
University of California, San Diego

An Evaluation of Hyperparameter Tuning
Methods in SVM

Huanxi Liu

Advisor:
Professor Ery Arias-Castro

Department of Mathematics

Contents

1 Introduction 3

2 Support Vector Machine 5
2.1 Separating Hyperplane . 5
2.2 The Support Vector Classifier . 7
2.3 Kernel Trick . 8

3 Tuning Hyperparameters 10
3.1 Cross Validation . 10
3.2 Grid Search . 11
3.3 Genetic Algorithm . 11
3.4 Particle Swarm Optimization . 13

4 Experiments and Results 15
4.1 The Experimental Setting . 15
4.2 Performance Metrics . 15
4.3 Results . 16

5 Combination of Grid Search and Genetic Algorithm 20
5.1 Warm Start Genetic Algorithm . 20
5.2 Credit Risk Dataset . 20
5.3 Results . 21

6 Conclusion 23

Acknowledgments

REFERENCES

2

Chapter 1

Introduction

In many statistical learning models, hyperparameters are important as they can con-
trol the overall behavior of a model. A small change in hyperparameters may change
drastically in the performance of the model. The traditional way of performing hyper-
parameter optimization is grid search, which is also known as the parameter sweep.
This method performs an exhaustive search through a pre-defined subset of the hy-
perparameter space of a model. The hyperparameters that provide the best cross-
validation score is usually chosen for the model.

The problem of finding optimal hyperparameters can be viewed as an optimiza-
tion problem, to find the best value of hyperparameters which would optimize the
performance of a model. There are other ways of optimizing hyperparameters, such
as genetic algorithm (GA) and particle swarm optimization (PSO) for example. Both
methods are biology motivated search-based optimization technique that mimic nat-
ural selection and animal behaviors respectively. They are known for their generality,
versatility and frequently used to find optimal or near-optimal solutions in difficult
problems which would otherwise require an extremely long time to solve.

There have been multiple applications of these algorithms in science, engineering
and finance. GA can be applied to structure optimization. The main objective in this
problem is to minimize the weight of the structure subject to maximum and minimum
stress constrains on each member. GA is also used in medical imaging system such
as digital subtraction angiographies (DSA) mentioned by the work from Ghaheri et
al. [8] and the book by Gao [7] .

Both GA and PSO are iterative algorithms, repeatedly updating a population of
individual solutions until the population converges. We could take the advantage of
these algorithms by modifying the target function to achieve the goal of optimizing
machine learning model’s hyperparameters.

There have been works that show PSO and GA’s success in improving hyperpa-
rameters in multiple machine learning models; for example work by Li [14] and Chen
et al. [4] demonstrate PSO’s advantage in SVM on forecasting stock index. In a
similar manner, this paper will evaluate PSO and GA’s effectiveness and efficiency
in optimizing hyperparameters and benchmark against grid search methods. In ad-
dition, it will study if the size and feature dimension of the dataset will affect the
overall performance. Lastly, a combination of genetic algorithm and particle swarm
is also proposed and evaluated.

3

This paper will focus on the two hyperparameters in non-linear support vector
machine (SVM) method. SVM models depends on a regularization parameter C and
the bandwidth for particular kernel functions. The radial basis function (RBF) was
used as the kernel function. The value of C controls mis-classification rate, and the
bandwidth for RBF kernel commonly influences the model complexity [15].

This paper will first introduce some backgrounds of SVM along with its foun-
dation, the optimal separating hyperplane. Then this paper will cover the details of
hyperparameter tuning methods that includes grid search, genetic algorithm and par-
ticle swarm optimization. The paper will conduct experiments on synthetic dataset
to the evaluate multiple simulated datasets with different size. Lastly, a combination
of grid search and genetic algorithm hyperparameter tuning method will be studied
on the real dataset. From the experimental results, we offer general conclusion and
suggestions for each hyperparameter optimization method.

