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Abstract

In this thesis, we develop the basic theory of Chern classes in the setting of algebraic geometry.

We motivate the definitions using the more classical picture of vector bundles in topology. We dis-

cuss some of the analogies between the theory in the topological setting and the algebro-geometric

setting. We also make explicit several identifications that are often made in this area. As a demon-

stration of the theory, we show that the top Chern class of a vector bundle encodes information

about the zero locus of a generic section and we use that interpretation to compute the number of

lines on smooth cubic surfaces in P3.
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Introduction

The idea of assigning a vector to each point in a space is a very intuitive one, and this is often done

when one models fluid flow, electric fields, or other physical phenomena. Mathematically, since

vectors must live in a vector space, implicit in this assignment is the fact that we are also attaching

whole vector spaces to each point of our space. The ways in which one may attach vector spaces to

a fixed base space can be studied, and knowledge of possible ways of attaching tells us something

about the geometry of the base space. This is the perspective taken in K-theory. A seemingly

simple question is whether a given manner of attaching vector spaces to a base space is “twisted”

or not. As it turns out, answering this question in general is very difficult. In some sense, Chern

classes measure how “twisted” the manner of attaching is.

It turns out that this geometric discussion can be realized in the setting of algebraic geometry.

In this context, Chern classes can be used to solve problems in enumerative geometry. In this

thesis, we will develop the theory of Chern classes to the extent that we can reasonably answer the

following question:

How many lines are on a smooth cubic surface in P3?

This is a question that is asking about the nature of the intersection between lines (which are

the zero loci of degree 1 polynomials) and cubics surfaces (which are the zero loci of degree 3 poly-

nomials). The theory of Chern classes is robust enough to solve several other similar enumerative

problems. To develop Chern classes, one must develop several notions in intersection theory. In

particular, we will spend a lot of time discussing idea of multiplicity. This will make it possible

for us to create an algebro-geometric analog of homology. Chern classes in algebraic geometry are

operators on this analog of homology.

We will begin by defining vector bundles in Chapter 1, which are the mathematically precise

way of attaching vector spaces to some base space while respecting the geometry of the base space.

We will make precise what mean for a vector bundle to be “twisted” and we will illustrate that it

is difficult to determine whether this is the case or not in general. We will then adapt many of our

geometric constructions to algebraic geometry. In Chapter 2, we will partially set up Chow rings,

which are the analog of homology in algebraic geometry. In Chapter 3, we define the Chern classes

in the setting of algebraic geometry and briefly discuss the counterparts in the setting of topology.

We conclude with Chapter 4 where we apply our theory to answer our enumerative question stated
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above.

This thesis is purely expository and primarily based on [7], [10], and MATH 203 taught over

the 2022–2023 academic year at UC San Diego. Setting up all of these objects becomes rather

technical and there is a limit to how much we can state here. We will often defer to other sources,

but we will attempt to at least state when our methods are insufficient. In some cases, we will

establish some results which are best proven using methods which we will not develop here, such

as in Proposition 5 where we will briefly allude to deformation theory. Several sources often leave

out details and the author has attempted to fill them in or provide alternate references whenever

possible.

We will assume the reader has some knowledge of algebraic geometry (especially scheme theory),

algebraic topology, analysis, and commutative algebra. In some sense, the list of prerequisite

material is completely arbitrary and is chosen based off of the desire for a relatively self-contained

paper, time constraints, and the background knowledge of the author at the time of writing.
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Chapter 1

Vector Bundles

We begin with the definition of a vector bundle, which is the basic geometric object which we will

study and use.

Definition 1. Let X be a topological space and k be a field endowed with a topology. A k-vector

bundle of rank r is a topological space E along with a continuous surjection π : E → X such that

(i) For every x ∈ X the fiber π−1({p}) is endowed with the structure of a k-vector space of

dimension r.

(ii) For every x ∈ X there is a neighborhood U ⊆ X of x and a homeomorphism ΦU : π−1(U) →
U × kr such that π|π−1(U) = πU ◦ ΦU where πU : U × kr → U is the projection, and for every

y ∈ U , the restriction of ΦU to the fiber π−1({y}) is a vector space isomorphism. This map

ΦU is called a local trivialization.

In this paper, a vector bundle without a specified field will always be taken to mean a complex

vector bundle, though much of the discussion will generalize to arbitrary fields. We will refer to

the vector bundle (E, π : E → X) as simply either E or π : E → X as context permits.

Vector bundles are the rigorous way to encode the idea of vector spaces being attached to each

point of a space. The most complicated axiom is the second one, which requires us to not just assign

vector spaces randomly to each point in a space, but to do so in a way that makes the resulting

object locally appear like a Cartesian product. We will now turn to the question of determining

when a vector bundle is not just locally, but also globally homeomorphic to a Cartesian product.

1.1 Triviality

Of course, for any topological space X, the simplest possible complex vector bundle of rank r on

X is the Cartesian product X ×Cr where π : X ×Cr → X is just given by the projection map. In

this case, we just naively attach a copy of Cr on top of each point of X in a way that is obviously

compatible with the topology on X. In particular, for any x ∈ X, there is no need to be picky in

choosing the neighborhood U of x for a local trivialization. One may just choose all of X to be
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the neighborhood of any point in X on which there is a local trivialization. If such a trivialization

exists, one calls this a global trivialization, and the vector bundle is said to be trivial.

One may believe that every vector bundle is trivial. If in fact we are simply attaching vector

spaces isomorphic to Cr (or Rn in the case of real vector bundles) to each point ofX, it is not obvious

that the bundle is not just X × Cr. In fact, vector bundles can be nontrivial, with nontriviality

arising from the global topology of the space X.

For instance, one of the prototypical examples of a vector bundle is the tangent bundle on a

smooth manifold. This is the vector bundle that attaches at each point of a smooth manifold the

tangent space to the manifold at that point. It turns out that the sphere S2 has a nontrivial tangent

bundle. This is implied by the hairy ball theorem which states that there are no nonvanishing

continuous vector fields on S2.

If one wishes to avoid the machinery required to set up the smooth category for tangent bundles,

one can also find an example of a nontrivial vector bundle on S1. In particular, the Möbius bundle

is a real vector bundle of rank 1 on S1 that is nontrivial. We describe its construction as follows.

Define an equivalence relation ∼ on R2 by (x, y) ∼ (x′, y′) if and only if (x′, y′) = (x+n, (−1)ny)

for some integer n. This equivalence relation identifies the points in the interior of the strip [0, 1]×R
with themselves while identifying points on one edge of the strip with a mirrored point on the other

edge of the strip.

Let E = R2/ ∼ and let q : R2 → E be the quotient map. Let ε : R → S1 be the exponential

map ε(x) = e2πix (where we identify S1 with the unit circle in the complex plane). Observe that

for any n ∈ Z we have

(ε ◦ π1)(x, y) = ε(x) = e2πix = e2πixe2πin = e2πi(x+n) = ε(x+ n) = (ε ◦ π1)(x+ n, (−1)ny), (1.1)

where π1 is the projection onto the first factor. The above calculation establishes that if (x, y) ∼
(x′, y′), then (ε ◦ π1)(x, y) = (ε ◦ π1)(x′, y′). Therefore, we may descend to a map φ : E → S1 such
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that the following diagram commutes:

R2 E

R S1

q

π1

ε

φ (1.2)

We claim that φ is a nontrivial vector bundle on S1. This bundle is known as the Möbius bundle.

First we check that this is a vector bundle on S1. The surjectivity of the map is clear by the above

diagram: every point in S1 is of the form e2πix. For any p ∈ S1, we have π−1({p}) =
⋃

y∈R (xp, y),

where xp ∈ [0, 1) is such that ε(xp) = p. So π−1({p}) has a natural real vector space structure

isomorphic to R, where the isomorphism is given by (xp, y) 7→ y.

ε is a covering map, so for p ∈ S1 we can find a neighborhood U of p such that U is evenly

covered by ε. Let Ũ be a component of ε−1(U). Then q restricts to a homeomorphism onto its

image on Ũ ×R by the definition of the quotient topology on E. The image of the restriction q|
Ũ×R

is precisely φ−1(U). So we have a homeomorphism ΦU given by a composition of homeomorphisms:

φ−1(U) Ũ × R U × R
(q|

Ũ×R)
−1 ε|

Ũ
×1R

ΦU

(1.3)

It is straightforward to see that ΦU is a vector space isomorphism on each fiber by construction.

Moreover, for any (x, y) ∈ φ−1(U), we have

φ
(
(x, y)

)
= ε(x) = (πU ◦ ΦU )

(
(x, y)

)
. (1.4)

Hence, ΦU is a local trivialization. This establishes that φ is indeed a real vector bundle of rank 1

on S1.

Now we show that this vector bundle is nontrivial. Suppose to the contrary there exists a

global trivialization ΦS1 : E → S1 ×R. If πS1 : S1 ×R → S1 is projection onto the first factor then

πS1 ◦ ΦS1 = φ, hence

(πS1 ◦ ΦS1)((x, y)) = φ
(
(x, y)

)
= ε(x) = e2πix. (1.5)

Therefore, we may write ΦS1 as

ΦS1

(
(x, y)

)
=
(
e2πix, f

(
(x, y)

))
(1.6)

for some function f : E → R.
For any equivalence class (x, y) ∈ E, we say that the equivalence class is in canonical form if

the equivalence class is written as (x, y) where x ∈ [0, 1). Note that every element of E can be

expressed uniquely in canonical form. From now on, we assume that our equivalence classes are

written in canonical form unless stated or obviously otherwise.
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Recall that for any p ∈ S1, we have that the fiber π−1({p}) =
⋃

y∈R (xp, y) where ε(xp) = p.

Since ΦS1 is a vector space isomorphism with R on this fiber, it must act via (xp, y) 7→ λxpy where

λxp ∈ R \ {0} for every p ∈ S1. Let πR : S
1 × R → R be projection onto the second factor, and

define Ψ = πR ◦ΦS1 ◦ q = f ◦ q. Ψ is a function R2 → R and is continuous as a composition of three

continuous functions. Hence, for all y ∈ R,

lim
x→1−

Ψ(x, y) = Ψ(1, y) = f
(
(1, y)

)
= f

(
(0,−y)

)
= −λ0y. (1.7)

Hence,

lim
x→1−

λx = lim
x→1−

Ψ(x, 1) = −λ0, (1.8)

But now, since the map x 7→ λx (that is, the function Ψ(x, 1)) is continuous, the intermediate value

theorem implies that there exists α ∈ [0, 1) such that λα = 0. This is a contradiction since we

required that λx ∈ R \ {0} for all x ∈ [0, 1) so that ΦS1 would be a vector space isomorphism on

each fiber. Therefore, no global trivialization can exist.

Note that it took quite a bit of work to establish that the Möbius bundle is nontrivial. But

hidden in the proof is a more powerful general idea that characterizes precisely when a vector

bundle is nontrivial. To do this, we need to introduce more terminology.

Definition 2. Let π : E → X be a vector bundle on X. A section of this vector bundle is a

continuous map s : X → E such that π ◦ s is the identity map on X.

In other words, a section is a choice of vectors over each point of the base space such that the

vectors vary continuously as we move over the base space. Vector fields are a concrete example of

this: they are simply the sections of the tangent bundle on a smooth manifold. It turns out that

sections can detect when a vector bundle is trivial.

Proposition 1. Let π : E → X be a vector bundle on X of rank r. The vector bundle is trivial if

and only if there are r sections s1, s2, . . . , sr such that s1(x), s2(x), . . . , sr(x) are linearly independent

for all x ∈ X.

Proof. In one direction, suppose that π : E → X is trivial. Pick a standard basis e1, e2, . . . , er of

Cr. There is a global trivialization ΦX that is an isomorphism between each fiber and Cr. In

particular, for each x ∈ X, we have that ΦX |π−1({x}) pulls back the basis e1, . . . , er to a basis

(ΦX |π−1({x}))
−1(e1), (ΦX |π−1({x}))

−1(e2), . . . , (ΦX |π−1({x}))
−1(er) of the fiber π−1({x}). Moreover,

it does this continuously as we vary x, and thus the ΦX |π−1({x})(ei) are sections that are linearly

independent for all x ∈ X.

In the other direction, suppose that there are r sections s1, . . . , sr such that s1(x), s2(x), . . . , sr(x)

are linearly independent for every x ∈ X. Define the map Φ: X ×Cr → E by Φ(x, z1, z2, . . . , zr) =∑r
i=1 zisi(x). This is clearly a vector space isomorphism to each fiber by construction and contin-

uous since it is continuous after composition with a local trivialization and local trivializations are

homeomorphisms. We will show that Φ−1 is also continuous, which will establish that Φ−1 is in

fact a global trivialization.
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Continuity is a local property so it suffices to work in a local trivialization ΦU : π−1(U) → U×Cr.

We have the following commutative diagram.

U × Cr π−1(U) U × Cr

U U

π|π−1(U)

Φ|U×Cr ΦU

(1.9)

So we may identify Φ|U×Cr with the composition Ψ := ΦU ◦Φ|U×Cr , and since ΦU is a homeomor-

phism and continuity is a local property, the continuity of Φ−1 is equivalent to that of Ψ−1. By the

above diagram,

Ψ(x, v) =

(
x,ΦU |π−1({x})

(
r∑

i=1

visi(x)

))
. (1.10)

Let us abbreviate Tx := ΦU |π−1({x}). Then, Tx can be identified with an element of GLn(C) for

every x, since local trivializations are vector space isomorphisms on each fiber. Moreover, the map

x 7→ Tx is a continuous map into the space GLn(C) when it is identified with the space Cn2
. The

map x 7→ T−1
x is also a continuous map into GLn(C) since the matrix entries of T−1

x are simply

polynomials in the entries of Tx. Therefore, noting that Ψ−1(x, v) = (x, T−1
x (v)), we conclude that

Ψ−1 is continuous.

