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Abstract. Andrzej Trautman and Ivor Robinson’s studies of solutions to Einstein and

Maxwell’s equations on Lorentzian manifolds led Trautman to present the following

conjecture. A 3-dimensional Cauchy-Riemann manifold is locally embeddable if and

only if it admits locally a closed, non-vanishing section of its canonical bundle. Many

approaches to this conjecture use 4-dimensional Lorentzian Einstein manifolds and their

close relation, in the algebraically special case, to 3-dimensional CR structures. We will

make use of 3-dimensional pseudo-Einstein structures, which are closely connected to

Kähler-Einstein metrics in 4 real dimensions. The aim of this thesis will be to provide

context and background to Trautman’s conjecture coming from both geometry and

physics, as well as to articulate the link that the pseudo-Einstein condition has with

closed sections of the canonical bundle and with local embeddability of Cauchy-Riemann

manifolds.

1. Definitions

Let M be a real (2n + 1)-dimensional C∞ manifold with tangent bundle TM . Let

H ⊆ TM be a rank 2n maximally non-integrable subbundle, meaning that H is given

as the kernel of a nowhere vanishing 1-form θ which satisfies θ ∧ (dθ)n 6= 0. Such an H

is called a contact structure, and θ a contact form (note that we permit θ to be scaled

by a smooth, positive non-vanishing function). The complexification of TM is denoted

by CTM = TM ⊗ C = {v1 + iv2 : v1, v2 ∈ TM, π(v1) = π(v2)} where π : TM → M is

the natural projection. A Cauchy-Riemann (CR) structure on H is specified by a bundle

endomorphism J : H → H, satisfying J ◦J = −IdH . The Nijenhuis tensor of J must also

vanish, which means that for any vector fields, X and Y in the space of smooth sections

of the contact distribution Γ(H), we have

[JX, Y ] + [X, JY ] ∈ Γ(H)(1)

NJ(X, Y ) = [X, Y ]− [JX, JY ] + J([JX, Y ] + [X, JY ]) = 0(2)

Note that (1) ensures that the Nijenhuis tensor, NJ , is well-defined and (2) is the van-

ishing condition (one can check that NJ is also C∞-linear and thus tensorial). The data

(M,H, J) collectively define a (nondegenerate) CR (2n+ 1)-manifold. A framing for Hp
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may always be chosen such that Jp may is given by the constant matrix

(
0 −In
In 0

)
for

any point p ∈ M . Here we clearly see that Jp has eigenvalues i and −i, leading to the

decomposition CHp = T 1,0
p ⊕ T 0,1

p , where T 1,0
p ⊆ CTMp is the i-eigenspace of Jp, and

T 0,1
p = T 1,0

p is the −i-eigenspace. Both of the eigenspaces have complex dimension n.

The eigenspace decomposition depends smoothly on the point p. We note that we can

also define a CR structure by specifying the bundle T 1,0 and asking that it satisfy the

conditions

T 1,0
p ∩ T

1,0
p = {0} ∀p ∈M(3)

X, Y ∈ Γ(T 1,0)⇒ [X, Y ] ∈ Γ(T 1,0).(4)

The formal integrability condition (4) is equivalent to conditions (1) and (2). We will

again denote T 0,1 = T 1,0. We also note that in three dimensions (n = 1), T 1,0 is a

complex line bundle, and so condition (4) is automatically satisfied. If equations (3) and

(4) hold, then we define H by requiring

T 1,0 ⊕ T 0,1 = CH,(5)

where the ⊕ in equation (5) denotes the Whitney sum, which amounts to a direct sum

over each point of M of the fibers of T 1,0 and T 0,1. We also define the complex structure

J to act as multiplication by i on T 1,0 and multiplication by −1 on T 0,1. That is,

J(X) = iX ∀X ∈ T 1,0(6)

J(Y ) = −iY ∀Y ∈ T 0,1.(7)

Thus, conditions (3) and (4) regarding T 1,0 define a rank 2n distribution H and complex

structure J which satisfy the necessary conditions of (1) and (2). The distribution H will

be made a contact distribution by requiring that the Levi form (to be defined shortly) does

not vanish. A CR structure which is described by the data (M,H, J) can be described

equivalently by the data (M,T 1,0). A real hypersurface M embedded in C2n+1 inherits a

CR structure by setting T 1,0M = CTM ∩ (T 1,0C).

