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Abstract

Many new fields in graph theory have develop in the last half century involve

and incorporate other branches of mathematics. Utilizing linear algebra, spectral

graph theory has been an ever-growing field that studies the eigenvalues of the

adjacency matrix and graph Laplacian. These ideas have resulted in the study of

a class of highly connected but sparse graphs called expanders. Another recent

development in graph theory is the concept of dense graph limits, known as

graphons, and how they solve many combinatorial problems. We examine how

many core ideas about expander graphs and the adjacency matrix as an operator

generalize well to graphons through the lens of functional analysis. In this thesis,

we provide proofs for the expander mixing lemma and mixing time for graphons,

as well as a few applications of them. In addition, we show strong evidence that an

Alon-Boppana type theorem can be proven for graphons.
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1. Introduction

In this paper we will be considering properties of graphs and adjacency matrices,

as well as their generalizations in the limiting case. We say that the adjacency

matrix of a weighted graph G = (V,E,w) is the matrix AG, where (AG)i j = w(i, j).

For notational purposes, we will refer to V (G) and E(G) as the vertex and edge set

of a graph if there are multiple graphs defined, but we will omit G otherwise.

The adjacency matrix has quite a few applications even without analyzing its

eigenvalues. For instance, the volume or number of edges from a set S ⊆ V to

T ⊆V is given by 〈1T ,AG1S〉, where 1X is the characteristic vector for a set X ⊆V .

Naturally, this can also be viewed as the computing the number of ways to reach T

from S using one step in the graph, and so it may be generalized to computing for

t steps via 〈1T ,At
G1S〉. We can even redefine other common properties of graphs

using the inner product. A graph is connected if and only if for any S,T ⊆ V ,

there exists a t ≥ 0 such that 〈1T ,At
G1S〉 6= 0. Similarly, the diameter of a graph

is minimum ∆ such that t ≤ ∆ for all S,T ⊆ V , or that ∑
∆
t=1 At

G has all nonzero

entries.

Restricting ourselves to undirected graphs, we can view the adjacency matrix

as a self-adjoint operator on R|V |, which allows us to use the beloved spectral theo-

rem. From a given adjacency matrix AG, we have that its multiset of eigenvalues

{λi}1≤i≤|V |, known as the spectrum, are contained in the reals. In addition, we can
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create an orthonormal basis of eigenvectors {vi}1≤i≤|V | of R|V | such that

AG =
|V |

∑
i=1

λivivT
I

which means that AG is diagonalizable. When we refer to the eigenvalues of a

graph λi(G), we will be referring to the eigenvalues of its adjacency matrix λi(AG).

Since the spectral theorem is the foundation of this study, this subfield is called

spectral graph theory. Known as one of the fastest growing fields in combinatorics

in the last half century, it has provided strong motivations for advancing random

matrix theory and creating important algorithms in data science [7, 4].

Now if G was a d-regular graph in that the sum of the edge weights incident

to any vertex is d, then it is clear that the row sums of AG must be d. Thus, we

see that d is an eigenvalue of G with eigenvector~1. In fact, it is easy to see that

d is the largest eigenvalue of a d-regular graph. If G were a disconnected graph,

then d would have geometric multiplicity greater than 1, as~1 could be decomposed

into the sum of indicator vectors for the connected components of G. Thus, it is

common to refer to d as the trivial eigenvalue of d-regular graphs [4]. Another

common notion is the spectral gap, which is the maximal difference between the

first eigenvalue and the other eigenvalues of a graph. In short, having a very large

spectral gap implies that a graph is highly connected, or that it requires a large

number of edges removed to disconnect a graph.
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1.1. Expander graphs

This in turn brings us to the notion of graph expanders, which seek to be highly

connected yet sparse graphs.

Definition 1.1. If G is a d-regular graph, we say that G is a λ-spectral expander

if

λ≥max{|λ2(G)|, |λn(G)|}

and that λ(G) is the minimum λ such that this is true.

