RECOVERING THE FIRST VERTICES
IN A PREFERENTIAL ATTACHMENT MODEL

Math 199H - Honors Thesis
Department of Mathematics,
University of California, San Diego

Spring 2020

Thu Nguyen
Advisor: Professor Ery Arias-Castro

June 5, 2020

Abstract

We study the problem of recovering the first vertices in a graph grown under
the preferential attachment rules. We focus on tree graphs. We start with and
build upon the algorithm introduced by Bubeck, Devroye, and Lugosi in [3]
which looks at the largest connected component after removing any one vertex.

We first consider recovering only vertex 1. We provide a more detailed
proof of the accuracy of the algorithm, which is taken from [3]. We test
the algorithm with simulations over a wide range of graph sizes. Given the
computation cost, we propose a two-step procedure which combine that with
using the vertex degree to cut down the complexity without giving up much
accuracy. We then consider recovering the first L vertices. We propose a
sequential algorithm where at each stage we do a local search conditioned on
what already know. We conjecture on the expectation of that algorithm and
then test the algorithm on simulations.

We find that we can get significantly accurate when recovering vertex 1.
However, the problem starts becoming much harder once we want to recover
more vertices. In particular, it only takes until the fifth vertex to observe
considerable drops in the accuracy. Nonetheless, it appears that it is possible
to increase the accuracy greatly if we are willing to return a larger set of
suspected vertices.

Acknowledgement

I would like to express the most sincere thanks to Professor Arias-Castro, who offered me
the opportunity to work on this project, provided resources, and guided me through how to
tackle such open problems. It was an eye-opening experience for me.

Contents
1 Introduction 3
2 Overview 5
3 Recovering Vertex 1 7
3.1 Set-up and Objectives Lo 7
311 Set-upo e 7
3.1.2 Objectives o 9
3.2 Algorithm o 10
3.3 Simulation e 15
3.3.1 Simulation Data e 15
3.3.2 Simulation Results 16
3.4 Proposed Variant e 21
4 Recovering First L Vertices 23
4.1 Set-up and Objectives 23
411 Set-up e 23
4.1.2 Objectives L e 23
4.2 Algorithm 23
4.3 Simulation e 26
4.3.1 Simulation Data e 26
4.3.2 Simulation Results 26
4.4 A Second Look at the Problem 31
5 Conclusion 34
6 References 35

1 Introduction

Preferential attachment model was first introduced in the 1970s by Price in [12] and has picked
up in popularity since the 1990s after the paper by Barabdsi and Albert in [1]. It is one of the
simplest models that exhibits some important features of real networks, ranging from biology
and transportation networks, and the classic example of citation networks.

One reason for why the preferential attachment model is commonly observed relies on the
way preferential attachment model grows, which mimics the phenomena of the rich get richer:
when graphs evolve over time, newly added vertices will have tendency to connect to already
well-connected vertices.

We introduce a (somewhat) standard version of a preferential attachment mode. This takes
three parameters, namely:

1. Gg : the seed graph at time ¢t = 0
2. m : the number of new edges added at each iteration;
3. «: the parameter which controls the growth of the graph.

We can now define the graph iteratively as follows. Let Gg be given. Let di(u) be the degree
of vertex u in G(t). We construct G(t + 1) as:

1: Add a new vertex ¢t + 1
2: Choose m existing vertices u € G(t) such that

P(u is chosen) o (dy(u))” (1)

3: Add new edges between ¢ 4+ 1 and the m chosen vertices

The specification above leaves us a lot of freedom to tweak the model. Some choices we can
make include:

1. m : the larger the m, the denser the graph, but also more variation between different
realizations of such a model;

2. « : the larger the «, the faster the already well-connected vertices will be even more
connected, the behavior of which closely mimics the observed real-life phenomena of the
rich get richer; common choices of « are 0 and 1;

3. if m > 1, we can either choose m vertices sequentially or simultaneously, the former of
which further enhances the the rich get richer phenomena;

4. we can introduce another parameter, say p € [0,1]: a Bernoulli random variable which
decides if at the current iteration we want to add a new vertex and then new edges or
we can just add new edges between the vertices.

