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Abstract

Compared to other signal processing techniques, compressed sens-
ing (or sparse sampling) has caught the interest of many mathemati-
cians, electrical engineers, and computer scientists. The field of com-
pressed sensing is still rapidly evolving. As most papers and textbooks
about compressed sensing are at graduate level, the purpose of this
paper is to offer a gentler exposure to compressed sensing from a
mathematical perspective. By synthesizing my study on compressed
sensing as an undergraduate, this thesis covers important concepts in
CS such as coherence and restricted isometry property. Several key
algorithms in compressed sensing will also be introduced with discus-
sions of their stability, robustness, and performance. In the end, we
investigate single-pixel camera as an example of real-world application
of compressed sensing.
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1 Introduction

The first part of this paper introduces general ideas about compressed sens-
ing and the motivation that drives the development of such signal recovery
techniques. This thesis is motivated by Simon Foucart’s book A Mathemat-
ical Introduction to Compressed Sensing, which is also frequently referenced
throughout this thesis.

1.1 Background

Before introducing compressed sensing, it is important to recognize that com-
pressed sensing is a sub-field of signal processing. In the field signal process-
ing, one of the major research interests is the reconstruction of signal from
different measurements. To mathematically formulate the signal recovery
problem, we define y ∈ CN as the observed data, and it is associated with
a corresponding signal x ∈ CN . The observed data and its corresponding
signal are connected via the measurement matrix A ∈ Cm×N as follows

Ax = y, (1)

where N is the signal length and m is the number of measurements. Now it
is obvious that the signal recovery problem concerns about solving the linear
system above with respect to the signal x ∈ CN . However, in the case of
compressed sensing, when m < N , the linear system is underdetermined and
solving the linear system becomes impossible if there is no additional infor-
mation available regarding the measurement matrix A ∈ Cm×N . For the
sake of the viability of compressed sensing, the measurement matrix itself
requires careful designs under specific criteria. As a result of the Shannon
sampling theorem, traditional signal reconstruction requires the sampling
rate of a continuous-time signal to be twice its highest frequency. This fact
will be elaborated in next section, where we take a careful look into sam-
pling Theory. By exploiting the sparsity of a signal and the coherence of
a measurement matrix, it takes much fewer measurements to achieve signal
recovery via compressed sensing.

One of the key concepts in compressed sensing is sparsity, ‖x‖0 which de-
notes the number of nonzero entries in the vector x. The recovery algorithms
are also essential to compressed sensing. With the concept of sparsity, one
of the first algorithmic attempts ever made is `0-minimization. Conceptu-
ally, the goal of `0-minimization is to reconstruct the signal x by solving the
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following optimization problem:

minimize ‖z‖0 subject to Az = y. (2)

However, `0-minimization is NP-hard, meaning this problem is difficult to
solve. In later chapter, the NP-hardness of `0-minimization will be derived
when algorithms are specifically introduced. Today, the most popular com-
pressed sensing algorithm is `1-minimization, or basis pursuit, is as following:

minimize ‖z‖1 subject to Az = y. (3)

Because of the convexity of `1-norm ‖·‖1, the basis pursuit method can be
conveniently solved with methods from convex optimization. Besides opti-
mization methods, there also exist alternative reconstruction methods such as
greedy methods and threshholding-based methods, which will also be lightly
introduced later.

1.2 Sampling Theory

The applications of signal reconstruction are omnipresent in both scientific
and technological fields. In the typical situation, we seek to reconstruct
a continuous-time signal from a discrete set of sample measurements. Ra-
dio frequency(RF) and analog-to-digital(ADC) technologies are an important
example. Shannon-Nyquist sampling theorem lays the mathematical foun-
dation and dictates the rates of high-bandwidth signals for most traditional
signal reconstruction technologies. Nonetheless, as a nontraditional signal
reconstruction technique, compressed sensing breaks free from the sample
number restriction by exploiting factors like sparsity and compressibilty. In
this section, a comparison will be made between Shannon-Nyquist sampling
theorem and the general idea of compressed sensing.

Shannon-Nyquist sampling theorem states that to ensure the reconstruc-
tion of a function of bandwith B, a sampling at the rate 2B is required. The
Fourier transform of a continuous-time signal f ∈ L1(R) is defined as:

f̂(ξ) =

∫
R
f(t)e−2πitξdt, ξ ∈ R. (4)
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If f̂ is supported in [−B,B], we say f has a bandwidth of B. Shannon-
Nyquist sampling theorem states that for a function f with bandwidth B, it
can be reconstructed from its discrete set of samples f(k/(2B)), k ∈ Z by

f(t) =
∑
k∈Z

f(
k

2B
)sinc(2πBt− πk), (5)

where the sinc function is

sinc(t) =


sint

t
if t 6= 0,

1 if t = 0.
(6)

For the sake of comparison to compressed sensing, we consider Shannon-
Nyquist sampling theorem in some finite dimensional space. In this case, we
consider the trigonometric polynomial with a maximal degree M such that

f(t) =
M∑

k=−M

xke
2πikt, t ∈ [0, 1], (7)

where M is a substitute to the bandwidth B. Note the space of trigonometric
polynomials of maximal degree M has dimension of N = 2M + 1, f can be
reconstructed if there are N = 2M + 1 samples. The finite-dimensional
Shannon-Nyquist sampling theorem states that

f(t) =
1

2M + 1

2M∑
k=0

f

(
k

2M + 1

)
DM

(
t− k

2M + 1

)
, t ∈ [0, 1], (8)

where the Dirchlet kernel DM is

DM(t) =
M∑

k=−M

e2πikt =


sin(π(2M + 1)t)

sin(πt)
if t 6= 0,

2M + 1 if t = 0.
(9)

By the finite-dimensional Shannon-Nyquist sampling theorem, it is impossi-
ble to reconstruct such trigonometric polynomials with maximal degree M if
the number of samples is less than N = 2M + 1. In realistic situations, such
required number of samples are sometimes too large and computationally
infeasible. However, if the vector x ∈ CN of Fourier coefficients of f is sparse
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or compressible, fewer samples will be required to produce exact signal re-
covery if these properties are properly exploited. In mathematical language,
given a set {t1, ..., tm} ∈ [0, 1] of m sampling points denoting the sparsity,
the observed data vector y = (f(t`))

m
`=1 can be written as

y = Ax (10)

where A ∈ Cm×N is is a Fourier-type matrix with entries

A`,k = e2πikt` , l = 1, ...,m, k = −M, ...M. (11)

