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List of Symbols

C the (hidden) chain of Markov Model

(Ci, ci) Ci is the i-th hidden component in C, and ci represents the exact hidden state
occupied by the chain at time t = i

X the observation chain of Hidden Markov Model

X−t the observation chain with missing value at time t

D set of time t with missing values

X−D the observation chain with missing value in the set D

(Xi, xi) Xi is the i-th observed component in X, and xi represents the exact obser-
vation at time t = i

A transition matrix of Markov Model

aij the (i, j) element of matrix A: transition probability from state i to state j

B emission matrix of Hidden Markov Model

bj(k) the (j, k) element of matrix B: emission probability of observation k under the
condition of hidden state j

B(xt) the diagonal emission matrix

Bii(xt) the (i, i) elment of matrix B(xt): emission probability of observation xt under
the condition of hidden state j, which is bi(xt)

λ the vector of initial probabilities of Markov Model

λi the i-th element of λ: probability of starting the Markov Chain with state i

Θ true parameters of Hidden Markov Model (A,B, λ)

Θ(0) the current set of parameters in E-step of EM algorithm

Θ(1) the next generation of parameters produced by M-step of EM algorithm

Θ̂ output of EM algorithm as the approximation on true parameters Θ

N number of possible hidden states; number of parameters

M number of possible observations

αt(i) forward probabilities up to time t with Ct = i
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βt(i) backward probabilities up to time t with Ct = i

αt row vector of forward probabilities with respect to all i

βt row vector of backward probabilities with respect to all i

T length of observation/hidden chain

LT (X) likelihood of given observation chain X = X1 = x1, ..., XT = xT

L−t
∗

T (X) ignorable likelihood of X−t
∗

L−DT (X) ignorable likelihood of X−D

wt sum of elements in αt

φt αt normalized by wt

δt(i) probability of the most likely previous transition chain ct−1 →ct in Viterbi
algorithm

ψt(i) ct−1 that corresponds with δt(i)

σt(i) probability of ct = i at time t under the condition of given observation chain
X

εt(i, j) transition probability from ct = i to ct+1 = j under the condition of given
observation chain X

d step size of imputation in Viterbi section of EM-Viterbi algorithm

b(F ) penalty term in information criterion

MBIC BIC score of the approximated model M

1 row vector of 1

1 Introduction

Hidden Markov Models (also abbreviated as HMMs) are widely used as flexible tools
for modeling and approximating time series. During recent decades, HMMs are effi-
ciently applied in artificial intelligence, finance (José G.Dias, 2015 [5]), and biology
(Sean R. Eddy 1998 [7]). There have been highly developed algorithms of HMMs
with full observations of time series, while it is also important for speech recognition
to discuss on missing data caused by failure of recording. This paper aims to extend
the investigation of approximation and prediction with missing observations[20] to
modeling HMMs.
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In this paper, we will investigate HMMs under the situation when one or more
observations are missing and modify existing algorithms of full observations to be
compatible with the missing data. In Section 2, we discuss the likelihood of the
observation when data are missing and provide prediction of hidden states under dif-
ferent conditions, given that true parameters are known. In Section 3, we modify the
EM algorithm with Viterbi to be better applied. Section 4 includes some approaches
of model selection applied to HMMs. Lastly, Section 5 contains our experiments and
conclusion about the performance of the modified algorithm on a real dataset.

1.1 HMM Basics: Formulation

Markov Model represents a memoryless transition, in which the current state only
depends on one state before:

P (Ct = cj|C1 = c1, ..., Ct−1 = ci) = P (Ct = cj|Ct−1 = ci)

For any Markov Model with N possible states, we can thus formulate a transition
matrix A where P (Ct = j|Ct−1 = i) = aij. Each element on ith row and jth
column marks the probability of transition from state i to state j. One property of
Markov Model is that, if the chain of states is long enough, then in the long-term the
proportion of occupation time of states i (the time that the chain is in the specific
state) is the ”stationary probability” λi, and for all states we can form the vector λ.
Since the Markov chain is stationary in the long term, λi also indicates the probability
of starting at i in the chain.

Based on Markov Model, a Hidden Markov Model forms by hidden states with
Markov property and observation states, which is uniquely determined by current
hidden states. Therefore, hidden states naturally have their transition matrix A, and
λi of Markov Model is used here as the initial probability λi = P (C1 = ci)

Figure 1: Probability Graph Model of Hidden Markov Distribution

Because the current observation Xt only depends on the current state Ct (Ct is
known):

P (Xt = k|C1 = c1, ..., Ct = j) = P (Xt = k|Ct = j) = bj(k),
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a Hidden Markov Model would also have an emission matrix of M possible observa-
tions

B =
[
bj(k)

]
N×M

Usually, a completely formulated HMM would start with parameters (A,B, λ), and
the complexity is mainly from the number of hidden states N , number of observations
M . In practical situations, it is to start with estimating (A,B, λ) through EM-
algorithm. This method of approximation is discussed in Section 3.

In this paper we always assume the HMM to be stationary: if the chain of hidden
states start at t = 0 with an initial probability vector λ = (λ1, ..., λN) that is also its
stationary probability vector, where λi = P (C1 = ci), then λA = λ. This assumption
makes sure that the distribution of the HMM is consistent from t = 1 to t = T , and
the vector of initial probabilities does not change when we are starting in the middle
of the observation chain. It is essential for implementations in Section 3.2.1, where
we apply an iterative methods along the time series.

1.2 Forward/Backward-probability

In a Hidden Markov Model with given parameters (A,B, λ) and observation chain
X = {X1 = x1, X2 = x2, ..., XT = xT}, one fast and efficient approach to find the
observation probability P (X) is by defining forward and backward probabilities. The
forward probability αt(i) represents the probability of having observations from x1

forward to xt and one hidden state Ct = i; and the backward probability βt(i) marks
the conditional probability that given the hidden state Ct = i, we have observations
from tail xt backward to xt+1:

αt(i) = P (X1 = x1, ..., Xt = xt, Ct = i)

= bi(xt)
N∑
j=1

αt−1(j)aji

α1(i) = λibi(x1)

(1)

βt(i) = P (Xt+1 = xt+1, ..., XT = xT |Ct = i)

=
N∑
j=1

aijbj(xt+1)βt+1(j)

βT (i) = 1

(2)

(Zucchini et al. 2017 [20]) and for all possible hidden states i in (αt(i), βt(i)) at time
t, we can construct vectors of forward/backward probabilities, marked by αt and βt:
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
α1 = λ,
αt = λB(x1)AB(x2)...AB(xt),
αt+1 = αtAB(xt+1),

(3)


βT = 1>,
βt = B(xt+1)AB(xt+2)...AB(xT )1>,
βt−1 = B(xt)Aβt,

(4)

where B(xt) is the diagonal matrix containing all emission probabilities of Xt

given different hidden states, deriving from bi(xt) of the original emission matrix B:

Bii(xt) = P (Xt = xt | Ct = i) = bi(xt)

A simple but helpful lemma of forward/backward probability is that:

αt(i)βt(i) = P (X1 = x1, ..., XT = xT , Ct = i) (5)

which represents the probability with respect to the observation chain and only
one hidden state at time t. The lemma is frequently applied in any maximization of
probabilities about observations (Zucchini et al. [20]).

