
University of California San Diego
DEPARTMENT OF MATHEMATICS

Kleinian Singularities

Tomoki Oda
Class of 2021

A thesis
submitted in partial fulfillment

of the requirements
for a baccalaureate degree

in Mathematics
with honors in Mathematics

Advisor:

James McKernan
Professor of Mathematics



1

Table of Contents

1 Introduction 3

2 Invariant Theory 3

3 Resolution 8

4 Singularities 12

5 Cyclic Groups 15

6 Non-Cyclic Groups 19

7 McKay Correspondence 25

References 29



Foreword

　 I want to thank everyone who helped me to write this thesis. First
of all, I would like to thank Professor James McKernan for agreeing to do
a study project with me and for giving me useful advice when writing this
thesis. Then I wish to thank graduate students Iacopo Brivio and Jacob
Keller for meeting with me every week. Especially without Jacob Keller’s
dedicated support, I can easily imagine this project couldn’t be complete in
this format. I am also very grateful to Professor Junichi Matsuzawa from
Nara Women’s University for answering my questions via email. He is the
author of my favorite book, [15], "Root Systems and Singularities" which
forms the basis of this thesis.
Lastly, I want to thank my parents for their continuous support.



3

1 Introduction

In 1880, Klein employed polynomial equations coming from the Invariant
theory of a finite subgroup of SL(2,C) to solve the quintic equation. The
invariant polynomials that appear in this way are singular at the origin. We
will call the singularities arising from a quotient of C2 by a finite subgroup
SL(2,C) Kleinian singularities. At the time, Klein did not fully recognize
the importance of these singularities.
A half-century later, Du Val reincarnated Klein’s work. He discovered that
Kleinian singularities are classified by Dynkin diagrams. Already by that
time Dynkin diagrams had been used to successfully classify several different
mathematical objects. Nevertheless it required a further half century to fully
reveal the deep connections between Dynkin diagrams and Kleinian singular-
ities.
In 1978, McKay discovered new connections between irreducible represen-
tations of finite subgroups of SL(2,C) and Dynkin diagrams. This discov-
ery proved very inspirational. Eventually, it was conjectured that a similar
phenomena would happen with the quotient of Cn by a finite subgroup of
SL(n,C). This phenomenon is now referred to as the McKay correspon-
dence. This thesis aims to explain the development of this theory.

2 Invariant Theory

Group theory tells us there are 5 types of finite subgroup of SO(3)

Proposition 2.1. Any finite subgroup of SO(3) is isomorphic to one of these
5 groups,
(1) Cn(Cyclic group of order n)
(2) Dn (Dihedral group of order 2n)
(3) T( Tetrahedral group)
(4) O (Octahedral group)
(5) I (Icosahedral group)

We will denote finite subgroups of SO(3) by Γ. We can lift elements of
SO(3) to SU(2), because SU(2) is a double cover of SO(3), Spin(3) ∼= SU(2).
The following theorem tells that finite subgroups of SL(2,C) correspond one-
to-one to finite subgroups of SU(2), and by taking preimages by the double-
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cover map we have a one to one correspondence between finite subgroups of
SO(3) and SU(2)

Theorem 2.2. Every finite subgroup of SL(n,C) is conjugate to a finite
subgroup of SU(n)

Proof. This statement holds for any n. We will use two facts.
(a) For any finite subgroup G of SL(n,C), there is a G-invariant Hermitian
inner product < −,− >G on Cn. It can be obtained from the canonical inner
product by averaging

< x, y >G=
1

|G|
Σg∈G < gx, gy > (1)

(b)Given any two Hermitian inner products < −,− > and < −,− >∗ on Cn.
There is a T ∈ GL(n,C) such that for x, y ∈ Cn

< x, y >∗=< Tx, Ty > (2)

For (b) consider two orthonormal bases B with respect to < −,− >, and
B∗ for < −,− >∗. There is a T ∈ GL(n,C) such that TB∗ = B. Then (2)
holds for any elements x and y of B and hence arbitary Cn

Given a finite subgroupG < SL(n,C). We chose aG-invariant inner products
< −,− >G and find a T ∈ GL(n,C), such that < x, y >G=< Tx, Ty > with
< −,− > being the canonical product. Then TGT−1 is in SU(n)

Based on the above theorem, we can classify finite subgroups of SL(2,C)
in a fairly simple manner. All finite subgroups of SL(2,C) are isomorphic to
one of the following 5 groups.

Proposition 2.3. (1) Cn(cyclic group of order n)
(2) D̃n (double cover of dihedral group)
(3) T̃ (double cover of tetrahedral group)
(4) Õ (double cover of binary octahedral Group)
(5) Ĩ (double cover of binary icosahedral group)

We will denote Γ̃ to be a finite subgroup of SL(2,C). We are interested
in finding invariant polynomial of Γ̃.
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In this section we take generator of Cn < SL(2,C) to be
(
ζ 0
0 ζ−1

)
, with

ζ = exp(2πin ).
Let G < GL(n,C) be a group. We define actions on polynomial rings, where
g ∈ G, z ∈ Cn, f ∈ C[z1 . . . zn], in the following way.

(g · f)(z) = f(g−1(z))

Definition 2.4. Polynomials f ∈ C[z1, . . . , zn] is called G- invariant polyno-
mial if for any element of g ∈ G we have

g · f = f (3)

Sets of G-invariant polynomial form a ring. This ring is called G-invariant
ring. We will denote that ring to be C[z1, . . . , zn]G.

SO(3) is the symmetry group of S2. We can identify S2 as a Riemann
sphere P1, so the action of SO(3) can be regarded as subgroup of Aut(P1) ∼=
SL(2,C)/ < ±1 >. Thus for each γ ∈ Γ we can choose a lift to an element
γ̃ ∈ SL(2,C). For each (p1, p2) ∈ C2 we define the functions γ̃1, γ̃2 by the
equation γ̃ ·(p1, p2) = (γ̃1(p1, p2), γ̃2(p1, p2)). For each point (p1, p2) ∈ C2\{0}
we define a function

Fp(z1, z2) =
∏
γ∈Γ

(γ̃2(p1, p2)z1 − γ̃1(p1, p2)z2) (4)

For another point q = (q1, q2) ∈ C2 \ {0}, if there is some γ ∈ Γ such that
γ · (q1 : q2) = (p1 : p2) then Fp(z1, z2) = χ(γ)Fq(z1, z2) for some constant
χ(γ) ∈ C. Therefore for each orbit O of Γ acting on P1 this construction
gives a function FO which is well defined up to constants. Note that Fp has
repeat roots when the orbit has a non-trivial stabilizer. In the case of Dn, T, O
and I there are 3 such orbits, e, f , and v. We will choose functions Fv, Ff
and Fe that correspond to those orbits. Klein showed that we can multiply
the equations Fv, Ff and Fe by suitable constants so that the generators of
the Γ̃-invariant ring can be written as the following.
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Γ̃ Generators Relation u

C̃n x = z1z2, y = zn1−zn2
2 , z = zn1+z

n
2

2
√
−1

xn + y2 + z2 = 0

D̃2k+1 x = Ff , y = 2iFeFv, z = i(F 2
e Ff−F 2

vFf) xn+1 − xy2 − z2 = 0

D̃2k x = F 2
f , y = i(F 2

e −F 2
v ), z = i(2FeFvFf) xn+1 − xy2 − z2 = 0

T̃ x = Fe, y = 1
3FvFf , z = F 3

v − F 3
f x4 + y3 + z2 = 0

Õ x = Ff , y = F 2
v , z = FeFv x3y + y3 + z2 = 0

Ĩ x = Fv, y = Ff , z = Fe x5 + y3 + z2 = 0

Proof. [14]

Three generators of above table determine a homomorphism Φ : C[w1, w2, w3] →
C[z1, z2] by Φ(w1) = x,Φ(w2) = y,Φ(w3) = z. The image of Φ is C[z1, z2]Γ̃.