In this setting, to recover f from the vector y = (f(t`))
m
`=1, we only need

to find the coefficient vector x. And note when m < N , the linear system
becomes underdetermined. Following the assumption that the coefficient
vector x is sparse, we get our standard compressed sensing problem.
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2 Sparse solutions of Underdetermined Sys-

tems

The second part of this paper defines some important notation like vector
sparsity and compressibility that will be ubiquitously used in later chapters.
In the end, a proof for the NP-hardness of `0-minimization will be provided,
and this will help us navigate to the following chapter, where we discuss
common compressed sensing algorithms.

2.1 Sparsity and Compressibility

Sparsity is one of the key assumptions in compressed sensing. In this section,
we will rigorously define sparsity and compressibility and introduce several
important theorems that are necessary to establish algorithms of compressed
sensing. Let [N ] denote the set {1, 2, ..., N}. Let S denote a set in [N ], then
S̄ is the complementary set [N ] \ S. Then the support of a vector x ∈ CN is
the index set of its nonzero entries such that

supp(x) := {j ∈ [N ] : xj 6= 0}. (12)

The sparsity of x ∈ CN is equivalent to the cardinality of the support of
x. The vector x is s-sparse if at most s of its entries are nonzero as following:

‖x‖0 := card(supp(x)) ≤ s. (13)

The sparsity of x, ‖x‖0 may look nonsensical because ”zero norm” does
not make any mathematical sense, it is in fact the customary notation for
sparsity. Unlike the sparsity which offers a strong constraint to the recovery
problem, the concept of compressibility is more useful because it is relatively
weaker, and this makes it more versatile in practice. In this case, we consider
vectors that are near s-sparse, which are measured by the error of best s-term
approximation.

For p > 0, `p-error of best s-term approximation to a vector x ∈ CN is
defined by

σs(x)p := inf{‖x− z‖p, z ∈ CN is s-sparse}. (14)

As we have defined σs(x)p, the infimum is achieved by an s-sparse vector
z ∈ CN whose nonzero entries equal the s largest absolute entries of x.
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The vector x ∈ CN may be informally called a compressible vector if the
error of its best s-term approximation quickly converges to 0 as s approaches
N. If x belongs to the unit `p-ball for some small p > 0, where the unit `p-ball
is defined by

BN
p := {z ∈ C : ‖z‖p ≤ 1}. (15)

For any q > p > 0 and any x ∈ CN ,

σs(x)p ≤
1

s1/p−1/q
‖x‖p. (16)

To prove this important inequality, we first define the nonincreasing rear-
rangement of x ∈ CN is the x∗ ∈ RN for which

x∗1 ≥ x∗2 ≥ ... ≥ x∗N ≥ 0 (17)

and there is a permutation π : [N ]→ [N ] with x∗j = |xπ(j)| for all j ∈ [N ].
The nonincreasing rearrangement of a vector satisfies, for x, z ∈ CN ,

‖x∗ − z∗‖∞ ≤ ‖x− z‖∞. (18)

Now with the definition of nonincreasing rearrangement of a vector. We
can give a proof to inequality (16). We first assume x∗ ∈ RN

+ is the nonin-
creasing arrangement of x ∈ CN , then we get

σs(x)qq =
N∑

j=s+1

(x∗j)
q ≤ (x∗s)

q−p
N∑

j=s+1

(x∗j)
p ≤

(
1

s

s∑
j=1

(x∗j)
p

)(q−p)/p( N∑
j=s+1

(x∗j)
p

)
(19)

≤
(

1

s
‖x‖pp

)(q−p)/p

=
1

s1/p−1/q
‖x‖qp.

Now we take the q-th root on each side of the inequality, we get

σs(x)p ≤
1

s1/p−1/q
‖x‖p. (20)
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2.2 Minimal Number of Measurements

From the first chapter, we have formalized the compressed sensing problem,
which is essentially to reconstruct an s-sparse vector x ∈ CN from

y = Ax (21)

where A ∈ Cm×N is our measurement matrix for m < N . Although the
linear system is underdetermined, the sparsity assumption imposes a strong
condition in recovering the vector x.

This begs the question: what is the minimal number of measurement
needed to reconstructed s-sparse vectors? When we reconstruct the sparse
vectors, we want to minimize their sparsity s, there are two distinct cases we
are concerning about:

1. Uniform Recovery: recovery of All Sparse Vectors Simultaneously.

2. Nonuniform Recovery: recovery of Individual Sparse Vectors.

Before we discuss each case separately, notice that the following problems
are equivalent given sparsity s, matrix A ∈ Cm×N , and s-sparse x ∈ CN :

(a) The vector x is the unique s-sparse solution of Az = y with y = Ax,
that is, {z ∈ CN : Az = Ax, ‖z‖0 ≤ s} = {x}.
(b) The vector x can be reconstructed as the unique solution of

minimize
z∈CN

‖z‖0 subject to Az = y. (22)

Let AS denote the submatrix of A with columns indexed by S ⊂ [N ].
And similarly, xS ∈ CS is the sub-vector where the non-empty entries are
indexed by S. With these notations, a theorem can be introduced:
Given A ∈ Cm×N , the following properties are equivalent:
(a) Every s-sparse vector x ∈ CN is the unique s-sparse solution of Az = Ax,
that is, if Az = Ax and both x and z are s-sparse, then x = z.
(b) The null space ker A does not contain any 2s-sparse vector other than
the zero vector, that is, ker A ∩ {z ∈ CN : ‖z‖0 ≤ 2s} = {0}.
(c) For every S ⊂ [N ] with card(S) < 2s, the submatrix AS is injective as
a map from CS to Cm.
(d) Every set of 2s columns of A is linearly independent.
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Note if the reconstruction of all s-sparse vectors are possible based on the
measurement matrix A ∈ Cm×N and measurement vector y ∈ CN , the (a)
and (d) automatically hold true. In turn, this implies

m ≥ rank(A) ≥ 2s. (23)

And the following theorem is introduced:
For any integer N ≥ 2s, there exists a measurement matrix A ∈ Cm×N with
m = 2s rows such that every s-sparse vector x ∈ CN can be recovered from
its measurement vector y ∈ Cm as a unique solution of

minimize
z∈CN

‖z‖0 subject to Az = y. (24)

And for any N ≥ 2s, there exists a practical procedure for the reconstruction
of every 2s-sparse vectors from its first m = 2s discrete Fourier measure-
ments.

