is an n× n Toeplitz matrix with correlated entries and λn is the
spectral norm of Xn, then E(λn) ≤ C

√
log n, where C is a constant independent of n.

Remark 2.3.3. Note that this theorem holds for any correlated Toeplitz matrix, i.e. there
are no restrictions on the covariances ck(i, j) as long as the corresponding covariance
matrices are positive semidefinite.

The first step in proving the theorem is to write any correlated Toeplitz matrix as a
Hermitian matrix Gaussian series. Suppose Xk is a length n−k vector of jointly Gaussian
random variables with mean 0, variance 1, and covariance matrix Σ. If A is a matrix such
that AAT = Σ and Zk is length n− k vector of i.i.d. standard normal random variables,
then AZk has the same distribution as Xk. Thus we can write

Xk =

n−k∑
j=1

[Zk]jaj . (2.38)

Here, [Zk]j are independent standard normal Gaussian random variables and aj is the jth
column of A. We will also denote aj as the jth row of A.

Remark 2.3.4. Since each of the entries of the random matrix have variance at most
M , this forces the Euclidean length of each row of A is at most M . This fact will be
useful when bounding the operator norm of the matrix standard deviation parameter in the
Gaussian series.

Remark 2.3.5. Such a decomposition of Σ always exists since Σ is positive semidefinite.

Thus we can construct any diagonal of a correlated Toeplitz matrix in this manner
and constructing the full matrix is just a matter of piecing together the diagonals. For
any diagonal vector Xk of a Toeplitz matrix with correlated standard Gaussian entries,
let Σ be its (n− k) × (n− k) covariance matrix and A be such that AAT = Σ. Then for
l = 1, . . . n− k, let Bn,k,l be an n× n matrix such that

(Bn,k,l)ij =

{
0 |i− j| ̸= k

(A)min(i,j),l |i− j| = k.
(2.39)

Bn,k,l should be thought of as the lth column of A pasted along the kth diagonal of an
n× n matrix, with 0’s elsewhere. The A matrices depend on n and k but for the sake of
notation we omit the indices. Then the random Toeplitz matrix with correlated entries
can be written as

Xn = n−1/2
n−1∑
k=0

n−k∑
l=1

Zk,lBn,k,l, (2.40)

where each of the Zk,l are i.i.d. standard normal random variables. We are now ready to
prove Theorem 2.2.
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Proof. (Proof of Theorem 2.3.2)
Again it suffices to prove the theorem under the assumption that the entries are stan-

dard Gaussians. The bounds for the general case will just contain extra factors of M ,
which are independent of n.

In order to prove the theorem, we need to show that ||
∑n−1

k=0

∑n−k
l=1 B2

n,k,l||1/2 ≲ n1/2.
Since ∥∥∥∥∥

n−1∑
k=0

n−k∑
l=1

B2
n,k,l

∥∥∥∥∥ ≤
n−1∑
k=0

∥∥∥∥∥
n−k∑
l=1

B2
n,k,l

∥∥∥∥∥ , (2.41)

it suffices to show that for any k, ||
∑n−k

l=1 B2
n,k,l|| ≤ C for some constant C which is

independent of n and k (in this case we will see that C = 4 works). The reason why such
a bound holds is due to the fact stated in Remark 2.3.4. If the Bn,k,l were all diagonal

matrices (as is the case when k = 0), then
∑k

l=1B
2
n,k,l = In which has operator norm 1.

When the Bn,k,l are not diagonal the entries “mix” when the matrix is squared, and we
need to bound the impact of this mixing on the operator norm of the matrix.

To prove the above heuristics rigorously, we explicitly compute

(B2
n,k,l)ij =

n∑
p=1

(Bn,k,l)ip(Bn,k,l)pj . (2.42)

First consider the case when 0 < k ≤ n
2 . Since (Bn,k,l)ij is nonzero only when |i− j| = k,

the term in the sum is nonzero when |i−p| = |j−p| = k. This condition can only hold for
some p if |i− j| = 0 or |i− j| = 2k. Thus (B2

n,k,l)ij = 0 if |i− j| ̸= 0 and |i− j| ̸= 2k. Now
consider the case when i = j. Again, here A (which depends on n and k) is the matrix
associated to Bn,k,l, i.e. the kth diagonal of Bn,k,l is the lth column of A.

(B2
n,k,l)ii =

n∑
p=1

(Bn,k,l)ip(Bn,k,l)pi (2.43)

= (Bn,k,l)i,i+k(Bn,k,l)i+k,i1{i∈[0,n−k]} + (Bn,k,l)i,i−k(Bn,k,l)i−k,i1{i∈[k,n]} (2.44)

=


((A)il)

2 + ((A)i−k,l)
2 i ∈ [k, n− k]

((A)il)
2 i ∈ [0, k]

((A)i−k,l)
2 i ∈ [n− k, n].

(2.45)

The last equality comes from equation (2.39).
Now consider the case when |i− j| = 2k. Due to symmetry it suffices to consider the

case in the upper triangle when j = i+2k. So (B2
n,k,l)i,i+2k =

∑n
p=1(Bn,k,l)ip(Bn,k,l)p,i+2k,

and for this to be nonzero requires p = i + k. Then we get

(B2
n,k,l)i,i+2k = (Bn,k,l)i,i+k(Bn,k,l)i+k,i+2k (2.46)

= (A)il(A)i+k,l. (2.47)



21

Putting this and the previous result together gives

(B2
n,k,l)ij =



((A)il)
2 + ((A)i−k,l)

2 i ∈ [k, n− k], i = j

((A)il)
2 i ∈ [0, k], i = j

((A)i−k,l)
2 i ∈ [n− k, n], i = j

(A)min(i,j),l(A)min(i,j)+k,l |i− j| = 2k

0 otherwise.

(2.48)

Then summing over l and using Remark 2.3.4,

(
n−k∑
l=1

B2
n,k,l

)
ij

=


2 i ∈ [k, n− k], i = j

1 i ∈ [0, k] ∪ [n− k, n], i = j

amin(i,j) · amin(i,j)+k |i− j| = 2k

0 otherwise.