Theorem 2.5. The homomorphism Φ induces an isomorphism

C[w1, w2, w3]/u ∼= C[z1, z2]Γ̃ (5)

Proof. It is clear that Φ is homeomorphism and image of Φ is C[z1, z2]Γ̃.
Since u ⊂ kerΦ we have a surjection Φ : C[w1, w2, w3]/u → C[z1, z2]Γ̃. u

is irreducible polynomial, so both C[w1, w2, w3] and C[z1, z2]Γ̃ are integral
domain. To have an isomorphism over integral domain over C, we need to
have same transcendental degree. We want to compare the transcendental
degree of both polynomial ring.
First we see transcendental degree of C[z1, z2]Γ̃ is 2. For any g ∈ C[z1, z2] we
can introduce the polynomial h(X) =

∏
γ∈Γ̃(X − γ · g). h(X) has coefficient

of C[z1, z2]Γ̃ and h(g) = 0 so C[z1, z2] is an algebraic extension of C[z1, z2]Γ̃
means trdegC[z1, z2]Γ̃ = trdegC[z1, z2] = 2
On the other hand, we have trdegC[w1, w2, w3]/u ≤ trdegC[w1, w2, w3] =
3 but this is not an isomorphism so trdegC[w1, w2, w3]/u ≤ 2. But from
surjection we have trdegC[w1, w2, w3]/u ≥ 2 thus we shows an isomorphism.

Our results suggests C[z1, z2]Γ̃are finitely generated. In general C[z1, . . . , zn]G
is finitely generated when G is finite group G < GL(n,C). This fact implies
this ring is the coordinate ring of an affine variety.

Proposition 2.6. If finite group G is acting on C[z1, . . . , zn] then C[z1, . . . , zn]G
is finitely generated.
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Proof. For f ∈ C[z1, . . . , zn], we consider the polynomial
∏

g∈G(X − g · f) =
XN + aN−1(f)X

N−1 . . . a0(f) with coefficients ai ∈ C[z1, . . . , zn]G. Let A ⊂
C[z1, . . . , zn]G be a C−subalgebra generated by ai(zj), 1 ≤ j ≤ n and 1 ≤
i ≤ N − 1. Since A is finitely generated, it is noetherian. As A-module
C[z1, . . . , zn] is finitely generated by finitely zt11 . . . ztnn with ti < N . Therefore
A−submodule C[z1, . . . , zn]G is also finitely generated.

We may assume that finitely many forms 1, f1 . . . fr of degrees 0, d1 . . . dr
respectively generate the C-algebra C[z1, . . . , zn]G. The polynomial map

F : Cn → Cr (6)

with components f1 . . . fr induces the surjection

C[w1, . . . , wr] → C[z1, . . . , zn]G, h→ h ◦ F (7)

Let u be a kernel of (7) and define V = {x ∈ Cr : h(x) = 0 for every
h ∈ u}. This setting allow us to discuss geometric interpretation of finite
group invariant ring.

Proposition 2.7. (1) F (Cn) = V

(2)F (z) = F (w) if and only if z = g · w for some g ∈ G

Proof. (1) It is clear that F (Cn) ⊂ V . We want to prove V ⊂ F (Cn). Let
c = (c1, . . . , cn) ∈ V be given. Let I be the ideal generated by < f1 −
c1, . . . , fr − cr > and we will prove that I ̸= C[z1, . . . zn]. If we can prove this
fact, then from Nullstellensatz there is a common zero for f1−c1 . . . fr−cr and
we can see F (Cn) = V . Suppose I = C[z1, . . . , zn] then there is a polynomial
p1, . . . , pr ∈ C[z1, . . . , zn] such that

∑r
1 pi(fi − ci) = 1. We acts g ∈ G and

add up, using the invariance of fi

(
∑
g∈G

g · p1)(f1 − c1) + . . . (
∑
g∈G

g · pr)(fr − cr) = |G| (8)

Since
∑
g · pi ∈ C[z1, . . . zn]G there exist polynomial p̃i ∈ C[w1, . . . , wr] with

p̃i ◦ F =
∑
g · pi

h(x) = p̃1(z1 − c1) + . . . pr(zr−cr)− |G| ∈ u (9)
Therefore h(x) = 0 for every x ∈ V . In particular h(c) = 0 → |G| = 0
contradiction.
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(2) If z = g · w, then F (z) = F (w).
Assume that z ̸= g · w for all g ∈ G, then there is an f ∈ C[z1, . . . , zn] with
f(z) = 0 and f(g ·w) = 1 for all g ∈ G. Introduce the polynomial h :=

∏
g ·f ,

and this is an G−invariant polynomial i.e h ∈ C[z1, . . . , zn]G. Thus we can
lift it to h̃ ∈ C[w1, . . . , wr]. In this case h̃(F (z)) = 0 and h̃(F (w)) = 1. We
showed separation.

Above two proposition shows that there is one to one correspondence be-
tween the orbit space Cn/G and V . This allows us to identify the coordinate
ring of Cn/G as the ring C[z1, . . . , zn]G.

3 Resolution

In previous section we have figured out that the invariant ring of a finite
group forms an affine variety. Our main interest in this thesis is to discuss
varieties represented as a C2 quotient by a finite group. In the case of a
quotient of Γ̃, the variety has a singularity at the origin. We call this a
Kleinian singularity.

Definition 3.1. If an affine variety Cn/G with a finite group G < GL(n,C)
has a singularity, we will call that point quotient singularity

We confirm that quotient of C2 by finite subgroup of SL(2,C) has a sin-
gularity at the origin. How about other finite group? Some group will not
contribute to create singularities. Other group will create worse singularities
than Kleinian singularities.

Definition 3.2. Coxeter group G is a finite group, presented by
< r1, r2 . . . rn|(rirj)mij = 1 > with mij ∈ N ∪ {∞} mii = 1 and mij ≥ 2 for
i ̸= j, mij = ∞ means no relation for (rirj)

mij

Example 3.3. Symmetry group is a Coxeter group

Example 3.4. T,O, I is Coxeter group

Theorem 3.5. [10] (Chevalley) The quotient of Cn by a Coxeter group G <
GL(n,C) is Cn/G ∼= Cn.