4

Chapter 2

Support Vector Machine

2.1 Separating Hyperplane

One important topic to be discussed prior support vector machine is the separating
hyperplane. In classification problems, a model tries to separate two or more classes.
There is a separating hyperplane that represents the model’s the decision, which
is also known as the decision boundary. For now we focus on the classifiers that
construct linear decision boundaries to separate the data, that is, classifiers that
computes a linear combination of the input features to return the predicted label. A
prominent example is the perceptron, which rely on the loss function to minimize the
distance between misclassified points and the decision boundary [17]. As a result,
they find a separating hyperplane by minimizing the distance of misclassified points
to their decision boundary. However, there could be more than one solution to the
classification problem and it’s hard to tell which one is the best solution.

In the figure below from Elements of Statistical Learning [10], it demonstrates
that there could be multiple solutions found by algorithms like perceptron.

Figure 2.1: A toy example with two classes separable by multiple hyperplanes [10].

There are two classes (colored by blue and green) separated by three hyperplanes.
The orange line is the least squares solution, which misclassifies one training point.

5

The two blue separating hyperplane are found by the same perceptron algorithm with
different random initialization value.

In the work by Ripley [16] a number of problems within perceptron algorithm are
summarized below:

• In a separable dataset, there are many solutions, the resulting decision boundary
depends on the initial value

• In a non-separable dataset, the algorithm takes longer time and may not not
converge

This leads us to the problem of locating an optimal separating hyperplane. An
optimal separating hyperplane separates two classes while maximizing the distance
between the closest point from either class and the decision boundary [6]. This
distance is also known as the margin. This method provides a unique solution to
the separating hyperplane problem, and the effort of maximizing the margin leads to
better classification performance.

With the same data as shown in Figure 2.1, the figure below from the Elements
of Statistical Learning shows the optimal separating hyperplane [10].

Figure 2.2: Optimal separating hyperplane .

Again the two classes are colored in red and green. The blue line in the middle is
an optimal separating hyperplane. (The red line is the decision boundary obtained
by logistic regression which is very close to the optimal separating hyperplane). The
yellow shaded area represents the vertical distance between points from either class to
the decision boundary, which is called the margin. This line is found by maximizing
the margin. The three blue colored points are called the support points which were
used to produce this decision boundary. It further gives the name of the support
vector machine classifiers.

A major difference between the optimal separating hyperplane and other algo-
rithms is that it focuses more on the points that lies around the boundaries between
two classes, while algorithms like linear discriminant analysis depends on all of the
data, even the ones that arethe far away from the final decision boundary.

6

2.2 The Support Vector Classifier

The optimal separating hyperplane demonstrated in section 2.1 is in fact a linear
support vector machine classifier in a perfect separable dataset. For the rest of this
chapter, we describe support vector machine and its classification usage in different
scenarios.

Support vector machine (SVM) is a supervised learning model known for strong
generalization capabilities for regression and classification. It’s developed by Vladimir
Vapnik with colleagues [6] at AT&T Bell Laboratories. In binary classification prob-
lems, SVM builds model from a set of training sets, each sample is marked one of
the two classes. SVM assigns labels to one of the classes predicted, following a non-
probabilistic boundary. An SVM classifier tries to maximize the width of the gap
between two classes to find the optimal hyperplane that can serve as a boundary.
When data are non-linearly separable, SVM adopts a kernel trick to transform the
data into higher dimension feature space. Some typical kernel function includes linear
kernel, polynomial, radial base function and sigmoid. Each function has parameters
associated with the overall model performance.

In a classification problem, consider a training dataset that contain N pairs
(x1, y1), ... ,(xN , yN), where xi ∈ Rp is feature vector with size p and yi ∈ {−1, 1} is
the i-th binary class label. The SVM classifier is defined as a hyperplane given by
f(x) = xTβ+β0 = 0. β is a unit vector such that ‖β‖ = 1 as a result of regularization.
A SVM makes prediction P (x) by this hyperplane decision boundary:

P (x) = sign[f(x)] (2.1)

Note that if yif(xi) > 0, it indicates a correct classification. We define the margin
of a SVM classifier to be M , namely the largest distance between points from the
positive and negative class. SVM tries to maximize this margin in finding the most
optimal decision boundary, which is the distance from a point x to the hyperplane
f(x) = xTβ + β0 = 0. In a perfect separable case, yif(xi) > 0 ∀i.

max
β,β0,‖β‖=1

M (2.2)

with subject to yi(x
T
i β+β0) ≥ M , i = 1,...,N . Note that M=1/ ‖β‖, so equation 2.2

can be re-written as

min
β,β0
‖β‖ (2.3)

with subject to yi(x
T
i β + β0) ≥ 1, i = 1,...,N .