A CR manifold M of dimension 2n + 1 is said to be CR embeddable if there exists

an embedding such that the induced CR structure on M is the same as the original CR

structure.

Fixing, in addition, a contact form θ forH yields a pseudohermitian manifold, (M,H, J, θ).

A fixed contact form also determines a unique vector field, T , the Reeb vector field, which

is defined by being transverse to H and being the dual to θ, i.e. θ(T ) = 1. As we will see

below, we also have Ty dθ = 0. In defining a local framing for the complexified tangent
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bundle, we endeavor to reflect the bundles which endowed the space with a CR struc-

ture. Toward this end, we take a framing for T 1,0 given by Zα. By conjugacy, we take

the framing of T 0,1 given by Zᾱ. We take T to be the final direction. Our local framing is

then given by {T, Zα, Zᾱ}. We can then define an admissible coframe as simply the dual

to our frame. An admissible coframe will be denoted by {θ, θα, θᾱ}. The Levi form is a

measure of the non-integrability of the contact distribution. Given a fixed contact form,

we can define the Levi form as Lθ(Up, Vp) = −idθ(Up, Vp), for Up, Vp ∈ CH. Lθ is clearly

hermitian and bilinear. The conditions which define an admissible coframe, as well as

the reality of θ and the vanishing of θ on the Reeb vector field tell us how to express dθ.

We have

dθ = ihαβ̄θ
α ∧ θβ̄(8)

where hαβ̄ is a hermitian matrix. Equation (8) is the first of the Tanaka-Webster struc-

ture equations for a pseudohermitian structure [14]. The formal integrability of T 1,0

additionally requires that the expression for dθβ be 0 modulo θ and θσ. An expression

for dθβ is given in the structure equations for the Tanaka-Webster connection and torsion

forms, respectively denoted by ωα
β and τβ = Aβαθ

α [21], [24]. The matrix hαβ̄ will be

used to raise and lower indices. For example, ωα
β̄ = ωα

δhδβ̄. We thus have the following

expression for dθβ

dθβ = θα ∧ ωα β + θ ∧ τβ(9)

where ωα
β and τβ are uniquely determined by the requirement that

ωαβ̄ + ωβ̄α = dhαβ̄,(10)

and the requirement that Aβα be symmetric in that Aβα = Aαβ. The indices α and β

range from 1 to n (where again we work in dimension 2n+1). Note that if hαβ̄ = δαβ̄ then

dhαβ̄ = 0, which would make ωαβ̄ purely imaginary. Computing the exterior derivative

of (10) and combining with (9) gives the following expression for the exterior derivative

of the connection form (we present the following modulo θ)

dωα
β − ωα γ ∧ ωγ β = Rα

β
ρσ̄ θ

ρ ∧ θσ̄ + i(θα ∧ τβ − τα ∧ θβ),(11)

where Rα
β
ρσ̄ indicates components of the pseudohermitian curvature tensor. We also

have the contraction (also given modulo θ)

dωα
α = Rρσ̄ θ

ρ ∧ θσ̄,(12)

where Rρσ̄ denotes the pseudohermitian Ricci curvature tensor, which is the trace of

the pseudohermitian curvature tensor. The connection given by equations (9) and (10)

induces a unique covariant derivative, denoted by ∇, which will be used in the following.
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A contact form θ is said to be pseudo-Einstein condition, if the following conditions

(depending on dimension) hold [3] [14]

Rαβ̄ −
1

n
Rhαβ̄ = 0, n ≥ 2(13)

∇αR− i∇βAαβ = 0, n = 1.(14)

We may note that in dimensions higher than 3, a generalization of (14) holds as a conse-

quence of (13) with an application of the second Bianchi Identity, given in its contracted

form by

R,γ −Rγσ̄,
σ̄ = i(n− 1)Aαγ,

α(15)

where indices placed after commas denote a direction in which a covariant derivative has

been taken.

Finally, we term the complex bundle of (n+ 1, 0) forms the canonical bundle, denoted

KM . In 3 dimensions, KM is a complex line bundle of (2, 0)-forms. Given an admisssible

coframe, {θ, θ1, θ1̄} a frame for the canonical bundle is given by θ ∧ θ1. Then a local

section of the canonical bundle, ζ, can be written as ζ = yθ ∧ θ1 where y is a smooth

complex-valued function.