1.3 HMM in Speech Recognition

Speech recognition works on the decoding of input audios by fitted parameters. The
raw audio files are transformed through digital signal processing algorithms and fea-
ture extraction such as Mel-scale Frequency Cepstral Coefficient (Dave et al. [3])
to multivariate acoustic vectors containing information of pronunciation. HMMs in
speech recognition will first approximate parameters from training vectors and decode
the most possible phonemes (basic components of words) for new inputs, and they
are then formed to words and sentences through linguistic models.
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Figure 2: The formation of speech recognition system[11]

Usually in speech recognition, the HMM is composed by a discrete transition ma-
trix of finite possible hidden states and an emission model of continuous multivariate
vectors, resulting a complicated HMM-GMM model, where hidden chains (categorical
phonemes) are still constructed under Markov Model, but emissions of acoustic data
as continuous vectors are determined through Gaussian Mixture Models (Reynolds
et al. [16]).

1.4 HMM in Finance

Another important application of HMM is in Market Timing: similarly to speech
recognition, the entire system is also constructed to a nested or hierarchical HMM.
Hidden states are decided uniquely in every hierarchy of the model: at the first floor,
there are usually five hidden states on the general conditions of the market: Strong
Bear(SB) when the price is falling or going to fall vastly, Weak Bear(WB), Strong
Bull(SU) when the price is rising or going to rise vastly, Weak Bull(WU), and Random
Walk(RW) when there is no apparent trend of rising/falling, while at the bottom floor,
the hidden states may be detailed to information exactly from previous price, such
as interest rate.
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Figure 3: The hierarchial HMM of quantitative market timing[8]

From Figure 3, it is clear that in the system of hierarchical HMM, each pair of
floors {f −1, f} are constructed in HMM, and states at the lower floors are emissions
of states at higher floors. If states at floor f − 1 are still categorical data (like
stock states of either rising, falling, or random walking as we mentioned before) while
starting at f states are related to some quantitative data of continuous variables such
as price or interest rate, then the model between {f −1, f} would be from categorical
data to quantitative data and therefore a HMM-GMM model. However, when going
forward to f + 1, continuous variables at f must be transformed into categorical data
in order to work as hidden states in HMM of the pair {f, f + 1}, usually by taking
floor/ceiling integers.

Since each pair of floors in hierarchical model has the structure of HMM, while
the thesis is not focused on single HMM, experiments and discussion in Section 5 will
mainly focus on the model of one pair of hidden-observation relation between stock
states and price. A very simple example is provided below for better illustration of
HMM structure:

Suppose we have 3 stock states: Random Walk(RW), Bear(B), and Bull(U), and
probabilities of either rising/falling price for each states are given by:

States RW B U
Rise 0.5 0.25 0.8
Fall 0.5 0.75 0.2

and we know that:

• if the price is randomly walking, the probability to stay is 0.3, the probability of
transition to bear market is 0.1, and the probability of transition to bull market
is 0.6.

8



• if there is a bear market, the probability to stay bear is 0.1, probability of
transition to random walk is 0.4, and the probability of transition to bull market
is 0.5.

• if there is a bull market, the probability to stay is 0.7, the probability of transi-
tion to bear market is 0.2, and the probability of transition to random walk is
0.1.

Also, the starting state {RW,B,U} is determined by corresponding probabilities
{0.35, 0.1, 0.55}. Then the transition matrix A, emission matrix B, and initial vector
λ are given by:

A =

0.3 0.1 0.6
0.4 0.1 0.5
0.1 0.2 0.7

 , B =

 0.5 0.5
0.25 0.75
0.8 0.2

 , λ =
[
0.35, 0.1, 0.55

]
To simplify the notation, usually the set of hidden states is marked by numeric

hidden set I = {RW,B,U} = {1, 2, 3}. For example, the transition probability a12

represents P (ct = B|ct−1 = U)

2 Inference for Hidden Markov Models

2.1 Likelihood with Full Observation Chain

For a stationary HMM with given true parameters (A,B, λ) and independent observa-
tion chain X = {X1 = x1, ..., XT = xT}, the likelihood is defined as LT (X) = P (X).
Since this probability only considers about observations, ignoring hidden states at
any time t. Therefore, from the lemma in Equation 5 the likelihood is formulated as

LT (X) = λAB(x1)AB(x2)...AB(xT )1>

=
N∑
i=1

P (X1 = x1, ..., XT = xT , Ct = i)

=
N∑
i=1

αt(i)βt(i) = αtβt
>

(6)

Notice that the formulation of the likelihood applied the same structure of dynamic
processing as vector-structured forward probability in Equation 3, and thus we can
reconstruct the likelihood function LT in the form of αT :

α1 = λAB(x1), αt = αt−1AB(xt), LT (X) = αT1
>,

and thus similarly to forward probabilities, the likelihood works recursively from
the head of the observation chain.
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2.2 Prediction of Hidden States

One application of LT (X) is to find the most possible hidden chains with maximized
probability given true parameters (A,B, λ) and observations. Instead of naively solv-
ing all possible combinations of hidden chain C, which is highly time-consuming even
with short chains, we can apply the forward/backward probabilities in the formula of
likelihood.

For each time t, the most likely hidden state c∗t given the condition of observation
chain X is:

c∗t = arg max
1≥i≥N

[
P (ct = i, X)

P (X)

]
(7)

By the definition of forward/backward probabilities:

c∗t = arg max
1≥i≥N

[
αt(i)βt(i)∑N
k=1 αt(k)βt(k)

]

= arg max
1≥i≥N

[
αt(i)βt(i)

LT (X)

] (8)

Therefore, iterative calculation on αt(i) and βt(i) would also simplify the time
complexity to O(TN2). One shortcoming is that, this formulation is confined on
optimizing the hidden state ct with respect to the single time point t, but the local
maximizer may not be global, and sometimes the transition probability aij of two
consecutive local maximizer (ct = i, ct+1 = j) may be 0, resulting in some impossible
approximation in larger time scales. On the contrary, Viterbi algorithm provide with
the solution considering on the entire hidden sequence. More information is mentioned
in Section 2.4

Moreover, the estimation by directly maximization is problematic with the like-
lihood itself due to underflow from consecutive multiplication of αt: since forward
probabilities are always between 0 and 1, the likelihood of long observation chain
would ultimately fall into 0 for discrete HMMs and infinite for continuous HMMs
(Leroux et al. 1992 [10]).