This result simplifies to something simple in the case of a vector bundle of rank 1, also called

a line bundle. Proposition 1 implies that a line bundle is trivial if and only if there exists a

nonvanishing section, since a single vector by itself forms a linearly independent set as long as it

is not the zero vector. The argument we gave to show that the Möbius bundle on S1 is nontrivial

can be adapted to show that any section of the Möbius bundle must vanish, which implies the

nontriviality of the bundle by Proposition 1. Geometrically, the fact that every section of the

Möbius bundle must vanish corresponds to the fact that any continuous normal vector field on

the Möbius strip must vanish somewhere. Proposition 1 also justifies how exactly the hairy ball

theorem implies that S2 has a nontrivial tangent bundle: since every continuous vector field on S2

vanishes by the theorem, we can never find two (or even a single) linearly independent sections on

S2 and thus the tangent bundle of S2 is nontrivial by Proposition 1.

1.2 Grassmannians and the Classification Problem

As simple as Proposition 1 is to state, showing that a vector bundle is or is not trivial is a hard

problem in general. To illustrate the difficulty of the problem, we will show that for real vector

bundles over a paracompact space, the question of triviality is equivalent to understanding whether

a certain map from the space into a classifying space is nullhomotopic. Of course, classifying maps

up to homotopy is a hard problem in general. To speak of the correspondence between these two

problems, we need to define how to pull back a vector bundle via a continuous map.
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Definition 3. Let X be a topological space and let p : E1 → X and q : E2 → X be vector bundles

over X. An isomorphism between p and q is a homeomorphism φ : E1 → E2 such that φ is a

vector space isomorphism between each fiber p−1({x}) and the fiber q−1({x}).

It is clear from the definition that this notion of isomorphism is the correct one for vector

bundles. In fact, there is a general notion of a morphism of vector bundles that allows us to form

the category of vector bundles over some fixed space, which we will not need here.

Definition 4. Let X and Y be topological spaces and let f : X → Y be a continuous map. Let

p : E → Y be a vector bundle. Then there exists a vector bundle p′ : E′ → X and a map f ′ : E′ → E

such that for every x ∈ X, f ′ is a vector space isomorphism between the fiber of E′ over x and

the fiber of E over f(x). Such a vector bundle E′ is unique up to isomorphism and is called the

pullback of E by f , often denoted f∗(E).

Proof. We define

E′ := {(x, v) ∈ X × E : f(x) = p(v)}. (1.11)

We also define the maps f ′ : E′ → E and p′ : E′ → X by f ′(x, v) = v and p′(x, v) = x.

Let Γf ⊆ X × Y denote the graph of f . Note that the map 1 × p : X × E → X × Y defines

a vector bundle over Γf . Indeed, for every (x, f(x)) ∈ Γf , the fiber {(x, v) : v ∈ p−1({f(x)})}
is clearly isomorphic to the fiber p−1({f(x)}). In fact, this same vector bundle arises even if we

restrict 1× p to E′, because for any (x, f(x)) ∈ Γf , we have

(1× p)−1({(x, f(x))}) = {(x, v) : v ∈ p−1({f(x)})}

= {(x, v) : p(v) = f(x)}

= (1× p)|−1
E′ ({(x, f(x))}).

(1.12)

Moreover, the projection map π1 : Γf → X given by π1(x, f(x)) = x is a homeomorphism when Γf

is given the subspace topology with respect to the ambient space X×Y . Therefore, the composition

of (1 × p)|E′ with π1 is itself a vector bundle over X. But this composition is exactly the map

p′, so p′ is a vector bundle over X. The fiber over a fixed point x0 ∈ X in this vector bundle is

{(x0, v) ∈ X×E : p(v) = f(x0)}. The map f ′ takes this fiber and maps it to {v ∈ E : p(v) = f(x0)}
which is precisely the fiber over f(x0).

To establish uniqueness, suppose that g : F → X is another vector bundle over X that satisfies

the properties of E′. Then there exists a map h : F → E such that h is a vector space isomorphism

between the fiber of F over x and the fiber of E over f(x). Consider the map φ : F → E′ given by

φ(v) = (g(v), h(v)). Indeed, this lands in E′ since p ◦ h = f ◦ g by assumption. More generally, it
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can be checked that the following diagram commutes.

F

E′ E

X Y
f

f ′

pp′

h

g

φ

(1.13)

A simple check using the diagram above shows that φ maps fibers of F to corresponding fibers of E′

through vector space isomorphisms. Now, an argument similar to the one at the end of Proposition

1 shows that φ must be an isomorphism of vector bundles.

Next, we construct the classifying space of real vector bundles on a paracompact space. Recall

the Grassmannian G(k,Rn) where 0 ≤ k ≤ n is an integer, which is the space of all k-dimensional

vector subspaces of Rn. There are natural inclusions R ⊆ R2 ⊆ . . . , and so there are natural

inclusions G(k,R) ⊆ G(k,R2) ⊆ . . . . We can endow the Grassmannian with a topology. We define

Vk(Rn) to be the Stiefel manifold, which is the space of k-tuples of orthonormal unit vectors in

Rn. Clearly, this Stiefel manifold is a topological space, as it can be identified with a subspace of

the product
∏k

i=1 S
n−1. There exists a natural surjective map Vk(Rn) → G(k,Rn) that takes every

k-tuple of orthonormal unit vectors and sends it to the span of those vectors. The topology on

G(k,Rn) is defined to be the quotient topology with respect to this surjection.

Define

G(k,R∞) :=

∞⋃
n=1

G(k,Rn). (1.14)

We claim that this is the space of k-dimensional linear subspaces of the real vector space of count-

ably infinite dimension (which we denote by R∞). Of course, every element of G(k,R∞) can be

represented as a k-dimensional linear subspace, since every element belongs to G(k,Rn) for some

n and Rn embeds naturally inside R∞. Conversely, given a k-dimensional linear subspace of R∞,

one can look at the ordering on the basis vectors of R∞ and see that the subspace lives inside Rn

for some sufficiently large n, and thus belongs to G(k,Rn) ⊆ G(k,R∞).

The Grassmannian G(k,R∞) can be topologized with the direct limit topology coming from

the direct system of inclusions G(k,R) ↪→ G(k,R2) ↪→ . . . . More explicitly, U ⊆ G(k,R∞) is open

if and only if U ∩G(k,Rn) is open for every n ∈ N.
On each point of a GrassmannianG(k,Rn), one may naively attach the vector space described by

the point itself. In fact, if we define Ek(Rn) := {(ℓ, v) ∈ G(k,Rn)×Rn : v ∈ ℓ}, then the projection

onto the first factor p : Ek(Rn) → G(k,Rn) is a vector bundle. This bundle is often known as the

tautological bundle. Showing that this is actually a vector bundle is not hard, though it is tedious

12



and we will not do it here. We can extend this idea to R∞ by defining Ek(R∞) =
⋃∞

n=1Ek(Rn)

and endowing this set with the direct limit topology over the direct system of inclusions Ek(R) ↪→
Ek(R2) ↪→ . . . . The tautological bundle in the case n = ∞ is indeed a vector bundle on G(k,R∞).

For a space X, let Vectn (X) denote the real vector bundles of rank n on X up to isomorphism.

We also use the standard notation of [X,Y ] to denote the set of homotopy classes of continuous

maps X → Y . We are now ready to state our main correspondence. This argument can be found

in [10].

Theorem 1. Let X be a paracompact topological space. [X,G(n,R∞)] is in a natural bijective

correspondence with Vectn (X) via [f ] 7→ f∗(En(R∞)).

Proof. Consider a continuous map f : X → G(n,R∞). Suppose φ : E → f∗(En(R∞)) is an isomor-

phism of vector bundles. Then, the following diagram commutes

E f∗(En(R∞)) En(R∞) R∞

X G(n,R∞)

f ′
π

p

φ

f

(1.15)

where π(ℓ, v) = v is projection onto the second factor and the map f ′ is the map induced by the

pullback. Note that the maps φ, f ′, and π are all vector space isomorphisms on fibers by definition,

hence their composition π ◦ f ′ ◦φ : E → R∞ is a vector space isomorphism on fibers. In particular,

the composition is a linear injection on each fiber. So every continuous map f : X → G(n,R∞)

determines a linear injection on fibers E → R∞ for any E isomorphic to f∗(En(R∞)).

Conversely, suppose we are given a linear injection on fibers g : E → R∞ where p : E → X is

a real vector bundle of rank n. We define the map f : X → G(n,R∞) by f(x) = g(p−1({x})).
Note that g(p−1({x})) is the image of a fiber under a linear injection of fibers, and is thus itself

a vector subspace of R∞ of dimension dim p−1({x}) = n. So f is indeed a well-defined map into

G(n,R∞). It is clearly continuous since g is. Moreover, unravelling the definitions, we can see that

f∗(En(R∞)) ⊆ X ×G(n,R∞)× R∞. More precisely,

f∗(En(R∞)) = {(x, f(x), w) ∈ X ×G(n,R∞)× R∞ : w ∈ f(x)}. (1.16)

Define the map φ : E → f∗(En(R∞)) by φ(x, v) = (x, f(x), g(x, v)). It is clear that this choice

of φ is an isomorphism. Hence, every linear injection on fibers E → R∞ determines a continuous

map f : X → G(n,R∞) and an isomorphism φ : E → f∗(En(R∞)). It is not hard to see that our

constructions are inverses of each other, so we have established a correspondence between continuous

maps f : X → G(n,R∞) and the linear injections of the form E → R∞ for E isomorphic to the

pullback bundle f∗(En(R∞)).

Let Ψ: [X,G(n,R∞)] → Vectn (X) be the map Ψ([f ]) = f∗(En(R∞)). Showing that this map

is well-defined is tantamount to showing that pullbacks of vector bundles are homotopy invariant.
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This is a technical point that relies on the paracompactness of the base space X, which is not found

in [10]. One may consult [12] and [13] for the details.

Assuming now that Ψ is well-defined, we will show that it is injective. Let E be isomorphic

to f∗1 (En(R∞)) and f∗2 (En(R∞)) where f1 and f2 are continuous maps X → G(n,R∞). By our

correspondence above, these determine linear injections on fibers E → R∞ which we will call g1

and g2, respectively. Define the maps H1, H2 : R∞ × I → R∞ (where I is the unit interval) via

H1(x1, x2, . . . , t) = (1− t)(x1, x2, . . . ) + t(x1, 0, x2, 0, . . . ) (1.17)

H2(x1, x2, . . . , t) = (1− t)(x1, x2, . . . ) + t(0, x1, 0, x2, . . . ). (1.18)

For every fixed t, each of these define a linear map R∞ → R∞ with trivial kernel. Define the

functions g′1, g
′
2 : E → R∞ by g′1 = H1|R∞×{1} ◦ g1 and g′2 = H2|R∞×{1} ◦ g2. Clearly, g1 and g′1 are

homotopic and g2 and g′2 are homotopic. Finally, define H : E × I → R∞ by

H(s, t) = (1− t)g′1(s) + tg′2(s). (1.19)

This is a homotopy between g′1 and g
′
2. We conclude that g1 and g2 are homotopic. By construction,

for every fixed t this homotopy is a linear injection on each fiber in the variable s. Now, we can note

that H(p−1({x}), t) defines a homotopy from f1 to f2. That is, [f1] = [f2] and we have established

that Ψ is injective.

Finally, we show that Ψ is surjective. Let p : E → X be a n-dimensional real vector bundle. By

paracompactness, there exists a countable open cover {Ui}i∈N of X such that E is trivial over each

Ui and there exists a partition of unity {φi}i∈N that is subordinate to the open cover {Ui}i∈N. We

denote the local trivialization of E over Ui by Φi : p
−1(Ui) → Ui ×Rn. Define gi : p

−1(Ui) → Rn by

the composition of Φi with the projection onto the Rn factor. Put

hi(s) =

φi(p(s))gi(s) v ∈ p−1(Ui)

(0, 0, . . . , 0) otherwise
(1.20)

These maps hi : E → Rn are continuous and linear by construction. Only finitely many of the hi fail

to vanish at any given point in E, hence the function h : E → R∞ given by h(s) = (h1(s), h2(s), . . . )

is a well-defined linear map into R∞. Finally, observe that the kernel of this map is trivial because

for any s ∈ E, as long as this point is not of the form (x, 0) in local coordinates, at least one of

the hi will fail to vanish at s. Hence, we have determined a linear injection on fibers h : E → R∞.

By our work above, this corresponds to some continuous map f : X → G(n,R∞) and where E is

isomorphic to f∗(En(R∞)). This establishes that Ψ is surjective.

Theorem 1 holds in the case of complex vector bundles as well. In that case, the classifying

space is the Grassmannian G(n,C∞).

Theorem 1 shows us that understanding the isomorphism classes of vector bundles on a paracom-
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pact space is equivalent to understanding the homotopy classes of continuous maps X → G(n,R∞).

In other words, maps into G(n,R∞) classify vector bundles over a paracompact space. For this rea-

son, we say that G(n,R∞) is the classifying space of real vector bundles. For any real vector bundle

over X, any map X → G(n,R∞) in the corresponding homotopy class is called the classifying map

of the vector bundle.

In general, understanding the space [X,G(n,R∞)] is impossible. The proof of Theorem 1

implies that a vector bundle is trivial precisely when its classifying map is nullhomotopic, and this

is not something we can easily determine in general. However, nullhomotopic maps induce trivial

homomorphisms in cohomology (though the converse is not true) and it is often easier to detect

whether an induced homomorphism is trivial. Topologically this is what Chern classes detect, and

we will study them in Chapter 3 in the algebro-geometric context.

1.3 Locally Free Sheaves and Projectivization

We will now adapt vector bundles to the setting of algebraic geometry. For the rest of the discussion,

unless stated otherwise, we will assume that our base field for our schemes is C and that all of our

vector bundles are complex.

One of the basic pieces of data in a scheme is its structure sheaf. Sheaves are the canonical

tools we use for keeping track of local data on a topological space. It is therefore unsurprising that

certain sheaves can effectively play the role of vector bundles.

Definition 5. Let (X,OX) be a scheme. A sheaf F of OX-modules is called locally free of rank

r if there exists an open cover {Uα}α∈A of X such that F|Uα
∼=
⊕r

i=1OX(Uα) for every α ∈ A.

Locally free sheaves are exactly the type of sheaves that play the role of vector bundles. We

make this precise with the following result.

Theorem 2. Let X be a scheme. There is a natural bijective correspondence between the locally

free sheaves of rank r on X and vector bundles of rank r on X.