Although the reconstruction procedure described is seemingly well-designed,
its insufficiency in stability and robustness causes major drawbacks. For the
recovery of individual sparse vectors (Non-uniform recovery), we have our
s-sparse vector x ∈ CN fixed prior to choosing the measurement matrix A.
Then we take measurement accordingly. And we want x to be a unique so-
lution, where such results require conditions depend on both x itself and the
choice of A. The core idea behind nonuniform recovery is that the required
condition will be satisfied by most (s+1)×N matrices, where A is randomly
chosen. In conclusion, for any N ≥ (s+ 1), given an s-sparse vector x ∈ CN

there exists a measurement matrix A ∈ Cm×N with m = s+1 rows such that
the vector x be reconstructed from its measurement vector as a solution of
y = Ax ∈ CN :

minimize
z∈CN

‖z‖0 subject to Az = y. (25)
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2.3 NP-Hardness of `0-Minimization

In previous sections, without taking the viability into account, we have con-
veniently formulated the reconstruction of an s-sparse vector x ∈ CN as the
`0-Minimization problem

minimize
z∈CN

‖z‖0 subject to Az = y, (26)

where we achieve the signal recovery goal by minimizing the sparsity of z.
`0-norm based signal recovery is attractive in compressed sensing as it can
facilitate exact recovery of sparse signal. Unfortunately, direct `0-norm mini-
mization problem is NP-hard [?]. In this section, we will demonstrate a more
generalized (noise-aware) version of `0-minimization, that is, for any η ≥ 0,
the `0-minimization

minimize
z∈CN

‖z‖0 subject to ‖Az− y‖2 ≤ η. (27)

for general A ∈ Cm×N and y ∈ Cm is NP-hard.
By definition, NP-hard problems consist of all problems for a solving al-

gorithm for any NP-problem. In simple language, the NP-hard problem is
at least as hard as any NP-problem. And the complexity class NP-Complete
contains all problems from both NP and NP-hard class. To prove the the
statement above, we first consider a NP-complete problem, the exact cover
by 3-sets problem as follows:
Given a collection {Ci, i ∈ [N ]} of 3-element subsets of [m], does there exist
an exact cover of [m] a set J ⊂ [N ] such that ∪j∈JCj = [m] and Cj ∪Cj′ = ∅
for all j, j′ ∈ J with j 6= j′?

To prove the NP-hardness of `0-minimization, we are going to show that
solving `0-minimization implies a solution to the exact cover by 3-sets prob-
lem. For (29), we assume η < 1. Let {Ci, i ∈ [N ]} be a collection of 3-element
subsets of [m]. We first define a vector y ∈ Cm as y = [1, 1, ..., 1]T. For our
matrix A ∈ Cm×N , we define its columns a1, a2, ..., aN ∈ Cm by

(ai)j =

{
1 if j ∈ Ci,
0 if j /∈ Ci.

(28)

And A ∈ Cm×N is  | | |
a1 a2 ... aN
| | |

 .
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Note N ≤
(
m
3

)
, so the construction of matrix A ∈ Cm×N is viable in poly-

nomial time. If there exists vector z ∈ CN such that ‖Az− y‖2 ≤ η, then
each of the m components has at most a distance η to 1, and the sparsity
is m as ‖Az‖0 = m. But as we previously defined, each vector ai has ex-

actly 3 nonzero components, and the vector Az =
∑N

j=1 zjaj = 1 has at
most 3‖z‖0 nonzero components, meaning there is an inequality of sparsity
‖Az‖0 ≤ 3‖z‖0. Thus, if such z ∈ CN exists, it must satisfy ‖z‖0 ≥ m/3.
Now let x ∈ CN denote the output of our `0-minimization problem, then
there are two cases to consider for ‖z‖0 ≥ m/3:

1. If ‖z‖0 = m/3, then the collection Cj, j ∈ supp(x) forms an exact cover

of [m]. Otherwise the sparsity of Ax = Ax =
∑N

j=1 xjaj would not be
m.

2. If ‖z‖0 > m/3, then there does not exist exact cover Cj, j ∈ J . Other-
wise the vector z ∈ CN defined by zj = 1 if j ∈ J and zj = 0 if j /∈ J
would satisfy y = Az and ‖z‖0 = m/3, and this contradicts the `0-
minimization of x.

And this verifies the `0-minimization is NP-hard because solving `0-minimization
also implies a solution to the exact cover by 3-sets problem, which is NP-hard.

Although the NP-hardness of `0-minimization looks discouraging, it only
restricts the tractability of recovery algorithms using any choice of matrices
A and vectors y. In compressed sensing, we only concern about specially
designed measurement matrices A and y for some sparse signal x. Many
recovery algorithms for such matrices will be introduced in the following
chapter.
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3 Algorithms of Compressed Sensing

In this chapter we introduce three types of algorithms in compressed sens-
ing: optimization methods, greedy methods, and thresholding-based meth-
ods. We will mainly focus on basis pursuit (an optimization method) while
discussing its null space property, stability and robustness. In later chapters,
more thorough algorithm analyses will be provided as we introduce mathe-
matical tools like coherence and restricted isometry property.