A possible solution raised by Zucchini [20] is to scale the vector of forward prob-
ability αt by the sum of its element, so that scaled elements add to 1:

φt =
αt

wt
, φ0 = λ

wt =
N∑
i=1

αt(i), w0 = 1

Therefore,
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LT (X) = wT =
T∏
t=1

[
wt
wt−1

]

=
T∏
t=1

φt−1AB(xt)1
>,

(9)

There may be more than one scaling method: one can also apply to other form
of scaling that is more practical for the situation, such as the Z-score or dividing by
the maximum value of αt.

2.3 Likelihood with Missing Data

2.3.1 Ignorable Likelihood

In some real practice such as speech recognition, it is possible that the observation
chain have one or more missing data in the middle. It is possible that the microphone
may fail during the recording as some tense noise is ignored by MFCC preprocessing,
or in the term of finance there are missing history stock price simply due to technical
errors, and thus some ”empty data” are left in the observation.

For the HMM with parameter (A,B, λ) and observation X−t
∗

with missing data
at time t∗, the likelihood can be developed by simply skip time t:

L−t
∗

T (X) = λAB(x1)...B(xt∗−1)A2B(xt∗+1)...

and the corresponding scaled likelihood is:

L−t
∗

T (X) =
t∗−1∏
t=1

[
wt
wt−1

]
·

T∏
t=t∗+2

[
wt
wt−1

]

=
T∏

t=1,t 6=t∗,t−16=t∗
φt−1AB(xt)1

>,

(10)

If instead we have missing values during a time interval D = [t1, t2], it is straight
forward to modify from L−t

∗

T (X) to L−DT (X) The likelihood L−t
∗

T (X) is named as
”ignorable likelihood” if we assume that the missing data at time t has little negative
influence and can be ignored (Little et al. 2008 [12]). This likelihood is frequently
used in many practical cases where missing values in the observation are scattered in
the chain, especially when the distribution is truly discrete (such as protein sequence,
Wu et al. [19]).
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2.3.2 With Chain of Missing Observations

The aforementioned likelihood works efficiently with scattered missing values. How-
ever, similarly to the problem of optimization on a single time t for every ct, when
there is a chain D of missing values on the interval [t1, t2] of length K, it is possi-
ble that the igorable likelihood would also ignore the influence of the missingness:
since every hidden states are predicted individually in equation 7, it is sometimes
possible that {ct1−1, ct2+1} predicted from L−DT (X) have their transition probabil-
ity P (ct2+1|ct1−1) = 0. One possible modification is to reconstruct the original two
chains (X = {x1, x2, ...}, C = {c1.c2, ...}) into (X

′
= {( x1, x2) , (x3, x4) , ...}, C ′ =

{(c1, c2), (c3, c4), ...}) and therefore with modified parameters (A
′
, B

′
, λ
′
) and α

′
, by

sacrificing the time complexity: the modification is able to decrease the length of
missing chain by half and thus increase the accuracy, but by the definition of forward
probability αt and recursive likelihood LT (X), the original time complexity of full
or singly-missing observation chain for the HMM with N possible hidden states is
O(TN2), while a pair-reconstructed HMM would increase the time to O(TN4).

Another possible solution is to partially apply forecasting on the chain of missing
values through forward or backward probabilities before the likelihood. In fact, this
approach is the same for both αt and βt, and we here only put our discussion in the
case of αt.

Suppose the time interval of missing values of a HMM is [t1, t2], then it is possible
to start with Xt1−1, which is the last known observation before the missing chain D.
Recall the definition of forward probability in Equation 1, we can derive P (X1 =
x1, ..., Xt1 = xt1) from αt1(i) = P (X1 = x1, ..., Xt1 = xt1 , ct1 = i) by simply ignoring
the hidden states at time t1 through the summation, and thus:

x
′

t1
= arg max

xt1

N∑
i=1

αt1(i)

= arg max
xt1

N∑
i=1

[
bi(xt1)

N∑
j=1

αt1−1(j)aji

] (11)

It takes O(MN2) to find the most likely observation at time t1, and for the derived
observation chain X

′
= {xt, ..., xt1−1, x

′
t1
, ..., x

′
t2
, xt2+1, ..., xT}, the pseudo-likelihood is

correspondingly:

L
′

T (X) = λ

t1−1∏
t=1

AB(xt) ·
t2∏
t=t1

AB(x
′

t) ·
T∏

t=t2+1

AB(xt)1
>, (12)

and the scaled likelihood should still have its original formulation, but with respect
to derived observation X

′
.
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Comparing with the ignorable likelihood, in the pseudo-likelihood we first derive
x
′
t through the forward probability, which takes all possible transition probabilities

and filters transitions with probability aij = 0 by finding the maximizer. Therefore,
it takes all observations into account, including missingness, and we can directly
apply the pseudo-likelihood alternatively to predict the hidden chain, avoiding any
zero probabilities in the missing chain. The idea of finding the hidden chain through
maximizing the pseudo-likelihood is to confine the ignorable likelihood through the
imputation on the missingness and solve the conflict between local optimization (on
known observations) and the optimization with respect to the entire chain.

2.4 Prediction by Viterbi Algorithm

In order to generally avoid the problem of local optimization, Viterbi algorithm is in-
troduced to take the full observation chain as a whole. Rather than directly analyzing
all possible hidden chains, based on dynamic programming, it simplified the question
through dividing the entire hidden sequence into multiple sub-sequences. Usually
each subsequence marks one transition ct → ct+1, and thus current subsequences are
only related to future parts. Starting with the first state, the optimization is confined
to current states, and the outcome would restrict the possibility of the future states
in their maximization. Therefore, this iterative method would effectively reduce the
complexity of the entire calculation.