(2.49)

By the Cauchy-Schwarz inequality and Remark 2.3.4, |amin(i,j) ·amin(i,j)+k| ≤ 1. Hence by
the Gershgorin Circle Theorem, ∥∥∥∥∥

n−k∑
l=1

B2
n,k,l

∥∥∥∥∥ ≤ 4 (2.50)

since each Gershgorin disk is centered at 1 or 2 and has radius at most 2.
In the general case with non-unit variances, the above equation becomes

(
n−k∑
l=1

B2
n,k,l

)
ij

=


2M i ∈ [k, n− k], i = j

M i ∈ [0, k] ∪ [n− k, n], i = j

amin(i,j) · amin(i,j)+k |i− j| = 2k

0 otherwise.

(2.51)

and |amin(i,j) · amin(i,j)+k| ≤ M2 so∥∥∥∥∥
n−k∑
l=1

B2
n,k,l

∥∥∥∥∥ ≤ 2M + 2M2 (2.52)

.
Back in the scenario with normalized entries, for the case when k = 0, each Bn,0,l

is a diagonal matrix, so it follows from Remark 2.3 that
∑n

l=1B
2
n,0,l = In and thus∥∥∥∑n

l=1B
2
n,0,l

∥∥∥ = 1. When k > n
2 , a similar computation to the case when k ≤ n

2 can

be done, and we see that there is no “mixing” of matrix entries upon squaring. In this
case, from equation (2.42), (B2

n,k,l)ij is only nonzero when |i − j| = 0 or |i − j| = 2k.

Since k > n
2 , |i − j| ̸= 2k for any i, j, so B2

n,k,l is diagonal. When i = j we have

(B2
n,k,l)ii =

∑n
p=1(Bn,k,l)ip(Bn,k,l)pi, and for the terms to be nonzero we need p = i + k or

p = i− k. p = i + k can only happen when i ∈ [0, n− k] and p = i− k can only happen if
i ∈ [k, n]. Thus, from equation (2.39),

(B2
n,k,l)ij =


((A)il)

2 i ∈ [0, n− k], i = j

((A)i−k,l)2 ∈ i ∈ [k, n], i = j

0 otherwise.

(2.53)
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Summing over l and applying Remark 2.3.4, we see that
∑n−k

l=1 B2
n,k,l is the identity matrix

with some diagonal elements replaced by 0’s, and thus
∥∥∥∑n−k

l=1 B2
n,k,l

∥∥∥ ≤ 1.

Hence we have shown for any k, ||
∑k

l=1B
2
n,k,l|| ≤ 4, and thus ||

∑n−1
k=0

∑n−k
l=1 B2

n,k,l||1/2 ≤
2
√
n as desired.
Then, applying the Matrix Khintchine inequality,

E||Xn|| ≤ n−1/2
√
e(1 + 2 log n)(2

√
n) ≤ C

√
log n

for n large enough and some constant C which does not depend on n.

Lemma 2.3.6. E(λk
n) ≤ (Ck log n)k/2 for any n and k, where C is universal constant.

Proof. This is proved via concentration of measure techniques (see [Led01]). From equa-
tion (11.2) in [Kem13],

µ({|λn − E(λn)| ≥ t}) ≤ 2e−t2/2||F ||2Lip (2.54)

where ||F ||Lip is the value of the Lipschitz function that gives the spectral norm of An. Now
we use the layer cake representation. Let κk(dt) = ktp−1dt on [0,∞). The corresponding
cumulative function is ϕk(x) =

∫ x
0 dκk = xk. Then by Proposition 12.5 of [Kem13] applied

to the random variable Xn = |λn − E(λn)|,

E(Xk
n) =

∫ ∞

0
P(Xn ≥ t)ktk−1dt ≤ 2k

∫ ∞

0
tk−1e−t2/||F ||2Lip (2.55)

and then substituting s = t√
2||F ||Lip

the above becomes

2k

(√
2||F ||k−1

Lip

∫ ∞

0
sk−1e−s2ds(

√
2||F ||Lip)

)
= 2k(2||F ||2Lip)k/2

∫ ∞

0
sk−1e−s2ds (2.56)

= Ck/2k

∫ ∞

0
sk−1e−s2ds (2.57)

= Ck/2kΓ

(
k

2

)
(2.58)

≤ C
k/2
1 k

(
k

2

)k/2−1

(2.59)

= C
k/2
2 kk/2. (2.60)

Then (with C possibly changing between inequalities)

||λn||k ≤ ||λn − E(λn)||k + ||E(λn)||k (2.61)

≤ C(k1/2 +
√

log n) (2.62)

≤ C(k1/2
√

log n) (2.63)

where || · ||k denotes the Lk-norm, and the last inequality is for n larger than e2 and k ≥ 2
(the case when k = 1 is Theorem 2.3.2).
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Now we can finally prove Theorem 3.1.3.

Proof. (Proof of Theorem 3.1.3)
Following Proposition 2.2.1, f1(x) = pxp−1 and f2(x) = p(p−1)xp−2 so ab ≤ p3(E(λ4p

n ))1/2.
Let Zn be a gaussian random variable with the same mean and variance as Wn. Then by
Proposition 2.2.1 and Lemma 2.2.2,

dTV (Wn, Zn) ≤ Cp3(E(λ4p
n ))1/2

√
n

Var(Wn)
(2.64)

where C is a universal constant. From Lemma 2.3.6, the p3(E(λ4p
n ))1/2 term is bounded

by p3(Cp log n)p. Incorporating Lemma 2.2.4,

dTV (Wn, Zn) ≤ Cppp+3(log n)p√
n

(2.65)

and this goes to 0 as n → ∞. Note that in this final step, the constant C now depends
on p (it contains a factor of γ−p). Centering and normalizing proves the theorem.

2.4 Fluctuations for Other Matrix Models with Correlated
Entries

The arguments and methods used above to prove the central limit theorem for general-
ized Toeplitz matrices extend to other matrix models. In [AS17], Adhikari and Saha used
Chatterjee’s total variation bound to prove fluctuations results for circulant, symmetric
circulant, reverse circulant, and Hankel matrices. In this section, we extend these results
to the four corresponding matrix models that allow for correlated entries. The proofs for
each of these follow the same structure by computing upper bounds on ||Σ|| and ||Xn|| and
lower bounds on Var(Wn). The bound for Σ is essentially the same for all of the models
(including the Toeplitz matrix with correlated entries). Furthermore, in this section we
will assume that all entries of the random matrices have unit variance. The proofs can be
adapted to the general case in the same way as for the Toeplitz matrices with correlated
entries.