However in general, higher dimension of quotient singularities behave dif-
ferently compared to Γ̃
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Example 3.6. [9] Singularities of 3 dimension quotient by finite group G ⊂
SL(3,C) of C3, C3/G doesn’t necessary be hyperplane and singularities is
not isolated.

We want to define an appropriate notion of resolution of singularities for
a quotient singularities of finite group. In 2−dimension that resolution has
connection to Dynkin diagrams.

Definition 3.7. For algebraic variety X, denote singular locus to be Xsing ⊂
X. We will call a morphism π : X̃ → X a resolution of singularities if it
satisfies the following conditions.
(1) The morphism π is proper
(2) π induces an isomorphism π : X̃ \ f−1(Xsing) → X \Xsing

(3) The variety X̃ is non-singular

Blow-up is one of the fundamental tools for the resolution of singularities.
Nevertheless the calculation of blow-ups tends to be complicated calculation,
so in this thesis, we only discuss the blow-up of variety by a point.

Construction 3.8. The blow up of C2 at the p := (p1, p2) ∈ C, C̃2, is defined
in the following way.

C̃2
p = {((z1, z2), (s : t)) ∈ C2 × P1|(z1 − p1)t = (z2 − p2)s} (10)

We denote the projection to the C2 by φ. If p′ ∈ C2 and p ̸= p′ then φ−1(p)
is one point so C̃2 \ φ−1(0) ∼= C2 \ 0. On the inverse image of p is can be
any point of P1, so φ−1(0) ∼= P1. We can take two open covering for C̃(0,0).
Notice when s ̸= 0, y = t

sx, t ̸= 0 x = s
ty. If we put t

s = u and s
t = v then C̃2

patched U1 and U2 with a x = vy and y = ux

C̃2 = U1 ∪ U2, U1 = {(x, u) ∈ C2} ∼= C2, U2 = {(y, v) ∈ C2} ∼= C2

We define the blow up of subvariety X ⊂ C2 at point p ∈ X by X̃ :=
ϕ−1(X − p). The meaning of X is taking closure of X. Let’s denote π to be
the restriction of ϕ to X so that π : X̃ → X. The inverse image of p of π is
called exceptional curve.

For a further discussion of exceptional curve, we need to develop inter-
section theory. Consider compact and smooth algebraic surface S and an
irreducible curve C ⊂ S. Take open covering {Ui} of S and suppose C is
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defined by fi on each Ui. Then gij = fi
fj

is a regular function non-vanishing on
Ui ∩Uj. We can define a complex line bundle by letting the gij be transition
functions. Let’s this L (C).
For smooth compact algebraic curves C1, C2 ⊂ S, we get a line bundle of C2

by restricting L (C1) to C2. Then we can define the intersection number to
be the degree of the restriction of L (C1) to C2

(C1, C2) = degL (C1)|C2
(11)

Let’s clarify the meaning of degree of line bundle. For an open cover {Ui}
that L (C) is locally trivial and transition function to be gij. Then rational
satisfying s : C → L (C) satisfies si(x) = gijsj(x), x ∈ Ui ∩ Uj. Since {gij}
does not have pole and zeros on Ui ∩ Uj so si and sj has same zeros and
pole with multiplicity. We would define degs as degree as degree of rational
section s. We need to check well-definedness. Let s′ = {s′i} be another
rational section. We have si

s′i
=

sj
s′j

, so {sis′i} defines a rational function over
C. Since degree of rational function over C2 is 0, we have deg(si) = deg(sj).
This shows degree of rational section is independent of choice of the section.
(C,C) is called self-intersection number. This quantity is a key when we
classify resolution of Kleinian singularities.

Proposition 3.9. If we blow up of smooth point, then self-intersection num-
ber of exceptional curve is −1

Proof. By the definition of intersection number, it is enough to calculate
around E. Consider blow-up of C2 around the origin. C̃2 has two open sets
U1 and U2. Exceptional curve is defined by x = 0 on U1 and y = 0 on U2, so
transition function of L (E) is

g12 =
x

y
= v =

1

u
(12)

Next task is to compute degL (E)|E. We chose rational function such that
s|U1

= 1
u and s|U2

= 1 then this has order 1 pole on U1 and no pole on U2 so
we have deg(L (E)|E) = −1 meaning (E,E) = −1

In general, the resolution of singularities requires blow-ups along the sub-
varieties. Remarkably Kleinian singularity can be resolved only by a blow-up
of points. Durfee [6] called this property to be absolute isolated singularity.
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Conversely, if the an absolute singularity of −2 self-intersection number of
exceptional curves is locally isomorphic to a Kleinian singularity.
Zariski and Walker proved that for an resolution of singularities of algebraic
surface always exist. Suppose X̃ is a resolution of singularities of X, then
we could create another resolution of singularities X̃ ′ by blowing up another
point. In this sense, resolution of singularities are not defined uniquely. To
define a proper notion of resolution of singularities, below statement is use-
ful.Birational morphisms are only a composition of blow up.

Theorem 3.10. [7] Let f : X ′ → X is a birational morphism of surfaces.
Let n(f) be the number of irreducible curves C ′

i ⊂ X ′ such that f(C ′
i) is a

points. Then n(f) is finite and f can factored into a n(f) blow up.

In this sense, the resolution of singularities is not unique. Nevertheless,
we want to define a concise resolution of singularities. For this purpose, we
introduce notion of the minimal resolution of the algebraic surface.

Definition 3.11. Minimal resolution of algebraic surface π : X̃ → X is a
resolution of singularities such that for any other resolution of singularities
ψ : X̃ ′ → X there is morphism ϕ : X̃ ′ → X̃ such that ψ = ϕ ◦ π

X̃ ′ X̃

X

ϕ

ψ
π

We know clear answer how to judge f : S ′ → S is minimal or not.

Theorem 3.12. [7] (Castelnuovo’s Criteria) If E ⊂ X is a curve of surface
such that E ∼= P1 and (E,E) = −1 then E is an exceptional curve of blow
up.

Theorem 3.13. Assume dimX = 2. A resolution π : X̃ → X of a singu-
larities Xsing ∈ X is the minimal resolution if and only if π−1(x) does not
contain −1 curves for any x ∈ X.

Proof. It is clear that minimal resolution X̃ does not contain −1 curve. Con-
versely, let f : X̃ → X be a resolution of singularities without −1 curves. Let
g : X̃ ′ → X be an arbitrary resolution of singularities. By taking irreducible
component of Y := X̃×X X̃

′, we obtain resolution of singularities f̃ : Y → X.
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f̃ is defined as f ◦ ϕ = f̃ = g ◦ φ for some ϕ : Y → X̃ and φ : X̃ ′ → X.
By theorem 3.10 we can decompose birational morphism as φ = σ1 ◦ . . . σn(φ)
with σi is a blow up of a point. We assume f̃ achieve minimal n(φ). If
n(φ) > 0 then let E be irreducible exceptional curve respect to σn(f). Sup-
pose we have ϕ(E) = C algebraic curve then (C,C) = (ϕ∗(C), φ∗(C)) [7],
we have −1 = (E,E) ≤ (C,C) and the equality holds if and only if ϕ is
isomorphic on a neighborhood of C. Since E is exceptional curve of f , we
have (C,C) = (E,E) and ϕ to be an isomorphism. It contradict definition
of X̃ so ϕ(E) is a point. Thus ϕ factors by σn(φ) contradicts the minimality
of n(φ). Hence n(φ) = 0 and we have ϕ : Y = X̃ ′ → X̃.