In the context of Hidden Markov Models, Viterbi algorithm constructs two com-
ponents of subsequences: (δt(i),Ψt(i)), where δt(i) is the chain of the most possible
previous transition chain from c1 to ct−1 with ct = i:

δt(i) = max
(c1,...,ct−1)

P (ct = i, c1, ..., ct−1, x1, ..., xt) (13)

with its iterative formulation:

δ1(i) = λibi(x1)

δt+1(i) = max
(c1,...,ct)

P (ct+1 = i, c1, ..., ct, x1, ..., xt+1)

= max
1≥j≥N

[δt(j)aji] bi(xt+1),

(14)

and Ψt(i) is the state ct−1 in the most possible transition chain ct−1 → ct with its
initialization and iterative form as:

Ψ1(i) = 0

Ψt(i) = arg max
1≥j≥N

[δt−1(j)aji]
(15)
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From t = 0, the algorithm first keeps down δt(i) and Ψt(i) for each hidden states.
At t = T , it starts from c∗T which has the greatest δT (i) and recursively check Ψt(i)
of each c∗t .

Continued with the example in Section 1.4, if now the observation chain is given
as X = (Rise, Rise, Fall), to find the most possible hidden chain, Viterbi algorithm
first calculates the sub-sequence (δt(i),Ψt(i)) at time t = 1 for all possible hidden
states i:

δ1(1) = λ1b1(x1) = 0.175

δ1(2) = λ2b2(x1) = 0.025

δ1(3) = λ3b3(x1) = 0.44

(16)

Ψ1(1) = Ψ1(2) = Ψ1(3) = 0 (17)

Now we start the iteration of the subsequence on t = 2 with x2 = Rise:

δ2(1) = max
1≤j≤3

[δ1(j)aj1] b1(x2) = 0.02625

Ψ2(1) = arg max
1≤j≤3

[δ1(j)aj1] b1(x2) = 1

δ2(2) = max
1≤j≤3

[δ1(j)aj2] b2(x2) = 0.022

Ψ2(2) = arg max
1≤j≤3

[δ1(j)aj2] b2(x2) = 3

δ2(3) = max
1≤j≤3

[δ1(j)aj3] b3(x2) = 0.2464

Ψ2(3) = arg max
1≤j≤3

[δ1(j)aj3] b3(x2) = 3

(18)

Finally, when t = 3 and x3 =Fall:

δ3(1) = max
1≤j≤3

[δ2(j)aj1] b1(x3) = 0.01232

Ψ3(1) = arg max
1≤j≤3

[δ2(j)aj1] b1(x3) = 3

δ3(2) = max
1≤j≤3

[δ2(j)aj2] b2(x3) = 0.03696

Ψ3(2) = arg max
1≤j≤3

[δ2(j)aj2] b2(x3) = 3

δ3(3) = max
1≤j≤3

[δ2(j)aj3] b3(x3) = 0.034496

Ψ3(3) = arg max
1≤j≤3

[δ2(j)aj3] b3(x3) = 3

(19)

Since arg maxi δ3(i) = 2 is the most possible hidden state at time t = 3, and
according to Ψ3(2) = c2 = 3 and Ψ2(3) = c1 = 3, the hidden chain is thus constructed
as {3, 3, 2}, which is {U, U, B}.
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3 Parameter Estimation: EM-algorithm

EM algorithm provides an iterative approach when the true parameter Θ and hidden
states are unknown, and only observable variables are given. It is widely used in
the parameter approximation of probability models with latent variables (unobserved
data such as hidden states) and Posterior probability (Dempster et al. 1977 [4]). The
main idea is to find the expectation of the ”complete data” constructed by known
observations and latent variables, and approximate parameters through maximizing
the complete expectation is supposed to be easier than directly maximizing the like-
lihood of the observation. This algorithm is composed by the E-step (expectation)
and M-step (maximization) in each iteration:

1. E-step: In the previous section of direct maximization on likelihood of the
observation chain, we are looking for the probability of having X = {X1 =
x1, X2 = x2, ..., XT = xT}. Similarly, in E-step we are calculating the prob-
ability of the unknown variables P (C|X) given the condition of observations
and current parameters Θ(0), which are initialized at the begining of the algo-
rithm or given by the output from the last iteration, and then we can find the
expression of the expectation of complete data with new parameters Θ(1), but
conditioned on the current data Θ(0): E

[
logP (X,C|Θ)|Θ(0)

]
. Note that new

parameters are unknown, so this expectation is actually a function on Θ(1).

2. M-step: It is necessary and straightforward to find a new set of parameters
Θ(1) that maximize the expectation. Usually, partial derivative on (A,B, λ) and
Lagrange multiplier is used for optimization.

We should first initialize the starting parameters Θ(0), usually by some simple cal-
culations, and in each iteration after the M-step, we should plug the new generation
of approximated parameters into E-step, until they converge (usually determined by
a given threshold supervising the degree of change from Θ(0) to Θ(1)) or reach the
limit of iterations. Although due to the choice of starting parameters, EM-algorithm
sometimes falls into local maximum, some refined approaches such as Monte-Carlo
EM-algorithm (Wei, et al. 1990 [17]) would offset this negative influence, or mul-
tiple trials with different starting parameters may also provide with comprehensive
inspections.

3.1 Basic EM-algorithm for HMM with Full Observations

The EM-algorithm in the context of HMMs, also called Bawm-Welch algorithm
(Baum et al.1970 [2]), is used when the hidden chain(latent variable) and set of
true parameters Θ = (A,B, λ) are both unknown. The likelihood of complete data
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is:

P (X,C) = λc1bc1(x1)ac1,c2bc2(x2)...

= λc1

T∏
i=1

bci(xi)
T−1∏
i=1

aci,ci+1
.

(20)

with the likelihood of hidden states given by:

P (C|X) =
P (X,C)

LT (X)
(21)

Since the likelihood is composed by parts of λ, A, and B and conditioned by the
observation chain, it is necessary to find σt(i) = P (ct = i|X) and εt(i, j) = P (ct =
i, ct+1 = j|X) as references of A and B.

Note that in EM-algorithm we cannot find replacement of λ directly, since the
initial distribution of the Markov Model is only related to the first observation x1 and
the first hidden state c1, making this implausible to approximate it from only one
observation. However, we can use the idea in Section2.2, because approximation on λ
is the local optimization on a single time point t = 1. Therefore λi is calculated from
the approximated P (c1 = i|X) = σ1(i), which is derived after we find approximations
on(A,B).

Before we start EM-algorithm, formulations of σt(i) and εt(i, j) are given by:

σt(i) = P (ct = i|X)

=
αt(i)βt(i)

LT (X)

(22)

εt(i, j) = P (ct = i, ct+1 = j|X)

=
P (ct = i, ct+1 = j, X)

LT (X)

=
αt(i)aijbj(xt+1)βt+1(j)

LT (X)

(23)

The above calculations are based on the original form of likelihood, but one can also
directly use the log-likelihood logP (X,C) or scaled likelihood.