2. Examples

Here we will work two examples, involving the unit 3-sphere and the Heisenberg group,

to demonstrate a computation of the Tanaka-Webster connection coefficients.

Example 2.1. [5]

Beginning with the definition of the unit 3-sphere, we have the defining function u =

1 − |z|2 − |w|2. The standard choice of contact form is θ = i∂u = i(zdz̄ + wdw̄) where

we have used the fact that du = ∂u + ∂u = 0 on S3. Noting that, on TS3, zdz̄ +

z̄dz + wdw̄ + w̄dw = 0 = du allows us to write dθ = i(dz ∧ dz̄ + dw ∧ dw̄). A global

framing for T 1,0 is given by Z1 = {w̄ ∂
∂z
− z̄ ∂

∂w
}, which in turn determines θ1 to be

wdz − zdw. We may note that these definitions of θ and θ1 fulfill structure equation

(8). Noting that dθ1 = 2(dw ∧ dz) and plugging into structure equation (9) reveals that

ω1
1 = 2(zdz̄ + wdw̄) = −2iθ. Finally computing the exterior derivative of ω1

1 gives

dω1
1 = 2θ1 ∧ θ1̄. Comparing with structure equation (12) tells us that R = 2.

Example 2.2. [6]

We now turn to the Heisenberg group in general dimension, defined as H = {z ∈
Cn : Im(z) =

∑n−1
α=1 |zα|2}. A global framing for T 1,0 is given by Zα = ∂

∂zα
+ 2izα

∂
∂zn

.

A framing for T 0,1 is given by Zᾱ = ∂
∂zα

+ 2izα
∂
∂zn

, while a framing for T is given by
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Z = 1
2
( ∂
∂zn

+ ∂
∂zn

). We take the dual of these vector fields while also understanding

that the coframe elements must annihilate their non-dual counterparts. Accordingly, we

obtain θ = dzn + dzn − i(2zαdzα + 2zαdzα) and θα = dzα. θᾱ is found by taking θα. We

can then easily see that dθα = dθᾱ = 0. Plugging this into structure equation (11) tells

us that ωα
β = τα = 0, given the independence of our coframe. Since ωα

α = 0, ωα
α is

clearly closed, which tells us that Rα
β
ρσ̄ = 0 by the same structure equation.

3. Background to Trautman’s Conjecture: CR Structures ‘Behind the

Scenes’ of Maxwell and Einstein Fields

As this quotation from [8] in the section title suggests, there exist pathways which allow

one to move between 3-dimensional CR structures and 4-dimensional Lorentz spacetimes.

To link a spacetime to a 3-dimensional CR structure, we will construct a conformal class

of Lorentz metrics from the elements of an admissible coframe. First, recall that the

definition of a local coframe (in 3 dimensions, the index α only takes the value 1),

{θ, θ1, θ1̄}, stipulates that θ be real, and θ1 be complex. The definition of a coframe also

requires {θ, θ1, θ1̄} to form a basis for the (complexified) cotangent bundle CT ∗M , at

each point of M . Now let us abstract from our coframe an equivalence class of pairs of

1-forms, [θ, θ1]. Then a CR structure is a 3-dimensional real manifold M together with

this equivalence class of pairs of 1-forms. The equivalence relation is simply given by

the requirements of the coframe. Namely, this means permitting scaling and requiring

reality of θ, while θ1 and θ1̄ are complex and restrict to give a frame for T 1,0 and T 0,1

respectively. The equivalence relation is given by:

(θ, θ1) ≡ (θ′, θ1′) ⇐⇒ ∃ f 6= 0 ∈ C∞(M), h 6= 0, p ∈ C∞(CM)

such that

θ′ = fθ, θ1′ = hθ1 + pθ, θ1′ = h̄θ̄1 + p̄θ.(16)

We can thus identify our CR structure as (M, [θ, θ1]). Then, we construct the product

M = M ×R. Parametrize the R direction by a function r, such that ∂r 6= 0. Set k = ∂r,

so that k is tangent to the R direction. M can then be equipped with a class of metrics,

[g]. For real functions, P 6= 0 and H and a complex function onM, these metrics are of

the form

g = 2P 2[θ1θ̄1 + θ(dr +Wθ1 +Wθ̄1 +Hθ)],(17)

where products denote a symmetrized tensor product, e.g. θ1θ̄1 = 1
2
(θ1 ⊗ θ̄1 + θ̄1 ⊗ θ1).