4 Singularities

We will see Kleinian singularities are also normal singularities. Based on
this fact we can see how we can characterize minimal resolution of Kleinian
singularities.
Definition 4.1. If all local ring of the algebraic variety X are normal ring,
then the X is called normal variety. A point in the singular locus, p ∈ Xsing,
is called a normal singularity.
Proposition 4.2. A quotient singularity is a normal singularity
Proof. The coordinate ring of X = Cn/G is C[z1, . . . , zn]G. C[z1, . . . , zn] is
also integrally closed ring. Take h(z) ∈ C(z1, . . . , zn)G that is integral over
C[z1 . . . zn]G. Since h(z) is integral over C[z1 . . . zn], h(z) ∈ C[z1 . . . zn]. As
g · h(z) = h(z), h ∈ C[z1 . . . zn]G. The local rings of a normal ring are also
normal rings, so a quotient singularity is a normal singularity.

For a smooth variety there is a locally free sheaf Ω corresponding to the
cotangent bundle. The canonical sheaf, ωX , is defined as the determinant of
ωX . A divisor KX satisfying ωX ∼= O(KX) is called a canonical divisor of X.
For a normal variety, X, KX is defined by taking the closure of KX\Xsing

. It
is a fact that the singular locus of a normal variety has codimension at least
2, and this implies that there is only one canonical divisor KX that restricts
to a given canonical divisor KX\Xsing

.

Definition 4.3. For a birational morphism f : Y → X, the divisors D in
Y such that f(D) has codimension at least 2 in X are called exceptional
divisors. We write these with the notation Ei.
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Theorem 4.4. For the minimal resolution of 2-dimensional normal singu-
larities f : Y → X, we have

KY = f ∗KX +
i=r∑
i=1

miEi (13)

For mi ∈ Q mi ≤ 0 Moreover, if X has a Kleinian singularities, we have

KY = f ∗KX (14)

Definition 4.5. If we have KY = f ∗KX for a resolution of singularities
f : Y → X we call f a crepant resolution.

We will prove (13) in this section and We will show (14) after we got
minimal resolution of Kleinian singularities.
In order to prove (13), we will see an auxiliary theorem of Castelnuovo’s
theorem, which provides a criterion for −1 curve.

Theorem 4.6. A compact curve E on a non-singular surface Y is a −1 curve
if and only if

(KY , E) < 0, (E,E) < 0 (15)

Proof. If E is a −1-curve, then it satisfies −2 = degKE = (E,E) + (KY , E),
therefore it is clear that (KY , E) < 0, (E,E) < 0.
We will show that E is −1 curve and genus of E is 0.By Nagata’s compactifi-
cation theorem, we can assume Y as open subvariety of compact variety. Thus
without loss of generality, we may assume that Y is a compact non-singular
integral variety. By the exact sequence

0 → OY (−E) → OY → OE → 0 (16)

We have χ(E,OE) = χ(Y,OY )− χ(Y,O(−E)). Here, by the Riemann–Roch
Theorem for the surface, we have χ(E,OE) = −1

2((KY , E) + (E,E)). As
h0(E,OE) = 1, it follows that h1(E,OE) =

1
2((KY , E) + (E,E) + 1 . By the

assumption, we obtain that h1(E,OE) = 0 and (KY , E) + (E,E) = −2 so
(E,E) = (KY , E) = −1. Also g = h1(E,OE) = 0
In order to show that E ∼= P1, we want to show E is non-singular. Take the
normalization π : E → E, so that there is a exact sequence.

0 → OE → π∗OE → π∗OE/OE → 0 (17)
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0 → Γ(E,OE) → Γ(E, π∗OE) → Γ(E, π∗OE/OE) → H1(E,OE) = 0 (18)
Since the first and second terms are both isomorphic to C , we obtain
π∗OE/OE = 0. Therefore π is isomorphism and we see E is nonsingular
By summing up all the facts, we showed E ∼= P1

Theorem 4.7. For a resolution of singularities f : X̃ → X of a normal
variety x ∈ Xsing,we have f−1(x) =

∑
riEi of exceptional divisor. Then the

intersection matrix ((Ei, Ej))ij is negative definite.

Proof. Let h be a regular function on X such that h(x) = 0. Consider the
principal divisor f ∗h = D +

∑r
i=1miEi with D does not contain Ei on X̃.

f ∗h vanishes on Ei , therefore mi > 0. To prove that the matrix ((Ei, Ej))ij
is negative definite, it is sufficient to prove that ((mimjEi, Ej))ij is nega-
tive definite. We can denote eij := mimj(Ei, Ej). As ((f ∗(h)), Ej) = 0 [7],
it follows that 0 = (D,Ei) + (

∑
mjEj, Ei). Here by (D,Ej) ≥ 0 we have

mj(
∑
miEi, Ej). Therefore

∑r
i=1 eij ≤ 0 for all j. In particular if j satisfies

(D,Ej) > 0 then
∑r

i eij < 0

Now for every x =

x1...
xr

, the quadratic form txeijx =
∑

i=i...r,j=1...r xixjeij =∑
ejjxj

2 + 2
∑

i<j 2eijxixj =
∑r

j=1(
∑r

i=1 eij)x
2
j −

∑
i<j eij(xi − xj)

2 ≤ 0 be-
cause eij ≥ 0 for i ̸= j. If = 0 holds,then for k such that D ∩ Ek = ∅ ;
it follows that

∑
eik < 0 which requires xk = 0. For k′ such that k′ ̸= k/

such that E ′
k ∩Ek ̸= we have ekk′ > 0, therefore by (xk − x′k)

2 = 0 we obtain
x′k = 0. As the exceptional set by the Zariski Main Theorem [7] we can make
xi = 0 for all i, shows ((Ei, Ej))i,j is negative definite.

Proof. (Theorem 4.4) Normal surface X and it’s minimal resolution of singu-
larities f : X̃ → X, we want to define pull back of a Weil divisor D with the
following form, D̃ ⊂ X̃ as strict transformation of D

f ∗D = D̃ +
r∑
i=1

miEi,mi ∈ Q (19)

This make sense because f : X̃\f−1(Xsing) ∼= X\Xsing so that only difference
between f ∗D and D̃ should be exceptional curves. To finish defining the pull
back of D, we need to find the coefficients mi



15

If the pull back were defined, then by (Chapter 5.3.2 [7]) we would have a
system of equations.