If we look at the spectrum of the complete graph Kn, we see that it has maximal

connectivity as well as spectral gap, since its eigenvalues are {n−1,−1, . . . ,−1},

and so it is a dense 1-spectral expander. Several important results come as a

result of this definition, such as the Expander Mixing Lemma. Since their proofs

and results are similar in both the finite and limiting case, we will show them

later on with graphons. However, one theorem is not quite as direct. Although

it was initially derived outside of expander graph research, the Alon-Boppana

bound provides a fantastic lower bound of d-regular graphs. In combination with

constructions of Ramanujan graphs, we see that there exists an ”optimal” class of

d-regular expanders [8].

Theorem 1.2 (Alon-Boppana Bound [9]). If G is a d-regular graph on n vertices

with diameter ∆, then

λ2(G)≥ 2
√

d−1− 2
√

d−1−1
b∆/2c
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In the rest of this thesis, we will introduce the notion of graphons as limits of

graphs, as well as a few of their applications in extremal graph theory. We will then

extend our notion of the adjacency matrix to the graphon shift operator, which will

allow us to connect ideas from spectral graph theory to graphons. In turn, we will

see that many theorems regarding expander graphs have parallel counterparts in

graphons, and we will provide evidence that the celebrated Alon-Boppana bound

for regular graphs should apply to graphons as well.

2. Graphons

One important area within spectral graph theory is that of the spectrum itself,

particularly with random graphs. For certain classes of random graphs, the limiting

distribution of the spectrum can be studied as the size of the graph grows. However,

as the graph grows larger and larger in vertices, the adjacency matrix grows as well.

This has led many to wonder what this matrix would become once the graph grows

infinitely large and its edges are dense [3, 2]. In turn, this has resulted in the study

of graphons, also known as graph limits.

Definition 2.1. A graphon is a symmetric measurable function W : [0,1]2→ [0,1].

The world of graphons has provided many ways to reinterpret topics about finite

graphs, such as that of the spectrum of random graphs [11] as well as extremal

problems [3, 2]. Although there are other, more general definitions for graphons

where the domain is a product measure space Ω2 and the codomain is unbounded,

for the rest of this thesis we will be using [0,1]2 with the Lebesgue measure as our
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domain, and only considering bounded graphons. To further our understanding, we

will redefine some classical properties of graphs in terms of graphons. For instance,

we may view W (x,y) as the weight of the edge between x and y. However, we

cannot simply count the number of edges between two subsets of [0,1]. This is

where density, measurability, and integration come into motion.

Definition 2.2. For graphon W and measurable S,T ⊆ [0,1], the density of edges

or volume from S to T is

e(S,T ) :=
∫

S×T
W (x,y)dxdy =

∫ 1

0

∫ 1

0
1y∈TW (x,y)1x∈Sdxdy

Similarly, W is connected if e(S,SC)> 0 for all S⊂ [0,1] with positive measure.

Similarly, rather than computing the degree of a vertex x ∈ [0,1] by counting

the number of neighbors, we instead find the proportion of [0,1] that are incident

to x.

Definition 2.3. The degree function of a graphon W is defined as

d(x) :=
∫ 1

0
W (x,y)dy

We say that W is d-regular if d(x) = d almost everywhere.

These are parallel to their finite definitions, as we will see later with the graphon

shift operator. In the finite definition, computing e(S,T ) uses an inner product, just

as it will with graphons. The key connection between graphs and graphons is the

conversion from growing and scaling infinite sums to integrals.
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2.1. Convergence of Graph Limits

For any finite graph G, we can construct a step graphon that looks akin to

the adjacency matrix A by partitioning [0,1] into |V (G)| evenly-sized blocks, and

setting W (x,y) = Ai, j for all (x,y) ∈ [ i−1
n , i

n)× [ j−1
n , j

n). In turn, we may define

convergence of a sequence of graphs through convergence of their step graphons.

One norm will be of great importance to us.