Lemma 2.4.1. Let Xn be an n × n circulant, reverse circulant, symmetric circulant, or
Hankel matrix with standard Gaussian correlated entries. Let Σ denote its covariance
matrix. Then ||Σ|| ≤ 2n.

Proof. For any i, j, (Xn)ij is correlated with at most 2n− 1 other entries of Xn. Then by
the Gershgorin circle theorem,

||Σ|| ≤ 1 + (2n− 1) sup
k,i̸=j

ck(i, j) ≤ 2n. (2.66)
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2.4.1 Reverse Circulant Matrices with Correlated Entries

The proof structure is similar to that of the proof for the random Toeplitz model with
correlated entries using Proposition 2.2.1.

Lemma 2.4.2. With Wn as in Theorem 3.1.3 and Xn a reverse circulant matrix with
correlated entries, Var(Wn) ≥ Kn for some constant K that only depends on p and γ.

To prove the lemma we adapt the proof of the bound for the variance in Lemma 10
of [AS17]. We can use the same partition argument and incorporate the bound γ on the
covariances. The following proof is thus a version of the proof of Lemma 10 in [AS17],
with the appropriate adjustments to allow for correlated entries.

Proof. Again letting Xij := (Xn)ij , we have

Wn = Tr(Xp
n) = n−p/2

∑
1≤i1,...,ip≤n

Xi1i2Xi2i3 . . . Xipi1 . (2.67)

Showing that all of the terms in the above sum are positively correlated is done in a
similar way to the proof of Lemma 2.2.4, except the products on the right hand side of
equation (2.20) factor with the condition of (j + i− 1) mod n instead of j − i. Then the
same argument using Wick’s theorem shows that the terms in the above sum are positively
correlated.

Then for any partition π of any subset of {1, . . . , n3 }
p,

Var(Wn) ≥ n−p
∑
S∈π

Var

 ∑
(i1,...ip)∈S

Xi1i2Xi2i3 . . . Xipi1

 . (2.68)

Now we construct an appropriate partition following the proof of Lemma 10 in [AS17].
Let

A =

{
(a1, . . . , ap) ∈ Np :

kn

3p
+ 1 ≤ ak ≤ (k + 1)n

3p
, k = 1, 2, . . . , p− 1

}
(2.69)

and define

Da1,...,ap = {(i1, . . . , ip) : 1 ≤ i1 ≤
n

3p
, ik + ik+1 − 1 = ak, k = 1, . . . , p}, (2.70)

where ip+1 = i1 and (a1, . . . , ap) ∈ A. Note that the ai’s are distinct and because of this
Xikik+1

is independent from Xijij+1 for j ̸= k. Thus given some Da1,...,ap (which we denote
as D in the following computation),

Var

 ∑
(i1,...ip)∈D

Xi1i2 . . . Xipi1

 =
∑

(i1,...ip)∈D

∑
(i′1,...i

′
p)∈D

Cov(Xi1i2 . . . Xipi1 , Xi′1i
′
2
. . . Xi′pi

′
1
).

(2.71)
Then following equation (2.30),

Cov(Xi1i2 . . . Xipi1 , Xi′1i
′
2
. . . Xi′pi

′
1
) ≥ γp, (2.72)
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so

Var

 ∑
(i1,...ip)∈D

Xi1i2 . . . Xipi1

 ≥ γp|D|2. (2.73)

Note that if (a1, . . . , ap−1) ̸= (a′1, . . . a
′
p−1) then Da1,...,ap−1 and Da′1,...a

′
p−1

are disjoint.

Then from equation (2.68),

Var(Wn) ≥ n−p
∑

(a1,...,ap)∈A

Var

 ∑
(i1,...,ip)∈D

Xi1i2 . . . Xipi1

 (2.74)

≥ np|A||D|2γp (2.75)

(2.76)

For a fixed value of ap, |A| = ( n
3p)p−1. From the definition of a1, . . . , ap, we have

ip =

{
ap−1 − ap−2 + · · · − a2 + a1 − i1 + 1 if p is even,

ap−1 − ap−2 + · · · + a2 − a1 + i1 if p is odd.
(2.77)

This implies that ap = ip + i1 = ap−1 − ap−2 + · · · − a2 + a1, when p is even. Thus if p
is even then ap is determined by a1, . . . ap−1 and it does not depend on i1, but if p is odd
then ap depends on a1, . . . , a2, . . . ap−1 and i1.

Thus when p is even, for a fixed choice of a1, . . . ap−1 the number of elements in Da1,...ap

is the same as the number of ways of choosing i1, so

|Da1,...ap | =
n

3p
(2.78)

when p is even. Thus, when p is even

Var(Wn) ≥ n−p

(
n

3p

)p−1( n

3p

)2

= Kn (2.79)

where K only depends on γ and p.

The last part of the proof of Theorem 3.1.3 for reverse circulant matrices is a bound
on the operator norm.

Lemma 2.4.3. If Xn is an n× n reverse circulant matrix with correlated entries and λn

is the spectral norm of Xn, then E(λn) ≤ C
√

log n, where C is a constant independent of
n.

In order to prove the above Lemma, we need to be slightly more careful than in the
proof of Theorem 2.3.2. Note that Theorem 2.3.1 requires the matrices in the Gaussian
series to be self-adjoint. However, generalized reverse circulant matrices with correlated
entries are not symmetric, and thus neither will be the coefficient matrices from the con-
struction in the beginning of Section 2.3.
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We can get around this via the following dilation argument. If A is an n × n matrix
(not necessarily self-adjoint), then its dilation is

Ã :=

[
0 A∗

A 0

]
. (2.80)

Here, we are only considering real matrices, so A∗ = AT . Then since Ã is a 2n × 2n
self-adjoint matrix we have

||Ã||2 = ||Ã2|| = max{||ATA||, ||AAT ||} = ||A||2 (2.81)

where || · || denotes the operator norm. Hence we will use the dilations of the coefficient
matrices in the matrix series to compute the bound on the operator norm via matrix
concentration inequalities.