(f ∗D,Ej) = 0 ⇐⇒
r∑
i=1

mi(Ei, Ej) = (D,Ej) (20)

Since theorem 4.7 (Ei, Ej) is an invertible matrix, so we use this equation to
define mi ∈ Q
We will show all mi is negative. Suppose there is some mi > 0, then by
permuting mi so that mi > 0(i = 1 . . . s) and mi ≤ 0(i = s + 1 . . . r). As
matrix (Ei, Ej)ij we have (

∑s
i=1miEi)

2 < 0. Then there exist j(1 ≤ j ≤ s)
such that (

∑s
i=1miEi)(Ej)) < 0. For this j we have

(KY , Ej) = (f ∗KX , Ej) + (
s∑
i=1

miEi, Ej) + (
r∑

i=s+1

miEi.Ej) < 0 (21)

By theorem 4.6 this is −1 curve, contradict minimality.

5 Cyclic Groups

In this section, we will compute resolution of singularities on cyclic group.

Definition 5.1. For a two-dimensional normal variety X and its resolution
of singularities Y and irreducible exceptional curves Ei, we can construct a
corresponding graph. We will call it the dual graph
If there are n exceptional curves, then there are corresponding n vertices and
each vertex is assigned a natural number ≤ n.. If Ei and Ej are intersecting,
then we a draw line between vertex i and j. If the self-intersection number
of Ei is −2, then we don’t write anything on that vertex i, but if it is not
bi = −2, then we write the self-intersection number on the vertex i.

We can understand the configuration of exceptional curves of the minimal
resolution of Kleinian singularities by a dual graph.

Construction 5.2. Case of Cyclic group
We saw Cn invariant equation is xn + y2 + z2 = 0 when we got invariant
function. By change of coordinate, the variety defined by this equation is
isomorphic to the variety defined by xn− yz = 0. We will denote the variety
defined by xn − yz = 0 to be X
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Let’s define the algebraic surface X̃n ⊂ C3× (P1)n−1 with the following equa-
tions.

an−1x = bn−1y (22)
aibi+1x = ai+1bi(1 ≤ i ≤ n− 2) (23)

a1z = b1x (24)

Theorem 5.3. Let π be the 1st coordinate projection map π : C3 × (P1)n →
C3. Then the restriction of π to X̃n, ϕ := π|X̃n

: X̃n → Xn is the minimal
resolution of singularities of Xn. And ϕ−1(0) = E is the union of n − 1
projective lines. The exceptional curves Ei and Ej intersect transversely.
The dual graph of this resolution of singularities is

To show the above theorem we will prove 3 statements separately. (1) X̃n

is a non-singular variety
(2)X̃n \ π−1(0) ∼= Xn \ 0 and show properness
(3) Show dual graph is An type

Proof. (1)Take point of p ∈ X̃n to be

p = ((x, y, z)(a1 : b1) . . . (an−1, bn−1)) (25)

if bi ̸= 0 and bi−1 = 0 then ai−1 ̸= 0 and b1 = · · · = bi−2 = 0. Hence we can
take open set Wi(i ≤ i ≤ n) of X̃n to be

Wi = {((x, y, z), (a1, b1), . . . , (an−1, bn−1) ∈ X̃|a1 · · · ai−1 ̸= 0, bi · · · bn−1 ̸= 0}
(26)

Clearly X̃ =
∪n
i=1Wi

Let’s ui = ai
bi
(bi ̸= 0) and vi =

bi
ai
(ai ̸= 0) then on each Wi, X̃n is defined by

un−1x = y (27)
ukx = uk+1(k ≥ i) (28)

x = vi−1ui (29)
vk+1x = vk(k ≤ i− 2) (30)

v1x = z (31)
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Notice when 2 ≤ i ≤ n−1 once we determine ui and vi−1 then all other value
are defined inductively. So it is Wi

∼= C2 For Wi we can take coordinate to
be (ui, vi−1). In the case of W1 and Wn by applying same argument by taking
it’s coordinate to be (u1, z) and (vn−1, y) So we find X̃ nonsingular.

Proof. (2)
Since we are thinking on C, being proper is same as being proper in analytic
topology. Projection is proper map.
Prove if (x, y, z) ̸= (0, 0, 0) then ϕ−1(0, 0, 0) is one point. If x ̸= 0 then y ̸= 0
and z ̸= 0 by definition. We can see a1b1an−1bn−1 ̸= 0. In addition to that,
by induction aibi ̸= 0(1 ≤ i ≤ n − 1) which tells that inverse image define
uniquely from (x, y, z). If x = 0 then either y = 0 or z = 0 if y = 0 then
from given equation, a1 = 0 and b1 ̸= 0 so inductively a2 = · · · = an−1 = 0 so
π−1((0, 0, z)) = ((0, 0, z), (0, 1) . . . (0, 1)) inverse image is one point.

Proof. (3)
We want to see the behavior of exceptional sets. When x = y = z = 0 we
have a2b1 = a3b2 = · · · = an−1bn−2 = 0. Let define m be a smallest i such
that ai = 0. Since a2a3 . . . am−1 ̸= 0, b1 . . . bm−2 = 0. Also since bm ̸= 0 so
am+1 = . . . an−1 = 0. Now we have coordinate of Em−1 to be

Em−1 = ((0, 0, 0)(1 : 0), . . . , (am−1 : bm−1)(0 : 1) . . . (0 : 1)) ⊂ X̃ (32)

Then we can see E = ∪ni=1Ei and also Ei
∼= P1 and Ei ∩ Ej is one point if

|i− j| = 1 and no intersection otherwise.

Next we calculate self-intersection number of Ei. When 2 ≤ i ≤ n−2, Ei is de-
fined to be vi−1 onWi and ui+1 onWi+1 as Ei ⊂ Wi∪Wi+1. Transition function
is gi,i+1 =

vi−1

ui+1
but again inductively we have ui+1 = uix = ui(vi−1ui) = vi−1u

2
i .

This leads to gi,i+1 =
1
u2 so from same argument calculating self intersection

number on section 3, we have (Ei, Ei) = −2. We can calculate in the same
way when i = 1 and i = n. Since E does not contain −1 curve, this is
minimal resolution.

We calculated minimal resolution of cyclic quotient singularities of cyclic
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group generated by
(
ζ 0
0 ζ−1

)
. However, general generator of cyclic subgroup

of SL(2,C) can be written as
(
ζ 0
0 ζq

)
with ζ is nth root of 1. We can

construct non-smooth varieties with in a similar way. C2/G can written as
Xn,q. There is remarkable connection between continued fraction and dual
graph.

Theorem 5.4. Let

be a continuous fraction of n
q (called e Hirzebruch–Jung continued fraction with

finite integer bi ≥ 2 then dual graph of minimal resolution of singularities of
Xn,q are described by the following dual graph

Lemma 5.5. Hirzebruch–Jung continued fraction can be written as uniquely
with (b1 . . . br)

Proof. This similar proof to usual uniqueness of continued fraction.