Definition 2.4. The cut norm for a graphon W is

||W ||� := sup
S⊂[0,1]

e(S,SC)

The cut distance for graphons V, W is

δ�(V,W ) := inf
φ
||V −W φ||�

where φ is a measure-preserving bijection of [0,1] and W φ(x,y) =W (φ(x),φ(y)).

If G is a graph, then we say δ�(G,W ) := δ�(WG,W ).

To gain a more intuitive understanding of the cut distance, we see that the if two

graphons are isomorphic to each other in a similar sense to graph isomorphisms,

then they should have 0 distance. The cut norm is a measure of how spread out

edges are across [0,1]. If the majority of differing edges between two graphons are

concentrated in a small subset of [0,1], akin to a subclique of a graph, then the cut

distance between them is small. If the differing edges are heavily spread out, then

the distance will be large.
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Now the cut norm is a semi-norm, but we may convert it into a norm if we say

a function is equivalent to 0 if it is 0 almost everywhere. Similarly, the cut metric

is not a true metric and does not form a metric space with the set of graphons, but

it does form a complete metric space over the equivalence classes of graphons

that are equal up to a set of measure 0. Now under this cut metric, the set of step

graphons generated from finite graphs form a dense subset in the space of graphons,

which is the reason why graphons are considered graph limits. However, the cut

norm is smaller than the p-norms, and thus convergence in other metrics will imply

convergence in cut distance [6].

||W ||� ≤ ||W ||1 ≤ ||W ||2 ≤ ||W ||∞ ≤ 1 (1)

To see the result of this limit, we can consider a few sequences of graphs of

increasing size. For the weighted complete graph with edge weight p, the limit

is the constant W (x,y) = p. Similarly, a sequence of Erdős-Renyı́ random graphs

{Gn,p}n≥1, where each of the edges appears with constant probability p, will

converge under the cut metric to the constant graphon W (x,y) = p as well with

high probability. Another interesting example is the balanced stochastic block

model, where V (G) is partitioned in k evenly sized blocks. The edges within a

block appear with internal probability p, and the edges between blocks appear with

external probability q. Under the cut metric, increasing size models converge to

a block-diagonal graphon, where the diagonal blocks have value p, and blocks

outside of the diagonal have value q. The generalized stochastic block model allows
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for varying block sizes and different internal or external probabilities, and its graph

limit can be similarly expressed in terms of blocks. We now consider an equivalent

notion of convergence by first introducing the notion of graph homomorphisms.

Definition 2.5. A graph homomorphism from graph H to G is a function f :

V (H)→V (G) where {i, j} ∈ E(H) if and only if { f (i), f ( j)} ∈ E(G). We denote

the set of all homomorphisms from H to G as hom(H,G).

Definition 2.6. Let G and H be finite graphs, and let n = |V (H)|. Then the

homomorphism density of H in G is

t(H,G) =
|hom(H,G)|
|V (G)|n

For a graphon W, the homomorphism density of H in W is

t(H,W ) =
∫
[0,1]n

∏
{i, j}∈E(H)

W (xi,x j)dx1 . . .dxn

For instance, we see that t(K2,W ) and t(K3,W ) is the edge and triangle density

of a graphon W . This allows us to reframe extremal graph theory problems in terms

of graphons. For finite graphs, the majority of Turán problems related edge counts

to the appearance of a subgraph G, and so for graphons it is the maximal value

of t(K2,W ) until t(G,W ) is nonzero. Another important homomorphism density

is that of closed walks of length 2k in a graphon W , which is precisely t(C2k,W )

where C2k is the cycle graph. Similar to how the trace of At
G is the number of

closed walks of length t on G, this will aid us later on in computing the trace of an
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operator defined by a graphon.

Now, intuition would say that if a graph were to appear at a certain density in a

sequence of finite graph, then it should appear equally so in the limit. To capture

this, we have the following theorem.