Note that we can see that g is an indefinite metric because ∂r 6= 0 is a null direction. Now,

if we replaced (θ, θ1, θ̄1) by a different element of the equivalence class, (θ′, θ1′) ∈ [θ, θ1],
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then the new metric g′ ∈ [g] can be rewritten in terms of (θ, θ1, θ̄1) with only the functions

P,H,W and the parameter r changed. The transformation from g to g′ can be captured

by the relation

g′ = σ2g + 2g(k)ϕ(18)

where σ 6= 0 is a real function and ϕ a 1-form on M. Together, (15) and (16) define a

class of Lorentz metrics, [g] adapted to the CR structure (M, [θ, θ1]). This defines a class

of lifts from a 3-dimensional CR structure to a spacetime.

Now, we will traverse the path from 4-dimensional spacetimes to 3-dimensional CR

structures, the path usually walked by physicists searching for solutions to Maxwell’s

and Einstein’s equations. These solutions exist in algebraically special spacetimes, and as

noted above, “impose a complex structure” on their spacetimes, uncovering an underlying

CR structure. The spacetimes we work with will be Robinson manifolds, named after

Ivor Robinson who worked heavily on null solutions to Maxwell’s equations in the 1950s.

Robinson manifolds are Lorentz manifolds equipped with a particular structure on their

complexified tangent bundles, called an integrable N -structure. We will need to develop a

few more definitions in order to make sense of this structural condition. Firstly, a vector

subspace N ⊂ V is maximally totally null if N⊥ = N . An N -structure on a Lorentzian

manifold of dimension 2n (n ≥ 2) is a complex subbundle of the complexified tangent

bundle, N ⊆ CTM such that every fiber of N is maximally totally null. The requirement

that a Robinson manifold be of even dimension is suggestive of an underlying complex

structure, so let us make this precise. LetM be a 4-dimensional Robinson manifold. Let

K ⊂ TM be the null line bundle defined by the condition that N ∩N = C⊗K, where N
denotes the N -structure on M. The Frobenius Theorem guarantees that M is foliated

by a 3-dimensional family of null curves tangent to K. The formal integrability of N
implies that these curves are indeed geodesics. We can then construct the 3-dimensional

manifold, M , which is the leaf space of the foliation of M, meaning that M consists of

the null geodesics tangent to K. We must also construct the quotient space N /(C⊗K).

This complex line bundle descends to T 1,0 on the quotient manifold M . We now have all

the necessary data, namely (M,T 1,0), to describe a CR structure.

The connections between CR and Robinson structures has been related to the theory

of electromagnetism, and in particular to null solutions of Maxwell’s equations. We will

close this section by developing this relation, culminating in some key results.
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The vector form of Maxwell’s equations and the Faraday tensor which will follow, are

defined in flat Minkowski space. Maxwell’s equations are given in vector form as

∇ · E = ρ(19)

∇×B =
1

c
(
∂E

∂t
+ j)(20)

∇× E = −1

c

∂B

∂t
(21)

∇ ·B = 0,(22)

where E is the electric field, B is the magnetic field, ρ is the charge density, j is the

current density, and c is the speed of light. One often introduces the Faraday tensor,

which subsumes both the electric and magnetic fields. The Faraday tensor is defined as

F =


0 Ex Ey Ez
−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 .(23)

As a two-form, we have

F = (Exdx+ Eydy + Ezdz) ∧ dt+Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy(24)

and the Hodge dual

∗F = −Exdy ∧ dz − Eydz ∧ dx− Ezdx ∧ dy + (Bzdz +Bydy +Bxdx) ∧ dt.(25)