Proof. We construct the matrices Bn,k,l in a similar manner as done in section 3. Recall
that n is the size of the matrix, k labels the Gaussian vector Xk, and l corresponds to the
lth column of A, which is such that AAT = Σ where Σ is the covariance matrix of Xk.
Again, A depends on k and n, but we forgo the labeling for notation purposes. We then
have

(Bn,k,l)ij =

{
0 i + j − 1 ̸≡ k mod n

Ail i + j − 1 ≡ k mod n
(2.82)

Then we can write

Xn = n−1/2
n∑

k=1

n∑
l=1

Zk,lBn,k,l (2.83)

where the Zk,l are standard normal random variables. Then applying the dilations,

X̃n = n−1/2
n∑

k=1

n∑
l=1

Zk,lB̃n,k,l. (2.84)

Hence we must now show

∥∥∥∥∑n
k=1

∑n
l=1 B̃n,k,l

2
∥∥∥∥1/2 ≲ n1/2. Now

B̃2
n,k,l =

[
Bn,k,lB

T
n,k,l 0

0 BT
n,k,lBn,k,l

]
(2.85)

so we compute

(Bn,k,lB
T
n,k,l)ij =

n∑
i=1

(Bn,k,l)ip(Bn,k,l)jp (2.86)

and for this to be nonzero, from equation (2.82) we need i + p − 1 ≡ k mod n and
j+p−1 ≡ k mod n which forces i = j, so Bn,k,lB

T
n,k,l and BT

n,k,lBn,k,l are diagonal. Then
from equation (2.82),

(Bn,k,lB
T
n,k,l)ii = A2

il (2.87)

and similarly for BT
n,k,lBn,k,l. Then by the fact that the rows of A have length 1,

∑n
l=1 B̃n,k,l

2
=

I2n×2n, and it follows that

∥∥∥∥∑n
k=1

∑n
l=1 B̃n,k,l

2
∥∥∥∥1/2 ≤ n1/2 (in fact we have equality

here).
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2.4.2 Circulant Matrices with Correlated Entries

The proof of the theorem again involves two parts along with Lemma 2.4.1.

Lemma 2.4.4. With Wn as in Theorem 3.1.3 and Xn a circulant matrix with correlated
entries, Var(Wn) ≥ Kn for some constant K that only depends on p and γ.

Proof. This can be proved in similar manner to Lemma 2.2.4. Notice that the upper
triangle of a circulant matrix with correlated entries is identical to that of a Toeplitz
matrix with correlated entries. The argument form Chatterjee used in Lemma 2.2.4 only
involves a partition involving the upper triangle (since a1, . . . , ap−1 are all positive and
ik+1 − ik = ak), and the only point where the lower triangle is involved is the term Xipi1 .
However, the bound in equation (2.30) still holds (up to a constant factor) even if Xipi1 is
correlated with one other Xikik+1

. To see this, suppose Xipi1 is not independent of Xikik+1

for some k. Then

Cov(Xi1i2 . . . Xipi1 , Xi′1i
′
2
. . . Xi′pi

′
1
) = E(Xi1i2 . . . Xipi1Xi′1i

′
2
. . . Xi′pi

′
1
) − E(Xi1i2 . . . Xipi1)E(Xi′1i

′
2
. . . Xi′pi

′
1
)

(2.88)

= E(Xi1i2Xi′1i
′
2
) . . .E(Xipi1Xi′pi

′
1
Xikik+1

Xi′ki
′
k+1

) (2.89)

≥ γp−2(3γ2) (2.90)

= 4γp. (2.91)

The second equality comes from independence. If p ≥ 3, then Xi1i2 is independent
of Xi2i3 , and in the case when p = 2, Xi1i2 is independent of Xi2i1 due to the lack of
symmetry of circulant matrices. The first inequality comes from applying Wick’s theorem
to the expectation of the four Gaussians in the line above.

Thus following the rest of the proof of the correlated Toeplitz case completes the proof
of the Lemma.

Lemma 2.4.5. If Xn is an n × n circulant matrix with correlated entries and λn is the
spectral norm of Xn, then E(λn) ≤ C

√
log n, where C is a constant independent of n.

Proof. This is proved via matrix concentration inequalities and a dilation argument. The
corresponding Bn,k,l matrices are defined by

(Bn,k,l)ij =

{
0 j − i + 1 ̸≡ k mod n

Ail j − i + 1 ≡ k mod n
. (2.92)

A similar computation to the reverse circulant case shows that

(Bn,k,lB
T
n,k,l)ii = A2

il. (2.93)

Since each of the rows of A have length 1,
∑n

l=1 B̃n,k,l

2
= I2n×2n where B̃n,k,l is the dilation

B̃n,k,l =

[
0 BT

n,k,l

Bn,k,l 0

]
. (2.94)

It then follows that

∥∥∥∥∑n
k=1

∑n
l=1 B̃n,k,l

2
∥∥∥∥1/2 ≤ n1/2 and thus the lemma is proved.
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2.4.3 Symmetric Circulant Matrices with Correlated Entries

The following two Lemmas complete the proof.

Lemma 2.4.6. With Wn as in Theorem 3.1.3 and Xn a symmetric circulant matrix with
correlated entries, Var(Wn) ≥ Kn for some constant K that only depends on p and γ.

Proof. Note that when |i − j| ≤ n
2 , Xij = [X|i−j|]min(i,j) just as in the Toeplitz case.

The argument adapted from [Cha09] used in the Toeplitz case only considers partitions
where |ik − ik−1| ≤ ⌈ n

3p⌉, so thus the argument applies in the case for symmetric circulant
matrices with correlated entries, and we get Var(Wn) ≥ Kn for the same constant K as
the Toeplitz case.

Lemma 2.4.7. If Xn is an n× n symmetric circulant matrix with correlated entries and
λn is the spectral norm of Xn, then E(λn) ≤ C

√
log n, where C is a constant independent

of n.

Proof. Note that for any symmetric circulant matrix Xn, we can write Xn = Yn + Zn

where Yn and Zn are Toeplitz matrices with correlated entries with diagonals 0 to ⌈n2 ⌉
replaced by 0’s in Zn and diagonals ⌈n2 ⌉+ 1 to n− 1 replaced by 0’s in Yn. Then applying
the same argument via matrix concentration inequalities as in the Toeplitz case to Yn and
Zn yields

||Yn|| ≤ C
√

log n and ||Zn|| ≤ C
√

log n (2.95)

where C is a constant independent of n. It then follows that ||Xn|| ≤ 2C
√

log n as
desired.

2.4.4 Hankel Matrices with Correlated Entries

We then have the following two Lemmas needed to complete the proof.

Lemma 2.4.8. With Wn as in Theorem 3.1.3 and Xn a Hankel matrix with correlated
entries, Var(Wn) ≥ Kn for some constant K that only depends on p and γ.