A defining characteristic of the preferential attachment model is its degree profile, which
closely follows a power-law. This characteristic has been studied rigorously and in great detail,
such as by Dorogovtsev et al in [5]. Many of those results have been summarized in the recent
book on random graphs by Hofstad in [¢]. In particular, given a strict preferential attachment
model (with m =1 and o = 1), it has been shown, for example by Chung and Lu in [/] and
Bollobas et al in [2], that as ¢ goes to infinity, as k gets large, the proportion of vertices with
degree equal to k is proportional to k3. We observe that the older a vertex, the larger the
expected degree of that vertex. Figure 1 shows an instance of such model. We observe a few
vertices with high degrees while the majority are of degrees 1 and 2.

An instance of a Preferential Attachment model with 50 vertices

Figure 1: An example of a preferential attachment model starting from a single vertex with
a equal to 1, and m equal to 1 (one new edge at each iteration).

2 Overview

The motivation for our study is to recover the first vertices of a graph assumed to have grown
under a preferential attachment mechanism.

Suppose we have a graph G, which we believe grew according to our preferential attachment
model specified in 3.1.1. G gives us a snapshot of our graph at some point in time. It is
natural to ask ourselves if we could trace back in time and recover graphs at previous past.
Of particular interest is the seed graph which gave rise to G. In other words, we believe that
G started with a single vertex, say 1, we now want to identify that vertex.

We first consider the special case of recovering vertex 1, and then generalize that to recover first
L vertices. To introduce a bit of structure to the graphs, we work with preferential attachment
model on tree, which will be defined later on. Section 3 addresses the problem of recovering
vertex 1, and section 4 that of L vertices.

Inspired by the algorithm and their results on the accuracy of such algorithm introduced
in the paper by Bubeck, Devroye, and Lugosi [BDL [3]], within each problem, we first define
the set-up and the objectives, together with other considerations, such as the computation
cost or the need to be accurate versus precise. We next introduce or propose algorithms to
tackle the problems. For each algorithm, we introduce the motivation and the theoretical
results or supporting arguments. We then test the algorithms over a wide range of graph sizes
and note the results.

Furthermore, to keep track of the simulation performance on vertex recovery, we introduce
two performance metrics:

Accuracy = the probability of fully recovering the first L vertices

L
Precision — 2
recision e
Ideally, we look for an algorithm that could be both highly accurate and highly precise. It
should be noted that as introduced by Lugosi and Pereira in [10], in the problem of recovering
the first L veritces, there are two notions of accuracy of an algorithm: suppose the algorithm
returns a set of vertices, say H, then:

e acuracy of first kind: H C L
e acuracy of second kind: L C H

In this study, we will focus the accuracy of second kind, ie. we want to fully recover the first
L vertices.

As a note, we assume that the reader is familiar with basic concepts in graph theory, such as
e simple graph, connected graph, tree graph
e vertex degree, vertex neighbor

For additional references, the reader can consult Networks by Newman [11].

Notation 2.1. Let G be a fully labeled graph, then G° denote the isomorphism class of G,
ie. G° is an unlabeled copy of G. An example is in figure 2.

Notation 2.2. Let L € N, we denote [L] = {1,2,...,L}.

Figure 2: Example of a fully and chronologically labeled graph versus its unlabeled copies in
different orientations.

3 Recovering Vertex 1

3.1 Set-up and Objectives
3.1.1 Set-up

We will start by specifying the exact settings and the objective. We consider a special case of
a preferential attachment model introduced in section 2, one in which m = 1 and « € {0, 1}.
These choices of parameters give a uniform attachment and preferential attachment on trees
respectively.

Additionally, we assume that the seed graph Gy is a singleton (a single vertex with no edges).

The growth rule in 1 implies that

(a) when a = 0, we have the uniform attachment model:

P(u is chosen) = ———— = -

vicm) ot

(b) when oo = 1, we have the preferential attachment model:

- _ di(u) o di(u) -
P(u is chosen) = Z i) = 21 (ift>1)
veV(G(t))

Figures 3 and 4 illustrate two instances of the evolution of the wuniform attachment and
preferential attachment models respectively at sizes 20, 60, and 100, starting from a singleton
and growing iteratively.