Now we will broaden the reach of our electromagnetic theory to curved spacetimes,

by formulating the following two equations. The Hodge dual operator ∗ now denotes ∗g
where g is the relevant metric. We now reduce the four vector equations above to the

following two:

dF = 0(26)

d ∗ F = ∗j,(27)

where j denotes the 4-current. We call F a Maxwell field. F is said to be null if, in

addition to (26) and (27), we have F ∧ F = 0 and F ∧ ∗F = 0. Further simplification

is achieved by defining a self-dual Maxwell field, F̃ = F− i ∗ F. Then (26) and (27) are

condensed to

dF̃ = 0,(28)

and the null condition is simply

F̃ ∧ F̃ = 0.(29)
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Note that F̃ is a (2, 0)-form and thus a section of the canonical bundle. A CR structure,

(M, [θ, θ1]) is said to admit a null aligned Maxwell field [8] if there exists such a (2, 0)-

form, F̃ defined as above and satisfying (28) and (29). Note that this is equivalent to

admitting a closed, non-vanishing section of the canonical bundle, ζ = yθ ∧ θ1 (for y a

smooth complex-valued function) such that dζ = 0 but ζ 6= 0.

We will now present two results which tie local CR embeddability, spacetime lifts, and

Einstein conditions together. These theorems will be presented without proof because

they are not explicitly part of the approach to the present problem in this paper, but give

a sense of the sort of fascinating work which has been done at the nexus of Maxwell’s

equations, general relativity, and CR geometry. The first of these theorems is due to C.

Denson Hill, Jerzy Lewandowski, and Pawel Nurowski in [8].

Theorem 3.1. [8] If M is a sufficiently smooth strictly pseudoconvex 3-dimensional CR

manifold, then M is locally CR embeddable as a hypersurface in C if and only if

(1) M admits a lift to a spacetime whose complexified Ricci tensor vanishes on the

corresponding distribution of α-planes (where the distribution of α-planes is de-

fined as the set of vector fields X on M × R such that Xy F̃ = 0)

(2) and M admits a nontrivial null aligned Maxwell field associated to the CR struc-

ture.

The distribution of α-planes mentioned above is the N -structure corresponding to a

Robinson manifold. We also know that condition (2) is equivalent to the admittance of a

nonvanishing and closed section of the canonical bundle, by the discussion above. Note

that like Trautman’s conjecture, the result above deals with smooth, and not analytic

manifolds. In fact, Trautman’s conjecture (Conjectures 4.3 and 4.4 below), is equivalent

to Theorem 3.1 with condition (1) removed. Specifically, we hope to show that starting

from condition (2), there exists a choice of a spacetime lift such that condition (1) holds.

The next theorem is originally due to Lewandowski, Nurowski, and Jacek Tafel in [15].

Nurowski and Trautman restated it in [18] as follows:

Theorem 3.2. [18] If a CR structure M admits a lift to an Einstein-Robinson spacetime,

then M is locally embeddable.

Here an Einstein-Robinson spacetime means a Robinson manifold for which the under-

lying metric satisfies the vacuum Einstein equations. Theorem 3.2 indicates that there is

a deep connection between the Einstein equations and the Cauchy-Riemann equations,

and that furthermore the Einstein equations partially characterize CR embeddability.

This result can be contrasted with the first statement of Trautman’s conjecture at the



9

end of the next section, which replaces the Einstein condition with the requirement that

the Robinson spacetime admits a null solution to Maxwell’s equations.

4. Robinson’s Hopes and Trautman’s Conjecture

In 1960, Ivor Robinson theorized that every null solution of Maxwell’s equations de-

fined a corresponding shearfree null geodesic (SNG) congruence and that conversely,

every SNG congruence supports a null Maxwell field. In 1985, Jacek Tafel revisited this

Robinson Theorem. Tafel confirmed that null Maxwell fields do always determine a SNG

congruence, however it is not always possible to solve for a null Maxwell field starting

from SNG congruences [20]. Tafel’s examination of Robinson’s work can be summarized

in two lemmas.

Lemma 4.1. [20] Every null Maxwell field determines a SNG congruence.