Theorem 2.7 ([3]). For graphon W and sequence of finite graphs Gn, we have that

Gn→W if and only if t(H,Gn)→ t(H,W ) for any finite graph H.

3. Spectral Theory of Graphons

Similar to how AG is an operator on R|V (G)|, we introduce an infinite analogue

of the adjacency matrix. The following ideas are not unique to graphons, and

in fact come from functional analysis, which studies infinite-dimensional vector

spaces such as that of L2([0,1]), which our graphons are a subset of.

Definition 3.1. The graphon shift operator (WSO) for a graphon W on f ∈

L2([0,1]) is

(TW f )(y) =
∫ 1

0
W (x,y) f (x)dx

By definition, we see that if a graphon is d-regular, then the graphon shift

operator of a constant function c is dc. This resembles how, for d-regular graph G

with adjacency matrix AG, we see that AG~1 = d~1, where~1 is an eigenvector. This

brings us to the notion of an eigenfunction.

Definition 3.2. An eigenvalue and eigenfunction are a pair (λ, f ) where f ∈

L2([0,1]) and (TW f )(x) = λ f (x).
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Similar to how trace can be defined for matrices using the sum of the diagonal

as well as the sum of its eigenvalues, we may extend this to general operators on

Hilbert spaces. Since TW is a self-adjoint integral operator over a compact Hilbert

space, we have that TW is a trace-class operator where a trace functional can be

defined [1]. With { fi}i≥1 as an orthonormal basis of L2([0,1]), we say that the

trace is

Tr(TW ) :=
∞

∑
i=1
〈TW fi, fi〉 (2)

Furthermore, Lidskii’s theorem states that this trace is equal to the sum of the

eigenvalues of TW . However, since TW is self-adjoint and compact, this means

the beloved spectral theorem still applies, which provides us with an orthonormal

eigenfunction basis for L2([0,1]) for a given graphon W [1, 3]. If {(λ, fi)}i∈Z are

our eigenpairs, then

W (x,y) = ∑
i∈Z

λi fi(x) fi(y)

This will be quite useful in our later proofs. In fact, this also implies that the

set of nonzero eigenvalues is countable [3]. However, as graphons are the limits

of graphs, this begs the question of how the eigenvalues of graphs relate to the

eigenvalues of the limit.

Theorem 3.3 ([3]). Let the sequence graphs {Gn}n≥1 converge to graphon W

and let vn = |V (Gn)|. Define λi(Gn) and λi(W ) to be the ith largest positive

eigenvalues of Gn and W respectively for i≥ 1, and define λ′i(Gn) and λ′i(W ) to be

the ith largest negative eigenvalues accordingly. Then limn→∞ λi(Gn)/vn = λi(W )
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and limn→∞ λ′i(Gn)/vn = λ′i(W ) for all i 6= 0.

The intuition behind this statement is that we may compute the eigenvalues

of AG using a finite sum over the entries of an eigenvector. As the number of

entries grows towards infinity however, this sum can be viewed as a Riemann sum.

Adding a normalizing factor and taking the limit hence changes this process into

an integral, akin to the graphon shift operator. As most of the eigenvalues of a

graph are O(
√
|V (G)|), we see that they vanish in the limit, which explains why

the eigenvalues of graphons accumulate at 0 [10].

3.1. Expander Graphons

For the rest of this thesis, we will only be concerned with d-regular graphons.

Similar to how the largest eigenvalue of a k-regular graph is k, this assumption

gives us that the first eigenvalue λ1(W ) is d, which has eigenfunction 1. In turn,

we regard this as the trivial eigenvalue. For the same reason as finite graphs, d will

have multiplicity 1 if and only if W is connected.

Definition 3.4. We say that a graphon W is a λ-spectral expander if

λ≥max{|λ2|, |λ−1|}

and that λ(W ) is the minimum λ such that this is true.