Proof. On one hand, let p : E → X be a vector bundle of rank r. We define a sheaf F on X. In

particular, define

F(U) := {s : U → E : s is a C-morphism section of E over U}, (1.21)

for every open subset U ⊆ X. In the above definition, we mean “section” in the sense of Definition

2. It is straightforward to check that the above actually defines a sheaf. In fact, this is a sheaf of

OX -modules: for every open set U ⊆ X and s ∈ F(U), we can multiply s with φ ∈ OX(U) by just

pointwise scalar multiplication.

Suppose p is trivial over the open subset V ⊆ X. Then E restricted to this subset is isomorphic

to U × Ar. Then, we have that

F(V ) ∼= {s : V → Ar : s is a C-morphism}. (1.22)
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But of course, a s : V → Ar is uniquely determined by r regular functions from OV . Hence,

F|V ∼=
⊕r

i=1OX(V ). Hence, F is a locally free sheaf.

On the other hand, suppose we are given a locally free sheaf F over X. Let {Uα}α∈A be an

open cover of X such that there exist isomorphisms Ψα : F|Uα →
⊕r

i=1OX(Uα). For α, β ∈ A, we

can restrict Ψα to Uα ∩ Uβ to obtain the isomorphism Ψα|Uα∩Uβ
: F|Uα∩Uβ

→
⊕r

i=1OX(Uα ∩ Uβ).

Similarly, we can restrict Ψβ to Uα ∩ Uβ. Then, we may consider the composition

Ψα|Uα∩Uβ
◦Ψβ|−1

Uα∩Uβ
:

r⊕
i=1

OX(Uα ∩ Uβ) −→
r⊕

i=1

OX(Uα ∩ Uβ). (1.23)

For brevity, we denote the above map by Ψα,β. This is an automorphism which can be represented

by an r × r matrix of regular functions on Uα ∩ Uβ.

Now we glue the schemes Uα ×Ar and Uβ ×Ar along the intersection (Uα ∩Uβ)×Ar using the

isomorphism (Uα ∩ Uβ)× Ar → (Uα ∩ Uβ)× Ar given by (x, v) 7→ (x,Ψα,β(v))

Upon finishing this gluing, we have obtained a rank r vector bundle over X. This construction

is exactly the opposite of our previous construction, hence we have established a correspondence

between vector bundles and locally free sheaves.

Hence, from a scheme-theoretic point of view, locally free sheaves carry exactly the same data

as vector bundles. We can even single out the fibers. If p : E → X is a vector bundle over a scheme

X, the fiber over the point x ∈ X is simply the preimage p−1({x}) which has a natural vector

space structure. Alternatively, we may consider the inclusion i : {x} ↪→ X. Then the fiber over x is

encoded in the pullback bundle i∗(E). This is a vector bundle over a singleton and is thus just the

data of the vector space sitting over the point x in the original vector bundle E. Analogously, if F
is the locally free sheaf on X corresponding to p, then the fiber over x ∈ X is the pullback sheaf

i∗F . Since this sheaf is a sheaf over a single point, there is only one piece of data carried and that

is the collection of global sections (i∗)(F)({x}), which is exactly the vector space sitting on top of

the point x by the construction in Theorem 2.

Recall also that the pullback of a locally free sheaf is locally free. This suggests that the

pullback of locally free sheaves is in correspondence with the pullback of vector bundles in the

sense of Definition 4. This needs checking, but is true (see [2]). The geometric construction of

the direct sum of vector bundles, which we have no explicitly described here, easily corresponds to

the direct sum of locally free sheaves. There are also geometric definitions for the tensor products

and duals of vector bundles. We will be more interested in the sheaf-theoretic versions of these

operations. For the geometric definitions, one may consult [10].

In algebraic geometry, it is often the case that the theory is simplified when one replaces affine

space with projective space. In the constructions we have provided so far, the fibers of a vector

bundle are just copies of complex affine space. One may consider what happens when the affine

fibers are replaced with projective ones, while the manner of gluing the fibers on the space remains

unchanged. The new object that results from replacing fibers with their projectivizations without
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changing the manner of gluing is called the projectivization of the original vector bundle.

More precisely, let p : E → X be a vector bundle on a scheme X. Note that in the proof of

Theorem 2 we saw that the geometric manner by which fibers of p : E → X are glued to the base

space X is encoded by transition maps Ψα,β. This is not unlike the way that the transition maps

of a smooth manifold determine how the Euclidean patches are glued together. In particular, these

transition maps induced automorphisms of the schemes (Uα∩Uβ)×Ar given by (x, v) 7→ (x,Ψα,β(v))

and those automorphisms then told us how the patches Uα × Ar and Uβ × Ar are glued together.

The transition maps Ψα,β are linear maps Ar → Ar. In particular, they respect scalar multi-

plication. This means that the transition maps descend to maps Pr−1 → Pr−1. Therefore, we may

define the projectivization of the vector bundle p : E → X, denoted p̃ : P(E) → X, to be the object

resulting from gluing the sets Uα×Pr−1 and Uβ×Pr−1 via the automorphisms (x, v) 7→ (x,Ψα,β(v)).

It is clear that this construction gives an “projective bundle of rank r− 1” where each fiber is now

projective instead of affine, but still glued onto the base space in the same manner as the fibers of

the original vector bundle.

The space P(E) also inherits a natural scheme structure through a Proj construction, which we

will not describe here. We will invoke this fact later in Proposition 3. For the full details of this

construction, one may consult [9].

At this point, we have a vector bundle on X and a continuous map p̃ : P(E) → X. Consider

the pullback of E by p̃. This gives us the diagram

p̃∗(E) E

P(E) X

p

p̃

p′ (1.24)

Unravelling Definition 4, we see that

p̃∗(E) = {((x, v), w) ∈ P(E)× E : p(w) = x} = {((x, v), w) : v ∈ p̃−1({x}), w ∈ p−1({x})}, (1.25)

and p′ : p∗(E) → P(E) acts via ((x, v), w) 7→ (x, v). In the vector bundle p′ : p̃∗(E) → P(E), there

exists a subbundle S ⊆ p̃∗(E) cut out by the equations viwj = vjwi for all i, j ∈ {1, 2, . . . , r}. Fixing
a point (x0, v0) ∈ P(E), we can see that the fiber of S over this point is precisely the collection of

points ((x0, v0), w) ∈ P(E)× E such that w ∈ p−1({x0}) and v0 is the projective equivalence class

of w. It is clear that this fiber is one-dimensional, so S is a line bundle on P(E). This line bundle

is called the tautological subbundle on P(E).

In fact, we can construct a whole class of line bundles on P(E). For every integer d, we may

construct a sheaf OP(E)(d). We model these sheaves locally using the twisted sheaves OPr−1(d).

For every integer d, this is the sheaf whose sections are locally of the form f/g where f and g

are regular functions with deg f − deg g = d. One may show that the twisted sheaves are locally
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isomorphic to the structure sheaf (see [7]), and thus they are locally free sheaves of rank 1 or line

bundles.

To construct OP(E)(d), we note that the vector bundle P(E) is locally trivial over the sets Uα

and is thus isomorphic to Uα × Pr−1 over those sets. On each of these local trivializations, we can

easily extend the sheaf OPr−1(d). On the overlaps (Uα∩Uβ)×Pr−1, we can glue using the transition

maps Ψα,β. In particular, we can identify φ ∈ OP(E)(d)(Uα) with φ ◦Ψα,β ∈ OP(E)(d)(Uβ).

With this construction, one may identify tautological subbundle S with the line bundleOP(E)(−1).

Let S be the sheaf corresponding to the line bundle S in the sense of Theorem 2. Over open subsets

U ⊆ P(E), we may define the morphism OP(E)(−1)(U) → S (U) by φ 7→ [(x, v) 7→ ((x, v), φv)].

Doing this over all open subsets U gives a sheaf isomorphism OP(E)(−1) → S .

These constructions will be useful to us when we connect our theory of Chern classes with the

enumerative problem of counting lines on a cubic surface.
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Chapter 2

Chow Rings

In this chapter, we work to partially set up Chow rings. These objects play a role similar to that of

singular cohomology rings in algebraic topology, especially in the context of what we will use them

for later in Chapter 3. In general, they are good invariants of a scheme.

We first define the group structure of the Chow rings. We will then define a special case of

the multiplication operation, and this will be sufficient for the type of enumerative problem we are

interested in.

2.1 Divisors on Curves

We will first study the simplest example of a Chow group. This will motivate the general definition

of Chow groups, similar to how the fundamental group motivates the definition of the higher

homotopy groups in topology.

Definition 6. Let C ⊆ Pn be a smooth irreducible projective curve. A divisor on C is a formal

finite linear combination D =
∑m

i=1 aiPi where Pi ∈ C and ai ∈ Z for all i. The degree of D is

defined to be
∑m

i=1 ai.

The divisors on a curve have a natural group structure: every two divisors can be added as a

sum of two formal linear combinations. The collection of all divisors on a curve C is denoted DivC.

This is the free abelian group generated by all the points of our curve. As such, it is quite a large

group that does not record any of the structure intrinsic to the curve and so there is nothing very

interesting to say about this group. However, we will argue that a certain quotient of this group is

a far more interesting object.

Consider a zero-dimensional projective subscheme X of Pn. One can show that this subscheme

is affine and so is of the form SpecR for some C-algebra R. Since this subscheme is zero-dimensional

and Noetherian, it can be interpreted as corresponding to a finite set of points in Pn (c.f. source),

though intrinsic to the scheme structure is the fact that these points are being recorded with certain

multiplicities, which is a notion we make more precise now.
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Without loss of generality, we may assume that X corresponds to a single point in Pn, and

after a change of coordinates, we can assume that this point is the origin in An ⊆ Pn. Then R is

the coordinate ring C[x1, . . . , xn]/J , where J is the ideal of the origin. Note that each coordinate

function xi vanishes at the origin, so ⟨x1, . . . , xn⟩ ⊆ I(Z(J)) =
√
J , with the last equality following

from the Nullstellensatz. This means that for every 1 ≤ i ≤ n, there exist positive integers di such

that xdii ∈ J . Letting d = max1≤i≤n di, we see that xdi ∈ J for all d because J is an ideal. For

a monomial in C[x1, . . . , xn] with degree at least dn, the pigeonhole principle requires that there

exists some 1 ≤ i ≤ n such that xdi divides that monomial, and since xdi ∈ J and J is an ideal, it

follows that the monomial is in J . That is, J contains all monomials with degree at least dn, so

R = C[x1, . . . , xn]/J must contain a basis of polynomials of degree less than dn when viewed as a

complex vector space. In particular, R is a finite-dimensional C-vector space.
Hence, for any zero-dimensional projective subscheme X = SpecR, R is a finite-dimensional

complex vector space. The dimension dimCR is called the length of the scheme X. We interpret

the length as recording the number of points in the scheme X counted with multiplicity. Therefore,

we can associate a divisor a1P1 + · · ·+ amPm to the zero-dimensional subscheme X, where the Pi

are exactly the points in X and the ai are the multiplicities of the points Pi.

Now suppose C ⊆ Pn be a smooth irreducible projective curve. Consider a homogeneous

polynomial f ∈ C[x0, . . . , xn]. Let us further assume that f is not zero in the homogeneous

coordinate ring S(C) of C. This asssumption is equivalent to assuming that C is not contained in

the vanishing set Z(f). In this case, we can interpret C ∩ Z(f) as a zero-dimensional projective

subscheme of Pn. We denote the divisor associated to this subscheme (f)C or simply (f) when the

curve C is clear from context. We are now ready to make a definition.

Definition 7. Let C be a smooth irreducible projective curve. Suppose that φ ∈ K(C) is a nonzero

rational function on C. Writing φ = f/g for f, g ∈ S(C)(d), we define the divisor of the rational

function φ to be (φ) := (f) + (g). This divisor is well-defined.

Proof. There are two aspects of well-definedness to check. First note that we have defined divisors

associated to homogeneous polynomials in C[x0, . . . , xn], but we have not shown that this associa-

tion descends to a well-defined association for elements of the homogeneous coordinate ring S(C).

That is, if f and g are polynomials that have the same class [f ] = [g] ∈ S(C), we must show that

(f) = (g). Indeed, if [f ] = [g], then g = f + h for some h ∈ I(C). But since h vanishes on all of C,

we have that C ∩ Z(f) = C ∩ Z(f + h) = C ∩ Z(g), and thus (f) = (g) as desired.

We must also check that our definition of (φ) is invariant with respect to the choice of f and g

chosen from S(C)(d) to represent φ = f
g . To do this, we will establish that if F and G are nonzero

homogeneous elements of the coordinate ring S(C), then (FG) = (F ) + (G).

Let us write (FG) =
∑m

i=1 aiPi. Of course, the the zero set of FG is simply the union of the

zero sets of F and G. Hence, we can write (F ) =
∑m

i=1 biPi and (G) =
∑m

i=1 ciPi, where some of

the bi and ci might be zero. Fix 1 ≤ j ≤ n and consider an affine open neighborhood of Pj , say

SpecR. Suppose this neighborhood is small enough that it does not contain Pi for any i ̸= j (such

an affine neighborhood exists because C ∩Z(FG) is a zero-dimensional scheme and thus discrete).

20



By definition, we have aj = dimCR/⟨FG⟩, bj = dimCR/⟨F ⟩, and cj = dimCR/⟨G⟩. But of course,
we have the short exact sequence

0 R⧸⟨F ⟩
R⧸⟨FG⟩

R⧸⟨G⟩ 0·G ·1 (2.1)

so by the additivity of dimension on exact sequences of vector spaces, we have that aj = bj + cj .

Repeating this argument for all j, we have shown that (FG) = (F ) + (G) as claimed.

Hence, if φ has another representation as φ = f ′/g′, then we will have f/g = f ′/g′ or fg′ = f ′g,

which implies that (f) + (g′) = (f ′) + (g) or (f)− (g) = (f ′)− (g′) as desired.

Note that the divisor of any nonzero rational function on a projective curve has degree zero.