Suppose that the classes are not separable, we still maximize M ; however, we
tolerate some points to be on the opposite side of the margin. A slack variable ξi is
defined to be the distance between the misclassified point to the wrong side of the
margin. The margin now is maximized subject to

∑
ξi ≤ constant. The problem

now becomes

min
β,β0

1

2
‖β‖2 + C

N∑
i=0

ξi (2.4)

7

subject to ξi ≥ 0, and yi(x
T
i β + β0) ≥ 1 − ξi ∀i. While the first term controls the

margin, the second term associated with the cost C penalizes the number of samples
inside the wrong side of the margin. It can be viewed as a level of sensitivity; a high
cost would lead to over-fitting with small margin while a small cost would lead to
under-fitting with large margin. Hence the value of hyperparameter is crucial.

2.3 Kernel Trick

In case of non-linear separable, a kernel transformation function K(x, x′) =
〈h(x), h(x′)〉, is used to enlarge the feature space. We have our prediction in
f(x) = xTβ + β0 = 0. The dimension of the new feature space is allowed to get
very large. This is used to help separate the class in higher dimension when it’s im-
possible in the lower dimension. Consider a transformation h(x) in the feature vector,
calculating < h(x), h(x′) > requires calculating h(x) first, which can be computation-
ally expensive. The kernel trick allows simple calculation that does not need to know
the transformation h(x) but only the kernel function, which is fast and helpful in the
optimization. Consider two samples x and x′, some typical kernel functions are:

• Polynomial kernel: K(x, x′) = (xTx′ + b)d where d is the degree of polynomial
function and b is a constant

• Radial basis function kernel (RBF) kernel: K(x, x′) = exp(−γ‖x− x′‖).

• Sigmoid kernel: K(x, x′) = tanh(γxTx′ + b) where b is a constant

Figure 2.3 from R-bloggers [11] demonstrates the SVM boundaries visualized in
two dimensions using various kernel functions on the feature space.

Figure 2.3: Different kernel based SVM boundaries

This paper use RBF kernel for experimental purposes. The γ hyperparameter
determines the bandwidth of the model, i.e. how far the influence of a single sample

8

reaches. Since there is a negative sign in front of γ, low values indicates far influence
of one training point and high values indicate close influence of one training point.
Because a high γ makes the resulting value of the kernel function is very small. The
performance of the SVM model highly depends on the γ parameter; with a low γ, the
curve of the decision boundary is relatively flat and thus the decision region is very
broad, only includes the support vectors themselves. With a high γ, the curvature
of the decision boundary is strong, which generates islands of decision-boundaries
around data points that can lead to over-fitting.

Figure 2.4 by Chen [5] demonstrates the effect of γ on the SVM boundaries with
a RBF kernel.

Figure 2.4: RBF SVM with Different Gamma

As we see that the larger the value of gamma, the more complex the classifier
becomes. The two hyperparameters C and γ of a RBF kernel is used in evaluating
the performance of different hyperparameter tuning methods.

9

Chapter 3

Tuning Hyperparameters

In this section, we will cover the methods that this paper aims to evaluate and
compare. The benchmark test will be made on the grid search method, one of the most
straightforward and popular choice in tuning hyperparameters. Then this chapter will
describe the essentials of two iterative optimization methods, genetic algorithm and
particle swarm optimization, which under specific implementation can be used for
tuning hyperparameters.

3.1 Cross Validation

Given a dataset, we could train our machine learning model on this specific dataset.
However, achieving high performance on the given dataset may not always be the
goal, we wish our model to achieve high performance on the new (unseen) data so
we could generalize our machine learning model beyond the given dataset. In fact,
when we work too hard on our model to achieve the highest performance on the
given dataset, it may pick up the noise and failed to obtain a general prediction rule
when used on unseen data [2]. This is often referred as overfitting. Cross-validation
is primarily used to estimate the performance of a machine learning model on the
unseen data. That is, to use a limited sample in order to estimate how the model is
expected to perform in general [3].