3.1 Optimization Methods: Basis Pursuit

In last chapter, we have proved the NP-hardness of `0-minimization. As
mentioned in the introductory chapter, `1-minimization, also known as basis
pursuit, is one of the most popular optimization method for compressed
sensing. In contrast to `0-minimization, which is a nonconvex optimization
problem, basis pursuit on the other hand, is a convex optimization problem,
meaning there are many algorithms from convex optimization can be applied
to the basis pursuit sparse recovery scheme. Basis pursuit has the following
procedure:

Basis Pursuit

Input: measurement matrix A ∈ Cm×N , measurement vector y ∈ Cm.
Instruction:

x] = argmin‖z‖1 subject to Az = y. (BP)

Output: the vector x].

Let A ∈ Rm×N be a measurement matrix with columns a1, a2, ..., aN ∈
Cm. Assume the `1-minimizer x] is unique, then the system {aj, supp(x])}
is linearly independent. More importantly,∥∥x]∥∥

0
= card(supp(x])) ≤ m. (29)

Note there is a more generalized version of basis pursuit where the pro-
cedure is noise aware:
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Quadratically Constrained Basis Pursuit

Input: measurement matrix A ∈ Cm×N , measurement vector y ∈ Cm.
Instruction:

x] = argmin‖z‖1 subject to ‖Az− y‖2 ≤ η.

Output: the vector x].

The solution x] is closed related to the output of basis pursuit denoising,
which is the following problem with some parameter λ ≥ 0,

minimize
z∈CN

λ‖z‖1 + ‖Az− y‖2
2. (30)

And the solution x] also closely relates to the output of LASSO, which has
the following scheme for some parameter τ ≥ 0,

minimize
z∈CN

‖Az− y‖2
2 subject to ‖z‖1 ≤ τ. (31)

We can summarize some relationships between the outputs of these three
schemes as follows:
(a) If x is a minimizer of the basis pursuit denoising with λ ≥ 0, then there
exist some noise η = ηx ≥ 0 such that x is a minimizer of the quadratically
constrained basis pursuit.
(b) If x is a minimizer of the quadratically constrained basis pursuit with a
noise η > 0, then there exists τ = τx ≥ 0 such that x is a unique minimizer
to the LASSO.
(c) If x is a minimizer of the LASSO with some τ > 0, then there exists
λ = λx ≥ 0 such that x is a minimizer of the basis pursuit denoising.

3.1.1 Null Space Property

Null space property is a necessary condition for the success of exact recovery
of sparse vectors via basis pursuit. And it is defined as follows:
A matrix A ∈ Cm×N is said to satisfy the null space property relative to a
set S ⊂ [N ] if

‖vS‖1 < ‖vS̄‖1 for all v ∈ kerA \ {0}. (32)
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It is said to satisfy the null space property of order s if it satisfies the null
space property relative to any set S ⊂ [N ] with card(S) ≤ s.
Given a matrix A ∈ Cm×N , every vector x ∈ CN is the unique solution of
with y = Ax if and only if A satisfies the null space property of order s.

3.1.2 Stability

In real world, without the idealized situations, the vector we ought to recover
via basis pursuit are approximately close to sparse vectors. Thus, when we
recover a vector x ∈ CN , we want to have an error controlled by its distance
to a s-sparse vectors.

A matrix A ∈ Cm×N is said to satisfy the stable null space property with
constant 0 < ρ < 1 relative to a set S ⊂ [N ] if

‖VS‖1 ≤ ρ‖VS̄‖1 for all v ∈ kerA \ {0}. (33)

With an enhanced (stable) null space property, we can then introduce the
theorem which concludes the stability of basis pursuit.
Suppose that a matrix A ∈ Cm×N satisfies the stable null space property of
order s with constant 0 < ρ < 1. Then, for any x ∈ CN , a solution x] of
`1-minimization with y = Ax approximates the vector x with `1-error∥∥x− x]

∥∥
1
≤ 2(1 + ρ)

1− ρ
σs(x)1. (34)

3.1.3 Robustness

Realistically speaking, the measurement of a signal x ∈ CN is impossible to
be exact. This fact implies y ∈ Cm is merely an approximation of the vector
Ax ∈ Cm where

‖Ax− y‖ ≤ η, (35)

for some norm (in most cases, it’s the `2-norm). The null space property can
be reinforced by the robustness and gives us a better condition for the exact
recovery of basis pursuit. The matrix A ∈ Cm×N is said to satisfy the robust
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null space property with constants 0 < ρ < 1 and τ > 0 relative to a set
S ⊂ [N ] if

‖vS‖1 ≤ ρ‖vS̄‖1 + τ‖Av‖ for all v ∈ CN (36)

It is said to satisfy the robust null space property of order s with constants
0 < ρ < 1 and τ > 0 if it satisfies the robust null space property with
constants ρ, τ relative to any set S ∈ [N ] with card(S) ≤ s. And if a matrix
A ∈ Cm×N satisfies the robust null spacer property of order s with constants
0 < ρ < 1 and τ > 0, then for any x ∈ CN , a solution x] of the quadratically
constrained basis pursuit, with y = Ax + e and ‖e‖ ≤ η approximates the
vector x with `1 error∥∥x− x]

∥∥ ≤ 2(1 + p)

1− p
σs(x)1 +

4τ

1− ρ
η. (37)

3.2 Greedy Methods

Frankly speaking, greedy algorithm has its name because it makes optimal
choices heuristically at each step to get an optimal solution to the overall
problem. For sparse vector recovery, there are two commonly used iterative
greedy algorithms:

1. Orthogonal Matching Pursuit (OMP)

2. Compressive Sampling Matching Pursuit (CoSaMP)

For Orthogonal Matching Pursuit, we have the following procedure:
Let Sn be the target support at each iteration. We update our target vector
xn as its supported on Sn that fits the measurements the best. Then we have
the following algorithm:
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Orthogonal Matching Pursuit

Input: measurement matrix A ∈ Cm×N , measurement vector y ∈ Cm.
Initialization: S0 = ∅,x0 = 0.
Iteration: repeat until a stopping criterion is met at n = n̄:

Sn+1 = Sn ∪ {jn+1}, jn+1 := argmax
j∈[N ]

{|(A∗(y −Axn))j|}, (OMP1)

xn+1 = argmin
z∈CN

{‖y −Az‖2, supp(z) ⊂ Sn+1}, (OMP2)

Output: the n̄-sparse vector x] = xn̄.