1. HMM E-step: If the current parameters are Θ(0) = (A(0), B(0), λ(0)), then the
expectation of the complete data with the next generation of parameters Θ(1)

based on the probability of current parameters of P (C|X,Θ(0)), is constructed
as:

E
[
logP (X,C|Θ)|Θ(0)

]
=
∑
C

P (C|X,Θ(0)) logP (C,X|Θ) (24)
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To maximize the expectation, we should find Θ(1) = (A(1), B(1), λ(1)) such that:

Θ(1) = arg max
Θ

∑
C

P (C|X,Θ(0)) logP (X,C|Θ)

= arg max
Θ

∑
C

P (C|X,Θ(0))
(

log λc1 +
T∑
i=1

log bci(xi) +
T−1∑
i=1

log aci,ci+1

)
(25)

and because P (C|X,Θ(0)) = P (C,X|Θ(0))

P (X|Θ(0))
, and P (X|Θ(0)) is a constant likelihood

LT (X) calculated using Θ(0), the formula is then:

Θ(1) = arg max
Θ

∑
C

P (C,X|Θ(0))
(

log λc1 +
T∑
i=1

log bci(xi)+
T−1∑
i=1

log aci,ci+1

)
(26)

2. HMM M-step: Equation 25 splits the expectation of the complete data into three
partial maximization on (A(1), B(1), λ(1)) separately. By taking derivatives and
applying Lagrange multipliers (Liu et al. [13]), we can have iterative formulas
as:

λi = σ1(i)

aij =

∑T−1
t=1 P (X, ct = i, ct+1 = j)∑T−1

t=1 P (X, ct = i)
=

∑T−1
t=1 εt(i, j)∑T
t=1 σt(i)

bj(k) =

∑T
t=1 P (O, ct = j, xt = k)

P (O, ct = j)
=

∑T
t=1,xt=k

σt(i)∑T
t=1

∑T
t=1 σt(i)

where all σt(i) and εt(i, j) are calculated using current parameters Θ(0). This
new set of parameters (A(1), B(1), λ(1)) will be applied into E-step, and iterations
will carry on until all parameters fall into convergence.

3.2 EM-Viterbi algorithm for Missingness

The original EM-algorithm will still work on missing observations in M-step: for
example, in Equation 25, the term of transition matrix A(1) is constructed as:

∑
C

T−1∑
t−1

P (C,X|Θ(0))(log aci,ci+1
) =

N∑
i=1

M∑
j=1

T−1∑
t=1

P (X, ct = i, ct+1 = j, |Θ(0)) log aij

(27)
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we can apply Lagrange multiplier because
∑N

j=1 aij = 1. However, with a single
missing observation at time t∗, Equation 27 will be modified as:

∑
C

T−1∑
t−1

P (C,X|Θ(0))(log aci,ci+1
)

=
N∑
i=1

M∑
j=1

[
T−1∑

t=1,t6=t∗
P (X, ct = i, ct+1 = j, |Θ(0)) log aij

+
N∑
k=1

P (X, ct∗−1 = i, ct∗ = k, ct∗+1 = j|Θ(0)) log aikakj

] (28)

and thus the derivative of new Lagrange multiplier equation of any transition proba-
bility auv is with some extra terms related to missing time:

0 =
P (X, ct = u, ct+1 = v, |Θ(0))

auv
+ γauv

+

∑N
j=1 P (X, ct∗−1 = u, ct∗ = v, ct∗+1 = j|Θ(0))

auv

+

∑N
i=1 P (X, ct∗−1 = i, ct∗ = u, ct∗+1 = v|Θ(0))

auv

(29)

in the equation above there are only two extra terms because we assume a single
missing time t∗, in the case of consecutive missing values, there should be more terms.
Therefore, the only problem is from the calculation on a longer missing chain: if we
have a missing chain on the interval D = [t1, t2] with length L, then the second
term of Equation 28 will be an L-nested summation, with increased complexity to
O(NL). Also, the probability in the second term can be regarded as the cumulative
product with length L on aij entries of A, but for large L, the product will be close
to λj regardless of the starting state i due to stationary property. Instead, we may
first apply Viterbi algorithm to find an approximation of hidden states. After each
iteration of EM-algorithm, Viterbi with current fitted parameters (A(0), B(0), λ(0))
is able to provide with the most likely c1, ..., ct1−1, and starting with ct1−1 we can
calculate the most possible {xt1 ..., xt2} iteratively as a compensate of missing values.

3.2.1 EM-Viterbi Algorithm

For any observation chain with missing value starting at xt1 , a nested EM-Viterbi
algorithm is constructed. In the first iteration, we only use the first consecutive sec-
tion of the observation chain {x1, ..., xt1−1} to EM-algorithm; because of the assump-
tion on stationary HMMs, it is reasonable to start at the middle of the sequence.
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After the iteration, Viterbi algorithm would give the most likely hidden chain ac-
cording to current fitted parameters, which enable a derivation method, similar to
forward/backward probabilities, of missing observations:

x∗t1 = arg max
xt1

N∑
i=1

[
δt(j)a

(0)
ji

]
bi(x

(0)
t1 ) (30)

This forecasted observation would be a replacement of the missing value. The
new observation chain with one more forecasted value is then plugged in the next EM
iteration, and the new set of parameters will give a different hidden chain for further
calculation, providing prediction at xt1+1... If the current missing section up to xt2
is filled, we can plug all known observations after t2 until we have another section
of missing values. Because EM-algorithm is dependent on all given observations,
including predicted ones, the approximated parameters may change vastly when there
are newly predicted observations, so we should not focus on the convergence before
all missing values are replaced.