During cross-validation, we purposely hide a portion of the given data to be used
to mimic the unseen data and we train on the rest. After the training process, we
evaluate our performance on the testing dataset. The procedure is often known as
the k-fold cross-validation.

The general procedure of cross-validation is as follows:

10

Algorithm 1: k-fold cross-validation

Shuffle the dataset randomly;
Split the dataset into k groups;
for each unique group do

Take one group as the testing data set
Take the remaining groups as the training data set
Fit a model on the training set and evaluate it on the testing set
Retain the evaluation score and discard the model

Evaluate the model according to the mean of the k evaluation scores

Note that each entry in the dataset is assigned to belong to an individual group and
stays for the duration of the procedure. Each entry is guaranteed to be used for
testing 1 time and for training k-1 times. In our experiment, a k value of 5 is chosen.

3.2 Grid Search

Grid search is an exhaustive search performed on a the specific value of hyperparam-
eters of a model. Similar to its name, the grid search uses a grid made of different
combinations of pre-specified hyperparameter choices. A grid used for SVM with
RBF kernel will have the format of the form: C1, γ1 · · · C1, γM

...
. . .

...
CN , γ1 · · · CN , γM


assuming there are N choices for C and M choices for γ. Each pair in the grid can be
viewed as a potential candidate to the SVM-RBF model and it will be tested out. Grid
search can be viewed as a brute-force approach, that is exhaustive but on a limited set
of prespecified value. Grid search remains one of the easiest methods to implement
when selecting values for hyperparameters. However, trying every candidate out may
not be efficient and can be extremely time consuming when searching for an optimal
hyperparameter especially when the search space is large. Hence, we introduce the
following iterative optimization methods.

3.3 Genetic Algorithm

3.3.1 Motivation

Genetic Algorithms (GAs) were developed by Prof. John Holland and his students
and colleagues at the University of Michigan in 1970’s [9]. Genetic algorithm is a
branch of the field of study evolutionary computation. These algorithms try to solve
for the optimal solution of a given function by mimicking the biological processes of
reproduction and natural selection. Consider each potential solution as an individual
in the entire population. At each time step, the algorithm evaluates each solution’s
fitness value, according to a predefined fitness function. The individuals with low
fitness will be eliminated, as in natural selection where less fitted individuals will go

11

extinct. In the next time step, new individuals will be populated based on those
surviving individuals in a similar manner of genetic breeding and mutation. As this
process repeats multiple times until converge, the final surviving individuals represent
the best solution it finds.

3.3.2 Implementation

Algorithm 2: Genetic Algorithm

Generate initial population;
Compute fitness of each individual;
while The population has not converged do

Selection;
Crossover;
Mutation;
Compute fitness of each individual;

end
Termination

The basic components to genetic algorithms are:

• Initial population: algorithm begins with a set of individuals, where each indi-
vidual is a value in the feasible set

• Fitness function: determines how fit an individual is according to the value of
the function to be optimized

• Selection: determines which individual will survive and pass their genes to the
next generation according to their fitness value

• Crossover: mimics biological process to produce the next generation based on
surviving individuals

• Mutation: random mutation of individuals in the new generation

• Termination: Algorithm terminates when the population converges (does not
produce offspring significantly different than previous generation). Then the
algorithm has provided a set of solutions to our optimization problem.

In the setting of tuning SVM’s hyperparameters, each individual contains two
genes, one represents the cost C and one represents the γ . The fitness function is set
to be the 5-fold cross validation error on the training dataset, the lower the fitness
function value, the better the individual.

After computing the fitness value (validation error), if the population has not
converged, crossover and mutation will begin. Since both parameters take numerical
values, they will be turned into binary representation in order to mimic the genetic
sequence in process of crossover and mutation. Crossover combines part of parent 1
and part of parent 2’s genetic sequence (binary representation of numerical values)

12

to produce an offspring. During mutation, a number of places on offspring’s genetic
sequence will be changed with a low random probability to maintain diversity within
the population.

When the population has converged after a number of iterations, the individuals
within the population will all have similar genes, each of them representing a pair of
hyperparameters C and γ. The output of genetic algorithm will be the best set of
hyperparameters it finds to be used in this SVM model.