Proof. We can apply the same combinatorial argument as in the reverse circulant case
here.

Lemma 2.4.9. If Xn is an n × n Hankel matrix with correlated entries and λn is the
spectral norm of Xn, then E(λn) ≤ C

√
log n, where C is a constant independent of n.

Proof. Any Hankel matrix can be viewed as the the first n× n block of a 2n× 2n reverse
circulant matrix with correlated entries. Thus let Hn be any Hankel matrix with correlated
entries and RC2n be a reverse circulant matrix with its first n× n block being Hn. Then

||Hn|| ≤ ||RC2n||. (2.96)

Then by Lemma 2.4.3,

E||Hn|| ≤ E||RC2n|| ≤ C
√

log(2n) ≤ C̃
√

log n. (2.97)
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2.5 Fluctuations of Eigenvalues with Correlation Decay

In this section we prove Theorem 2.1.3. The proof follows the same general structure
as that of Theorem 3.1.3 by using Proposition 2.2.1. In order to prove the theorem as
stated, we need tighter bounds on the operator norm. These bounds result from the
sharper matrix concentration inequalities in [BBH23].

The set up is as follows. As in Theorem 2.3.1, let

X =

k∑
i=1

γiHi (2.98)

where γ1, . . . , γk are independent standard normal random variables, and H1, . . . ,Hk are
nonrandom Hermitian matrices of common dimension n, and again let

σ(X) = ||E(X2)|| =

∥∥∥∥∥
k∑

i=1

H2
i

∥∥∥∥∥ . (2.99)

Further, define
ν(X) = ||Cov(X)|| (2.100)

where Cov(X) is viewed as a matrix in Mn2×n2(R) and Cov(X)ij,kl = Cov(Xij , Xkl). We
then have the following result, which is equation (1.11) in [BBH23] (a corollary of their
Theorem 1.2).

Theorem 2.5.1. With X, σ(X), and ν(X) defined as above, E(||X||) ≲ σ(X)+ν(X)(log n)3/2.

Remark 2.5.2. Here ν(X) involves the correlation matrix for the random matrix X,
i.e. it includes the n−1/2 normalization for each of the entries. This is in contrast to
Chatterjee’s statement in Proposition 2.2.1 in which we compute the operator norm of the
covariance matrix of the Gaussian input sequence before we rescale by n−1/2.

Using the above theorem, we have following Lemma, which states that if we have any
polynomial decay in the correlations, then the operator norm of any of the correlated
models converges to a finite limit in expectation.

Lemma 2.5.3. Let Xn be a random Toeplitz, circulant, reverse circulant, symmetric
circulant, or Hankel matrix with correlated entries with standard Gaussian entries with
covariances along each diagonal labeled by ck(i, j). Further, assume ck(i, j) = n−α for
some α > 0 for all i, j, k with i ̸= j. Then E(||Xn||) converges to a finite number as
n → ∞.

Proof. In Theorem 2.3.2 and Lemmas 2.4.3, 2.4.5, 2.4.7, and 2.4.9, we showed that σ(X)
is bounded by a constant. In all of the models, each entry of Xn is correlated with at most
2n− 1 other entries. Hence by the Gershgorin circle theorem,

ν(X) ≤ 1

n

(
1 + (2n− 1) sup

k,i̸=j
ck(i, j)

)
. (2.101)

The n−1 factor comes from including the normalization factor n−1/2 in Cov(X). Since
ck(i, j) = o(n−α), ν(x) = o(n−α), and thus from Theorem 2.5.1, E(||Xn||) ≤ C + o(n−α).
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Remark 2.5.4. Theorem 2.5.1 and Lemma 2.5.3 is only needed to get rid of the
√

log n
from the operator norm of the correlated matrix models. Theorem 2.1.3 holds without the
result of Lemma 2.5.3 if we restrict the decay in covariances to ck(i, j) = o(n−α) for any
α > 1

3 .

Remark 2.5.5. Combining the above Lemma with the concentration arguments in Lemma
2.3.6 shows that the operator norm of these correlated models has a sub-Gaussian distribu-
tion when there is any polynomial decay in the correlations among the entries. For more
about sub-Gaussian random variables, see section 2.5 of [Ver18].

Proof. (Proof of Theorem 2.1.3)
The following proof works for any of the patterned matrix models with correlations

considered in this paper. Let Xn be a random Toeplitz, circulant, reverse circulant,
symmetric circulant, or Hankel matrix with correlated entries with standard Gaussian
entries with covariances along each diagonal labeled by ck(i, j). Let p be a positive integer.
The structure of the proof is similar to that of the case where the correlations are bounded
away from 0 in that we show the fraction on the right hand side of equation (2.18) converges
to 0.

From the computations in Sections 2.3 and 2.4, we know that the expectation of the
operator norm of Xn is at most

√
log n. Thus from Lemma 2.3.6 and Lemma 2.5.3, the

term ab in equation (2.18) is bounded by pp+3Cp where C is independent of n.
Next we bound σ2 from below by a constant. Recall from the proof of Lemma 2.2.4

that the covariance of arbitrary products of the entries of Xn is nonnegative. Thus

Var(Wn) = n−pVar

 ∑
1≤i1,...,ip≤n

Xi1i2Xi2i3 . . . Xipi1

 (2.102)

≥ n−p
∑

1≤i1,...,ip≤n

Var(Xi1i2Xi2i3 . . . Xipi1). (2.103)

In order to apply a partition argument via Wick’s Theorem to the variances in the sum, it
will be again easier to relabel the 2p random variables Xi1i2 , Xi2i3 , . . . , Xipi1 , Xi1i2 , Xi2i3 , . . . , Xipi1

by enumerating them from 1 to 2p. Further, define the partition τ := {{1, p + 1}, {2, p +
2}, . . . , {p, 2p}}. Then we have

Var(Xi1i2Xi2i3 . . . Xipi1) =
∑

π∈P2(2p)

∏
{i,j}∈π

E(XiXj) (2.104)

−

 ∑
π∈P2(p)

∏
{i,j}∈π

E(XiXj)

 ∑
π∈P2(p)

∏
{i,j}∈π

E(Xi+pXj+p)


(2.105)

(2.106)

Now note that every term in the double sum on the right appears in the double sum on
the left (when p is odd the terms on the right are 0). However, τ does not appear in the
double sum due its blocks crossing between the sets {1, . . . , p} and {p+ 1, . . . , 2p}. Hence