If φ ∈ K(C) is nonzero with φ = f
g , then note that deg (f) is the degree of the divisor associ-

ated to the intersection scheme C ∩ Z(f), which is deg f degC by Bézout’s theorem. Similarly,

deg (g) = deg g degC. But deg f = deg g by the definition of rational functions on a projective

curve. Therefore, deg (φ) = deg (f)− deg (g) = 0.

Note also that since we have shown that (FG) = (F ) + (G) for nonzero homogeneous elements

F and G in the coordinate ring S(C), the divisors of the form (φ) for φ ∈ K(C) \ {0} form a

subgroup of DivC. More precisely, this is because (φ) + (ψ) = (φψ) for φ,ψ ∈ K(C) \ {0}. The

quotient of DivC by this subgroup is of interest.

Definition 8. Let C be a smooth irreducible projective curve. The quotient DivC by the subgroup

of divisors of the form (φ) for φ ∈ K(C) \ {0} is called the Picard group, denoted by PicC. If

two divisors in DivC determine the same class in the quotient PicC, they are said to be linearly

equivalent.

The important assumption that makes the Picard group interesting is the assumption that

we are dealing with projective curves. In this case, our rational functions are forced to be given

by ratios of homogeneous elements from the coordinate ring of the same degree. This is a severe

restriction on the space of rational functions on a projective curve, and so the process of quotienting

DivC by divisors arising from rational functions does not kill off too many divisors thus leaving

behind a quotient group that is rich enough to be a useful invariant. Moreover, the Picard group

of a curve is often computable which makes it a practical tool for telling curves apart. A simple

example is the case of P1, where one may show that all divisors of the same degree on the projective

line are linearly equivalent, so PicP1 ∼= Z.
The upshot of this discussion is that the development of the Picard group will completely parallel

our development of the Chow groups. In fact, the zeroth Chow group on a smooth projective

curve is exactly the Picard group of that curve. The Picard group was formed by taking formal

linear combinations of zero-dimensional subvarieties of a curve and quotienting out by a notion of

“rational” (read: linear) equivalence. This is somewhat similar in spirit to the idea behind singular

homology, where one takes an enormous free abelian group on all singular simplices of a certain

dimension and quotients by an equivalence relation induced by a boundary map. Different homology
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groups correspond to quotients of free abelian groups on simplices of different dimension, which

suggests the direction in which we ought to generalize the construction of the Picard group. Indeed,

we will adapt the construction to formal linear combinations of higher dimensional subvarieties of

an arbitrary scheme, thus defining the Chow groups.

2.2 Chow Groups

The real challenge of defining the Picard group was in defining the divisor associated to a rational

function on a curve. We gave most of the details of this construction in Section 2.1. Defining

the divisor associated to a rational function on a higher-dimensional scheme is more involved

and requires some technical notions from commutative algebra. The standard references for this

construction are quite scattered and leave out many details, so we work to provide them here. One

may consult [7], [9], and [11].

Let R be a Noetherian ring and let M be a finitely-generated R-module. One can show that

M admits a finite filtration by submodules

0 =M0 ⊊M1 ⊊ · · · ⊊Mr =M, (2.2)

such that for each 1 ≤ i ≤ r, we have that Mi/Mi−1
∼= R/pi for some prime ideal pi ⊆ R (see [11]).

The construction of such a filtration is fairly straightforward. We begin by defining M1 such that

M1
∼= M/p1 where p1 is an associated prime ideal of M . We repeat this procedure, constructing

submodules of M/Mi−1 by picking from associated primes. By Noetherianity, this process must

terminate, giving us a finite chain as in 2.2.

Such a filtration is called a prime filtration. Note that this is not quite the same as a composition

series in the sense of commutative algebra. In a composition series, we merely require each module

in the filtration to be a simple module, which is equivalent to requiring that successive quotients

in the filtration are of the form R/mi for some maximal ideals mi ⊆ R.

The prime filtration (or even composition series) may not be unique, however the amount of

times a given minimal prime ideal p ⊆ R appears in a successive quotient is independent of the

prime filtration of the module M chosen. This can be seen by localization. Consider a prime

filtration of M as in 2.2 and let p ⊆ R be a minimal prime ideal. We may localize the filtration at

the prime ideal p to obtain

0 = (M0)p ⊆ (M1)p ⊆ · · · ⊆ (Mr)p =Mp, (2.3)

Taking successive quotients, observe that since localization commutes with quotients, we have

(Mi)p⧸(Mi−1)p
∼=
(
Mi⧸Mi−1

)
p

∼=
(
R⧸pi

)
p

∼= Rp⧸piRp
(2.4)

If p = pi, then observe that Rp/piRp = Rp/pRp is a field, namely the fraction field of R/p, since
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pRp is the maximal ideal of the local ring Rp. On the other hand, suppose p ̸= pi. Note that piRp

is either a prime ideal of Rp or all of Rp itself because pi is a prime ideal of R. But the prime ideals

of Rp are in natural correspondence with the prime ideals of R contained in p. Since p is a minimal

prime ideal and pi ̸= p, it must be the case that pi ⊈ p. In other words, piRp corresponds to the

prime ideal pi which is not contained in p. Hence, we must have piRp = Rp and thus Rp/piRp
∼= 0

if p ̸= pi.

So by 2.4, we have established that

(Mi)p⧸(Mi−1)p
∼=

Rp⧸pRp
if p = pi

0 if p ̸= pi.
(2.5)

This tells us that the chain 2.3 becomes a composition series after possibly removing repeating

submodules, because once we remove the repeating submodules, successive quotients are isomorphic

to Rp/pRp and pRp is a maximal ideal of Rp. This is the composition series of the Rp-module Mp

and by 2.5, the length of this composition series is exactly the number of times p appears in the

prime filtration 2.2. Hence, the number of times p appears in the prime filtration 2.2 is exactly the

length of the module Mp which only depends on M and p.

We will now adapt this argument to the case we need. We will strengthen our assumptions on

R andM and show that under these new assumptions, not only is our result true for minimal prime

ideals, but also height 1 prime ideals. Let us suppose R is a Noetherian domain and M = R/⟨f⟩
where f ∈ R is nonzero. In this case, suppose that p is a height 1 prime ideal of R. We claim that

the number of times p appears in a prime filtration of M is independent of the filtration chosen.

One possibility is that ⟨f⟩ ⊈ p. In such a case, there is an element of ⟨f⟩ outside p, hence

the localization Mp = (R/⟨f⟩)p is localization with respect to a multiplicatively closed subset

that contains the coset of an element of ⟨f⟩, which is the zero element in the quotient. Hence,

Mp
∼= 0. Therefore, submodules of Mp are all isomorphic to 0 and it follows that (Mi/Mi−1)p ∼=

(Mi)p/(Mi−1)p ∼= 0 for every i. In particular, Mi/Mi−1 ≇ R/p for any i, since the localization of

R/p at p is the fraction field Frac (R/p) which is not isomorphic to 0. In other words, if ⟨f⟩ ⊈ p,

then p appears zero times in any prime filtration of M .

Next, we deal with the case ⟨f⟩ ⊆ p. Let 2.2 be a prime filtration of M as before. Observe

that the annihilator of the R-module R/I for any ideal I is precisely I, so ⟨f⟩ = AnnM ⊆
AnnMi ⊆ Ann (Mi/Mi−1) = pi for any i. Therefore, if q ∈ SpecR satisfies q ⊇ pi for any i, then

it follows that q ⊇ ⟨f⟩. Conversely, if q ⊉ pi for any i, then it follows that for each i, there exists

si ∈ pi = Ann (Mi/Mi−1) with si /∈ q. In particular, srm ∈ Mr−1 for every m ∈ M . But then,

sr−1(srm) ∈Mr−2 for every m ∈M . Continuing inductively, we see that (
∏r

i=1 si)m = 0 for every

m, so
∏r

i=1 si ∈ AnnM = ⟨f⟩. Hence,
∏r

i=1 si is an element of ⟨f⟩ that is not an element of q since

q is a prime ideal and each si is not in q. In other words, q ⊉ ⟨f⟩. So we have shown that a prime

ideal q contains ⟨f⟩ if and only if q contains pi for some i.

Since f is nonzero, R is an integral domain (so that the zero ideal is a prime ideal), and p is
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height one, it follows that p ⊇ ⟨f⟩ is a minimal prime ideal over ⟨f⟩. By the previous paragraph,

p ⊇ pi0 for some 1 ≤ i0 ≤ r. If p ̸= pi0 then by the previous paragraph, p ⊋ pi0 ⊇ ⟨f⟩, contradicting
the minimality of p over ⟨f⟩. Therefore, p = pi0 . If pi0 is not a minimal prime ideal among the

prime ideals in the list p1, p2, . . . , pr, then there is some other member of the list pi1 with pi1 ⊊ pi0 ,

and hence by the previous paragraph, p = pi0 ⊋ pi1 ⊇ ⟨f⟩, again contradicting the minimality of p

over ⟨f⟩. Therefore, p is a minimal element from the list p1, p2, . . . , pr.

Localizing our filtration at p, we obtain 2.3. As before, if p = pi, then the quotient (Mi)p/(Mi−1)p

is isomorphic to the fraction field of R/p if pi ̸= p, then either pi = ⟨0⟩ or pi ⊈ p. But we have

established that p is a minimal element from the list p1, p2, . . . , pr, so in fact if pi ̸= p, we must have

pi ⊈ p and pi ̸= ⟨0⟩. In this case, as before, we obtain (Mi)p/(Mi−1)p ∼= 0. Therefore, 2.5 holds

and just as before, the chain 2.3 becomes a composition series after possibly removing repeating

submodules, establishing that the number of times p appears in 2.2 depends only on M and p.

We worked hard to show the invariance of the number of times a height 1 prime appears in

a prime filtration of R/⟨f⟩. The reason we care about this is geometric. The height 1 prime

ideals correspond exactly to codimension 1 subvarieties. It is to these subvarieties that we must

assign multiplicities. For example, when we discussed multiplicities in Section 2.1, we discussed

multiplicities of points on a curve. These points correspond to codimension 1 subvarieties of the

curve. We will generalize the notion of multiplicity to codimension 1 subvarieties of schemes of

arbitrary dimension.

Let (X,OX) be a scheme and let V ⊆ X be a subvariety of dimension 1. By the definition of a

scheme, we can interpret V as a point v ∈ X. Suppose U is an affine neighborhood of v isomorphic

to SpecR. The stalk OX,v of the structure sheaf at v, is isomorphic to the localization Rp where

p is the prime ideal of R corresponding to the subvariety U ∩ V of U . Pick f ∈ OX,v. Abusing

notation, we may consider f to be an element of Rp. Then, we may write f = g/h where g ∈ R and

h ∈ R \ p. Note that since h is a unit in Rp, the ideal generated by f in Rp is exactly the image of

the ideal generated by g in R after localization at p. Therefore, since localization commutes with

quotients, Rp/⟨f⟩ ∼= (R/⟨g⟩)p. Hence it is well-defined to define the multiplicity of the subvariety

V with respect to the function f to be the number of times p appears in any prime filtration of the

R-module R/⟨g⟩.
In some sense, our work with prime filtrations is unnecessary. In the notation we used above,

we essentially showed that a prime filtration of R/⟨f⟩ becomes a composition series once we localize

at the height 1 prime ideal p. So instead, we could have equivalently defined the multiplicity to call

upon the length of a localized module rather than the number of times a prime ideal appears in a

prime filtration. We made additional effort because [7] takes the definition of multiplicity to use

prime filtrations while simultaneously referring to notions of “length” and “composition series”.

Our work shows that this abuse of terminology is justified.

If X is a normal scheme, then the definition of multiplicity is even simpler. In this case, the

stalk OX,V is a discrete valuation ring and so we can define the multiplicity of f to be its valuation

in that ring. Nevertheless, all of these definitions capture the same notion of the order of vanishing
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of the function f on the subvariety V . For example, if ⟨g⟩ ⊈ p then g does not vanish on all of

p and so the order of vanishing of f on the subvariety U ∩ V determined by p ought to be zero.

Indeed, we saw earlier that if p ⊉ ⟨g⟩, then p appears zero times in any prime filtration of R/⟨g⟩.
For this reason, the quantity is denoted ordV f .

Given this machinery, we are finally in a position to make definitions that parallel those of

Section 2.1.

Definition 9. Let X be a scheme. For every nonnegative integer k, a cycle of dimension k on X is

is a formal finite linear combination
∑m

i=1 ai[Vi] where each Vi is a k-dimensional closed subvariety

of X.

As with divisors on curves, cycles of a fixed dimension form a free abelian group, denoted Zk(X).

These cycles are analogous to cycles in singular homology. We will quotient these groups to form

the Chow groups.

Note that if X is a variety and V ⊆ X is a subvariety, then the fraction field of the local ring

OX,V is isomorphic to the localization of OX,V at its zero ideal, which is the same as the stalk at

the generic point of the scheme. This in turn is isomorphic to the field of rational functions on X.

The upshot of this is that a rational function φ on X can be expressed as f/g for some f, g ∈ OX,V .

Definition 10. Let X be a variety and V ⊆ X a subvariety of codimension 1. Suppose φ is a

nonzero rational function on X. Then, writing φ = f/g for f, g ∈ OX,V , we define the order of

φ at V to be ordV φ := ordV f − ordV g.

Let W ⊆ X be a subvariety of dimension k + 1. If φ is a rational function on W , we define

the divisor of φ to be the cycle divφ :=
∑

V (ordV φ)[V ] ∈ Zk(X) where the sum runs through all

codimension 1 subvarieties V ⊆W .

Proof. The well-definedness of the definition of order follows analogously to that of Definition 7,

via the same short exact sequence. We must additionally check that the sum
∑

V (ordV φ)[V ] is a

finite sum. Indeed, since the subvariety W is quasicompact, there exists a finite affine open cover

{Ui}ni=1 ofW . Restricting φ to each open set, we obtain the rational functions φ|Ui ∈ OUi(Ui). The

zero loci of of these restrictions are closed in the Ui and the Ui are Noetherian topological spaces

(so they can be decomposed into finitely many irreducible components), so the zero loci of each

restriction φ|Ui only vanishes on finitely many components of Ui. Since there are finitely many sets

Ui, this means that φ vanishes on only finitely many codimension 1 subvarieties V of W .

The subgroup of Zk(X) generated by divisors of rational functions on X is denoted by Bk(X).