3.4 Particle Swarm Optimization

3.4.1 Motivation

Similar to genetic algorithm, particle swarm optimization (PSO) is a computational
method that optimizes a problem (function) by finding optimal hyperparameters it-
eratively. Instead of eliminating bad solution candidates, PSO tries to improve a
candidate solution regarding to a measure of fitness. PSO was first introduced by
Kennedy, Eberhart and Shi [13], the original intent was to simulate social behav-
iors. Kennedy and Eberhart’s book on PSO describes many philosophical aspects
and swarm intelligence. An survey of PSO applications is made by Poli [18] helped
spread the versatility of PSO.

PSO makes few or even no assumptions about the problem (function) and it is
able to search large spaces of candidate solutions. However, methods such as PSO
do not guarantee that an optimal solution can ever found. An advantage of PSO is
that it does not rely on the gradient of the problem being optimized i.e., the function
does not need to be differentiable. This characteristic is what makes PSO performs
well in complex problems where differentiation is almost impossible such as tuning
hyperparameters.

An intuitive explanation of PSO as follows: consider a swarm of birds (solution
candidates) looking for food (optimal solution). Neither of them knows where the
food is; however, they are able to communicate with each other and know how close
they are from the food (by fitness function). In the next iteration, birds will update
their location. Birds who are far from the food will move toward those who are close
and the above process will repeat until the population has converged.

For each particle, its location represents a solution to the optimization problem.
Its velocity will guide it the direction and the magnitude to move in the next iteration.
Each particle is able to communicate with other particles and share location, and
velocity.

13

3.4.2 Implementation

Algorithm 3: Particle Swarm Optimization

Generate initial swarm population;
Compute fitness of each individual;
while The population has not converged do

Update pBest and gBest;
Calculate velocity for each particle;
Use pBest and gBest to update each particle’s velocity and location;
Compute fitness of each individual;

end
Termination

The pBest is the position that yielded the best fitness value of a single particle;
similarly, gBest is the position that yielded the best fitness value of the entire swarm
population. After the two best values are determined, the position and velocity of
the particles can be updated by the following:

vk+1
i = wvki + c1r1(pbest

k
i − xki) + c2r2(gbest

k − xki) (3.1)

In the equation, w is the inertia weight on the velocity from previous iteration to
prevent from particles moving too rapidly. vki is the velocity of the i-th particle at
the k-th iteration, and xki is the current position (solution) respectively. c1 and c2 are
positive constants, along with w that controls the rate of convergence. r1 and r2 are
two random uniform variables between 0 and 1, contributes to random exploration in
the space.

The formula can be viewed in three components, fist part contributes to the inertia
from last interation’s velocity. The second component drives the particle moving
toward its own best location and the last component brings the particle close to the
best location that the entire swarm population has discovered.

After calculating the velocity, the location will be updated with the below equa-
tion:

xk+1
i = xki + vk+1

i (3.2)

This concludes the updating process of the particles. The fitness value will be
recomputed based on the new information and the algorithm will repeat until the
population has converged. The final position of the particles will be the solution to
the optimization problem (function).

Similarly, the fitness function is replaced with the 5-fold cross validation error on
the training dataset for tuning hyperparameters purposes.

14

Chapter 4

Experiments and Results

4.1 The Experimental Setting

The goal is to compare the effectiveness of tuning parameters with grid search, genetic
algorithm and particle-swarm optimization. In order to do so, we use random dataset
generated by scikit-learn (also known as sklearn) built-in libraries, make circle and
make classification and we evaluate the prediction accuracy on a SVM model with
RBF. With each dataset, the pair of SVM hyperparameter (C, γ) is being optimized
using three methods. To access the effectiveness, equal number of evaluations are set
for all three methods: Grid Search is a grid made of 10 choices of C and 10 choices of
γ equally spaced between 0.0001 and 10, GA is set with 20 iterations and a population
size of 5, PSO is set with 20 iterations and 5 particles. All bring to a total of 100
evaluations for each method.

The size of the generated dataset is also varied to study. Size of the dataset is
varied between 200 and 1000 with a step size of 25; at each size, dataset is re-generated
5 times.