In OMP, the following step is the most computationally expensive,

xn+1 = argmin
x∈CN

{‖y −Az‖2, supp(z) ∈ Sn+1}, (38)

but it can be accelerated by using the QR-decomposition of ASn . And the
choice of the index jn+1 is determined by the greedy strategy where the
aim is to reduce the `2 norm of the residual y −Axn as much as possible.
However, orthogonal matching pursuit is not without any weakness. If an
incorrect index has been selected in a target support Sn, it remains in all the
subsequent target supports Sn

′
for n′ ≥ n. In this situation if an incorrect

index has been selected, s iterations of the orthogonal matching pursuit will
not suffice in recovering a s-sparse vector. The easiest possible solution will be
just to increase the number of iterations until it meets the criteria, but there
is a different greedy algorithm using another strategy which is mentioned in
this section later. Note there are certain conditions to hold for orthogonal
matching pursuit to work as expected. In particular, given a matrix A ∈
Cm×N , every nonzero vector x ∈ CN supported on a set S of size s is recovered
from y = Ax after at most s iterations of orthogonal matching pursuit if and
only if the column submatrix AS is injective and

max
j∈S
|(A∗r)j| > max

`∈S
|(A∗r)`| (39)

for all nonzero r ∈ {Az, supp(z) ⊂ S}. This can be formulated in a more
concise way as the exact recovery condition as follows:∥∥∥A†SAS̄

∥∥∥
1→1

< 1. (40)
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where A†S is the Moore-Penrose pseudo-inverse of the matrix A.
Compressed sampling matching pursuit (CoSaMP) is an alternative greedy

algorithm which can be very useful providing an estimation of the sparsity
s. We introduce the following notations:

Ls(z) := index set of s largest absolute entries of z ∈ CN ,
Hs(z) := ZLs(z).

where Hs is a nonlinear operator called hard thresholding operator of order
s. And Hs(z) is the best s-term approximation to z ∈ CN . Then we have
the following procedure for CoSaMP:

Compressed sampling matching pursuit

Input: measurement matrix A ∈ Cm×N , measurement vector y, sparsity
level s.
Initialization: s-sparse vector x0, typically x0 = 0.
Iteration: repeat until a stopping criterion is met at n = n̄:

Un+1 = supp(xn) ∪ L2s(A
∗(y −Axn)), (CoSaMP1)

un+1 = argmin
z∈CN

{‖y −Az‖2, supp(z) ⊂ Un+1}, (CoSaMP2)

xn+1 = Hs(u
n+1). (CoSaMP3)

Output: the n̄-sparse vector x] = xn̄.
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4 Coherence

For compressed sensing, coherence is a very simple measure of the suitability
of the measurement matrix during the analysis of recovery algorithms.

4.1 Definitions

Coherence is defined as follows: Let A ∈ Cm×N be a matrix with `2-normalized
columns a1, ..., aN , i.e., ‖ai‖2 = 1 for all i ∈ [N ]. The coherence µ = µ(A)
of the matrix A is defined as

µ := max
1≤i 6=j≤n

|〈ai, aj〉|. (41)

And the `1 coherence function µ1 of the matrix A is defined for s ∈ [N − 1]
by

µ1(s) := max
i∈[N ]

{∑
j∈S

|〈ai, aj〉| S ⊂ [N ], card(S) = s, i /∈ S
}
. (42)

A small coherence implies that column submatrices of moderate size are well-
conditioned. By definition, we know that for 1 ≤ s, t ≤ N − 1,

max{µ1(s), µ1(t)} ≤ µ1(s+ t) ≤ µ1(s) + µ1(t) (43)

Note the `1-coherencefunction µ1 is invariant under multiplication by a uni-
tary matrix U, and by Cauchy-Schwarz inequality |〈Uai,Uaj〉| ≤ ‖ai‖‖aj‖
we get that µ ≤ 1. And this result serves as an upper bound to the coher-
ence.
However, there is a tighter upper bound. Given a matrix A ∈ Cm×N with
`2-normalized columns and an integer s ≥ 1, if µ1(s) + µ1(s + 1) < 1, then
for each set s ⊂ [N ] with card(S) ≤ 2S, the matrix A∗SAS is invertible and
the matrix AS injective. In particular, the conclusion holds if

µ <
1

2s− 1
. (44)

There is a more accurate lower bound than µ ≥ 0 called Welch bound.
Before introducing it, it is important to know the definitions of equiangularity
and tight frame as a prerequisite.
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Equiangularity: A system of `2-normalized vectors (a1, ...aN) in Cm is
called equiangular if there is a constant c ≥ 0 such that

|〈ai, aj〉| = c, for all i, j ∈ [N ], i 6= j. (45)

Tight Frame: A system of vectors (a1, ...aN) is called a tight frame if there
exist a constant λ > 0 such that one of the following conditions holds:

(a) ‖x‖2
2 = λ

N∑
j=1

|〈x, aj〉|2, for all x ∈ Cm, (46)

(b) x = λ
N∑
j=1

〈x, aj〉aj, for all x ∈ Cm (47)

(c) AA∗ =
1

λ
Idmwhere A is the matrix with columns a1, ..., aN . (48)

The coherence of a matrix A ∈ Cm×N with `2-normalized column satisfies

µ ≥

√
N −m
m(N − 1)

. (49)

Equality holds if and only if the columns a1, ..., aN of the matrix A form an
equiangular tight frame.

4.2 Analysis of Orthogonal Matching Pursuit

The success of sparse recovery via analysis of orthogonal matching pursuit
can be guaranteed by a coherence that is small enough. In this section, we
introduce this key result as below.