Lemma 5.6. The affine coordinate ring of Xn,q is C[uivj] for pair of 0 ≤ i ≤ n
and 0 ≤ j ≤ n with i+ qj ≡ 0(mod n)

Proof. By the Noether’s bound of degree on generating set, degree of gen-
erators C[u, v]G are at most |G|. We can obtain all of the generators by
the Reynolds operator. R(f(u, v)) = 1

|G|
∑

g∈G g · f(u, v) then R(uivj) =

1
n

∑a=n
a=1 ζ

a(i+qj)uivj = 1
m

1−(ζi+qj)n

1−ζi+jq u
ivj. Since ζn = 1 sum This is vanish when-

ever denominator is not zero. Thus we shows that generator of C[u, v]G is
uivj with i+ qj ≡ 0

Proof. (Proof of theorem 5.4) Let Yn,q is an affine variety of the coordinate
ring Bn,q = C[un, un−qv, vn]. Since C[u, v]G is integrally closed over Bn,q and
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since C[u, v]G is normal, Xn,q is a normalization of µ : Xn,q → Yn,q. By the
theory of normalization, if f :M → Yn,q is surjective, then there exist unique
g :M → Xn,q such that f = µ ◦ g.
Let b1, . . . , br from Hirzebruch-Jung continued fraction and then non-singular
variety M(b1 . . . br) by patching Ui ∼= C2(i = 0 . . . r) as follows where we let
(ui, vi) be the coordinate system of Ui

U2i ∩ U2i+1 = u2i ̸= 0, u2i+1 =
1

u2i
, v2i+1 = u

b2i+1

2i v2i (33)

U2i+1 ∩ U2i+2 = v2i+1 ̸= 0, v2i+2 =
1

v2i+1
, u2i+2 = v

b2i+2

2i+1u2i+1 (34)

Then, the closed subset E = {v0 = v1 = 0}∪{u1 = u2 = 0}∪{v2 = v3 = 0} . . .
is a complete closed subvariety isomorphic to P1∪ · · · ∪P1. By looking at the
images of an open subset (U0 ∩ U1) \ E = {u0v0 ̸= 0} by the isomorphisms
of patching, we obtain that if r is odd, then M = {u0v0 ̸= 0} ∪ E ∪ {u0 =
0} ∪ {vr = 0}. On the other hand, if r is even, we will replace vr to ur. For
that reason we can assume r is odd.
Now we can see that u0v0, v0, vr are regular functions on M. Indeed it is
sufficient to show that these are written as uai vbi (a, b ≥ 0) on each Ui . Let us
try on vr. vr = ubrr−1vr−1 = ubrr−2v

brbr−1−1
r−2 = u

br−2(brbr−1−1)−br
r−3 v

brbr−1−1
r−3 . . . Notice

ratio of index of ui and vi is converging to Hirzebruch-Jung continued fraction
so if we write vr = ua0v

b
0 then a = n and b = q from continued fraction. Thus

we obtain regular functions v0, u0v0, un0v
q
0 on M and we can define Φ : M →

C3 by (ui, vi) → (v0, u0, u
n
0v

q
0). Then ImΦ = Yn,q. Obviously Φ gives an

isomorphism between {u0v0 ̸= 0} and {(x1, x2, x3) ∈ Yn,q|x1x2x3 ̸= 0}. As g
is isomorphic outside of singular point, M is a resolution of singularities of
Xn,q

We can check weight of dual graph by checking transition function argument
in the other case. This is minimal resolution by assumption of bi ≥ 2. There
is no −1 curve.

6 Non-Cyclic Groups

Construction 6.1. Non-Cyclic Case[15]
Segre-Hirzebruch surface[3] of degree n, Σn ⊂ P2 × P1 is defined by

Σn = {(ζ0 : ζ1 : ζ2), (s : t)|tnζ0 = snζ1} (35)
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Σn is P1 bundle by projection to the 2nd coordinate p : Σn → P1. We can
take 4 local coordinates for Σn.

U1 : (x1, y1) = (
t

s
,
ζ0
ζ2
) U2 : (x2, y2) = (

s

t
,
ζ1
ζ2
)

U3 := (
t

s
,
ζ2
ζ0
) U4 := (

s

t
,
ζ2
ζ1
)

We have the following transition property

x1 = x3 =
1

x2
=

1

x4
and y1 =

1

y3
= xn2y2 =

xn4
y4

y2 =
1

y4
and y3 =

1

xn2y2
=
y4
xn4

Namely Σn is covered by 4 open set,isomorphic to C2 patched by above
relation. We can regard Σn to be P1 bundle over P by p. The section defined
by ζ2 = 0 to be S∞. The complement of S∞ to be Σ∗

n := Σn − S∞. Σ∗
n are

covered by U1 and U2, the change of coordinate between fiber is given by
y1 = xn2y2.

We can see that many algebraic surface can be construct by Segre-Hirzebruch
surface

Example 6.2. Σ∗
1 is isomorphic to the blow-up of π : C̃2 → C2 with the

origin. Similarly, if blow up one point on the P2 then it is isomorphic to Σ1

Example 6.3. For X = C2/Cn, irreducible component of exceptional sets
Ei(2 ≤ i − 2) were covered by 2 open cover Wi and Wi+1 isomorphic to
C2. The coordinate of Wi of (ui, vi−1), and Wi+1 of (ui+1, vi) were patched
by ui =

1
vi

and vi−1 = v2i ui+1 this is same as change of coordinate of Σ∗
n so

Wi ∪Wi+1
∼= Σ∗

2.

Example 6.4. Cotangent bundle of P1 is Σ∗
2
∼= T ∗P1. This is confirmed in the

following way. Let the homogeneous coordinates of P1 to be (s : t) then when
s ̸= 0 each fiber of T ∗P1 is the 1-dimensional vector space {ζ1d( ts)|ζ1 ∈ C}
when s ̸= 0 and when t ̸= 0 {ζ0d(st )|ζ0 ∈ C} and also d( ts) = − t2

s2d(
s
t ).

This means change of the coordinate between fiber can be described as ζ0 =
−(st )

2ζ1. This shows above isomorphism
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For finding resolution of singularities of non-cyclic Kleinian singularities,
we want to we want to approximate by the cyclic quotient singularities. De-
note Γ̃ as correspond finite subgroup of SL(2,C), we blow up C2 at the origin
and lift the action of Γ̃ to the action of C̃2. We saw C̃2 ∼= Σ∗

1 on examples. Γ̃
acts the first coordinate of C̃2 as an element of SU(2)

C̃2 C2

C̃2/Γ̃ C2/Γ̃

C2/Γ̃ has the singularity at the origin. C̃2/Γ̃ does not have same type of
singularities. We will show that C̃2/Γ̃ has 3 cyclic group singularities, the
orders of the cyclic groups are the orders of the stabilizers of the orbits of the
action on C2 ∪ {∞} by Γ. Since in 2-dimensions, singularities have a unique
minimal resolution, it is enough to confirm that resolution of singularities of
C̃2/Γ̃ does not contain −1 curve.