4.2 Performance Metrics

To quantify the performance, we chose the parameters obtained from the best 5-fold
cross-validation score and evaluate model performance on the testing set as well as
their execution time. The performance is evaluated as the percent of data not being
correctly classified (percent error). For better visualization purpose, all the testing
errors were divided by the error by grid search method. Hence, the error grid search
method is at 100, meaning a testing error of 100% with respect to grid search’s testing
error. If PSO achieves 80%, it means that PSO’s testing error is 80% of grid search’s
testing error.

15

4.3 Results

4.3.1 Sklearn make circles Dataset

In this experiment, we tested on the dataset generated using the sklearn’s built-in
package make circles. It generates a dataset with a feature vector of dimension 2,
which makes a large circle containing a smaller circle in 2-dimensional space. An
example is shown in figure 4.1 and 4.2

Figure 4.1: Example of make circles with size
100

Figure 4.2: Example of make circles with size
1000

A positive noise level is being used.
To test the effect of data size in the performance of three methods. We experi-

mented with size from 200 to 1000 with a step size of 25. At each size, dataset is
generated 5 times.

Figure 4.3: Methods Performance in make circles

The performance comparison of three methods across different dataset size is
shown in figure 4.3. Note that the y − axis is the percent error relative to the
grid search. Hence the red line is always capped at 100 for grid search. We found
that PSO and GA demonstrated better performance in small to middle dataset size.
For example, for size equals to 200, PSO and GA achieves about a 10-15 percent

16

improvement than grid search with same number of evaluations. Three methods
achieved similar performance in large dataset. When the dataset is small, there are
more freedom in points whereas when the dataset is large, as in figure 4.2, there aren’t
much improvements from different hyperparameter tuning methods to overcome the
noise. It follows the intuition that tuning hyperparameters has minimal effect when
facing a large and noisy dataset.

Figure 4.4: Method Time Consumption in make circles

Figure 4.4 demonstrates the run time for each method. Given that PSO and GA
run additional procedures than grid search, the run time usage shows that grid search
requires the least amount of run time with same number of evaluations of all methods.
The difference is bigger at high dataset size. However, because of the implementation
difference, the run time can be further improved. For example, implement back-end
in C++ than in Python.

4.3.2 Sklearn make classification Dataset

We also tested on the dataset generated using the sklearn’s built-in package
make classifications. It generates dataset with a feature vector with specified di-
mension. A sample dataset visualized with two features in 2-dimensional space is
shown in figure 4.5

17

Figure 4.5: Example of make classification

A positive noise level is also being used to make non-linear separable dataset.
In this experiment, we focused on the effect from different number of features in

the performance of three methods. We experimented with a dataset with size 100
and 1000 and number of features range from 3 to 10. At each step, the dataset is
re-generated 5 times.

Figure 4.6: make classifications with size 100 Figure 4.7: make classifications with size 1000

The performance comparison of three methods is shown in Figure 4.6 and 4.7.
The y − axis is again the percent error relative to the grid search. We noticed the
consistency that at smaller dataset, PSO and GA demonstrated better performance
with some degree of variation. However, when the dataset is large, PSO and GA may
not outperform grid search with equal number of evaluations. The performance of
PSO and GA can be effected by the large feature space, a higher number of iterations
may help achieve a better performance. We noticed an overall higher variance on
make classifications than make circles, this can contribute to the complete random-
ness with make classifications whereas make circles generates dataset while retaining
a circular shape.

18

Figure 4.8: Method Time Consumption in make classifications

Figure 4.8 demonstrates the run time for each method in the smaller dataset (size
= 100). The pattern is repeated as in figure 4.4 that the grid search method requires
less run time with same number of evaluations for all methods. We also noticed that
the run time increases as number of features increases.

19

Chapter 5

Combination of Grid Search and
Genetic Algorithm

5.1 Warm Start Genetic Algorithm

As shown in Chapter 3, we observed the advantage of GA and PSO in finding optimal
set of hyperparameters with equal number of evaluations. We could further extend
advantage of PSO and GA by initiating a warm start. Note that the boundaries of
hyperparameters in SVM are only required to be strictly positive, C, γ > 0. Accord-
ing to the paper by Hsu et al.[12], exponentially growing sequence of C and γ are
recommended, for example from 2−11, 2−9, ..., 213, 215. The vast range of search space
results in a huge time and computation consumption for GA and PSO due to their
iterative nature. Hence we propose a combination of GS and GA method in tuning
SVM’s hyperparameters.