Let A ∈ Cm×N be a matrix with `2-normalized columns. If

µ1(s) + µ1(s− 1) < 1, (50)

then every s-sparse vector x ⊂ CN can be recovered from the measurement
vector y = Ax after at most s iterations of orthogonal matching pursuit. To
prove this theorem, we let a1, a2, ..., aN denote the `2-normalized columns of
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A. From the exact recovery condition of Orthogonal Matching Pursuit, we
want to show that for any S ∈ [N ] with card(S) = s, the column submatrix
AS is injective and that

max
j∈S
|〈(r, aj)〉| > max

`∈S
|〈(r, a`)〉| (51)

for all nonzero r ∈ {Az, supp(z) ⊂ S}. Let r :=
∑

i∈S riai be such a vector
and choose k ∈ S so that |rk| = max

i∈S
(|ri|). Note for ` ∈ S̄, we have

|〈r, a`〉| = |
∑
i∈S

ri〈ai, a`〉| ≤
∑
i∈S

|ri||〈ai, a`〉| ≤ |rk|µ1(s). (52)

On the other hand, we get the following inequality

|〈r, ak〉| = |
∑
i∈S

ri〈ai, ak〉| ≥ |rk||〈ak, ak〉| −
∑

i∈S,i6=k

|ri||〈ai, ak〉|. (53)

With the above inequalities, we have proved the inequality associated with
the exact recovery condition holds because our assumption 1 − µ1(s − 1) >
µ1(s). And it is also injective because (42).

4.3 Analysis of Basis Pursuit

A small coherence also guarantees of success of basis pursuit. The following
result for sparse vector recovery via basis pursuit is consequent.

Let A ∈ Cm×N be a matrix with `2-normalized columns. If

µ1(s) + µ1(s− 1) < 1, (54)

then every s-sparse vector x ∈ CN can be recovered from the measurement
vector y = Ax via basis pursuit.

In fact, any condition guarantees the success of recovery of orthogonal
matching pursuit automatically guarantees the success of basis pursuit re-
covery. This holds true because the exact recovery condition of orthogonal
matching pursuit implies the null space property, which is the property that
validates the exact recovery of sparse vectors via basis pursuit.
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5 Restricted Isometry Property

Though coherence is very useful in determining if a measurement matrix is
well conditioned, however, when the measurement matrix has a large spar-
sity levels, the performance analysis will be limited as a result of the Welch
Bound. In this case, we need a better measure to apply to such matrices.
Here we introduce the concept of restricted isometry property (also known
as uniform uncertainty principle). Note coherence only samples some pairs
of columns of a measurement matrix, on the other hand, the restricted isom-
etry property of order s takes all s-tuples of columns into account which
guarantees a better assessment quality.

5.1 Definitions

The sth restriced isometry constant δs = δs(A) of a matrix A ∈ Cm×N is the
smallest δ ≥ 0 such that

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2. (55)

for all s-sparse vectors x ∈ CN . Equivalently, it is given by by

δs = max
S⊂[N ],card(S)≤s

‖A∗SAS − Id‖2→2. (56)

For the above equivalency to hold, there are three pre-established remarks.
First, the sequence of restricted isometry constant is nondecreasing such

that,
δ1 ≤ δ2 ≤ ... ≤ δs ≤ δs+1 ≤ ... ≤ δN . (57)

Second, in the situation of compressed sensing, we only consider the rele-
vant case for δs < 1 (Though it is possible that δs ≥ 1 when it’s out of scope
of compressed sensing).
Third, if the entries of the measurement matrix A are real, then δs could
also be defined as the smallest δ ≥ 0 such that (8) holds for all real s-sparse
vector x ∈ RN .
Now we observe that

|‖ASx‖2
2 − ‖x‖

2
2| ≤ δ‖x‖2

2 for all S ⊂ [N ], card(S) ≤ s, and all x ∈ CS

(58)
And for x ∈ CS,

‖ASx‖2
2 − ‖x‖

2
2 = 〈ASx,ASx〉 − 〈x,x〉 = 〈(A∗S − Id)x,x〉. (59)
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Note A∗SAS − Id is Hermitian (or self-adjoint, meaning it is equal to its own
conjugate transpose), so we have

max
x∈Cs\{0}

〈(A∗SAS − Id)x,x〉
‖x‖2

2

= ‖Ax
S − Id‖2→2 (60)

which is equal to

δs = max
S⊂[N ],card(S)≤s

‖A∗SAS − Id‖2→2. (61)

Now we can make the comparison between restricted isometry constant
of a matrix and its coherence µ and coherence function µ1 with the following
proposition:
If the matrix A has `2-normalized columns a1, ..., aN i.e., ‖a‖2 = 1 for all
j ∈ [N ], then

δ1 = 0, δ2 = µ, δs ≤ µ1(s− 1) ≤ (s− 1)µ, s ≥ 2. (62)

The (s, t)-restricted orthogonality constant θs,t = θs,t(A) of a matrix A ∈
Cm×N is the smallest θ ≥ 0 such that

|〈Au,Av〉| ≤ θ‖u‖2‖v‖2 (63)

for all disjointly supported s-sparse and t-sparse vector u,v ∈ CN . Equiva-
lently,

θs,t = max
{∥∥A2

TAs

∥∥
2→2

, S ∩ T = ∅, card(S) ≤ s, card(T ) ≤ t
}
. (64)

The relationship between restricted isometry constants and restricted orthog-
onality constant is as follows:

θs,t ≤ µs,t ≤
1

s+ t
(sδs + tδt + 2

√
stθs,t) (65)

And there is a special case s = t which gives the follow inequalities

θs,s ≤ δ2s and δ2s ≤ δs + θs,s. (66)

In order to obtain the restricted isometry property δs ≤ δ in the optimal
regime for compressed sensing, random matrices will be used. And it is an
open problem to find deterministic (non-random) matrices which satisfies re-
stricted isometry property.

22



5.2 Analysis of Basis Pursuit

In sparse recovery via basis pursuit, small restricted isometry constants for
the measurement matrices guarantees the success of the recovery. In this
section, we present a simple algorithmic analysis on basis pursuit without
considering stability and robustness.