Var(Xi1i2Xi2i3 . . . Xipi1) ≥
∏

{i,j}∈τ

E(XiXj) = 1 (2.107)
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and it follows that
σ2 = Var(Wn) ≥ 1. (2.108)

The last part of the proof is to bound the operator norm of the covariance matrix Σ.
Following the proof of Lemma 2.4.1,

||Σ|| ≤ 1 + (2n− 1) sup
k,i̸=j

ck(i, j). (2.109)

Under the assumption that ck(i, j) = o(n−1/3), ||Σ|| = o(n2/3) and ||Σ||3/2 = o(n).
Then combining this with the lower bound for the variance and upper bound on ab via
Lemmas 2.5.3 and 2.3.6, and plugging into equation (2.18) we get

dTV (Wn, Zn) = o(1). (2.110)

2.6 Towards Universality

2.6.1 Removing the Conditions on the Covariances

One obvious extension of Theorem 3.1.3 and Theorem 2.1.3 is to allow for completely
arbitrary correlation structures. Hence we have the following conjecture.

Conjecture 2.6.1. Let Xn be an n×n random Toeplitz, circulant or symmetric circulant
matrix with correlated standard Gaussian entries. Let p ≥ 2 be a positive integer and let
Wn = Tr(Xp

n). Then as n → ∞,

Wn − E(Wn)√
Var(Wn)

converges in total variation to N(0, 1). (2.111)

In the case when Xn is a reverse circulant or Hankel matrix with correlated entries, the
theorem still holds under the further assumption that p is restricted to be an even positive
integer.

In the proofs of Theorems 3.1.3 and 2.1.3 the fraction in equation (2.18) vanishes as
n → ∞ for different reasons. Hence in order to prove Conjecture 2.6.1, one would need
to adopt new methods to more precisely simultaneously bound all three terms that we
bounded in our proofs, or an entirely new approach in general. Furthermore, there is the
fact that Theorem 2.1.3 holds for Hankel matrices with correlated entries when p is odd,
but the linear eigenvalue statistics of a Hankel matrix for odd p converge to a non-Gaussian
limit (see Theorem 2 of [SMS22]). Hence there is most likely a phase transition for the
limiting statistics of odd monomial test functions for linear eigenvalue statistics of Hankel
matrices, and a similar phenomenon may occur in the case of reverse circulant matrices.
We also did not consider correlated models with negative correlations.
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2.6.2 Moving Beyond Gaussian Entries

In [AS18], Adhikari and Saha were able to prove a Gaussian central limit theorem
for circulant matrices with sub-Gaussian entries. They further assumed that the entries
belonged to a certain class of random variables whose laws can be written as C2 functions
with bounded derivatives of a standard Gaussian, denoted L(c1, c2) where c1 and c2 are the
respective bounds for the first and second derivatives (see Definition 2.1 of [Cha09]). There
are multiple equivalent definitions of sub-Gaussian random variables (see Proposition 2.5.2
of [Ver18]), and one such definition is the following.

Definition 2.6.2. A random variable X is said to be sub-Gaussian if there exists a con-
stant K such that the tails of x satisfy

P(|X| ≥ t) ≤ 2e−t2/K2
for all t ≥ 0. (2.112)

We conjecture that similar extensions to correlated models studied with sub-Gaussian
entries hold due to the sub-Gaussian tails inducing similar

√
log n bounds on the operator

norm. Meckes proved in [Mec07] that the operator norm of a random Toeplitz matrix
(and other models considered in this paper) with sub-Gaussian entries is asymptotically
bounded above by

√
log n. Due to concentration of measure, the uncorrelated models

have the most dependence among their entries and thus are the “worst-case” scenario for
bounding the operator norm. Thus it is natural to conjecture that for any of the corre-
lated models in this paper with sub-Gaussian entries, the operator norm is asymptotically
bounded above by

√
log n. We then have the following conjecture.

Conjecture 2.6.3. Let Xn be an n×n random Toeplitz, circulant or symmetric circulant
matrix with correlated symmetric standard (mean 0 variance 1) sub-Gaussian entries. Let
p ≥ 2 be a positive integer and let Wn = Tr(Xp

n). Then as n → ∞,

Wn − E(Wn)√
Var(Wn)

converges in total variation to N(0, 1). (2.113)

In the case when Xn is a reverse circulant or Hankel matrix with correlated entries, the
theorem still holds under the further assumption that p is restricted to be an even positive
integer.

In order to prove this, new methods will most likely need to be used. Proposition
2.2.1 from [Cha09] only holds for Gaussian entries, though Theorems 2.2 and 3.1 of the
same paper can be applied to more general distributions of the entries (and this was how
Adhikari and Saha proved their sub-Gaussian universality result in [AS18]). However,
these results only hold under the assumption that each entry of the matrix can be written
as a function of independent random variables. It is not straightforward to construct
a random matrix with a general correlation structure and sub-Gaussian entries in this
manner.
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Chapter 3

Matrix Concentration Inequalities
with Sub-Gaussian Coefficients

3.1 Introduction

In this paper we prove a matrix concentration inequality for matrix series with sub-
Gaussian coefficients.

Definition 3.1.1. A random variable X is said to be sub-Gaussian if there exists a con-
stant κ such that P(|X| ≥ t) ≤ 2e−t2/κ2

.

In other words, the tails of the CDF decay faster than a Gaussian. However, for the
purposes of this paper, it will be easier to use the following equivalent definition, which
states the sub-Gaussian condition in terms of moment bounds of the random variable.

Definition 3.1.2. A random variable X is said to be sub-Gaussian if there exists a con-
stant K such that E|Xp| ≤ Kppp/2. We will refer to such a random variable as sub-
Gaussian with moment bound K.

In the above definition, it is not hard to prove (via the layercake representation) that
K ≤ 3κ where κ is from Definition 3.1.1. For a full proof of this fact and the equivalence
of the two definitions, see Proposition 2.5.2 in [Ver18].

The class of sub-Gaussian random variables is quite large. It contains Gaussians,
Bernoulli, Rademacher, and any uniform random variable on a compact set. More gener-
ally, any bounded random variable is sub-Gaussian.