This definition allows use to refer to expanders as classes of graphons where

the above properties hold. We now present our first result, which generalizes the

Expander Mixing Lemma to graphons.
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Lemma 3.5 (Expander Mixing Lemma for Graphons). If W is a d-regular λ-

expander graphon, then for measurable S,T ⊂ [0,1]

|e(S,T )−d|S||T || ≤ λ(W )
√
|S||T |(1−|S|)(1−|T |)

Proof. Note that

e(S,T ) =
∫ 1

0
1y∈T

∫ 1

0
W (x,y)1x∈Sdxdy

=
∫ 1

0
[(1y∈T −|T |)+ |T |]

∫ 1

0
W (x,y)[(1x∈S−|S|)+ |S|]dxdy (3)

Since 1y∈T −|T | is orthogonal to any constant function and W is d-regular, we

have that (3) is equivalent to

|T ||S|
∫ 1

0

∫ 1

0
W (x,y)dxdy+

∫ 1

0
(1y∈T −|T |)

∫ 1

0
W (x,y)(1x∈S−|S|)dxdy

As W is d-regular, we have that the first term above is d|S||T |. Thus,

e(S,T )−d|S||T |=
∫ 1

0
(1y∈T −|T |)

∫ 1

0
W (x,y)(1x∈S−|S|)dxdy

The right hand of this equation contains an inner integral which is notably the

graphon shift operator for W on 1x∈S−|S|. Now let f1, f2, . . . be an orthonormal

basis of eigenfunctions of W for L2([0,1]) and order the eigenfunctions and eigen-

values such that |λ1| ≥ |λ2| ≥ · · · ≥ 0. Thus let 1x∈S = ∑i si fi be the eigenfunction

decomposition of the indicator function, and note that since 1x∈S−|S| is orthogonal
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to f1 = 1, we have that s1 = 0. Hence,

|e(S,T )−d|S||T ||=
∣∣∣∣∫ 1

0
(1y∈T −|T |)

∫ 1

0
W (x,y)(1x∈S−|S|)dxdy

∣∣∣∣
=

∣∣∣∣∣
∫ 1

0
(1y∈T −|T |)

∞

∑
i=2

λisi fi(y)dy

∣∣∣∣∣
≤ λ(W )

∣∣∣∣∣ ∞

∑
i=2

∫ 1

0
(1y∈T −|T |)si fi(y)dy

∣∣∣∣∣
We then apply Cauchy-Schwarz to see that

|e(S,T )−d|S||T || ≤ λ(W )

√∫ 1

0
(1y∈T −|T |)2dy

√√√√∫ 1

0

(
∞

∑
i=2

si fi(y)

)2

dy

≤ λ(W )

√∫ 1

0
(1y∈T −|T |)2dy

√
∞

∑
i, j=2

∫ 1

0
sis j fi(y) f j(y)dy

≤ λ(W )
√
|T |(1−|T |)

√
∞

∑
i=2

s2
i

∫ 1

0
f 2
i (y)dy

≤ λ(W )
√
|S|(1−|S|)|T |(1−|T |)

One way to interpret the Expander Mixing lemma is that if λ(W ) is small, then

W is very close to the constant graphon W ′(x,y) = d on any measurable subset of

[0,1]2. This provides another reason as to why if graphon W is d-regular and a

λ-spectral expander where λ < d, then W is connected. Assuming that there exists

an S ⊂ [0,1] with positive measure such that e(S, [0,1] \ S) = 0, we may apply
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Lemma 3.5, to see that

d|S|(1−|S|)≤ λ(W )|S|(1−|S|)< d|S|(1−|S|)

which is a contradiction. The Expander Mixing Lemma also gives a bound on the

diameter of a graphon as well, given below.

Definition 3.6. The diameter of a graphon W is the minimal value ∆ such that for

any A,B⊂ [0,1] with positive measure, we have that for some 0≤ t ≤ ∆,

〈1x∈B,(T t
W 1y∈A)〉> 0

If none exists, we say that the diameter is infinite.