Suppose that the 2sth restricted isometry constant of the matrix A ∈ m×N

satisfies

δ2s <
1

3
(67)

Then every s-sparse vector x ∈ CN is the unique solution of

minimize
z∈CN

‖z‖1 subject to Az = Ax. (68)

Suppose that the 2sth restricted isometry constant of the matrix A ∈ m×N

satisfies

δ2s <
4√
41

(69)

Then for any x ∈ CN and y ∈ Cm with ‖Ax− y‖2 ≤ η , a solution x] of

minimize
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η (70)

approximates the vector x with errors∥∥x− x]
∥∥

1
≤ Cσs(x)1 +D

√
sη, (71)

∥∥x− x]
∥∥

2
≤ C√

s
σs(x)1 +Dη, (72)

where the constants C, D > 0 depend only on δ2s.
If the 2sth restricted isometry constant of A ∈ m×N obeys the theorem above,
then the matrix A satisfies the `2-robust null space property of order s with
constants 0 < ρ < 1 and τ > 0 depending only on δ2s.

5.3 Analysis of Orthogonal Matching Pursuit

Similar to last section, we provide a simple analysis on Orthogonal Matching
Pursuit. Recall for Orthogonal Matching Pursuit, we let Sn be the target
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support at each iteration. We update our target vector xn as its supported
on Sn that fits measurements the best.

Given A ∈ Cm×N , let y = Ax + e for some s-sparse vector x ∈ CN

with S = supp(x) and some e ∈ Cm. Let (xn) denote the sequence defined
by (OMP1), (OMP2) started at an index set S0. With s0 = card(S0) and
s′ = card(S\S0), if δs+s0+12s′ < 1/6, then there is a constant C > 0 depending
only on δs+s0+12s′ such that

‖y −Axn̄‖2 ≤ C‖e‖2, n̄ = 12s′. (73)

Suppose that A ∈ m×N has restricted isometry property

δ13s <
1

6
. (74)

Then there is a constant C > 0 depending only on δ13s such that, for all
x ∈ CN and e ∈ Cm, the sequence xn defined by (OMP1), (OMP2) with
y = Ax + e satisfies ∥∥y −Ax12s

∥∥
2
≤ C‖AxS̄ + 2‖2 (75)

for any S ⊂ [N ] with card(S) = s.
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6 Compressed Sensing with Random Matri-

ces

We have demonstrated the guarantees of recovery of each algorithm type if
the restricted isometry constant of the measurement matrix satisfy δκs ≤ δ∗
for some small integer κ and some δ∗ ∈ (0, 1). In this chapter, we specif-
ically discuss nonuniform recovery with random matrices, with a focus on
subgaussian matrices.

6.1 Subgaussian Matrices

Before proceeding to establish important theorems about random matrix
recovery, it is important to garner some understandings about random ma-
trices. Gaussian and subgaussian random matrices are very important for
the theory of compressive sensing because they provide a model of measure-
ment matrices which can be analyzed very accurately [?]. Although there
are different many other types of random matrices such Bernoulli matrices
and rademacher matrices, for the simplicity of the demonstration, we only
discuss Gaussian and subgaussian matrices in our context.

A random variable X is called subgaussian if there exist constant β, κ > 0
such that

P(|X| ≥ t) ≤ βe−κt
2

for all t > 0. (76)

Note if X is subgaussian with EX = 0, then there exists a constant c (de-
pending only on β and κ) such that

E[exp(θX)] ≤ exp(cθ2) for all θ ∈ R. (77)

And if the above inequality holds, then EX = 0 and X is subgaussian with
parameters β = 2 and κ = 1/(4c).

A matrix is a random matrix A ∈ Cm×N if it has random variables as
entries. If the entries of A are independent mean-zero subgaussian random
variables with variance 1 and same subgaussian parameters β, κ as above,
then A is a subgaussian matrix. And if the entries of A are independent
Gaussian random variables, then A is called a Gaussian random matrix. Note
both Bernoulli and Gaussian are subgaussian, and the entries of subgaussian
matrices are not always identically distributed. Consider a random vector
Y ∈ RN . If for all x ∈ RN with ‖x‖2 = 1, then the random variable 〈Y,x〉
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is subgaussian with subgaussian parameter c̄ being independent of x, that is,

E[exp(θ〈Y,x〉)] ≤ exp(c̄θ2), for all θ ∈ R, ‖x‖2 = 1, (78)

then Y is called a subgaussian random vector.

6.2 Restricted Isometry Property for Subgaussian Ma-
trices

Now we introduce the key result on the restricted isometry property for
subgaussian random matrices, which is widely cited in the literature.

Consider a subgaussian random matrix A ∈ Cm×N with independent en-
tries, then there exists a constant C > 0 (dependent only on the subgaussian
parameters β, κ) such that the restricted isometry constant of 1√

m
A satisfies

δs ≤ δ with probability at least 1− ε provided

m ≥ Cδ−2(s ln(eN/s) + ln(2ε−1)). (79)

Then if we let ε = 2exp(−δ2m/(2C)), we get the following condition

m ≥ 2Cδ−2s ln(eN/s), (80)

which guarantees that δs ≤ δ with probability at least 1−2 exp(−δ2m/(2C)).

Note we normalize the matrix as 1√
m

A because E‖ 1√
m

Ax‖2

2
= ‖x‖2

2 for a

fixed vector x and subgaussian random A with variance 1 for all entries. To
generalize the theorem to a larger class of random matrices, we introduce the
definition of random isotropic vectors. Consider a random vector Y ∈ RN ,
(a) If E|〈Y,x〉|2 = ‖x‖2

2 for all x ∈ RN , then Y is called isotropic.
(b) If for all x ∈ RN with x = 1, the random variable 〈Y,x〉 is subgaussian
with subgaussian parameter c being independent of x, that is,

E[exp(θ〈Y,x〉)] ≤ exp(cθ2) for all θ ∈ R, x = 1, (81)

then Y is called a subgaussian random vector.
Now the key results for subgaussian random matrices can be generalized

to random matrices with independent, isotropic, and subgaussian rows as
following:
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Consider a random matrix with independent, isotropic, and subgaussian
rows A ∈ Rm×N with the same subgaussian parameter as in (81), if

m ≥ Cδ−2(s ln(eN/s) + ln(2ε−1)), (82)

then the restricted isometry constant of
1√
m

A satisfies δs ≤ δ with proba-

bility at least 1− ε.