Since in the setting above we only predict one missing observation every time,
and this modified algorithm performs two subparts (EM and Viterbi) in each iter-
ation, approximation may take longer time to converge, which makes it impractical
for longer chains. One can simplify the time complexity by predicting more than one
observations in each iteration. However, such forecasting of longer time in one iter-
ation would produce more errors because of memoryless property of Markov chain.
It is recommended to apply such alternative prediction when there are more short
missing chains. In missing chains long enough, even the prediction by only one more
observation per iteration would still fail. It is illustrated in Section 5.
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Algorithm 1 EM-Viterbi Algorithm

1: Parameters: (A(0), B(0), λ(0)), X: observation chain, tol: threshold of convergence,
niter: max iteration of the algorithm after the observation is fully imputed, ninside:
max iteration before the observation is fully imputed (usually, ninside is around 1

10

of niter), D: set of indices of missing values, d: number of imputed observations
in Viterbi section of each iteration

2: initialize a HMM with given (A(0), B(0), λ(0))
3: find the first missingness set D in the chain at time tinit+1 and the corresponding

first full observation up to Xtinit

4: while length of Xtinit
is smaller than X do

5: Apply EM algorithm on Xtinit
with ninside

6: compute the most likely hidden chain through Viterbi algorithm
7: if tinit + 1 ∈ D then
8: find the most likely observation at tinit + 1, append it to Xtinit

9: remove tinit + 1 from D
10: else
11: find the next index tnext in D, append all observation up to tnext− 1 to Xtinit

12: end if
13: end while
14: Apply EM algorithm on the imputed observation chain with given niter and tol.

The algorithm ends when the change of parameters in each iteration is below tol
or when it reaches the limit of iteration niter

15: return approximated parameters Θ̂ = (Â, B̂, λ̂)

4 Model Selection: Assessing Accuracy

Like many other algorithms for approximation, EM algorithm starts with the assump-
tion of unknown true parameters, and due to the complex structure of multi-stochastic
model such as HMM, we cannot directly analyze the effectiveness through working
on testing sets. Therefore, it is necessary to develop an alternative approach of model
selection on HMM. Moreover, the unknown transition N×N matrix A also contains
information on possible number of hidden states, while in EM algorithm we start
with initial A(0) of given size. Therefore, a set of competitive models in approximat-
ing HMM is mainly derived from different N , and one kernel idea of model selection
on HMM is to find the most likely number of states. In our thesis, we discuss two ap-
proaches of model selection: AIC (Akaike Information Criterion) and BIC (Bayesian
Information Criterion).
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4.1 AIC & BIC

Selections of AIC and BIC are built in terms of the Kullback-Leibler information with
respect of the ”difference” between a fitted model with approximated parameter Θ̂
and the true model (McLachlan et al. [14]):

I{f(X), f(X, Θ̂)} =

∫
f(X) log f(X)dX −

∫
f(X) log f(X, Θ̂)dX (31)

where I{f(X), f(X, Θ̂)} is the information and f(X) is the true density. In the
context of multi-stochastic process such as HMMs, f(X) marks the probability for
the observation given by all possible hidden states.

Almost all information criterion derived from Kullback-Leibler have similar forms
in the minimization of:

− logL(Θ̂) + b(F ) (32)

where L(Θ̂) is the likelihood from the fitted parameters, and b(F ) is the bias from
the true distribution, which is more like a ”penalty term” to correct the likelihood
from being over-fitting.

With the general structure, AIC & BIC are formulated as:{
AIC(Θ̂) = −2 logL(Θ̂) + 2N

BIC(Θ̂) = −2 logL(Θ̂) + 2N log T
(33)

N is the number of parameters (hidden states in the context of HMMs) in the
distribution, and T is the number of observations. The essential idea is still to find
parameters that maximize the posterior likelihood of the parameters (represented
by logL(Θ̂)) but balanced by the complexity of the fitted model (represented by
b(F )), which is, in most cases, mainly determined by the number of parameters.
Apparently, choosing the penalty term b(F ) is the most significant but difficult part
in the determination of information criteria. Many researchers (such as Kuha [9] and
Aho [1]) have stated that with fixed penalties (when b(F ) is fixed with respect to the
structure of the data and does not fluctuate much with different testing sample), AIC
may have over-fitted outcomes of the distribution in cases of large set of observations,
when the penalty 2d may not efficiently restrict −2 logL(Θ̂). On the contrast, the
situation of BIC suffer less from over-fitting, and is more generally applied by other
authors. We will mainly discuss on BIC in following sections.

Recall that in Equation 6, in the context of HMMs, the likelihood is formulated
from the sum of multiplication of forward/backward probabilities. But such approach
may be time-consuming when facing large number of parameters, and most useless
calculation is from the marginalization of hidden states ct. Dridi and Hadzagic (Dridi
et al. [6]) provide with an alternative formulation based on Bayes rule that for models
Mi:
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L(Θ̂) = Q(Θ̂, Θ̂)− logP (C|X, Θ̂)

MBIC = arg min
Mi

[
−2 logL(Θ̂) + 2N log T

] (34)

where:

Q(Θ̂, Θ̂) = logP (c1) +
T∑
t=1

logP (ct|ct−1)

+
T∑
t=0

logP (xt|C)

logP (C|X, Θ̂) = logP (c1|X, Θ̂) +
T∑
t=1

logP (ct|ct−1, X, Θ̂)

(35)

Therefore the only part having iterative calculation on forward/backward proba-
bilities is the second term of logP (C|X, Θ̂).

The only problem of BIC is that, some researchers (Pohle et al. [15]) had ob-
served that BIC is driven by the potential Bayesian essence that specify the most
likely model. Therefore, when running BIC we always assume that at least one of
those tested models performs accurate approximation of the actual distribution. Un-
fortunately, in practical cases the true distribution, especially the emission process of
observations, can be drastically complicated. In multi-stochastic process like HMMs
it is unreasonable to assume that any single model would effectively fit the true model
even though vectors of multi-variables are in a lower dimension, and thus if there is
no ”good approximations,” BIC has the tendency on slight under-fitting by choosing
in favor of more ordinary models indicated with less number of states, which have
less number of parameters and capture some general structures of the distribution.

4.2 BIC with Missing Observations

For a partially missing observation chain X−D with the set of time of missing values
D, we can directly apply BIC with imputed observations in a situation of scattered
missingness as scattered missing observations have little local influence on the entire
chain, and therefore the BIC would perform with a similar accuracy. However, since
consecutive missingness would vastly drive the model into the direction of imputed
values (as it is illustrated in experiments of Section 5), BIC would have modifications
similar to the ”ignorable likelihood” of HMMs.