If W (x,y)> 0 almost everywhere, then W clearly has diameter 1. Now if W is

a d-regular graphon where d > 1/2, then a short argument shows that the diameter

of W must be at most 2. For other values of d, it is unclear if W has finite diameter

or not. However, the Expander Mixing lemma is a strong tool to gain some insight

into this.

Corollary 3.7. If λ(W )< d/2, we have that ∆(W ) = O(1).

Proof. It suffices to show that for any A⊂ [0,1] where d ≤ |A| ≤ 1/2, there is an

r = O(1) where

Nr(A) :=

∣∣∣∣∣ r⋃
t=0

supp(T t
W 1x∈A)

∣∣∣∣∣> 1
2

We only need to consider the case when |A| ≥ d, as because W is d-regular, any

16



application of TW on 1x∈A will have support of measure at least d, and so the

diameter changes by at most 2. In essence, Nr(A) is the measure of the set of all

points reachable from A using TW in at most r steps. By the Expander Mixing

lemma, we have that

e(A,A)< d|A|2 +λ(W )|A|<
(

d
2
+λ

)
|A|

Since e(A,A)+ e(A,AC) = d|A|, it follows that ε|A|= e(A,AC) = (d/2−λ)|A| is

positive. Since W is d-regular, we thus have that Nr+1(A)≥ Nr(A)(1+ ε). Hence

r = log1+ε(1/(2|A|)) = O(1). For A,B ⊆ [0,1] with positive measure, let rA,rB

be found using the above method. If R = max{rA,rB}, then this implies that

|NR(A)∩NR(B)| > 0 and thus |N2R(A)∩B| > 0, as desired. In other words, the

above implies that 〈T R
W 1x∈A,T R

W 1x∈B〉 6= 0, and as the shift operator is self-adjoint,

it is equivalent to 〈T 2R
W 1x∈A,1x∈B〉 6= 0.

In addition, we may also relate eigenvalues to some combinatorial properties.

For example, in graphs, a valid color is a mapping where all vertices of a given

color must have no edges between them. With graphons, we say that a k-coloring

of a graphon W is a measurable function c : [0,1]→ {1, . . . ,k} where W is 0

almost everywhere on (c−1(i))2 for all 1 ≤ i ≤ k. The {chromaticnumber} of a

graphon W is the minimum k such that a valid k-coloring of W exists. With the

Expander Mixing Lemma, we can relate the chromatic number of a graphon to its

eigenvalues.

Corollary 3.8. If W is a d-regular λ-spectral expander, then its chromatic number
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is greater than d/λ(W ).

Proof. If c : [0,1]→{1, . . . ,k} is a valid k-coloring of W , then we have that W is

0 almost everywhere on (c−1(i))2, and thus that e(c−1(i),c−1(i)) = 0. It follows

that if Si = c−1(i), then by the Expander Mixing Lemma,

d|Si|2 ≤ λ(W )|Si|(1−|Si|)< λ(W )|Si|

and so |Si|< λ(W )/d. Since this applies for all i ∈ {1, . . . ,k} and ∑
k
i=1 |Si|= 1, we

have that k > d/λ(W ).

We now introduce a concept similar to the Expander Mixing lemma, but with

regard to how easily one can get ”lost” in the graphon from any initial position.

Definition 3.9. For graphon W and ε > 0, the mixing time M(W,ε) of W is the

minimal t such that for all f ∈ L2([0,1]),

||T t
W f −1||1 ≤ ε

This is equivalent to saying that for any initial distribution f , we are ε close

to the uniform distribution/constant function 1 after t applications of the graphon

shift operator.