We first use grid search to locate a general range of hyperparameter values. Based
on grid search’s result, we then set the boundaries of C and γ accordingly in the
genetic algorithm. The output of the genetic algorithm is the best value of hyperpa-
rameters it finds.

5.2 Credit Risk Dataset

Consider this very large and complex dataset, the credit risk dataset. It’s real dataset
that contains customer’s demographic and credit card information such as their age,
salary, marital status, credit card limit, credit card category, etc. This dataset is
uploaded to Kaggle from LEAPS website [1].

This dataset contains 10127 samples and 19 features, a condensed list of features
shown as following:

• Customer Age: Demographic variable - Customer’s age in years

• Gender: Demographic variable - M=Male, F=Female

• Dependent count: Demographic variable - Number of customer’s dependents

• Education Level: Demographic variable - Educational level of the customer

20

• . . .

• Avg Utilization Ratio: Average card utilization ratio

• Attrition Flag: class label, 0 for existing customer, 1 for attired customer

5.3 Results

With this dataset, a total of three experiments were performed in tuning hyperpa-
rameters. The first pair of hyperparameter is done by using grid search only. We used
two grids each with 225 evaluations, 15 choices for cost and 15 choices for gamma.
The first grid search for range between 2−11, 2−9, ..., 213, 215. As shown in figure 5.1,
the cost with value between 21 and 215 along with a gamma value between 2−11 and
2−9 provides the lowest cv error, the green boxed region. The second grid with equal
space is then used again to search for the space described above. There are total of
15x15x2 = 450 evaluations.

Figure 5.1: Grid Search Heatmap

The second method of tuning is using genetic algorithm alone. The minimum
boundary is set to be 2−11 and the maximum boundary is 215. To be comparable
with grid search, the population size is set to be 15 with 30 iterations, which brings
a total of 450 evaluations.

Lastly, the method of combining grid search and genetic algorithm is used. Grid
search is first used to locate a general boundary for hyperparameters between 2−11

and 215. The new range of C and γ is decided according to figure 5.1. This is used to
set the boundaries for genetic algorithm and the population size is set to be 15 with
15 iterations. In total there are 450 evaluations.

The results are summarized below:

21

Method Time Usage (in seconds) Testing Error
Grid Search 55.3 15.93%

Genetic Algorithm 88.2 15.93%
GS + GA 67.7 15.88%

Table 5.1: Comparison of methods on credit dataset

We noticed that when using genetic algorithm alone, it didn’t obtain a better
hyperparameter solution as we seen in the previous experiments. This might caused
by the vast space (between 2−11 and 215) to search for while 450 evaluations are not
enough. In previous experiments, the space of hyperparameters is only between 0.0001
to 10. However, once we obtained a smaller range after using the first grid in figure
5.1, genetic algorithm was able to produce a better model than using another grid.
The combination of grid search and GA demonstrates potential of finding optimal
hyperparameters. Nevertheless, the improvement is very minimal in such a complex
dataset. It’s important to know that tuning hyperparameters may not cause drastic
improvements as further improvements may need to be done on the model or the data
itself.

The slight improvement from tuning hyperparameters can be demonstrated by
the convergence curve when using GA and PSO alone.

Figure 5.2: Convergence Curve of PSO and GA

Out of 15 iterations, both methods PSO and GA reached their minimum once in
the second iteration. The improvements is neither significant, the error reduced from
15.93% to 15.88%. It’s true that for some large and complex datasets, they are not
very sensitive to small change in hyperparameters.

22

Chapter 6

Conclusion

In this paper, we compared a number of hyperparameter tuning methods on support
vector machines in binary classification problems. In contrast to some of other works,
this paper emphasized on the robustness of particle-swarm optimization and genetic
algorithm. That is, will these two methods always obtain better hyperparameters
than grid search given the same number of evaluations?

We observed that the performance of the methods depends on the dataset. In
section 4.3, when the dataset is simple as make circles, we observed that PSO and
GA are able to obtain better hyperparameters than grid search with a sacrifice of
run time. However, when the size and the complexity of the dataset increases, the
advantage is diminishing. As shown in figure 4.1 and 4.2, dataset with size 100 gives
more space for the model to be modified in achieving higher classification accuracy
whereas when the size is 1000, two classes are more blended together, even both have
an equal noise level at 0.1 when generating.