Proposition 6.5. (1) Let the center of Γ̃ be Z. The orbit space of C̃2 by Z
is isomorphic to Σ∗

2, so the action on C̃2 induces an action on Σ∗
2

ϕ : C̃2 → C̃2/Z ∼= Σ∗
2 (36)

(2) Γ̃ act of exceptional curve E of C̃2 and this orbit space is isomorphic to
P1. E/Γ̃ ∼= E/Γ ∼= P1, ϕ(E) = E

C̃2 = Σ∗
1 Σ∗

2 Σ∗
2/Γ

∼= Σ∗
1/Γ̃

P1 P1 P1/Γ ∼= P1

ϕ

p

π

p

/Z

(3) Regard ϕ(E) = E as the Riemann sphere. Consider the regular polyhe-
dron corresponding to Γ which is inscribed on the sphere. Also consider the
projection map from the center of the sphere to the surface of the sphere.
Then let S1 be the projection of the set of barycenters of the faces of the
polyhedron, S2 be the set of vertices, and S3 be the projection of the set of
midpoints of the edges. These sets S1, S2, and S3 are orbits of Γ acting on
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E. We let π(Si) = Pi then Γ acts on E \ (S1 ∪ S2 ∪ S3) freely and there is an
isomorphism

Σ∗
2/Γ\p−1({P1, P2, P3}) ∼= T ∗(P1\{P1, P2, P3}) ∼= Σ∗

2\p−1({P1, P2, P3}) (37)

Proof. (1) The center of Γ̃ is of order 2 and generated by σ =

(
−1 0
0 −1

)
and

the action is C̃2 ∋ ((x1, x2), (s : t)) → ((x21, x
2
2), (s, t)). Thus the orbit space

is given by C̃2/ < σ >= {((y1, y2), (s : t)) ∈ C2 × P1|s2y2 = t2y1} ∼= Σ∗
2

(2) This is from Chevalley’s theorem
(3) The stabilizer Γ̃p of the action of Γ̃ on p ∈ C2 is trivial unless p = (0, 0).
This is because chose coordinate to make p = (1, 0) and stabilizer to be

A =

(
1 a
0 b

)
∈ Γ̃p. Since detA = 1, b = 1 and Γ̃ is finite group, so there is

n such that An =

(
1 an

0 1

)
is unit matrix. This means a = 0. Hence Γ̃p is

trivial.
That means if there is non-trivial stabilizer of Γ̃ on C̃2 then it is on exceptional
curve E. Means that for the stabilizer on Σ∗

2 = C̃2/Z is on E. If we regard
E as Riemann sphere, then only points with nontrivial stabilizer are p ∈
S1 ∪ S2 ∪ S3 so Γ acts freely on E − S1 ∪ S2 ∪ S3. So map of orbit space by
the action of Γ

π : E \ S1 ∪ S2 ∪ S2 → E/Γ \ {P1, P2, P3} (38)

is local isomorphism. So by the local isomorphism of cotangent bundle was
induced as

π∗ : T
∗(E \ S1 ∪ S2 ∪ S3) → T ∗(E/Γ \ {P1, P2, P3}) (39)

On the other hand we see Σ∗
2 is isomorphic to the cotangent bundle T ∗P1 and

this π∗ corresponds to the quotient by the action by Γ on Σ∗
2\p−1(S1∪S2∪S3)

, which gives the isomorphism of (37)

Proposition 6.6. P1, P2, P3 ∈ E/Γ ∼= P1 are all of the singularities of
C̃2/Γ̃ = Σ∗

2/Γ.They are the same type of singularities as C2/Cp,C2/Cq,C2/Cr,
cyclic Kleinian singularities. The numbers p, q, r are the orders of the stabi-
lizers of the action of Γ corresponding to the orbits S1, S2, and S3.
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Proof. Elements of Γ are rotations around an axis passing through the center
of an edge, a vertex, or the barycenter of a face. These order are same as
order of stabilizer p, q, r of Γ. Consider an intersection of axis and sphere
P ∈ S1 ∪ S2 ∪ S3 and their stabilizer ΓP . Also Γ̃P to be the preimage in
SU(2). We have ΓP ∼= Cn, Γ̃P ∼= C2n with n = p, q, r.The action of Γ̃P on C̃2

is defined by ((x1, x2)(s : t)) → ((µx1, µ
−1x2), (µs : µ

−1t)) with µ = exp(2πi2n )
so the action on Σ∗

2 is ((y1, y2)(s : t)) → ((µ2y1, µ
−2y2), (µs : µ−1t)). The

action on the open sets U1 and U2 is

(
t

s
, y1) → (ζ−1 t

s
, ζy1) (40)

(
s

t
, y2) → (ζ

s

t
, ζ−1y2), ζ = µ2 (41)

Choose the coordinate chart U2, and generator ΓP =< γ > so that the
action is γ(x2, y2) = (ζx2, ζ

−1y2). This is nothing but the action of Cn on C2.
This means that the orbit space C̃2/Γ̃ ∼= Σ∗

2/Γ has a singularities of the same
type of C2/Cp, C2/Cq,C2/Cr on the E/Γ ∼= P1

We need to define a resolution of the singularities Pi(i = 1, 2, 3) on E. Let
Fn : C2 → Xn = C2/Cn be the quotient of the cyclic group of order n.

Proposition 6.7. Σ∗
2/Cn is isomorphic to ((Σ∗

2 \ p−1(Pi))⨿Xn)/ ∼ with

Σ∗
2 \ p−1(Pi) ∋ (x2, y2) ∼ Fn(z1, z2) ∈ Xn ⇐⇒ x2 = zn1 , y2 =

1

n
z1−n1 z2 (42)

Proof. The action of Γ is induced by Σ∗
2
∼= T ∗P1. π : P1 → P1/Cn ∼= P1 was

given by z → zn. d(zn1 ) = nzn−1dz1. Dividing by nzn−1, we get the desired
relation.

Proposition 6.8. Let S̃ be a surface patching resolution of singularity X̃n

and Σ∗
2 in the following way

Σ∗
2 ∋ (x2, y2) ∼ (z, u1) ∈ W1 ⇐⇒ x2 = z, y2 = u1 (43)

The W1 and z, u1 is from proof of 5.3. Then define a map ϕ̃ : S̃ → S to be

ϕ̃(x2, y2) = (x2, y2), (x2, y2) ∈ Σ∗
2 \ p−1(Pi) (44)

ϕ̃(z, u1) = ϕ(z, u1), (z, u1) ∈ W1 (45)
Then this is a resolution of singularities of S. The dual graph is same as
theorem 5.3
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Proof. We can confirm that ϕ̃ coincides on Σ∗
2\p−1(Pi)∩W1 with the following

way.
ϕ(z, u1) = (x, y, z) = (zu1, z

n−1un1 , z) (46)
Fn(z1, z2) = (x, y, z) with x = z1z2 and y = zn2 , z = zn1 and so z = zn1 and
u = z1−n1 z2. This make ϕ̃ is well defined and since ϕ defines resolution of
singularity of Xn so ϕ̃ defines the resolution of singularity

By proposition 6.7 and 6.8 we can define a resolution of singularities by
patching Σ∗

2 and X̃p , X̃q and X̃r so we can find the minimal resolution X̃

of C̃2/Γ̃ . All vertices of the dual graph will connect to two edges except for
a one vertex which connects to three. If you remove that vertex, the graph
will split into three parts. Each part has length p− 1,q − 1,r − 1.