Hence in this paper, the object of study is random matrices with sub-Gaussian entries,
and we will prove a concentration inequality for the operator norm. For a general overview
of the field of matrix concentration inequalities, see [Tro15] and the references therein.
Much of the work in the study of matrix concentration for matrix series has been dealing
with the important examples where the coefficients are Gaussian or Rademacher random
variables. However, to the best of our knowledge, there are no results for the general case
of sub-Gaussian entries.

Hence we have the following theorem, which bounds the operator norm of self-adjoint
matrix series with sub-Gaussian coefficients.
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Theorem 3.1.3. Let A1, . . . , An ∈ Md×d(R) be fixed (nonrandom) Hermitian matrices,
and let γ1, . . . , γn be independent symmetric sub-Gaussian random variables with uniform
moment bound K. Then if X =

∑n
i=1 γiAi,

P(λmax(X) ≥ t) ≤ de−t2/8K2σ2
(3.1)

where λmax is the largest eigenvalue of X. In particular,

P(||X|| ≥ t) ≤ 2de−t2/8K2σ2
(3.2)

This theorem can also be viewed as a matrix version of Proposition 5 in [Mec07]. Much
like how Proposition 5 of [Mec07] can be proved via the Laplace transform, Theorem 3.1.3
will be proved with the matrix Laplace transform. We also have the following corollary,
which follows easily from Theorem 3.1.3 and the layercake representation.

Corollary 3.1.4. With X and σ defined as above, we have

E[||X||] ≤ (27/2Kσ)
√

log(2ed). (3.3)

In this case, the entries of X can also by asymmetric. In the case where they are symmet-
ric, the coefficient 27/2 can be reduced to 23/2.

In Section 3.2, we prove Theorem 3.1.3 via the matrix Laplace transform, and we
also prove Corollary 3.1.4. In Section 3.3, we apply Corollary 3.1.4 to give simple proofs
for bounds on the operator norm of various patterned random matrix models with sub-
Gaussian entries.

3.2 Proof of Main Theorem and Corollary

The proof is an adaptation of the argument to prove Theorem 4.1 in [Tro12]. The
moment bounds from the sub-Gaussian condition allow us to adapt the matrix Laplace
transform argument used for Gaussian matrix series. In order to prove the Theorem, we
need the following result, which is Corollary 3.7 of [Tro12].

Proposition 3.2.1. (Corollary 3.7 of [Tro12]) Consider a finite sequence {Xk} of in-
dependent, random, self-adjoint matrices with dimension d. Assume there is a function
g : (0,∞) → [0,∞] and a sequence {Ak} of self-adjoint matrices that satisfy the relations

E
(
eθXk

)
≼ eg(θ)Ak for θ > 0. (3.4)

Define the scale parameter

ρ := λmax

(∑
k

Ak

)
. (3.5)

Then, for all t ∈ R,

P

(
λmax

(∑
k

Xk

))
≤ d inf

θ>0
e−θt+g(θ)ρ. (3.6)
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The following Lemma will help with commuting the semidefinite partial ordering with
limits of sequences of matrices.

Lemma 3.2.2. Let {An}∞n=1 and {Bn}∞n=1 be sequences of d×d self-adjoint matrices such
that An ≼ Bn for all n. If An → A and Bn → B, then A ≼ B.

Proof. We need to show B−A ≽ 0, i.e. for any x ∈ Rd, xT (B−A)x ≥ 0. Since all matrix
norms induce the same topology, An → A and Bn → B with respect to all matrix norms.
Then

xT (B −A)x = xTBx− xTAx (3.7)

= lim
n→∞

xTBnx− xTAnx (3.8)

= lim
n→∞

(xT (Bn −An)x) (3.9)

≥ 0 for any x ∈ Rd. (3.10)

The second equality is due to convergence in the Hilbert-Schmidt norm, since (An)ij →
(A)ij and (Bn)ij → (B)ij for all 1 ≤ i, j ≤ d.

With the above Lemma we can prove the following, which states that the relation from
Proposition 3.2.1 in equation (3.4) is satisfied in the sub-Gaussian case.

Lemma 3.2.3. Suppose that A is a self-adjoint matrix. Let γ be symmetric sub-Gaussian
with moment bound K. Then

E(eγθA) = e2K
2θ2A2

(3.11)

Proof. We can absorb θ into A, so it suffices to assume θ = 1. The moments for a
symmetric sub-Gaussian random variable γ satisfy E(γp) ≤ Kppp/2 for p even and E(γp) =
0 for p odd. Then

E(eγA) = I +
∞∑
p=1

E[γ2p]A2p

(2p)!
. (3.12)

Now since A is self-adjoint, for any p A2p has all non-negative eigenvalues and is thus
positive semidefinite. Then since E(γ2p) ≤ K2p(2p)p, K2p(2p)pA2p − E(γ2p)A2p = CpA

2p

where Cp ≥ 0 and thus CpA
2p is positive semidefinite since it has only nonnegative eigen-

values. Hence K2p(2p)pA2p ≽ E(γ2p)A2p for any p. Then combining Lemma 3.2.2 with
the fact that the sum of two positive semidefinite matrices is again positive semidefinite,
we get

I +

∞∑
p=1

E[γ2p]A2p

(2p)!
≼ I +

∞∑
p=1

K2p(2p)pA2p

(2p)!
(3.13)

= I +

∞∑
p=1

(2A2K2)ppp

(2p)!
(3.14)

≼ I +
∞∑
p=1

(2A2K2)p

p!
(3.15)

= e2K
2A2

. (3.16)

The second semidefinite ordering inequality comes from pp

(2p)! ≤
1
p! and Lemma 3.2.2.
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Now we are ready to prove Theorem 3.1.3.

Proof. (Proof of Theorem 3.1.3)
From the above lemma we get

E(eγkθAk) ≼ eg(θ)A
2
k (3.17)

where g(θ) = 2K2θ2 for θ > 0. Recall that

σ2 =

∥∥∥∥∥∑
k

A2
k

∥∥∥∥∥ = λmax

(∑
k

A2
k

)
. (3.18)

Then Proposition 3.2.1 gives

P

(
λmax

(∑
k

γkAk

)
≥ t

)
≤ d inf

θ>0
e−θt+g(θ)σ2

. (3.19)

Picking θ = t
4K2σ2 minimizes this infinum, and plugging in this value gives

P

(
λmax

(∑
k

γkAk

)
≥ t

)
≤ det

2/8K2σ2
. (3.20)

Furthermore, applying the same argument to the series X =
∑d

k=1 γk(−Ak)

P

(
−λmax

(∑
k

γkAk

)
≥ t

)
≤ det

2/8K2σ2
, (3.21)

so

P

(∥∥∥∥∥∑
k

γkAk

∥∥∥∥∥ ≥ t

)
≤ 2det

2/8K2σ2
. (3.22)

Then, Corollary 3.1.4 follows from a symmetrization argument and the layercake rep-
resenation.