If there is a missing chain on the interval D = [t1, t2], we can also apply the
ignorable likelihood by simply take the form:
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Q−D(Θ̂, Θ̂) = logP (c1) +

t1−1∑
t=1

logP (ct|ct−1) + logP (ct2+1|ct1−1)

+
T∑

t=t2+2

logP (ct|ct−1) +
T∑

t=0,t/∈D

logP (xt|C)

(36)

logP−D(C|X, Θ̂) = logP (c1|X, Θ̂) +

t1−1∑
t=1

logP (ct|ct−1, X, Θ̂)

+ logP (ct2+1|ct1−1, X, Θ̂) +
T∑

t=t2+2

logP (ct|ct−1, X, Θ̂)

(37)

Therefore, the pseudo-likelihood of the model in this modified BIC would be:

L−D(Θ̂) = Q−D(Θ̂, Θ̂)− logP−D(C|X, Θ̂)

M−D
BIC = arg min

Mi

[
−2 logL−D(Θ̂) + 2N log (T − ‖D‖)

] (38)

Generally, the algorithm of BIC for HMM is composed as:

Algorithm 2 Calculation of BIC-HMM

1: Parameters: (A,B, λ) of the model, (C,X) is the given chain of length T , where
X should be known by given or by decoded through Viterbi algorithm, interval
of missing value D = [t1, t2] (if nothing is missing, D is set to be empty)

2: Initialize Q−D(Θ̂, Θ̂) = log λc1
3: Initialize logP−D(C|X, Θ̂) = log(β1(c1)λc1bc1(x1))
4: for all t such that t /∈ D do
5: logP (ct|ct−1) = log act−1,ct

6: logP (xt|C) = log bct(xt)

7: logP (ct|ct−1, X, Θ̂) = log
[
αt(ct−1)act−1,ctbct (xt)βt(ct)

αt(ct−1)βt(ct−1)

]
8: add (logP (ct|ct−1) + logP (xt|C)) to Q−D(Θ̂, Θ̂)
9: add logP (ct|ct−1, X, Θ̂ to logP−D(C|X, Θ̂)
10: end for
11: logP (ct2+1|ct1−1) = log

[∏t2−1
t=t1

act,ct+1

]
12: logP (ct2+1|ct1−1, X, Θ̂) = log

[
αt(ct1−1)

∏t2−1
t=t1

act,ct+1βt(ct2+1)

αt(ct1−1)βt(ct1−1)

]
13: add the result in Step 11 and Step 12 to Q−D(Θ̂, Θ̂) and logP−D(C|X, Θ̂) sepa-

rately
14: calculate number of hidden states N , which is the number of rows of A
15: BIC = −2(Q−D(Θ̂, Θ̂)− logP−D(C|X, Θ̂)) + 2N log(T − ‖D‖)
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5 Simulation and Results

5.1 Settings

In our experiments, we aim to compare the effectiveness between the original EM-
algorithm and modified EM-Viterbi algorithm with missing values. In our thesis we
apply a dataset of weekly corn price [18] originally downloaded from Quantopian corn
futures price.

Generally, the experiment includes the comparison between original EM-algorithm
and EM-Viterbi algorithm. In order to control the variable, in each pair of experiment,
both algorithms are applied on the same observation chain, but EM-Viterbi algorithm
only starts with partially full data, and missing parts are randomly selected. Also,
unless specifically stated, some parameters in EM and EM-Viterbi algorithms are
taken by default as stated below: the threshold of convergence is set to be 0.01 and
max number of iterations is 100, and we will stop either if the difference of parameters
in each iteration (measured by Frobenius norm) is below the threshold or if we finish
100 times of iterations. Step size d in Viterbi section of EM-Viterbi algorithm is set
to be d = 1, and number of states is set to be N = 3.

To fully understand the performance of the two algorithms, we will analyze them
in two directions: either by directly compare the output of EM-Viterbi and original
EM algorithm through their difference, or check the difference in BIC of the two
algorithms under different situations:

Output-1. We will compare the difference of approximated parameters in the mod-
ified algorithms based on their distance (Frobenius norm between matrices), and we
should separately test conditions of scattered missing values or missing chains. The
goal is to check any tendency related to the total number of missingness and the max
length of missing chains.

Output-2. In order to have a more comprehensive understanding, the accuracy
of prediction on missing observations is also evaluated. We will simulate multiple
approximation on the same set of observations with a single missing chain of fixed
length. The idea is to analyze the change of accuracy of imputation from the head to
tail of the missing chain, with respect to different step size of imputed observations
d in each iteration.

BIC-1. Since the number of hidden states (which is also manually set like initial
parameters) in the approximation plays essential role in fitting, we compare the dif-
ference of BIC between two algorithms when fitting the same set of observations.

BIC-2. Also, since BIC indicates the approximation on number of states, we will
investigate on the optimal number of states approximated from BIC under conditions
of different lengths of the missing chain.

24



5.2 Results

Output-1. In this section, the observation is a series about corn price from 2013
to 2017 of length T = 248, and we first apply the EM-Viterbi algorithm to the
observation with m = {5, 10, 15, 25, 35, 50} missing values randomly scattered in the
data with the consideration of avoiding consecutive missing values. Based on 50
random selection of missing observations with each m, bar-plots of distance between
true transition matrix and approximated transition matrix are shown below, measured
by Frobenius norm of matrices:

Figure 4: Difference in transition matrix norm for different m

From the outputs, low errors shows that all of approximations are comparatively
close to true parameters, and there is no apparent tendency of change related to
number of missing values. In fact, the main source of false approximation hinges
to the length of each missing chain: in the context of consecutively missing values,
modified algorithm still fails when the missing chain is long enough. After we tested
on observations with number of consecutively missing values m = {2, 3, 5, 10, 20, 25},
the plot shows an apparent pattern of increasing errors:

Figure 5: Errors with number of consecutively missing values
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More interestingly, it shows that the increment of length is driving the model to
a more ”extreme form”: some specific entries aij in transition matrix A will be close
to 0, while some other entries will be close to 1. In the most extreme situation of
m = 25, the initial vector λ even have λ3 = 1, while all other initial probabilities are
0. It is possibly because those imputed observations are pulling the model in some
direction, and thus longer missing chains lead to larger bias.

Output-2. With the output from last part, it is more important to investigate on
the divergence of prediction on missing chains. In the experiment, the same dataset is
applied but with fixed length of missing chain m = 10. Instead of predicting one more
missing observation in each iteration, we now forecast different number of observations
d = 1, 2, 3 every time. For each of d, we will apply 50 trials of approximation with
EM-Viterbi algorithm, and the proportion of correct prediction at each missing time
(starting at one, up to 10) is in the plot.