Just as in Section 2.1, it is interesting to study the quotient of Zk(X) by Bk(X).

Definition 11. Let k be a nonnegative integer and let X be a variety. The kth Chow group is

the quotient group Ak(X) := Zk(X)/Bk(X). Two cycles that determine the same equivalence class

in a Chow group are said to be rationally equivalent.
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IfX is a smooth projective curve, then unravelling the definitions will show that Z0(X) = DivX.

Moreover, dimX = 1 so the only 1-dimensional subvariety of X is itself. So Definition 10 implies

that A0(X) = PicX. So the Chow groups of a variety are a far-reaching generalization of the Picard

group of a projective curve. However, the Chow groups are very difficult to compute in general. In

fact, computing the Chow groups of even An and Pn is nontrivial. Despite this obstruction, Chow

groups are useful for theoretical purposes.

As with anything resembling a homology theory, it is desirable to have notions of pullbacks and

pushforwards of morphisms. It turns out that existence of pullbacks and pushforwards on Chow

groups is a delicate question, and we will not provide all of the details of the full picture here (see

[7]). However, we will state important cases in which pullbacks and pushforwards exist.

Let X be a scheme and U ⊆ X an open subset. Let i : U ↪→ X be the inclusion. Then we

can consider the map Zk(X) → Zk(U) given by [Z] 7→ [Z ∩ U ] for any k-dimensional subvariety

Z ⊆ X. This map passes to rational equivalence because it is clear that divφ = divφ|U under

this map. The map induced on the level of Chow groups is the pullback of the inclusion map,

i∗ : A∗(X) → A∗(U).

Another important example of a map that has a pullback on the Chow groups is a vector

bundle. If X is a scheme and π : E → X is a vector bundle of rank r on X, then there are natural

homomorphisms Ak(X) → Ak+r(E) given on cycles by [V ] 7→ [π−1(V )]. Note that this map indeed

passes to rational equivalence since this map sends divφ to div π∗φ for any rational function φ

on a (k + 1)-dimensional subvariety of X. So together, these maps determine a pullback on Chow

groups, π∗ : A∗(X) → A∗+r(E). In fact, it is true but difficult to show that this pullback is an

isomorphism on the Chow groups. This gives another analogy with homology. A vector bundle on

a topological space clearly deformation retracts to the space and so is homotopy-equivalent to that

space. By the homotopy-invariance of homology, it follows that the homology of a vector bundle is

isomorphic to that of the space it sits on top of.

Finally, we have pushforwards. The simplest case is the following: suppose that Y is a closed

subscheme of X and i : Y ↪→ X is the inclusion. Then it is clear that the map [Z] 7→ [Z] for any

subvariety Z ⊆ Y passes to rational equivalence and thus induces a pushforward map on Chow

groups i∗ : A∗(Y ) → A∗(X).

More generally, things get complicated. If X and Y are topological spaces, recall that we say

that a function X → Y is proper if the preimage of every compact set is compact. If X is Hausdorff

space and Y is a locally-compact Hausdorff (LCH) space, then the properness of a continuous

map f : X → Y is equivalent to the following condition: for any continuous map g : Z → Y , the

canonical projection from the fiber product X ×Y Z to Z is a closed map. This motivates the

scheme-theoretic definition of a proper morphism. If X and Y are separated schemes of finite type

over a field, we say that a morphism f : X → Y is proper if for every scheme Z over Y , the canonical

projection from the fiber product X ×Y Z to Z is a closed map.

A proper map is indeed a closed map as well. So if f : X → Y is a proper morphism of schemes,

then for any subvariety Z, the image f(Z) is a closed subvariety of Y with dim f(Z) ≤ dimZ. Hence,
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we can define a pushforward map f∗ at least on the level of cycles by setting f∗([Z]) := nZ [f(Z)].

The difficulty is in determining what the coefficients nZ ought to be. It turns out that when

φ : Z → W is a dominant morphism of varieties of the same dimension, one may interpret K(Z)

(the space of rational functions on Z) as a field extension of K(W ). The degrees of these field

extensions (which are in fact the cardinalities of a general fiber of φ) will determine the coefficients

nZ . So we may define

nZ :=

[K(Z) : K(f(Z))] dim f(Z) = dimZ

0 dim f(Z) < dimZ.
(2.6)

One may show that indeed, this definition of f∗ passes to rational equivalence and thus provides a

map on the level of Chow groups.

2.3 Cartier Divisors and the Intersection Product

Now that we have completely defined the Chow rings as a group, we will work towards describing

their ring structure. In fact, we will be unable to completely describe the multiplication operation

in Chow rings. We will focus our attention to the special case of multiplication by elements

of AdimX−1(X), the codimension 1 Chow group. To accomplish this, we must first describe an

important correspondence between line bundles on X and the elements of the codimension 1 Chow

group.

Definition 12. Let X be a scheme with dimX = n. An element of Zn−1(X) is called a Weil

divisor on X. Two Weil divisors are said to be linearly equivalent if they have the same

equivalence class in An−1(X). If D is a Weil divisor on X with nonnegative coefficients, then we

say that D is effective, which we denote by D ≥ 0. The degree of a Weil divisor is the sum of its

coefficients. The support of a Weil divisor is the collection of codimension 1 subvarieties which

appear with nonzero coefficients in the Weil divisor.

Note that in Definition 10, we defined the divisor of a rational functions. Weil divisors that can

be expressed as divisors of rational functions are called principal.

To each Weil divisor, we can associate a sheaf OX(D). For every open subset U ⊆ X, this sheaf

returns

OX(D)(U) := {φ ∈ K(X)× : divφ|U +D|U ≥ 0} ∪ {0}. (2.7)

This sheaf records all the global rational functions whose poles and zeros are “controlled” by the

divisor D in the sense that their orders and multiplicities are no worse than what D prescribes.

This construction also passes to rational equivalence. That is, the Weil divisors D and E are

linearly equivalent if and only if OX(D) ∼= OX(E). At least one direction of this statement is

easy to see. Suppose D and E are linearly equivalent. Then by definition, if D ̸= E (in which

case the conclusion is trivial), we have D − E = divφ for some φ ∈ K(X)×. Now for each open
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subset U ⊆ X, we can define the ring homomorphism ΦU : OX(D)(U) → OX(E)(U) defined by

ΦU (ψ) := φψ. Indeed, ΦU is a map into OX(E)(U) because if divψ|U +D|U ≥ 0, then we have

div (φψ)|U + E|U = divψ|U + divφ|U + E|U = divψ|U +D|U ≥ 0. (2.8)

It is clear that each ΦU is a ring isomorphism (since it has an inverse which is multiplication by

1/φ). It is clear that these homomorphisms are compatible with restrictions, so the collection of

ΦU over all open subsets U ⊆ X forms a sheaf isomorphism Φ: OX(D) → OX(E). With a little

more work, one may show that the converse is true as well.

We also note that the sheaf associated to the zero divisor OX(0) is isomorphic to the structure

sheaf OX . This boils down to showing that for each open subset U ⊆ X, there is an isomorphism

OX(0)(U) → OX(U) that is compatible with restrictions. Indeed, if U ⊆ X is open and Y ⊆ U

is a codimension 1 integral subscheme, and φ ∈ OX(0)(U), then by definition ordY φ|U ≥ 0. This

means that φ is defined almost everywhere on Y so if V is the maximal domain for φ|U , we will

have V ∩ Y ̸= ∅ or Y ⊈ U \ V . Since Y is a closed subscheme of U that is not contained the

closed subset U \ V , it follows that U \ V has codimension at least 2. By the algebraic Hartog’s

lemma, it follows that φ extends to a regular function on all of U . Of course, conversely, every

regular function U has an effective divisor or is zero, and thus belongs to OX(0)(U). So there is an

isomorphism as claimed.

We wish to state a correspondence between line bundles on X and some subcollection of the

Weil divisors. To do this we must ask: for which Weil divisors D is the corresponding sheaf D

locally free? If the sheaf is locally free, then Theorem 2 tells us that the sheaf represents some

vector bundle on X. In some sense, the Cartier divisors are the answer to this question.

Definition 13. Let X be a scheme of pure dimension. A Cartier divisor on X is a Weil divisor

D on X such that there exists an open cover of X, say {Uα}α∈A, such that for each α ∈ A, we

have D|Uα = divφα|Uα for some φα ∈ K(X)×.

The group of Cartier divisors on a scheme X is denoted the PicX, called the Picard group.

Indeed, if X is a smooth projective curve, this notion agrees with Definition 8. In fact, if X is any

smooth scheme of pure dimension, then PicX ∼= An−1(X).

Succinctly, one may say that a Cartier divisor is simply a Weil divisor that is locally principal. It

is important to note that in some sense, the open sets Uα and rational functions φα completely de-

termine a Cartier divisor. Indeed, if α, β ∈ A, then we should have divφα|Uα∩Uβ
= divφβ|Uα∩Uβ

=

D|Uα∩Uβ
. That is, div (φα/φβ)|Uα∩Uβ

= 0. In particular, (φα/φβ)|Uα∩Uβ
∈ OX(0)(Uα ∩ Uβ). But

we have already shown that OX(0) ∼= OX , so (φα/φβ)|Uα∩Uβ
is a regular function on Uα ∩ Uβ.

Similarly, (φβ/φα)|Uα∩Uβ
is a regular function on Uα ∩ Uβ. This means that (φα/φβ)|Uα∩Uβ

is an

invertible regular function on Uα ∩ Uβ, which we denote by (φα/φβ)|Uα∩Uβ
∈ OX(Uα ∩ Uβ)

×. So

one may completely describe a Cartier divisor D as the data

D ∼=
{
(Uα, φα)α∈A : φα ∈ K(X)×,

φα

φβ
∈ OX(Uα ∩ Uβ)

× for all α, β ∈ A

}/
∼, (2.9)
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where the equivalence relation ∼ is given by {(Ui, φi)i∈I} ∼ {(Vj , ψj)j∈J} if and only if φi/ψj ∈
OX(Ui ∩ Vj)× for all i ∈ I and j ∈ J .

As it turns out, the Cartier divisors are in correspondence with line bundles.

Theorem 3. Let X be an integral scheme. There is a natural bijective correspondence between the

Cartier divisor classes on X and isomorphism classes of line bundles on X.

Proof. Suppose D is a Cartier divisor on X and let {Uα}α∈A be the open cover of X over which D

is is principal. For each α ∈ A, suppose that D|Uα = divφα|Uα . Then we have

OX(D)(Uα) = {ψ ∈ K(X)× : divψ|Uα + divφα|Uα ≥ 0} ∪ {0}

= {ψ ∈ K(X)× : div (ψφα)|Uα ≥ 0} ∪ {0}

= {ψ ∈ K(X) : ψφα is regular on Uα}.

(2.10)

This makes it clear that there is a map OX(D)(Uα) → OX(Uα) given by ψ 7→ ψφα and it is clear

that this is an isomorphism. Hence, OX(D) is a locally free sheaf of rank 1, which corresponds to

a line bundle on X by Theorem 2. It is clear that this association descends to linear equivalence

and thus a Cartier divisor class on X determines an isomorphism class of line bundles on X.

Conversely, let L be a line bundle on X. Let {Uα}α∈A be an open cover of X over which L is

locally trivial. For each α ∈ A, let φα : L|Uα → OX(Uα) be the corresponding local trivialization.

We may then consider the transition maps φα ◦ φ−1
β : OX(Uα ∩ Uβ) → OX(Uα ∩ Uβ). These maps

are automorphisms of the ring OX(Uα ∩ Uβ), and are thus represented by multiplication by units

in the ring, say ψα,β ∈ OX(Uα ∩ Uβ)
×. By construction, for α, β, γ ∈ A, these elements obey the

“cocycle condition” ψα,βψβ,γ = ψα,γ on Uα ∩Uβ ∩Uγ . Note that we may also interpret the regular

functions ψα,β as rational functions in K(X)—since X is integral it is irreducible and thus the open

set Uα ∩ Uβ is dense in X provided that it is nonempty. Since Uα ∩ Uβ ∩ Uγ is dense in X, the

cocycle condition which holds in that open set also holds on K(X).

Fix α0 ∈ A and consider the data {(Uα, ψα,α0)α∈A}. Due to the cocycle condition, note that for

every α, β ∈ A we have ψα,α0/ψβ,α0 = ψα,β ∈ OX(Uα ∩ Uβ)
×. Therefore, modulo the equivalence

relation ∼ we described above, equation 2.9 shows us that the data {(Uα, ψα,α0)α∈A} describes

a Cartier divisor D on X. One can now see that L ∼= OX(D). It can be shown that this is the

inverse construction of our association of isomorphism classes of line bundles to each Cartier divisor

class.

Theorem 3 establishes that on on integral schemes, the Cartier divisors are precisely the Weil

divisors D for which the associated sheaf OX(D) is a line bundle. When we work modulo linear

equivalence, we will often interpret a Cartier divisor as its corresponding line bundle. This inter-

pretation of Cartier divisors is crucial for us to be able to define the special case of multiplication

in the Chow ring.

We now come to defining the intersection product. Unfortunately, we cannot describe this in

full generality. A complete description can be found in [6].
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Definition 14. Let X be a scheme, D a Cartier divisor on X, and V ⊆ X a k-dimensional

subvariety. Suppose i : V ↪→ X is the inclusion morphism. We define the intersection product

to be D · V := i∗([i
∗(OX(D))]).

Here, i∗ is the pullback of the line bundle OX(D) which exists because i is a closed immersion.

Since V is a subvariety, Theorem 3 implies that isomorphism classes of line bundles on V correspond

to Cartier divisor classes, and so [i∗(OX(D))] is the divisor class that corresponds to the line bundle

i∗(OX(D). This is an element of Ak−1(V ), since it is the class of a Cartier divisor on V . To this

divisor class, we apply the pushforward i∗ which exists because closed immersions are proper.

Hence, D · V ∈ Ak−1(X).

If V and W are subvarieties with dimension k and n − 1, respectively, of a smooth scheme X

with dimension n, and V ⊈ W so that dim (V ∩W ) = k − 1, then it turns out that the support

of W · V is simply [V ∩W ]. More precisely, the intersection product will capture the intersection

V ∩W along with some scheme-theoretic multiplicities. This is the motivation for why we call the

operation of Definition 14 the “intersection product”.