We also tested the effect of feature spaces in these methods’ performance. A sim-
ilar pattern was observed, when the dataset is small, the methods are not sensitive
to the number of features and PSO, GA are able to outperform grid search in most
of the cases. When the dataset is large, the performance are mixed with PSO and
GA outperform grid search in some cases. We also found more variance in the perfor-
mance from make classifications than make circles, it can be that make classifications
generates samples on random locations while make circles always produce samples in
a circular shape. This again reinforced that the performance of the methods is de-
pendent on the dataset.

Lastly, to combine the advantage of grid search and these iterative methods, we
proposed the warm-start genetic algorithm. We carried out the experiment on a
real dataset that is more complex. Since the optimal hyperparameters for SVM
could exist through the entire positive number space, we can use grid search to first
filter a potential area for hyperparameters. Then we use this information to set
the boundaries for the genetic algorithm to find the optimal hyperparameters. Grid
search combined with genetic algorithm is able to outperform grid search and genetic
algorithm alone with a slight higher prediction accuracy. However, when examine the
convergence plot, we found that the algorithm stopped decreasing since the second
iteration. Along with the heat-map we found the performance difference by different
choices of hyperparameters is not significant.

23

Iterative methods like particle-swarm optimization and genetic algorithm are able
to outperform traditional grid search method given the same number of evaluations in
most of the cases. However, we could further benefit from PSO and GA in case when
a model has too many hyperparameters (e.g. neural networks) where grid search
could fail since the number of evaluations increase significantly with each additional
hyperparameter. Nevertheless, PSO and GA demonstrates the potential of finding
better hyperparameters given their versatility and generality.

Link to Github repo:
https://github.com/huanxiliu99/Eval-Hyperparameter-Tuning-Methods

24

Acknowledgments

Here I would like to appreciate the help and support I received from my advisor,
Professor Ery Arias-Castro. It’s been a great journey working along with him in the
past quarters. I also want to thank to my peers in providing valuable insights and
feedbacks.

25

Selected Bibliography Including
Cited Works

[1] Leaps - applied data science & ml certification program.

[2] Overfitting in machine learning: What it is and how to prevent it, May 2020.

[3] J. Brownlee, What is the difference between test and validation datasets?, Aug
2020.

[4] J. Chen, H. Chen, Y. Huo, W. Gao, et al., Application of svr models in
stock index forecast based on different parameter search methods, Open Journal
of Statistics, 7 (2017), p. 194.

[5] L. Chen, Support vector machine-simply explained, Jan 2019.

[6] C. Cortes and V. Vapnik, Support-vector networks, Machine learning, 20
(1995), pp. 273–297.

[7] S. Gao, Bio-Inspired Computational Algorithms and Their Applications, BoD–
Books on Demand, 2012.

[8] A. Ghaheri, S. Shoar, M. Naderan, and S. S. Hoseini, The applications
of genetic algorithms in medicine, Oman medical journal, 30 (2015), p. 406.

[9] D. E. Goldberg and J. H. Holland, Genetic algorithms and machine learn-
ing, (1988).

[10] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference, and prediction, Springer Science & Business
Media, 2009.

[11] Hefinioanrhys, Support vector machines with the mlr package: R-bloggers, Oct
2019.

[12] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., A practical guide to support
vector classification, 2003.

[13] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceed-
ings of ICNN’95 - International Conference on Neural Networks, vol. 4, 1995,
pp. 1942–1948 vol.4.

26

[14] Y. Li and Y. Zhang, Hyper parameter estimation method with particle swarm
optimization, arXiv preprint arXiv:2011.11944, (2020).

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Ma-
chine Learning Research, 12 (2011), pp. 2825–2830.

[16] B. D. Ripley, Pattern recognition and neural networks, Cambridge university
press, 2007.

[17] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton Project
Para, Cornell Aeronautical Laboratory, 1957.

[18] Y. Zhang, S. Wang, and G. Ji, A comprehensive survey on particle swarm
optimization algorithm and its applications, Mathematical Problems in Engineer-
ing, 2015 (2015).

27