6.3 Nonuniform Recovery with Subgaussian Matrices

When we discuss the minimal number of measurements in section 2.2, we
mentioned that there are two types of recovery schemes in compressed sens-
ing: uniform recovery and nonuniform recovery. As we discussed uniform
recovery in previous chapters, we are going to introduce nonuniform recov-
ery with subgaussian matrices in comparison to the uniform recovery.

The uniform recovery states with high probability on the draw of the
random matrix, every sparse vector can be reconstructed under appropriate
conditions. On the other hand the nonuniform recovery states that a given
sparse vector x can be reconstructed with high probability on the the draw
of the matrix under appropriate conditions. The difference to uniform recov-
ery is that nonuniform recovery does not imply that there is a matrix that
recovers all x simultaneously. Or in other words, the small exceptional set
of matrices for which recovery fails may depend on x [?]. Let x ∈ CN be an
s-sparse vector. Let A ∈ Cm×N be a randomly drawn subgaussian matrix
with subgaussian parameter c in (77). If for some ε ∈ (0, 1),

m ≥ 4c

1− δ
s ln(2N/ε), with δ =

√
C

4c

(
7

ln(2N/ε) + 2
s

)
(83)

with the assumption that N and s are large enough so that δ < 1, then with
probability at least 1−ε, the vector x is the unique minimizer of ‖z‖1 subject
to ‖Az = Ax‖. And the constant C = 2/(3c̄) depends only the subgaussian
parameter c̄ in (78).

Note the parameter δ becomes near zero as N and s get large. In this
sense, if m > 4cs ln(2N/ε), the sparse recovery is said to be sufficient. For
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Gaussian and Bernoulli random matrices where c = 1/2, the approximate
sufficient condition is as follows:

m > 2s ln(2N/ε). (84)

6.4 Null Space Property for Gaussian Matrices

Here we introduce a theorem that guarantees good constants and stability of
uniform recovery with Gaussian random matrices by only directly using the
stable null space property. Let A ∈ Cm×N be a random random draw of a
Gaussian matrix. Assume that

m2

m+ 1
≥ 2sln(eN/s)

(
1 + ρ−1 +D(s/N) +

√
ln(ε−1)

sln(eN/s)

)2

, (85)

where D is a function that satisfies D(α) ≤ 0.92 for all α ∈ (0, 1] and
limα→0D(α) = 0. Then, for probability at least 1 − ε, every vector x ∈ RN

is approximated by a minimizer x] of ‖z‖1 subject to Az = Ax as∥∥x− x]
∥∥

1
≤ 2(1 + ρ)

1− ρ
σs(x)1. (86)

The function D in the above theorem is

D(α) =
1√

2 ln(eα−1)
+

1

(8πe3)(1/4) ln(eα−1)
. (87)

For the null space property to hold, this theorem only involves the case
N ≥ 2s. This gives us a better upper bound as

D(α) ≤ D(1/2) =
1√

2 ln(2e)
+

1

(8πe3)1/4 ln(2e)
≈ 0.668. (88)

In compressed sensing, we are most interested in the situation where we have
large N ,mildly large s , and a small ratio s/N . In this case the assumption
in the theorem (88) will become

m > 2(1 + ρ−1)2s ln(eN/s). (89)
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7 An Application of Compressed Sensing

Most parts of this thesis are dedicated to the mathematical mechanism of
compressed sensing. Due to the advantages of compressed sensing over tradi-
tional signal processing technologies, it goes without saying that compressed
sensing also has profound real world applications. In the last chapter of this
paper, an interesting example about single-pixel imaging is presented as an
example to demonstrate the real world application of compressed sensing.

7.1 Single-Pixel Camera

In traditional digital cameras, taking pictures requires focusing light through
the lenses onto a light sensor, which consists of a grid of light-sensitive tiny
photosites. The photosite is often called a pixel, and there are usually millions
of individual pixels in today’s light sensor. However, via compressed sensing
technique, a device called single-pixel camera is made possible. The name of
this device is self-explanatory, only a single pixel is required to reconstruct the
image. The single-pixel camera takes independent realizations of Bernoulli
random vectors and measures these inner products on a single pixel. with
sparse recovery methods, only a small number of these random inner products
are required for image reconstruction.

In the single-pixel camera, a microarray of a large number of small mirrors
can be turned on and off individually. And the light from the image is
reflected onto this microarray, where the light become focused via a lens and
further reflect to a single pixel sensor. The measurement of light intensity is
manipulated by turning each mirror on and off. [?]
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Figure 1: A picture of single-pixel camera setup [?]

Let z ∈ RN be the image vector which consists of the gray values of the
collected pixels, z = Wx where x is a sparse vector that we aim to recover,
and W ∈ Cm×N is a matrix represents the sparse transform. For vectors b,
the inner products 〈z,b〉 stores the location of activated mirrors and zeros
for the deactivated mirrors. With vectors a where each entry contains either
1 or -1 with equal probabilites, and two auxiliary vectors b1,b2 ∈ {0, 1}N

b1
j =

{
1 if aj = 1,

0 if aj = −1,
b2
j =

{
1 if aj = −1,

0 if aj = 1,
(90)

we have inner products 〈z, a〉 = 〈z,b1〉 − 〈z,b2〉. The vectors a1, a2, ..., aN
are then chosen randomly. And the measured intensities are inner prod-
ucts y` = 〈z, a`〉 with independent Bernoulli vectors. Thus we get y = Az
for a Bernoulli matrix A ∈ Rm×N . Note z = Wx, so we have the system
Y = AWx where x is compressible or sparse. As the single-pixel camera is
designed, the measurements are sampled each by each. However, with com-
pressed sensing, only a few measurement needs to be taken to reconstruct
the image.

It is natural to ask, since the current camera technology is well-developed
and affordable, where does the single-pixel camera find its place on the mar-
ket? It is important to note that the single-pixel camera can sample measure-
ments and reconstruct images for certain wavelengths that are not within the
visible spectrum, and it is a much more affordable approach than producing
sensor chips for these wavelengths. In this scope, the single-pixel camera
and compressed sensing have great potentials as a real world engineering
approach.
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