Using this intersection product, it turns out that we can partially define a multiplication oper-

ation on A∗(X). First, we define the multiplication on the level of cycles. Since the k-dimensional

subvarieties of X generate Zk(X), the intersection product naturally gives us a multiplication map

PicX × Z∗(X) → A∗−1(X). Note that moreover, Definition 14 depends not on D but on the

isomorphism class of OX(D). So by Theorem 3, our multiplication map descends to a bilinear map

PicX ×Z∗(X) → A∗−1(X) where PicX denotes rational equivalence classes of Cartier divisors. In

fact, this product does give a multiplication map on the level of Chow groups.

Proposition 2. Let X be an integral scheme. The intersection product descends to rational equiv-

alence to induce a map PicX ×A∗(X) → A∗−1(X).

Proof. The proof hinges on the technical result that the intersection product is commutative. That

is, given Cartier divisors D and E on X, we have D · E = E ·D. This is a fact which we cannot

prove here. One may refer to [6]. Let us assume this and suppose W ⊆ X is a subvariety with

dimW = k + 1 and φ ∈ K(W ). Then divφ is clearly a Cartier divisor on W (and also X if

we interpret φ as a rational function on X) and so for any Cartier divisor D on X, we have

D ·divφ = divφ ·D = 0 ·D = 0, where we invoke the fact that divφ is rationally equivalent to zero.

Hence, we have shown that for any Cartier divisor D, the kernel of the intersection product with D,

which is a map Zk(X) → Ak−1(X), contains the kernel of the quotient map Zk(X) → Ak(X).

We have thus described a way to multiply elements of the Chow groups with certain types of

elements of the Chow groups. This partially provides a ring structure to the Chow groups. For our

purposes, this special case of multiplication will be sufficient.
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Chapter 3

Chern Classes

With Theorem 1, we saw that determining when a vector bundle is trivial is a hard problem in

general. In this chapter, we will develop objects called Chern classes, which attempt to detect

when a vector bundle fails to be trivial. They do this by encoding information about where global

sections of a vector bundle of fail to be independent. By the triviality criterion of Proposition 1, if

certain Chern classes fail to vanish, this will imply that the vector bundle in question is nontrivial.

While we will state this geometric interpretation of Chern classes, we will not prove it in its

full generality. A special case of this interpretation will show us that the top Chern class encodes

information about the zero loci of global sections of a vector bundle. This interpretation of the

top Chern class will ultimately prove to be useful for answering enumerative questions such as the

question of the number of lines on a smooth cubic surface.

Throughout this chapter, we will routinely identify line bundles with Cartier divisors using

Theorem 3.

3.1 Segre and Chern Classes

Before we define Chern classes, we must define Segre classes. These Segre classes can be expressed

using the intersection product of Definition 14. We will then define Chern classes to be a sort of

formal inverse to the Segre classes.

Definition 15. Let X be an integral scheme and let p : E → X be a vector bundle of rank r on X.

Let p̃ : P(E) → X be its projectivization. Suppose DE is the Cartier divisor corresponding to the

line bundle OP(E)(1) on P(E). For every integer i, the ith Segre class of E is a homomorphism

si(E) : A∗(X) → A∗−i(X) given by

si(E) · α := p̃∗(D
r+i−1
E · p̃∗(α)). (3.1)

The maps p̃∗ and p̃∗ are the pullback and pushforward maps described as in Section 2.2 and

Dr+i−1
E is the intersection product of Definition 14 composed with itself r+ i− 1 times. There are
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several facts about Segre classes that we can state. For a full account of these facts, one may refer

to [6] and [7]. We use the notation of Definition 15 as needed.

The first fact is that Segre classes are compatible with pullbacks. Let f : X → Y be a morphism

such that a pullback f∗ : A∗(Y ) → A∗(X) exists. In Section 2.2, we noted that such a pullback

exists if f is a vector bundle or if f is an open immersion. More generally, f has a pullback if it

is a flat morphism, which is a notion we will not fully describe here. If E is a vector bundle on Y

and α ∈ A∗(Y ), then it turns out that

si(f
∗(E)) · f∗(α) = f∗(si(E) · α). (3.2)

The slogan here is that one may apply the Segre class and then pull back to X or equivalently, pull

back to X and then apply the Segre class.

Segre classes also commute with each other. That is, if E1 and E2 are vector bundles on X, it

is true that si(E1)sj(E2) = sj(E2)si(E1).

When the vector bundle E is a line bundle, the Segre classes si(E) are particularly easy to

understand. In this case, the projectivization p̃ : P(E) → X is a rank 0 projective bundle on X.

This means that the fibers are just singletons, so p̃ is an isomorphism (in fact, it is the identity).

Then, as we saw in Section 1.3, the line bundle OP(E)(−1) is just the tautological subbundle on

P(E). In particular, when we canonically identify X with a subset of P(E) and restrict the line

bundle of OP(E)(−1) to X, we obtain a line bundle on X that is a subbundle of the line bundle

E. In particular, this means that OP(E)(−1) = E. Let DE be the Cartier divisor corresponding

to E. One can then show that OP(E)(1), the dual of the tautological subbundle, corresponds to

the Cartier divisor −E. Since p̃ is the identity, Equation 3.1 reduces to si(E) · α = (−1)iDi
E · α.

So up to a sign, the Segre classes of a line bundle are just the i-fold intersection product with the

corresponding Cartier divisor.

Suppose i < 0 and V is a k-dimensional subvariety of X. Then si(E)·[V ] is a (k−i)-dimensional

cycle with nonzero coefficients corresponding only to subvarieties of V itself (due to the pullback

and pushforward in the definition of the Segre class). But V has no subvarieties of dimension

k − i > k since dimV = k. It follows that si(E) · [V ] = 0 so si(E) = 0. Similarly, it is clear

that Zk(V ) is the free group generated by [V ] itself so s0(E) · [V ] = n[V ] for some integer n.

With a little work, one can show that n = 1 so that s0(E) = 1. A consequence of this fact is

that p̃∗ : A∗(P(E)) → A∗(X) is surjective and p̃∗ : A∗(X) → A∗(P(E)) is injective. Indeed, for any

α ∈ A∗(X) we have α = s0(E) · α = p̃∗(D
r+i−1
E · p̃∗(α)), so every α is in the image of p̃∗ and

ker p̃∗ ∼= 0.

Now we define the Chern classes. Similar to Segre classes, they are operators on the level of

the Chow rings of X given a vector bundle on X.

Definition 16. Let X be an integral scheme and let p : E → X be a vector bundle of rank r on X.

For i ≥ 0, we define the ith Chern class of E to be the homomorphism ci(E) : A∗(X) → A∗−i(X)
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satisfying the identity ∑
i≥0

si(E)

∑
i≥0

ci(E)

 = 1. (3.3)

The sum of the Segre classes in equation 3.2 is called the total Segre class denoted s(E) and

similarly the sum of Chern classes in equation 3.2 is called the total Chern class denoted c(E).

Equation 3.2 gives us an explicit way of writing Chern classes in terms of Segre classes. We

may formally expand the equation and equate the graded pieces of both sides of the equation. The

right hand side is simply the identity operator 1, which is an operator A∗(X) → A∗−0(X), and

thus lives in the zeroth graded piece. Expanding the product of the total Segre and Chern classes,

we obtain

c0(E) = 1

c1(E) = −s1(E)

c2(E) = −s2(E) + s1(E)2,

(3.4)

and so on. Since the Chern classes are polynomials in the Segre classes, the statements we discussed

for Segre classes have analogs for Chern classes. For instance, due to the formal identity (1−D +

D2 − . . . )(1+D) = 1, we have that when E is a line bundle, c1(E) corresponds to the intersection

product with DE and ci(E) = 0 for i > 1. In other words, the total Chern class of a line bundle E

is 1+DE where DE is the Cartier divisor corresponding to E. In the next section, we will derive

a similar explicit formula for the total Chern class of an arbitrary finite-rank vector bundle.

3.2 The Splitting Principle

The total Chern class (and total Segre class) also satisfy an important technical property which we

will not prove here: they are multiplicative on exact sequences. That is, if we have have a short

exact sequence of vector bundles on an integral scheme,

0 E′ E E′′ 0 (3.5)

then c(E) = c(E′)c(E′′) and s(E) = s(E′)s(E′′). This property of Chern classes actually leads to

an effective method of computing the Chern classes of vector bundles that are constructed from

other more primitive vector bundles using “standard” operations, such as direct sums, duals, and

so on. To see how, we will need the following result.

Proposition 3. Let X be an integral scheme and let p : E → X be a vector bundle of rank r on X.

There exists a scheme Y and a morphism of schemes f : Y → X such that f admits an injective

pullback on the level of Chow groups and the pullback vector bundle f∗(E) admits a filtration of

subbundles

0 = E0 ⊊ E1 ⊊ · · · ⊊ Er−1 ⊊ Er = f∗(E), (3.6)
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such that each successive quotient Ei/Ei−1 is a line bundle on Y .

Proof. We induct on the rank of E. If E is of rank 1, then it is a line bundle and the conclusions are

trivial. Suppose (a) is true for vector bundles of rank r−1 and let E have rank r. Let p∨ : E∨ → X

be the dual bundle on X. Projectivizing this bundle, we obtain p̃∨ : P(E∨) → X. We remark that

P(E∨) an integral scheme (see [1]).

Now, one may consider the tautological subbundle L∨ ⊆ (p̃∨)∗(E∨). As a subbundle, there is

an injective inclusion morphism of vector bundles i : L∨ ↪→ (p̃∨)∗(E∨). Because P(E∨) is integral,

it is reduced, so the cokernel of an injective morphism of vector bundles on P(E∨) is indeed a vector

bundle on P(E∨). Therefore, we have a the following short exact sequence of vector bundles on

P(E∨):

0 L∨ (p̃∨)∗(E∨) coker i 0i (3.7)

Dualizing this short exact sequence, we obtain the short exact sequence of vector bundles on P(E∨):

0 ker i∨ (p̃∨)∗(E) L 0i∨ (3.8)

By the rank-nullity theorem (the additivity of dimension on exact sequences of vector spaces), we

have that rank ker i∨ = rankE − rankL = rankE − 1 = r − 1. So ker i∨ is a vector bundle of

rank r − 1 on the integral scheme P(E∨). By the inductive hypothesis, there exists a morphism

f̃ : Y → P(E∨) such that f̃∗(ker i∨) is a line bundle on the scheme Y that admits a filtration by

subbundles where successive quotients are line bundles on Y . Define f := p̃∨ ◦ f̃ : Y → X. The

situation thus far is given by the following diagram.

f̃∗(ker i∨) (p̃∨)∗(E) E

f∗(E) ker i∨ L

Y P(E∨) X
f̃ p̃∨

p

f

(3.9)

We can extend the filtration of f̃∗(ker i∨) into a filtration of f∗(E) to obtain

0 = E0 ⊊ E1 ⊊ · · · ⊊ Er−1 = f̃∗(ker i∨) ⊊ f∗(E). (3.10)

In this filtration, it is clear that the successive quotients Ei/Ei−1 are line bundles for 0 ≤ i ≤ r− 1.

That f∗(E)/Er−1 is a line bundle follows from the short exact sequence 3.8 which implies that

f∗(E)/Er−1 = f̃∗[(p̃∨)∗(E)]/f̃∗(ker i∨) ∼= f̃∗(L), where the pullback f̃∗ commutes with the quotient

because pullback is an exact functor on locally free sheaves.
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It is clear that f has a Chow-pullback (a pullback on the level of Chow groups). This is because

it is the composition of f̃ which has a Chow-pullback by the inductive hypothesis, and p̃∨, because

this is a projective bundle map. By the inductive hypothesis, f̃ has an injective Chow-pullback.

Moreover, we noted in Section 3.1 that a consequence of the fact that the zeroth Segre class is the

identity is that the Chow-pullback of a projective bundle map is injective, so the Chow-pullback of

p̃∨ is injective as well. It follows that the Chow-pullback of f is injective.

Proposition 3 gives us a powerful way to express the total Chern class of a vector bundle. Let

p : E → X be a vector bundle of rank r on an integral scheme. Using the notation of Proposition

3, we can see that we have several exact sequences of the form

0 Ei−1 Ei Li 0 (3.11)

where Li is the line bundle resulting from the ith successive quotient. Since the total Chern class

is multiplicative on exact sequences, this implies that

c(f∗(E)) = c(Er) = c(Er−1)c(Lr) = c(Er−2)c(Lr−1)c(Lr) = · · · =
r∏

i=1

c(Li). (3.12)

Recall that in Section 3.1 we saw how to interpret the total Chern class of a line bundle. For each

i, if Di is the Cartier divisor corresponding to the line bundle Li, we have that c(Li) = 1 + Di.

Hence, equation 3.12 becomes

c(f∗(E)) =
r∏

i=1

(1+Di). (3.13)

The Cartier divisors Di which can be interpreted as the Chern classes c1(Li) are known as the

Chern roots of the vector bundle E. Of course, this terminology is misleading, since the Chern

roots certainly depend on the morphism f : Y → X we use. Proposition 3 does not imply that the

morphism f is unique.

One may observe that equation 3.13 is only capable of expressing the total Chern class of the

pullback bundle f∗(E) and not E itself. In the special case that for each i we have Li = f∗(L′
i) for

some line bundles L′
i on X. Hence, equation 3.12 becomes

c(f∗(E)) =
r∏

i=1

c(f∗(L′
i)) = f∗

(
r∏

i=1

c(L′
i)

)
. (3.14)

where the second equality comes from the fact that Chern classes commute with pullbacks. Finally,

by Proposition 3, we know that f∗ is injective, so in fact equation 3.14 implies that

c(E) =
r∏

i=1

c(L′
i) =

r∏
i=1

(
1+DL′

i

)
, (3.15)

However, in general it is not true that the line bundles Li on Y are pullbacks of line bundles
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on X, so we cannot express c(E) in a “Chern decomposition” like we were able to for c(f∗(E)).