Theorem 3.10. Let W be a d-regular λ-expander graphon. The mixing time of W

is at most

M(W,ε)≤
⌈

logε

logλ

⌉
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Proof. Note that for f ∈ L2([0,1]) where f is a distribution over [0,1], we have

that f − || f ||2 = f − 1 is orthogonal to 1. Decomposing f into an orthonormal

eigenfunction basis of L2([0,1]), we see that

∫ 1

0
((TW f )(y)−1)2dy =

∫ 1

0

(∫ 1

0
W (x,y)( f (x)−1)dx

)2

dy

≤ λ(W )2
∫ 1

0
( f (y)−1)2dy

It follows that ||T t
W f −1||2 ≤ λ(W )t || f −1||2 ≤ λ(W )t by repeated application of

the operator, and thus by Cauchy-Schwarz,

||T t
W f −1||1 ≤ ||1||2||T t

W f −1||2 ≤ λ(W )t

Solving for t such that λ(W )t is at most ε gives our desired result.

Corollary 3.11. If W is d-regular and connected, then for ε < d, we have that

∆(W )≤M(W,ε)+1≤
⌈

logε

logλ

⌉
+1

Proof. For any A⊆ [0,1], let Z = supp(T t
W 1x∈A)

C = {y∈ [0,1] : (T t
W 1x∈A)(y) = 0}

be the set of points that are unreachable from A after t applications of the graphon

shift operator. We have by Theorem 3.10 that ||T t
W 1x∈A− 1||1 ≤ ε < d, which

implies that |Z| < d. However, since W is d-regular, we see that for x ∈ Z, that

d(x) = d > |Z|, and so each x ∈ Z has a set of neighbors in the support of T t
W 1x∈A
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of measure at least |Z|−d. This is equivalent to saying that 〈T t
W 1x∈A,TW 1x∈Z〉> 0.

Hence, we see that ∆(W )≤M(W,ε)+1.

Notably, since λ < d by assumption that W is connected, we may find an

ε ∈ (λ,d) such that this bound is better than the one given by the Expander Mixing

lemma. Critically, this shows that d-regular connected graphons always have finite

diameter, which a core part of the Alon-Boppana bound that we will see in the next

section. In fact, for most graphons, this implies that their diameter is at most 2.

This is actually consistent in the finite graph case, as graphons represent graphs

with O(n) edge density, which implies a very small diameter [10]. However, this

d-regularity assumption is necessary. If there was no lower bound greater than 0

for the degrees of the graphon, then it is possible for a connected graphon to have

infinite diameter [5].

One major application of graphons is that they are very ”efficient” graphs in

terms of sampling vertices via random walks without many edges. If k is a prime

power, then constructions of k-regular expander graphs exist. However, we cannot

sample a regular expander graph on n vertices from a d-regular graphon, as the

density of edges in the graph will always be O(dn). In turn, the shift from sparse

to dense expander graphs is not particularly useful, but we still do not know if

expander graphons hold particular properties that sparse expander graphs cannot.

3.2. Evidence for Alon-Boppana for Graphons

Since ∆(W ) is finite by Corollary 3.11 for small enough ε, we have a strong

motivation for finding a bound on λ(W ) similar to that of Theorem 1.2. Thus,
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we now provide scaffolding towards a proof of the Alon-Boppana for graphons,

in which for d-regular graphon W , we have that λ(G)≥ O(
√

d)−o(1). We first

begin by finding finite regular weighted graphs to compare W to. This allows us to

create regular graphons that are increasingly close to W which must be the sum of

step functions.

Lemma 3.12. For d-regular graphon W, there exists a sequence of weighted

graphs {Gn}n≥1 where Gn→W and |V (Gn)|= n while the sum of edge weights

incident to any vertex in Gn is dn.

Proof. We partition [0,1] into n uniform intervals Bi = [ i−1
n , i

n) for 1≤ i < n and

Bn = [n−1
n ,1], and create a step graphon Wn as follows: for (x,y) ∈ Bi×B j,

Wn(x,y) = n2
∫

Bi×B j

W (x,y)dxdy

From there, we create Gn on vertices {1,2, . . . ,n} by letting the edge weight be-

tween vertices a,b ∈V (Gn) be the value of Wn on Ba×Bb. Since simple functions

are dense in L2([0,1]2), it is clear that ||Wn−W ||1 converges to 0, and so by

equation (1) the graphs Gn converge to W in cut distance.