Proof. (Proof of Corollary 3.1.4) When the entries of X are not symmetric, we can use
the following symmetrization argument from Section 2.3.2 of [Tao12], which was also used
by Meckes in [Mec07]. Let X̃ be an independent copy of X. Then

E(X − X̃|X) = X (3.23)

and since the function X → ||X|| is convex, by Jensen’s inequality,

E(||X − X̃|||X) ≥ ||X|| (3.24)

and then E(||X||) ≤ E(||X − X̃||), and X − X̃ is symmetric. If X =
∑n

i=1 γiAi, then
X− X̃ =

∑n
i=1 γiAi−

∑n
i=1 γ̃iAi where γ̃i is an independent copy of γi. Then σ(X− X̃) =∥∥∑n

i=1(2Ai)
2
∥∥1/2 = 2σ(X). Further, the moment bound in the sub-Gaussian condition
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of γ − γ̃ is at most twice the moment bound of γ. To see this, compute E[(γ − γ̃)2p] for
some positive integer p by expanding via the binomial theorem, and then use indepen-
dence and the fact that γ and γ̃ share the same sub-Gaussian moment bound. Thus the
symmetrization argument introduces a factor of 4 into the bound of E||X||.

In the case when the entries of X are assumed to be symmetric, we have from the
layercake representation,

E(||X||2) =

∫ ∞

0
P(||X|| >

√
t)dt (3.25)

≤
∫ 8K2σ2 log(2d)

0
P(||X|| >

√
t)dt + 2d

∫ ∞

8K2σ2 log(2d)
e−t/2σ2

dt (3.26)

≤ 8K2σ2 log(2ed). (3.27)

Then applying Jensen’s inequality,

E(||X||) ≤
√
E(||X||2) ≤ (23/2Kσ)

√
log(2ed). (3.28)

3.3 Application to Patterned Random Matrices

In this section we use Theorem 3.1.3 to obtain simpler proofs of the results in [Mec07]
and the appendix of [AS17]. A further benefit of using Corollary 3.1.4 to prove the
spectral norm bound is that it explicitly gives the dependence on the constant from the
sub-Gaussian condition.

An n×n symmetric random Toeplitz matrix Tn is defined as follows. Let X0, X1, X2, . . .
be independent random variables. Then (Tn)ij = X|i−j|,

Tn =



X0 X1 X2 · · · Xn−2 Xn−1

X1 X0 X1 · · · Xn−3 Xn−2

X2 X1 X0 · · · Xn−4 Xn−3
...

...
...

. . .
...

Xn−2 Xn−3 Xn−4 · · · X0 X1

Xn−1 Xn−2 Xn−3 · · · X1 X0


. (3.29)

Theorem 3.3.1. Let Tn be a n×n symmetric random Toeplitz matrix with sub-Gaussian
entries with uniform moment bound K. Then

E(||Tn||) ≤ 29/2K
√
n log(2en). (3.30)

The operator norm of symmetric random Toeplitz matrices was further analyzed in
[SV13], though they assumed all entries had second moment equal to one and all higher
order moments were uniformly bounded.

Proof. Any Toeplitz matrix can be constructed as a matrix series with the Hermitian
matrices

(Bk)ij =

{
1 |i− j| = k

0 |i− j| ̸= k
(3.31)
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for k = 0, . . . , n−1. Bounding ||B2
k|| via the Gershgorin circle theorem, an explicit compu-

tation gives (Bk)ii ≤ 2 for any i = 1, . . . , n and summing over row i,
∑n

j=1,j ̸=i(B
2
k)ij ≤ 2

for any i = 1, . . . , n (these inequalities come from the conditions on the entries of Bk

and the formula for the ij-th entry of B2
k). Then the Gershgorin circle theorem implies

||B2
k|| ≤ 4 for any k, and thus σ(X) = ||

∑n−1
k=0 B

2
k||1/2 ≤ (

∑n−1
k=0 ||B2

k||)1/2 ≤ 2
√
n

One can also use Corollary 3.1.4 to prove spectral norm bounds for non-symmetric
matrices. If X is a (not necessarily Hermitian) square matrix, define it’s dilation as

X̃ :=

[
0 X
X∗ 0

]
. (3.32)

Then X̃ is Hermitian and

||X̃||2 = ||X̃2|| =

∥∥∥∥[XX∗ 0
0 X∗X

]∥∥∥∥ = max{||X∗X||, ||XX∗||} = ||X||2. (3.33)

In this paper, all matrices are real so X∗ = XT . We apply this to give a simpler proof
of Lemma 16 in [AS17], which bounded the operator norm of a random circulant matrix.
An n× n random circulant matrix Cn is defined as (Cn)ij = X(j−i) mod n.

Cn =



X0 X1 X2 · · · Xn−2 Xn−1

Xn−1 X0 X1 · · · Xn−3 Xn−2

Xn−2 Xn−3 X0 · · · Xn−4 Xn−3
...

...
...

. . .
...

...
X2 X3 X4 · · · X0 X1

X1 X2 X3 · · · Xn−1 X0


. (3.34)

We have the following theorem.

Theorem 3.3.2. Let Cn be a n×n symmetric random circulant matrix with sub-Gaussian
entries with uniform moment bound K. Then

E(||Cn||) ≤ 16K
√
n log(2en). (3.35)

Proof. Any circulant matrix can be constructed as a matrix series with the matrices

(Bk)ij =

{
1 j − i ≡ k mod n

0 j − i ̸≡ k mod n
(3.36)

for k = 0, 1, . . . , n − 1. Then the dilation becomes C̃n =
∑n−1

k=0 XkB̃k, where B̃k is
the dilation of Bk. Then a straightforward computation yields

∑n
k=0BkB

T
k = nIn and

similarly for BT
k Bk, where In is the n× n identity matrix. Thus ||

∑n−1
k=0 B̃k|| = 2n, and it

follows that ||Cn|| = ||C̃n|| ≤ 16K
√

n log(2en).
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