As this resolution of singularities will not contain −1 curve, this is a mini-
mal resolution. Also, exceptional curves are −2 curves, so we can formulate
Kleinian singularities with the following characterization.

Proposition 6.9. For 2-dimensional normal singularities, the following state-
ments are equivalent.
1. Dual graph is ADE Dynkin diagram with no weight
2. Every exceptional prime divisor Ei satisfies (Ei, Ei) = −2 and Ei

∼= P1

3. Hypersurface equation is one of the table on section 2

Proof of Proposition 6.9 is provided on [10]. Proposition 6.9 and proposi-
tion 6.10 will provide enough foundation to prove (14).

Proposition 6.10. For a prime divisor of E ⊂ X of nonsingular surface X,
we have

(KX , E) + (E,E)

2
+ 1 ≥ 0 (47)

(KX ,E)+(E,E)
2 is an integer, and equality hold when Ei

∼= P1



25

Proof. This is a consequence of Riemann-Roch theorem, see detail in [10]

Proof. of (14) By the above proposition proposition , the number (Ei, Ei) +
(KX̃ , Ei) = −2. For a minimal resolution of Kleinian singularities, we know
that (Ei, Ei) = −2 so KX̃ for resolution of Kleinian singularities we have
(KX̃ , Ei) = 0. This means that KX̃ = f ∗KX

This shows the minimal resolution of Kleinian singularities is crepant.
Moreover, according to [17] KX̃ = 0 for quotient singularity of Cn/G

7 McKay Correspondence

We saw dual graph of quotient variety of Γ̃. Amazingly these graphs
appear ubiquitously in mathematics. This type of graph is called a Dynkin
diagram and they are usually constructed by a Cartan matrix.

Definition 7.1. A Cartan matrix C is a symmetric Z coefficent matrix sat-
isfying the following properties
(a) (aii) = 2
(b) (aij) ≤ 0 if i ̸= j

(c) (aij) = 0 then aji = 0
(d) C = DS with diagonal matrix D and symmetric matrix S

We can construct a Dynkin diagram from a n × n Cartan matrix in the
following way. There are n vertices and each vertices are assigned natural
number ≤ n. If |aij| = 0 then there is no edges between i and j. If |aij| =
n ̸= 0 then we can draw n edges between i and j

Example 7.2. There is a Cartan matrix for finite Coxeter group. We can
classify finite Coxeter group with Dynkin diagrams.
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In 1978,John McKay found that Dynkin Diagrams from the irreducible
representation of binary polyhedral group. Let ρN : Γ̃ → SL(2,C) be trivial
representation. Then for ρ1...ρn to be distinct irreducible representation of
binary polyhedral group on finite dimensional complex vector space then we
have

ρN ⊗ ρi =
n∑
k=0

ajkρk (48)

We can define matrix A(G) := (aij)ij from (48). McKay discovered 2I−A(G)
is a Cartan matrix. He constructed a Dynkin diagram from the 2I − A(G).
Graph from Cn looks like Ãn, D̃n looks like D̃n, T̃ looks to be Ẽ6, Õ looks
like Ẽ7 and Ĩ looks like Ẽ8.

Curious similarity between McKay’s Dynkin diagrams and dual graphs allow
us to develop mathematics that intersects representation theory and algebraic
geometry. Reid proposed the following conjecture based on McKay’s above
observation.

Conjecture 7.3. Geometric McKay correspondence[16]
Let G < SL(n,C) is a finite subgroup. Assume that the quotient X = Cn/G
with KX = 0 has a crepant resolution f : X̃→X. Then there exist natural
bijections
(1){Irreducible representation G} ⇐⇒ basis of H∗(X̃,Z)
(2){conjugacy classes of G} ⇐⇒ basis of H∗(X̃,Z)

As we saw in the previous section, Kleinian singularities have crepant
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resolution. We can confirm above conjecture is hold in two dimension.

Theorem 7.4. For a minimal resolution of Kleinian singularities, the Z-
singular Homology is defined by

H0(X̃,Z) = Z (49)

Hi(X̃,Z) = 0(i ̸= 0, 2) (50)
H2(X̃,Z) = Zn (51)

with n to be number of irreducible component of excecptional sets E = E1 ∪
· · · ∪ En.

Proof. X̃ is path connected so H0(X̃,Z) = Z.
We proved that X̃ is patched by Σ∗

2. We can write X̃ = ∪ni=1Ui with Ui ∼= Σ∗
2.

We will prove (50)(51) by induction. Let X̃ = Y ∪ Un with Y = ∪n−1
i=1 Ui,

when n = 1 (50)(51) is true because zero section of Σ∗
2 is En

∼= P1. So P1

is deformation retract of U1. Suppose statement is true for Y , then since
Y ∩ Un so Hi(Y ∩ Un, Z) = Z for i = 0 and otherwise Hi(Y ∩ Un, Z) = 0.
By mathematical induction we have H0(Y,Z) ⊕ H0(Un,Z) = Z ⊕ Z so as
H2(Y,Z) ⊕ H2(Un,Z) = Zn−1 ⊕ Z and Hi(Y,Z) ⊕ Hi(Un,Z) = 0 otherwise.
Mayer–Vietoris sequence shows that given statement.

The above theorem tells that H2(X̃,Z)is generated homology class of ex-
ceptional curve Ei . Exceptional curves correspond one to one on the vertices
of the dual graph. On the other hand, by regarding a dual graph as a McKay
graph, a number of vertices correspond to a number of an irreducible rep-
resentation of Γ̃. By the theory of representation of the finite group, this
corresponds to a number of the conjugacy class. Thus the similarity between
the dual graph and McKay graph could naturally suggest Conjecture 7.3.

Accordinig to [12] this McKay correspondence is a special case of so-called
Vafa’s conjecture in string theory. Vafa’s conjecture can calculate the topo-
logical invariant of a quotient of Kähler manifold by a finite group.

In this thesis, we have been exclusively discussing Kleinian singularities,
but we want to conclude by exploring the properties of 3-dimensional quotient
singularities. The classification of finite group G < SL(3,C) was complete
in 1903 by Blichfeldt [1]. There are A to L types. There is no as simple
classification as a 2-dimensional case.
In terms of Conjecture 7.3, Ito and Reid [17] proved McKay conjecture holds
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for a C3/G when G has a crepant resolution. The next question was that
what type of finite group G < SL(3,C) can have crepant resolutions? Marku-
shevich, Roan, and Ito [17] showed that all finite subgroups G < SL(3,C)
have a crepant resolution.
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