In order to lower bound the number of closed walks on a graphon, we apply

d-regularity in order to count the homomorphism density of trees in the graphon.

Lemma 3.13. For d-regular graphon W, if T is a finite tree where k = |E(T )|,

then t(T,W ) = dk.
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Proof. We will induct on the number of vertices in the tree. For k = 1, we see

that t(T,W ) is the degree function, which is always d. Now assume the statement

holds for k− 1 edges. For any tree T with k edges, we may order the vertices

using breadth-first search with labels {1, . . . ,k+1}. Without loss of generality, let

{k,k+1} be the last edge visited. Then

t(T,W ) =
∫
[0,1]k+1

∏
{i, j}∈E(T )

W (xi,x j)dx1 . . .dxk+1

=
∫
[0,1]k

(∫
[0,1]

W (xk,xk+1)dxk+1

)
∏

{i, j}∈E(T )\{{k,k+1}}
W (xi,x j)dx1 . . .dxk

= d
∫
[0,1]k

∏
{i, j}∈E(T )\{{k,k+1}}

W (xi,x j)dx1 . . .dxk

Removing {k,k+1} and vertex k+1 from T results in a tree T ′ with k−1 edges,

and thus

t(T,W ) = dt(T ′,W ) = dk

by hypothesis, completing the induction.

If we let {Gn}n≥1 be the sequence of dn-regular graphs from Lemma 3.12

where Gn→W and n = |V (G)|, then Theorem 3.3 implies that the eigenvalues of

the step graphons WGn created from Gn converge to those of W . Hence, any lower

bound of λ(WGn) will converge in the limit supremum to a lower bound for λ(W ).

As Wn is d-regular, its first eigenvalue is d. However, as Gn has n eigenvalues, it
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follows that Wn has n nonzero eigenvalues, and so

Tr(T 2k
Wn

)≤ d2k +(n−1)λ(W )2k (4)

Note that Tr(T 2k
Wn

) = t(C2k,Wn) is the density of closed walks on Wn, where C2k

is the cycle graph. If there existed a lower bound of Tr(T 2k
Wn

) using Lemma 3.13

such that Tr(T 2k
Wn

) ≥ O(ndk), then we may let k grow sublogarithmically with n,

and this would thus grant our desired result.

However, a few issues arise in attempting to find a similar result to Theorem

1.2. In Alon’s original proof, the vector constructed to utilize variational charac-

terization of eigenvalues is heavily altered by vertices at the end and center of

maximal paths. As we have seen, most graphons only have a diameter of 2, and so

all subsets of [0,1] in a maximal path will have a large contribution of mass to any

function created. Thus, adapting this proof is not an effective method. In addition,

the more combinatorial proof techniques used for Theorem 1.2 take advantage of

trace and the infinite d-regular tree. However, this method does not generalize well

to weighted graphs, which we are concerned with. In turn, a proof of this type

may be viable for d-regular {0,1}-valued graphons, but not for general regular

graphons.

4. Conclusion

In this thesis, we discussed spectral graph theory and graphons, and extended

several results from expander graphs to d-regular graphons. This latter portion
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develops new spectral results for graphons and analyzes some of its implications.

Some results such as the Expander Mixing Lemma generalized very well to

graphons, as high density in edges only helps these results. In turn, we have seen

unintuitive properties of graphons, such as the finite diameter of connected ones.

In contrast however, a high density of edges often implies high connectivity, which

is equivalent to having λ(G) be very small. Thus, the edge density of graphons

implies that a much greater hurdle lies in proving an Alon-Boppana-type result

for general graphons, just as it does for general graphs. This reminds us that even

in the limiting case, a paradigm shift occurs with edge density. Although some

wonderful ideas may appear to generalize, the failure to acknowledge this paradigm

shift may lead them astray.
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