Figure 6: Accuracy of prediction on missing observations from t∗ = 1 to t∗ = 10. d
is the number of imputed missing observations in Viterbi section of each iteration.
Recall that d = 1 is what we usually assumed in the algorithm

According to the plot, there is a dominating trend of decreasing accuracy with
increasing length of missing values in all 3 settings, and for larger steps it seems to
have worse trend with faster decreasing speed. The failure of larger steps apparently
derives from the memoryless property of Markov Model: it is relatively hard to apply
a far-sighted prediction if only based on few previous states; while the reason of
decreasing trend when d = 1 still remains to be discussed. It may be from the ”raw
approximation” in the first few iterations, where the approximation of parameters
is still comparatively far from the convergence on true values, so some of the false
prediction based on the current parameters may drive the approximation away in the
next generation.

BIC-1. In this experiment, we apply the observation of time length T = 248, with
15 missing values scattered in the chain also with consideration of avoiding missing
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chains. The goal is to find the approximated number of states favored by BICs, and
the plot of two BICs is

Figure 7: BIC of different number of states (scattered missingness)

It is predicted and concluded that BIC of EM-Viterbi algorithm is higher than the
original EM algorithm in most time and represents a moderately worse approximation
preferring higher model complexity by choosing slightly more number of states for
better approximation, and it may potentially lead to overfitting. Also, the trend of
their difference is noteworthy: the changing trend of BIC of EM-Viterbi is close to
the BIC of original EM algorithm, but with far greater degree of change: the two
BICs are close to each other when scores are low (representing a favored number
of states), while BIC of EM-Viterbi algorithm is vastly higher when the number is
not preferred. Though the reason remains uncertain, it seems that the EM-Viterbi
algorithm construct a far more sensitive model on detecting plausible number of
states.

However, in the situation of all 15 consecutively missing observations, it is ex-
pected and concluded that the BIC of EM-Viterbi algorithm indicates an inaccurate
model:
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Figure 8: BIC of different number of states (consecutive missingness)

the lowest point of BIC curve is not corresponding to the curve of original EM,
and the slightly more flat curve also indicates the model is not comparatively robust
in approximating the number of states. This conclusion is discussed with more details
in the next part:

BIC-2. On the other hand, we tested on the influence of consecutively missing values
on performance of BIC. Similarly in Output-1, set of tested missing numbers are
m = {2, 3, 5, 10, 20, 25}, but we will also have range of possible number of states
N = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; 100 trials are simulated on each m with the same
observation, and proportions of optimal number of states favored by BIC in each
simulation are shown in histograms. Plots of m = {10, 20, 25} are shown below.
Histogram of simulation on scattered missing values when m = 25 are also displayed
as a comparison:
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(a) Scattered Missingness m=25 (b) Consecutively Missingness m=10

(c) Consecutively Missingness m=20 (d) Consecutively Missingness m=25

Figure 9: Histograms of Optimal Number of States

From the figures above, in situation of scattered missingness the optimal number
of states produced by EM-Viterbi will be close to the number preferred by original
EM(mostly at n = 3 with the second highest bar at n = 8), while with the increasing
length of missing chain, it seems to be ”uncertain” on the number, represented by
similar frequency in multiple groups, producing a flat histogram in their corresponding
intervals.
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[5] José G. Dias, Jeroen K. Vermunt, and Sofia Ramos. Clustering financial time
series: New insights from an extended hidden markov model. European Journal
of Operational Research, 243(3):852–864, 2015.

[6] Noura Dridi and Melita Hadzagic. Akaike and bayesian information criteria for
hidden markov models. IEEE Signal Processing Letters, 26(2):302–306, 2018.

[7] S R Eddy. Profile hidden Markov models. Bioinformatics, 14(9):755–763, 10
1998.

[8] Xiaotian Guo. Financial application of HMM. https://www.zhihu.com/

question/34868706/answer/106024559.

[9] Jouni Kuha. Aic and bic: Comparisons of assumptions and performance. Soci-
ological methods & research, 33(2):188–229, 2004.

[10] Brian G Leroux and Martin L Puterman. Maximum-penalized-likelihood estima-
tion for independent and markov-dependent mixture models. Biometrics, pages
545–558, 1992.

[11] Li Li. Speech recognition based on hmm. http://fancyerii.github.io/

books/asr-hmm3/.

[12] Roderick JA Little. Selection and pattern-mixture models. Longitudinal data
analysis, pages 409–431, 2008.

[13] Pinard Liu. Hmm parameters from baum-welch. https://www.cnblogs.com/

pinard/p/6972299.html.

[14] Geoffrey J McLachlan and Suren Rathnayake. On the number of components in
a gaussian mixture model. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 4(5):341–355, 2014.

[15] Jennifer Pohle, Roland Langrock, Floris M. Beest, and Niels Martin Schmidt.
Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions
Illustrated Using Animal Movement. Journal of Agricultural, Biological and
Environmental Statistics, 22(3):270–293, September 2017.

[16] Douglas A Reynolds. Gaussian mixture models. Encyclopedia of biometrics,
741:659–663, 2009.

30

https://www.zhihu.com/question/34868706/answer/106024559
https://www.zhihu.com/question/34868706/answer/106024559
http://fancyerii.github.io/books/asr-hmm3/
http://fancyerii.github.io/books/asr-hmm3/
https://www.cnblogs.com/pinard/p/6972299.html
https://www.cnblogs.com/pinard/p/6972299.html


[17] Greg CG Wei and Martin A Tanner. A monte carlo implementation of the em
algorithm and the poor man’s data augmentation algorithms. Journal of the
American statistical Association, 85(411):699–704, 1990.

[18] Nick Wong. Weekly corn price. https://www.kaggle.com/nickwong64/

corn2015-2017.

[19] Xiaoming Wu, Changxin Song, Bo Wang, and Jingzhi Cheng. Hidden markov
model used in protein sequence analysis. Journal of Biomedical Engineering,
19(3):455–458, 2002.

[20] Walter Zucchini, Iain L MacDonald, and Roland Langrock. Hidden Markov
models for time series: an introduction using R. CRC press, 2017.

31

https://www.kaggle.com/nickwong64/corn2015-2017
https://www.kaggle.com/nickwong64/corn2015-2017

	Introduction
	HMM Basics: Formulation
	Forward/Backward-probability
	HMM in Speech Recognition
	HMM in Finance

	Inference for Hidden Markov Models
	Likelihood with Full Observation Chain
	Prediction of Hidden States
	Likelihood with Missing Data
	Ignorable Likelihood
	With Chain of Missing Observations

	Prediction by Viterbi Algorithm

	Parameter Estimation: EM-algorithm
	Basic EM-algorithm for HMM with Full Observations
	EM-Viterbi algorithm for Missingness
	EM-Viterbi Algorithm


	Model Selection: Assessing Accuracy
	AIC & BIC
	BIC with Missing Observations

	Simulation and Results
	Settings
	Results