Nonetheless, equation 3.13 still makes makes more concrete what is otherwise a rather opaque

abstract operator. The Chern decomposition of f∗(E) along with the injectivity of f∗ is capable

of elucidating properties of the total Chern class of E. For example, we can see that ci(E) = 0

for all i > r = rankE. Note that by expanding the product in 3.13, we can see that c(f∗(E)) has

no graded pieces in degree higher than r, so ci(f
∗(E)) = 0 for i > r. This implies that for every

α ∈ A∗(X), we have ci(f
∗(E)) · f∗(α) = 0. But as we saw in Section 3.1, Segre classes (and thus

Chern classes) commute with pullbacks, so this becomes f∗(ci(E) · α) = 0 for every α ∈ A∗(X).

Since f∗ is injective, it follows that ci(E) = 0.

In general, suppose we wish to show a polynomial relation amongst the Chern classes ci(E).

Since the Chern classes vanish beyond the rth Chern class, this amounts to showing that for some

polynomial P in r variables, we have P (c1(f
∗(E)), . . . , cr(f

∗(E))) = 0. Since Chern classes com-

mute with pullbacks, and the pullback is a homomorphism, this implies that f∗(P (c1(E), . . . , cr(E)))

= 0. The injectivity of f∗ thus implies that P (c1(E), . . . , cr(E)) = 0. Hence, polynomial relations

amongst the Chern classes of the pullback f∗(E) will imply the same relations amongst the Chern

classes of E. This means, for the purposes of establishing polynomial relations amongst the Chern

classes of E, we might as well assume that E itself admits a filtration of the form 3.6 so that the

Chern roots can be interpreted as multiplication by genuine divisors on X.

The Chern decomposition thus allows us to study the Chern class of a vector bundle that is

constructed from vector bundles whose Chern classes are known by relating the Chern roots of

the new bundle with those of the old bundle. For instance, suppose E is a vector bundle on X

with Chern roots {αi}i. Then it is fairly straightforward to show that E∨ has Chern roots {−αi}i.
Similarly, the vector bundle Symk E, which is the kth symmetric power of E, has Chern roots

{αi1 + · · · + αik}i1≤···≤ik . Similar formulas for Chern roots exist for exterior powers and tensor

products.

3.3 Linear Independence of Global Sections

So far, we have been treating Chern classes as abstract operators. In Section 3.2, we discussed

ways to think of and manipulate Chern classes formally. In this section, we provide some context

towards why we actually care about Chern classes. Specifically we will state (but not prove) a

geometric interpretation of Chern classes. We will see that geometrically, Chern classes are linked

to the problem of determining how nontrivial a vector bundle is.

Let us return to the topological setting. The reference for what follows is [10]. Here, X is a

topological space and p : E → X is a complex vector bundle. We insist that our vector bundles are

complex, since if we deal with real vector bundles we run into issues of orientability and we will

need to start using Z2-homology. The analog of Chern classes in the setting of real vector bundles

are called Stiefel-Whitney classes.

In this setting, the Chern classes ci(E) are elements of the cohomology group H2i(X;Z). These
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cohomology classes satisfy the property that they commute with pullbacks and ci(E) = 0 when

i > rankE. The rough idea of the geometric interpretation of the Chern classes is as follows. Recall

that in Proposition 1, we noted that E is trivial if and only if there are rankE sections of E that

are linearly independent on all of X. After a change of basis, this is equivalent to insisting that

there are rankE sections of E that are orthonormal on all of X. So one may ask for each 1 ≤ k ≤ n,

whether there are k orthonormal sections of E.

Let us further assume that X is a CW complex. Let the i-skeleton of X be Xi. Suppose that

we have k orthonormal sections on the subspace Xi−1 ⊆ X. We may ask what obstructions can

occur if we try to extend those k sections to Xi while preserving orthonormality. Each i-cell of X

comes with an attaching map φi : D
i → X where Di is the closed i-dimensional disk and φi|∂Di has

image contained in Xi−1. Theorem 1 implies that all vector bundles over a contractible space are

trivial. The disk Di is clearly contractible, so the pullback φ∗
i (E) on Di is trivial. The triviality

of this pullback ensures that the k orthonormal sections we have on Xi−1 and get pulled back to k

orthonormal sections on ∂Dk. Said another way, we have induced a map ψ : ∂Di → Vk(Cr), where

Vk(Cr) is the Stiefel manifold described (in the real case) in Section 1.2.

Our desire of extending our k orthonormal sections to the i-skeleton is equivalent to continuously

extending the map ψ to a map Ψ on the full disk Di. It turns out that this is possible if and only if

the map ψ is nullhomotopic (see [3]). The geometric intuition for this fact is the following. The disk

Di is made up of concentric shells homeomorphic to ∂Di. If there is a homotopy H(x, t) between

ψ and a constant map, then we can extend ψ to the disk Di by declaring Ψ(x, t) := H(x, 1 − t)

where (x, t) corresponds to the point in the disk that is on the shell of radius t with an “angular

coordinate” x. This declaration is well-defined at the origin because H(x, t) is a homotopy with a

constant map. In other words, as we progress through the nullhomotopy, we define the extension

of ψ over smaller and smaller concentric shells in the disk, until finally we reach the center of the

disk at the end of the nullhomotopy, where the extension of ψ is defined to be the image of the

constant map that ψ was homotopic to.

Since ∂Di is homeomorphic to Si−1, it is clear that the map ψ : ∂Di → Vk(Cr) is nullhomotopic

if (but maybe not only if) the homotopy group πi−1(Vk(Cr)) vanishes. For example, if k = 1,

then we are asking when a single section on the (i− 1)-skeleton can be extended to an i-cell, and

since V1(Cr) ∼= S2r−1. We have just shown that such a section can certainly be extended when

πi−1(S
2r−1) is nontrivial. In fact, the first nonzero homotopy group of a sphere Sn is πn(S

n), so

when i < 2r, there are no obstructions to extending our single section to the i-cell. However,

for arbitrary k, we are forced to deal not with spheres but rather the more complicated Stiefel

manifolds Vk(Cr). It turns out that the first nonvanishing homotopy group of the Stiefel manifold

is π2r−2k+1(Vk(Cr)). So when i < 2r− 2k+2, there are no obstructions to extending k sections on

Xi−1 to any of the i-cells in question (and thus all of Xi).

Suppose then i = 2r − 2k + 2. We can construct a map on the set of i-cells of X. Each i-cell

is sent to the nontrivial element of π2r−2k+1(Vk(Cr)) that somehow represents an “obstruction” to

the task of extending our k sections on Xi−1 to that particular i-cell. The data of these maps can
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be interpreted as an i-dimensional cellular cochain, with coefficients in π2r−2k+1(Vk(Cr)). That is,

this data determines an element of the cohomology H2r−2k+2(X;π2r−2k+1(Vk(Cr))). Moreover, one

may show that π2r−2k+1(Vk(Cr)) is canonically isomorphic to Z, so we have determined an element

of the cohomology H2r−2k+2(X;Z). Up to a sign, this is precisely the Chern class cr−k+1(E)!

On a CW complex, the Chern classes thus measure obstructions to extending sections on one

skeleton to the next. There is a similar interpretation in the algebro-geometric setting. Suppose E

is a vector bundle of rank r on a scheme X and v1, . . . , vr+1−k are global sections of E. Let Z ⊆ X

be the scheme-theoretic locus where the sections v1, . . . , vr+1−k are linearly dependent. If D has

codimension k in X, then [Z] = ck(E) · [X], where [Z] corresponds to the Chow-class of the locus

Z and [X] is the Chow-class of X. In other words, ck(E) encodes the complexity of the subspace

over which the vector bundle E does not have linearly independent “generic” sections. The more

nontrivial the Chern classes are, the more complicated is the subspace over which generic sections

fail to be linearly independent.

In fact, Segre classes have a similar interpretations. Up to a sign, we have sk(E) · [X] = ±[W ],

where W is the scheme-theoretic locus of points x ∈ X such that for each x ∈ X, the r + 1 − k

generic sections fail to span the fiber of E over x. So Chern classes measure where sections fail to

be linearly independent, Segre classes measure where sections fail to span the fiber, and together

the Chern and Segre classes measure in some sense how much the sections fail to form a basis of

each fiber.

A full proof of this geometric interpretation of Chern and Segre classes in the algebro-geometric

setting is not possible here. One may refer to [6] for those details. However, we will be able to

describe most of the proof of a special case of this geometric interpretation of Chern classes. In

particular, we are able to say more about the top Chern class, that is the Chern class of degree

rankE = r. In this case, our geometric interpretation of the Chern class reduces to a statement

about the linear dependence of a single generic global section of E. Since a single vector is linearly

dependent if and only if it is the zero vector, the top Chern class thus really tells us about the zero

locus of a single global section.

Theorem 4. Let E be a vector bundle of rank r on an integral scheme X of dimension n. Let s

be a global section of E, with scheme-theoretic zero locus Z. If this zero locus has dimension n− r,

then [Z] = cr(E) · [X].

Proof. Let f : Y → X be the morphism given by Proposition 3. Note that f∗(E) has section

f∗(s) which vanishes on f∗(Z). Then if i′ : Z ↪→ X and j′ : f∗(Z) ↪→ Y are the inclusions, then

j′∗f
∗([Z]) = cr(f

∗(E)) · [Y ] if and only if f∗i′∗([Z]) = f∗(cr(E) · [X]), because Chern classes commute

with pullbacks. Since f∗ is injective, the conclusion will follow if either equality holds. Therefore,

we may assume without loss of generality that E itself admits a good filtration in the sense of

Proposition 3.

We induct on r. The base case is clear: when r = 1, E is a line bundle and c1(E) corresponds

to Cartier divisor class of the zero locus of a generic section by Theorem 3. Suppose the claim is

true for vector bundles of rank up to r− 1. Since we are assuming that E admits a good filtration,
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there exists a short exact sequence of vector bundles on X:

0 F E L 0
p

(3.16)

Suppose the section p(s) of L has a zero locus W . Making restrictions to W , we have the short

exact sequence of vector bundles on W :

0 F |W E|W L|W 0
p

(3.17)

Because p(s)|W is the zero section of L|W ∼= E|W /F |W by definition, it follows that the section s|W
of E|W descends to a section of F |W which we will also denote by s|W . Note that s|W vanishes on

Z and Z ⊆W since p(s) will vanish where s does.

Let i : Z ↪→W and j : W ↪→ X be the inclusions. Since we have a chain of subspaces Z ⊆W ⊆
X, we will use subscripts to keep track of which Chow group each divisor class belongs to. Recall

that Z is the zero locus of s|W and dimZ = n−r by assumption. We also have that dimW = n−1

since p(s) is a “generic” nonzero section of the line bundle L. Hence, dimZ = dimW − r + 1. It

follows that the vector bundle F |W satisfies conditions for the inductive hypothesis: it is a rank

r − 1 vector bundle on W with a global section whose zero locus satisfies the correct dimension

condition. By the inductive hypothesis,

i∗([Z]Z) = cr−1(F |W ) · [W ]W . (3.18)

But one may note that [W ]W is the j-pullback of the zero locus of p(s), which by the inductive

hypothesis applied to the rank 1 case, is precisely j∗(c1(L) · [X]). Moreover, F |W = j∗(F ). Hence,

3.18 becomes

i∗([Z]Z) = cr−1(F |W ) · [W ]W = cr−1(j
∗(F )) · j∗(c1(L) · [X]) = j∗(cr−1(F )c1(L) · [X]), (3.19)

where the last equality comes from the fact that Chern classes commute with pullbacks. However,

one may see that the divisor class of a line bundle is the class of the divisor of the zero locus of a

generic section from Theorem 3. Therefore, c1(L)·[X] = [W ]X and it follows that cr−1(F )c1(L)·[X]

is supported in W . This means that when we apply the pushforward j∗ to both sides of equation

3.19, the composition j∗ ◦ j∗ will behave as the identity in our case, and we obtain

j∗(i∗([Z]Z)) = cr−1(F )c1(L) · [X] = cr(E) · [X], (3.20)

where we obtain the last equality from the multiplicativity of Chern classes on exact sequences

applied to 3.16. This completes the induction.

We have now developed, or at least stated, all of the tools necessary to count how many lines are

on smooth cubic surfaces in P3. We will employ the interpretation of the top Chern class provided

by Theorem by considering a vector bundle whose zero locus corresponds precisely to the collection
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of lines on a given smooth cubic surface. We work through the details in the next chapter.
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Chapter 4

Counting Lines on a Cubic Surface

In this chapter, we apply the tools we have developed to solve the following enumerative problem.

How many lines are on a smooth cubic surface in P3?

Strictly speaking, the approach we will take in Section 4.1 will be sufficient to completely answer

this question independently of our theory of Chern classes. However, by applying Chern classes in

Section 4.2, we will gain a better understanding of where the precise numerical answer comes from

and a more general strategy that can be employed to solve similar enumerative problems. Most of

the arguments we will provide in this chapter can be found in [7].

4.1 The Dimension Criterion

We will answer our question by constructing a vector bundle on a space whose zero locus captures

the collection of lines on some cubic surface. The number of lines on that cubic surface will thus be

the degree of the divisor of the zero locus. By applying Theorem 4, we will compute this degree.

In order to apply Theorem 4, we must ensure that our zero locus has the correct dimension. In

our case, it suffices to show that the number of lines on a generic smooth cubic in P3 is finite. We

first show that the number of lines on a cubic surface is independent of the cubic chosen.

Proposition 4. The number of lines on a smooth cubic surface in P3 is independent of the cubic

chosen.

Proof. A cubic surface in P3 is determined by the zero locus of a homogeneous cubic polynomial

in four variables. The number homogeneous cubic monomials can be computed using simple com-

binatorics. It is
(
6
3

)
= 20. These monomials form a basis for the space of homogeneous cubic

polynomials in four variables (if we include zero as a cubic). So that space can be identified with

the affine space A20. But by homogeneity, the zero locus of any of the cubic polynomials is invariant

under the operation of multiplying the cubic polynomial by a nonzero scalar. So the space of cubic
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surfaces in P3 can be identified with the projective space P19. This is the so-called moduli space of

cubic surfaces in P3.