Graph size: 100

Graph size: 20 Graph size: 60
b /
[1 4
e Ed ol g ®
- Y T 11 1
- NE AT
- . "\ "Ji’_, /
g } i L , ¥
k- e € {D‘i“‘ el] ¥ * f._ .-" =
! T e E r.-’{'. A e 1
e ' , q‘_ I) 3 e ,r"l .’; ;' i .\"
e ey \ W - J Fi / & ;\ %, S
P] AN
4__.‘ ? Y b
§ P N
e - «)

Figure 3: Evolution of an instance of the uniform attachment model, starting with a single
vertex 1, which is labeled and colored to give us a sense of where the vertex is relative to the

whole graph.

Graph size: 100

: r
S L
y o

Graph size: 60

Graph size: 20

et =, ~
o
._ e
. AT
AT T
t -~
L] 4
| ./ I‘\

Figure 4: Evolution of an instance of the preferential attachment model, starting with a single
vertex 1, which is labeled and colored to give us a sense of where the vertex is relative to the

whole graph.

3.1.2 Objectives

Suppose we have a graph G, which we believe grew according to one of our preferential attachment
models specified in 3.1.1. G gives us a snapshot of our graph at a point in time. It is natural

to ask ourselves if we could trace back and recover graphs at previous past. Of particular
interest is the very first evolutions of the graph which gave rise to G.

In this section, we believe that G started with a singleton, ie. Gy consists of only vertex
1. We now want to identify that vertex.

Not only do we want to identify vertex 1, we want to be as accurate and precise as pos-
sible, which were defined in section 2. We now establish certain criteria that we would like
the algorithms to achieve. The first is on the accuracy:

Fix some error rate ¢ > 0. We want an algorithm that takes in an
unlabeled graph G and returns K vertices such that:

PleK) > 1-¢

The second is on the precision:

In returning K vertices, for a graph G of n vertices, given fixed error
rate of €, we want K as small as possible.

It turns out that in this context it is indeed possible to return only finitely many vertices even
when the graph size goes to infinity, as proved in [BDL [3]]. The details of the algorithm will
be discussed in section 3.2.

We can now formalize the problem. To differentiate a fully chronologically labeled graph
of n vertices, G(n), from its unlabeled copy, let G°(n) be its unlabeled tree graph. Assume
G°(n) grew under the model specified in 1. Let € > 0 be given. We look for a map H which
takes in G°(n) and returns a subset of vertices in G°(n) such that

lim P(1 € H(G(n)) > 1-¢

n—o0

3.2 Algorithm

As introduced in section 1, there is a strong positive relationship between the vertex age and
its degree. In particular, as t goes to infinity, as k gets large, the proportion of vertices with
degree equal to k is proportional to k73,

Given the observations, it is natural to think of using the vertex degree as the criteria in
returning those K vertices. However, it is claimed in [BDL [3]] that to guarantee the accu-
racy, we would need to return O(In(n)) vertices, where n is the number of vertices in the
graph G. In particular, when n goes to infinity, we would need to return infinitely many
vertices to be guaranteed of its accuracy.

In the same paper, Bubeck, Devroye, and Lugosi introduce a different algorithm. Instead
of looking at the degree of a vertex u, they look at the size of the maximum connected com-
ponent. We will sometimes refer to this as the ¢ algorithm or the ¢ method interchangably.
We first introduce a notation.

Notation 3.1. (T, u),, is the subtree rooted at v, a child of u, and not containing u. Figure
5 illustrates an example of this.

U
‘:T-“\] frud .
4 i LTu)
il A ™ %
- './J ,I ;" I-I Rt
o \ |
[1 . | ' '-I L '_\
[K

) * i s

Figure 5: An example of (T, u),, where v is numbered 1,2,...,d(u).

Since we only consider tree graphs, we will use G and T interchangably. We are now ready to
describe the algorithm. For simplicity of notation, for the purpose of describing algorithms,
let G(n) denote an unlabeled graph of size n, and N(u) be the set of vertices neighboring
vertex u.