Proof. We begin with a self-dual Maxwell field, defined earlier and denoted by F̃. The

null condition (29) implies that there is a 1-form κ such that

κ ∧ F̃ = 0.(30)

Equation (30) means that κ (with scaling permitted) is null. Additionally, equation (30)

implies that F̃ is simple, i.e. of the form F̃ = α ∧ β for 1-forms α and β. In fact, we can

determine that there must be a null vector within the span of {αp, βp} at every point

p ∈M . Given this, we can write F̃ as

F̃ = yκ ∧ α(31)

for y a non-vanishing complex function and α a complex 1-form with the permissible

transformation

α 7→ α′ = Bα + Cκ,(32)

for B 6= 0 and C complex functions. The spacetime metric, g, can be written in the form

g = κω + pαᾱ,(33)

for p a real positive function and ω a real 1-form such that the set {ω, α, ᾱ, κ} is linearly

independent. Now since equation (30) is equivalent to ky F̃ = 0, we can use the identity

LkF̃ = ky dF̃ + d(ky F̃)(34)

to show that (30) implies

LkF̃ = 0.(35)



10 IBRAHIM HAJAR

Equations (31) and (34) together imply

κ ∧ Lkκ = 0(36)

κ ∧ α ∧ Lkα = 0,(37)

where (36) tells us that the flow generated k consists of geodesics. Equation (37) follows

by noting that α is analogous to θ1 and then wedging with α. Using the form of the

metric given in (33), equations (36) and (37) are together equivalent to

Lkg = ag + κγ(38)

for a some function, and γ a 1-form. Equation (38) gives us a geodesic shearfree null

congruence. The nullity follows simply because κ was null. The congruence is shearfree

because we see that the flow generated by k acts by conformal transformations on the

screen space, k⊥/k, of the contact distribution. We see that the congruence consists of

geodesics because when we consider the contraction of (38) with k (and also use the fact

that κ is null as well as identity (34)), we see that for the flow lines of κ (where the flow

lines are denoted by ϕ) we have

∇ϕ′ϕ′ ∝ ϕ′(39)

which fits the geodesic equation for unparameterized curves. �

Lemma 4.2. [20] [19] [11] Every SNG congruence need not determine a null Maxwell

field.

Proof. The reasoning given here restates Tafel’s reasoning by combining results of Jean-

Pierre Rosay [19] and Howard Jacobowitz [11].

It can be shown that a spacetime admits a SNG congruence if and only if the metric

g can be given in the form of (33). Now if we consider null Maxwell fields, they must be

of the form (31), allowing us to write Maxwelll’s equations as

d(yκ ∧ α) = 0.(40)

Performing this computation yields dy + yd(κ ∧ α) = 0, which can be rewritten as

∂by + f(κ, α)y = 0.(41)

The operator ∂b is defined as

∂byp : T 0,1
p M → C(42)

∂by(X) = Xy ∀X ∈ T 0,1
p M.(43)

Now we note that the coefficient f(κ, α) may not always be analytic. Because of this,

equation (41) falls into a class of partial differential equations studied by Hans Lewy [16].
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Work by Rosay [19], Jacobowitz, and Francois Treves [12] has shown that equations of

the form (41) may not always be solvable. Thus while it is true that every null Maxwell

field does determine a SNG congruence, the converse is not always true. �

Continuing in the search for special solutions to Maxwell’s equations, Trautman put

forth a conjecture which made use of the CR 3-spaces associated to the curved spacetimes

of general relativity. The conjecture can be stated in physical terms which manifest its

heritage in Robinson’s Theorem:

Conjecture 4.3. If a Robinson manifold admits a nowhere vanishing null solution of

Maxwell’s equations, then the associated Cauchy-Riemann space is embeddable.

The approach to Trautman’s conjecture presented in this paper will function only in

CR 3-spaces, for which a reframing of Trautman’s conjecture will be more convenient.

This formulation substitutes a closed, non-zero (2, 0)-form in the canonical bundle for a

null Maxwell field. As it is presented in [22], the conjecture is stated as follows:

Conjecture 4.4. A 3-dimensional CR manifold, M locally admits a closed, non-vanishing

section, ζ of its canonical bundle if and only if if M is locally embeddable.

We note that being locally CR embeddable clearly implies the admittance of a closed

non-vanishing section of the canonical bundle. Thus most of the work lies in proving

the reverse implication. The approach to this we are suggesting is to make use of the

pseudo-Einstein condition, as detailed in the following section.