Now we may define the incidence correspondence M := {(L,X) ∈ G(1,P3) × P19 : L ⊆ X},
where G(1,P3) is the Grassmannian of lines in P3 and we interpret the statement L ⊆ X to mean

that the line L is on the cubic surface represented by the point in the moduli space P19. Thus, this

incidence correspondence consists of all pairs of a line and a cubic such that the line lies on the

cubic. Let π : M → P19 be the projection map. Observe that by construction, for any cubic surface

in P3, if that cubic surface is represented by X ∈ P19, then the number of lines on that cubic is

precisely the cardinality of the fiber π−1({X}).
We now describe a coordinate system in which we will perform calculations. Recall that the

Grassmannian G(1,P3) is a 4-dimensional projective variety (via the Plücker embedding). Suppose

P3 is given coordinates [x0 : x1 : x2 : x3]. For any fixed L0 ∈ G(1,P3), one may performa change of

coordinates so that L0 is the locus given by the equations x2 = x3 = 0. Then, one may construct

an affine neighborhood A4 ⊆ G(1,P3) of L0 given by sending the affine point (a2, a3, b2, b3) ∈ A4 to

the point in G(1,P3) corresponding to the line through the points (1, 0, a2, a3) and (0, 1, b2, b3). By

our construction of the moduli space P19 of smooth cubics, we note that the projective coordinates

in that space cα are indexed by multi-indices α = (α0, α1, α2, α3) with αi ≥ 0 and
∑3

i=0 αi = 3.

Let A be the collection of these multi-indices. These multi-indices α keep track of which monomial

corresponds to the coefficient-coordinate cα. Hence, locally on M we may describe points with the

coordinates (a, b, c) = (a2, a3, b2, b3, (cα)α∈A ). For the coordinate c, we let Xc ⊆ P3 denote the

actual geometric surface corresponding to the zero locus of the cubic corresponding to the point

c ∈ P19.

The first result we must show is that M is a smooth variety. Pick a point in M and write it in

local coordinates as (a, b, c). Since (a, b, c) ∈M , we have that

s[1 : 0 : a2 : a3] + t[0 : 1 : b2 : b3] = [s : t : sa2 + tb2 : sa3 + tb3] ∈ Xc (4.1)

for all s, t ∈ C. Here, we are simply unravelling the definition of the incidence correspondence using

our coordinates. Going further, 4.1 implies that∑
α∈A

cαs
α0tα1(sa2 + tb2)

α2(sa3 + tb3)
α3 = 0, (4.2)

for all s, t ∈ C. Since α0 + α1 + α2 + α3 = 3, we can expand and group the sum above by sit3−i

terms to rewrite 4.3 as
3∑

i=0

sit3−iFi(a, b, c) = 0 (4.3)

for all s, t ∈ C, where the Fi are some polynomials. By construction, these Fi are linear in the

cα. For each i ∈ {0, 1, 2, 3}, we claim that c(i,3−i,0,0) occurs as a term in the polynomial Fi.

Indeed, c(i,3−i,0,0) occurs in Fi. Suppose it occurs in Fj . Then considering the origin of the term
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sjt3−jFj(a, b, c), it follows that j = i. Note moreover that c(i,3−i,0,0) appears in Fi with coefficient

1. Therefore, the equation Fi(a, b, c) = 0 can be rearranged to c(i,3−i,0,0) = Gi(a, b, c) for some

polynomial Gi. Observe also that the polynomial Gi only depends on cα with α2 > 0 or α3 > 0,

since c(i,3−i,0,0) occurs precisely in Fi, so Gj will not depend on it if j ̸= i and even Gi will not

depend on it by construction.

Therefore, if we endow the variety A4 ×P15 with the coordinates (a2, a3, b2, b3, (cα)α∈B), where

B ⊊ A is the subcollection of multi-indices α with α2 > 0 and α3 > 0, we have found an

isomorphism between A4 × P15 and an open subvariety of M , given by the equations c(i,3−i,0,0) =

Gi(a, b, c). Since P15 contains a copy of A15, we have shown that M admits an open cover by the

affine spaces A4 × A15 = A19. Hence, M is a smooth 19-dimensional variety.

Next, let us suppose our point (a, b, c) ∈ M is such that Xc is a smooth cubic surface. Chang-

ing coordinates, we may assume without loss of generality that a = b = 0. Let fc denote the

homogeneous cubic polynomial defining the surface Xc. By construction, we have

3∑
i=0

sit3−iFi(a, b, c) = fc(s, t, sa2 + tb2, sa3 + tb3). (4.4)

Therefore, by the chain rule we have

∂

∂a2

(
3∑

i=0

sit3−iFi(a, b, c)

)∣∣∣∣∣
(0,0,c)

=
∂

∂a2
fc(s, t, sa2 + tb2, sa3 + tb3)

∣∣∣
(0,0,c)

= s
∂fc
∂x2

(s, t, 0, 0).

(4.5)

Let F = [F0, F1, F2, F3]
T and consider the following submatrix of the Jacobian DF :

J :=


∂F0
∂a2

∂F0
∂a3

∂F0
∂b2

∂F0
∂b3

∂F1
∂a2

∂F1
∂a3

∂F1
∂b2

∂F1
∂b3

∂F2
∂a2

∂F2
∂a3

∂F2
∂b2

∂F2
∂b3

∂F3
∂a2

∂F3
∂a3

∂F3
∂b2

∂F3
∂b3

 . (4.6)

The calculation in equation 4.5 implies that the first column of the matrix J(0, 0, c) are the sit3−i-

coefficients of the polynomial s(∂fc/∂x2)(s, t, 0, 0). Similarly, the other columns of J(0, 0, c) are
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coefficients of

∂

∂a3

(
3∑

i=0

sit3−iFi(a, b, c)

)∣∣∣∣∣
(0,0,c)

= s
∂fc
∂x3

(s, t, 0, 0)

∂

∂b2

(
3∑

i=0

sit3−iFi(a, b, c)

)∣∣∣∣∣
(0,0,c)

= t
∂fc
∂x2

(s, t, 0, 0)

∂

∂b3

(
3∑

i=0

sit3−iFi(a, b, c)

)∣∣∣∣∣
(0,0,c)

= t
∂fc
∂x3

(s, t, 0, 0)

(4.7)

Suppose J(0, 0, c) is not invertible. Then its columns must be linearly dependent, so there must be

a nontrivial relation

(λ2s+ µ2t)
∂fc
∂x2

(s, t, 0, 0) + (λ3s+ µ3t)
∂fc
∂x3

(s, t, 0, 0) = 0, (4.8)

where the equality holds identically as an equality of polynomials in the variables s and t. Rear-

ranging 4.8 reveals that (∂fc/∂x2)(s, t, 0, 0) and (∂fc/∂x3)(s, t, 0, 0) share a common linear factor.

Therefore, there exists a point P = [x0 : x1 : 0 : 0] ∈ P3 such that (∂fc/∂x2)(P ) = (∂fc/∂x3)(P ) =

0.

Let L0 be the line through [1 : 0 : 0 : 0] and [0 : 1 : 0 : 0]. This is the line with G(1,P3)-

coodinates (0, 0). Since we assume (0, 0, c) ∈M , we are assuming that L0 lies on the cubic surface

Xc. Hence,

fc(x0, x1, x2, x3) = x2g2(x0, x1, x2, x3) + x3g3(x0, x1, x2, x3), (4.9)

for some polynomials g2 and g3. In particular, we have

∂fc
∂x0

= x2
∂g2
∂x0

+ x3
∂g3
∂x0

∂fc
∂x1

= x2
∂g2
∂x1

+ x3
∂g3
∂x1

,

(4.10)

so it follows that (∂fc/∂x0)(P ) = (∂fc/∂x1)(P ) = 0. So P is a point such that (∂fc/∂xi)(P ) = 0 for

all i ∈ {0, 1, 2, 3}. Hence by the Jacobi criterion for smoothness, P is a singular point of the cubic

surface Xc. This contradicts our assumption that Xc is smooth. Therefore, the matrix J(0, 0, c)

must be invertible.

Let S ⊆ P19 be the collection of points in the moduli space corresponding to smooth cubics. We

must make the assumption that S is connected (see [8]). Nonetheless, since we have shown that

J(a, b, c) is invertible whenever Xc is smooth, by the implicit function theorem the coordinates a

and b are determined by the cα. Since S ⊆ P19 is connected, this means that when we modify

the projection map to only consider smooth cubics: π′ : M ′ → S, then π′ is a covering map on

a connected space. Standard arguments in point-set topology then imply that the fibers of π′ all

have the same cardinality (see for instance [4]).
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We can now show that the number of lines on a smooth cubic surface in P3 is finite. To do this,

one may just compute with a simple example of a smooth cubic.

Proposition 5. The number of lines on a smooth cubic surface in P3 is finite.

Proof. Consider the smooth cubic cut out by polynomial f = x30 + x31 + x32 + x33, known as the

Fermat cubic. This cubic is easily checked to be smooth by the Jacobi criterion. Upon permuting

the coordinates, every line in P3 can be of the form x0 = a2x2+a3x3 and x1 = b2x2+ b3x3. We can

then these equations into f to obtain a system of equations in the ai and bi. Some simple algebra

reveals that there are finitely many solutions. Since there are finitely many permutations of the

coordinates, it follows that that there are finitely many lines on the Fermat cubic. The conclusion

follows from Proposition 4.

We derived Proposition 5 by computing with a specific cubic surface. A more general approach

to check the dimension hypothesis of Theorem 4 is to employ deformation theory. However, this

lies outside of the set of tools which we have developed and we will not say more about this here.

Note that if one actually does the calculations in detail in the proof of Proposition 5, one will find

the exact number of lines on any smooth cubic surface in P3. However, this manner of computing

the numerical answer is unsatisfying. The number appears almost out of complete coincidence. In

the next section, we will apply our theory of Chern classes to gain a better understanding of where

the numerical answer comes from.

4.2 The Top Chern Class

We are finally in a position to answer the question we posed at the beginning of the chapter.

Theorem 5. Every smooth cubic surface in P3 contains precisely twenty-seven lines.

Proof. Let X ⊆ P3 be a smooth cubic surface cut out by the polynomial f . Consider the Grass-

mannian G(1,P3) ∼= G(2,A4). We may consider the tautological subbundle S on G(1,P3) where

the S-fiber over a point in G(1,P3) is precisely that projective line itself (or alternatively the affine

plane whose projectivization is the projective line itself). Note that rankS = 2. We define the

incidence correspondence by M := {Λ ∈ G(1,P3) : Λ ⊆ X}.
Consider the vector bundle p : Sym3 (S∨) → G(1,P3). This vector bundles has a section f ♯

defined by f ♯([Λ]) := f |Λ ∈ Sym3 (Λ∨). The symmetric power Sym3 (Λ∨) is precisely the space of

homogeneous cubic polynomials on the line Λ, and the section f ♯ is the section that simply restricts

the cubic polynomial f to each line Λ ∈ G(1,P3). The zero locus of this section, Z(f ♯), is precisely

the lines in P3 on which f vanishes. That is, the lines on the cubic surface X. The degree of the

divisor class we obtain will thus be the number of lines on the cubic surface X. Hence, we must

simply compute degZ(f ♯).

The Grassmannian G(2,A4) has dimension 2 · 2 = 4 and the symmetric power Sym3 (S∨) has

rank
(
2+3−1

3

)
= 4. By Proposition 5, the zero locus is finite and thus has dimension dimZ(f ♯) =
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0 = dimG(2,A4)− rank Sym3 (S∨). Moreover, the Grasmannian is a variety by the Plücker embed-

ding. Hence, we satisfy the hypothesis of Theorem 4 which tells us that [Z(f ♯)] = c4(Sym
3 (S∨)) ·

[G(1,P3)].

Suppose S∨ has Chern roots α and β so that c1(S
∨) = α + β and c2(S

∨) = αβ. As stated in

our discussion in Section 3.2, Sym3 (S∨) has Chern roots 3α, 2α + β, α + 2β, and 3β. Therefore,

by the splitting principle, we may write down the total Chern class of Sym3 (S∨) as

c(Sym3 (S∨)) = (1+ 3α)(1+ 2α+ β)(1+ α+ 2β)(1+ 3β) (4.11)

The degree 4 piece of the expansion of 4.11 is not hard to compute. We obtain:

c4(Sym
3 (S∨)) = 18α3β + 18αβ3 + 45α2β2

= 9αβ(2α2 + 2β2 + 5αβ)

= 9αβ(2(α+ β)2 + αβ)

= 9(αβ)2 + 18αβ(α+ β)2

= 9c2(S
∨)2 + 18c1(S

∨)2c2(S
∨).

(4.12)

Similar to our interpretation of c4(Sym
3 (S∨)), we may interpret the Chern class c2(S

∨) as encoding

the lines in P3 contained in some hyperplane H. The class c2(S
∨)2 thus encodes the lines in P3

contained in two different hyperplanes. There is only one such line of course, so the degree of

c2(S
∨) · [G(1,P3)] is 1.

Note that we can interpret S∨ as the exterior power
∧2 S∨. Therefore, c1(S

∨) encodes the

collection of lines in P3 such that the restrictions of two generic linear equations are linearly de-

pendent on the lines. Phrased another way, this means that c1(S
∨) encodes the collection of lines

that intersect with a given generic line. Therefore, c1(S
∨)2 encodes the collection of lines that

have an intersection with two generic lines. Then c1(S
∨)2c2(S

∨) encodes the collection of lines that

intersect with two generic lines and a generic hyperplane. Of course, there is only one such line.

Hence, the degree of c1(S
∨)2c2(S

∨) · [G(1,P3)] is also 1.

Therefore, Theorem 4 and equation 4.12 imply that the number of lines on X is

degZ(f ♯) = 9 + 18 = 27 . (4.13)

This perspective of counting lines on a cubic surface is quite abstract. As we noted before, our

work in Section 4.1 could easily be made more explicit to yield Theorem 5. However, the theory

of Chern classes gives us a better perspective of why there are exactly 27 lines on a cubic surface.

The number 27 essentially comes from the combinatorics of manipulating elementary symmetric

functions of Chern roots, as we did in equation 4.12. More importantly, our approach also yields a

method to solve more complicated enumerative problems.
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We would be remiss if we did not conclude with a beautiful visual of the twenty-seven lines on

a cubic surface ([5]).
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