5. Pseudo-Einstein Structures and Canonical Bundles

The first aim of this section will be to show that closed, non-zero sections of the canon-

ical bundle are closely tied to pseudo-Einstein contact forms. Throughout this paper, M

will be a 3-dimensional (CR) manifold. This means that M is (2n+ 1)-dimensional with

n = 1. Since we work in 3 dimensions, we will make use of the n = 1 pseudo-Einstein

condition, (14). We begin by recalling the volume normalization condition for sections of

the canonical bundle. In 3 dimensions, we say that θ is volume-normalized with respect

to a (2, 0)-form ζ if

θ ∧ dθ = iθ ∧ (Ty ζ) ∧ (Ty ζ̄).(44)

Consider the following lemma.

Lemma 5.1. [13] Given any smooth non-vanishing (2,0) form ζ on M, there exists a

contact form θ that can be volume-normalized with respect to ζ.
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Proof. In 3 dimensions, we write our admissible coframe as {θ, θ1, θ1̄}. We may write an

arbitrary (2, 0)-form as ζ = θ ∧ θ1. Then recalling the properties of θ on the Reeb vector

field T , we can write

Ty ζ = θ1.

We now recall the first structure equation (8) in 3 dimensions

dθ = ih11̄θ
1 ∧ θ1̄.

Substituting the expression for Ty ζ in the above gives

dθ = ih11̄(Ty ζ) ∧ (Ty ζ̄)

Now simply wedging both sides of this equation with θ (possibly scaled by a smooth

positive function) gives

θ ∧ dθ = iθ ∧ (Ty ζ) ∧ (Ty ζ̄).

This is exactly the volume-normalization condition (44). �

We now move to show that a pseudo-Einstein contact form is equivalent to a particular

1-form being closed.

Lemma 5.2. [3] On M, θ is pseudo-Einstein if and only if the 1-form ω1
1+iRθ is closed.

Proof. The two sided implication can be shown directly by computing d(ω1
1 + iRθ).

From the relevant structure equation (12) with n = 1 we have

dω1
1 = Rh11̄θ

1 ∧ θ1̄ +∇1A1 1θ
1 ∧ θ −∇1̄A1̄ 1̄θ

1̄ ∧ θ.

It follows that

d(ω1
1 + iRθ) = Rh11̄θ

1 ∧ θ1̄ +∇1A11θ
1 ∧ θ −∇1̄A1̄1̄θ

1̄ ∧ θ

−Rh11̄θ
1 ∧ θ1̄ + i∇1Rθ

1 ∧ θ + i∇1̄Rθ
1̄ ∧ θ

= i∇1Rθ
1 ∧ θ + i∇1̄Rθ

1̄ ∧ θ +∇1A11θ
1 ∧ θ −∇1̄A1̄1̄θ

1̄ ∧ θ

= 2iRe (∇1Rθ
1 ∧ θ)− 2iRe(i∇1A11θ

1 ∧ θ)

= 2i(Re (∇1R− i∇1A11)θ1 ∧ θ).

The last expression contains the pseudo-Einstein condition (14), and hence is equal to

zero. Thus d(ω1
1 + iRθ) = 0, giving our result. �

Note that Hirachi has proven a stronger result, which says that an admissible coframe

can be chosen such that ω1
1 + iRθ is itself 0 [10].

We can use Lemma 5.2 to show that a pseudo-Einstein contact form is locally volume

normalized with respect to a closed section of the canonical bundle.
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Theorem 5.3. [3] θ is pseudo-Einstein if and only if, for every point p ∈M , there exists

a neighborhood U ⊆ M containing p, where θ is volume-normalized with respect to a

closed section of the canonical bundle.

Proof. We begin by choosing a coframe where h11̄ = δ11̄. We can write structure equation

(8) as

dθ = iθ1 ∧ θ1̄.(45)

Now, for p ∈ U ⊆ M , let θ be volume-normalized with respect to a section of the

canonical bundle, ζ. Since {θ, θ1} is a frame for (1, 0)-forms and ζ is a (2, 0)-form, we

may write ζ = λθ∧θ1 for some λ ∈ C∞(M,C). Plugging ζ into the volume normalization

condition (44) tells us that |λ| = 1, which importantly tells us that λ is not 0. This means

that we can write ζ = θ ∧ θ1 by redefining θ1 as λθ1. Computing the exterior derivative

of ζ gives

dζ = dθ ∧ θ1 − θ ∧ dθ1.

Using structure equations (8) and (9), we have

dζ = (iθ1 ∧ θ1̄) ∧ θ1 − θ ∧ (θ1 ∧ ω1
1 + θ ∧ τβ)

= −θ ∧ θ1 ∧ ω1
1

= −ω1
1 ∧ ζ.

Since ζ was closed we have that ω1
1 is a (1, 0)-form. Recall from (10) that ω1

1 is purely

imaginary. This allows us to write ω1
1 = iuθ for some u ∈ C∞(M,C). Taking the

exterior derivative of ω1
1 gives

dω1
1 = −uθ1 ∧ θ1̄ + i((∇1u)θ1 + (∇1̄u)θ1̄) ∧ θ.

Comparing this equation with structure equation (12) tells us that −u = R and i∇1u =

∇1A11 which in turn means that ∇1R− i∇1A11 = 0, making θ pseudo-Einstein.

Now to prove the converse implication, we assume that θ is pseudo-Einstein, and take

our old coframe {θ, θ1, θ1̄}. We can define a section of the canonical bundle,

ζ0 = θ ∧ θ1.

Using our previous computation of dζ, we know that

dζ0 = −ω1
1 ∧ ζ0.

By Lemma 5.2, the 1-form ω1
1 + iRθ is closed and, so for some function φ we may write

ω1
1 + iRθ = idφ.



14 IBRAHIM HAJAR

We can take φ to be real since ω1
1 is purely imaginary. This allows us to write

d(eiφζ0) = eiφ(ω1
1 + iRθ) ∧ ζ0 − eiφ(ω1

1) ∧ ζ0 = 0.

Since θ is volume-normalized with respect to eiφζ0, we have our closed section of the

canonical bundle. �

Now, by considering Lemma 5.1 together with Theorem 5.3, we arrive at the following.

Theorem 5.4. [3] [14] If M admits a closed, non-vanishing (2, 0)-form, then M admits

a pseudo-Einstein structure. Conversely, if M admits a pseudo-Einstein structure, then

in a neighborhood of every point, M admits a closed non-vanishing (2, 0)-form.

Now note two important facts. First, the canonical bundle KM of a CR manifold M

embedded in C2 is equal to the canonical bundle of C2 restricted to M, and dz1∧ dz2 is a

closed section of the canonical bundle of C2. Second, we recall that the exterior derivative

is a natural operator. Thus if we pull back the section dz1∧dz2 via the inclusion mapping

to M, then the section ι∗(dz1 ∧ dz2) = ζ is still closed.

This tells us that any CR manifold embedded in C2 admits a closed section of its

canonical bundle. We are led to the following corollary.

Corollary 5.5. If M is CR embeddable, then M admits a pseudo-Einstein structure.

6. Conclusion

The work of Ivor Robinson and Andrzej Trautman has shed light on the intricate and

surprising links between electromagnetic theory, general relativity, and CR geometry.

The work of Roger Penrose on twistor theory was significantly influenced by Robinson’s

studies of SNG congruences.

While much of the work on Trautman’s conjecture has been conducted with an eye

toward the 4-dimensional Lorentz setting of general relativity, the approach put forth in

this paper functions in 3 dimensions, and makes use of the pseudo-Einstein condition.

Our reasoning allows us to conclude that locally, closed sections of the canonical bundle

are equivalent to the admittance of a pseudo-Einstein structure. We also see that CR

embeddability implies the admittance of a pseudo-Einstein structure. These findings

provide the basis to posit that the pseudo-Einstein condition will be key to proving

Trautman’s conjecture. Let us denote our 3-dimensional CR manifold by M and a

closed, non-vanishing section of the canonical bundle by ζ, so that we can summarize

these conclusions in the following schematic:

∃ ζ 6= 0 ∈ KM closed⇐⇒ M is pseudo-Einstein⇐= M is locally CR embeddable.(46)
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The remaining implication would be to show that if M is pseudo-Einstein, then M is

locally CR embeddable.

The next phase of this project will explore Fefferman defining functions coming from

the complex Monge-Ampère equation and the arising Kähler-Einstein metrics [7]. We

hope to connect the pseudo-Einstein condition with the boundary condition for a Kähler-

Einstein extension problem on the pseudoconvex side of CR 3-dimensional manifolds.
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