10

Algorithm 1 Recovering vertex 1, [BDL [3]]

: Input: an unlabeled tree graph G(n), K

. for each u € V(G(n)) do

for each v € N(u), a neighbor of u do
Compute [(G,u)y,|

end for

R t = Ga v
eturn p(u) = max (G)y,

S gk W

end for
: Output: K vertices with the smallest ¢ values

®

Figure 6 gives a simple illustration of the algorithm.

Full graph Without Vertex u

Y
\ >

Without Vertex v Without Vertex w

—

—

P il

Figure 6: The first graph is complete with 50 vertices. In the top right graph when removing a
vertex u, the result implies that p(u) = 26. Similarly, the bottom left implies that p(v) = 42.
The last is when we remove a leaf vertex w, (since the result is one connected component),
hence ¢(w) = 49. We now have an increasing order of {¢(u), (v), p(w). If we choose to
return K = 1, the algorithm will return vertex u, among the three of them.

11

We present here the results on the asymptotic accuracy of the algorithm on the preferential
attachment and uniform attachment models which start from a singleton and grow according
to growth rule 1.

Theorem 3.1: Uniform attachment model on tree, [3]

Consider the uniform attachment model starting with a singleton and has n vertices,
denoted by T'(n). Let T°(n) be its unlabeled copy. Let K > 2.5%, then

4e
1—¢

lim inf (1 € Hga(To(n))) > 1-—

n—-+4o0o

We first give a sketch of the proof here.

1. Show that: P(1¢ H,) < IP’(go(l) > (1—e)n) +]P’(Hz’>K:gp(z’) < (1—6)71)

2. Show that: limsup]P’((p(l) >(1- 6)71) < 2e

n—-+4o0o

3. Show that: limsup]P’(Hi > K (i) < (1-— e)n) < K(1—e)ft

n—-+00

Remark: contrary to the procedure described in the algorithm above, where we were working
with an unlabelled graph, here, to analyze the accuracy, we work with a chronically labeled
graph, i.e. we know the ground truth: the exact order of which vertices appeared.

Proof: We now give a complete proof.

Let T;r (i < k) be the tree containing vertex ¢ by removing from T'(n) all the edges
between vertices {1,2,...,k}. At time k, this gives us a collection of k singletons.

Given a new vertex t, since t is equally likely to be connected to any existing vertex,
from the perspective of growing subtrees T j, the probability of ¢ getting added to a
particular subtree T; j is proportional to the current size of T; ;. Hence, growing T j is
equivalent to the classic Polya Urn Model with k& bins starting with 1 ball in each bin.

Let ‘T—n’“l be the proportion of the size of bin i relative to all k& bins. As n goes to
infinity, we have:

T T: T
< ““', | 2”“‘,...,' k*’“') " Dir(1,1,...,1) (2)
n n n n—oo
Further information on the derivation and details on Dirichlet distribution can be found

in the paper by Frigyik et al at [7].

12

1. We first note that the event of vertex 1 not recovered implies that there must be at
least one vertex ¢ > K such that (i) < (1), which gives:

1¢Hy, C 3i>K:p(i) <p(1)
= P(1¢H,) < P(3Fi>K:¢(i)<e())
= P(1¢H,) <Pp(l)>1—¢e)n)+P(Ji>K:p()<(1—e)n)

(by the union bound)

2. By construction, ¢(1) is the size of the largest subtree starting at a child of 1.

Now, recall the definition from step 1, 77 2 and 75 are the two subtrees each start-
ing at 1 and 2 after removing the edge {1,2}. Since T} 2 always includes vertex 1,
when computing any subtrees starting from children of 1 given T 5, we always have
(1) < Ty,2. Hence:

}

Note that the equality sign happens when 1 is a leaf. Furthermore, note that after
time ¢ = 2, in which case we have 2 vertices, it follows that vertex 3 has equal and
identical chances of connecting to either vertex. By symmetry:

e(1) < max {|T1 2|, |Toz

T;
ie{1,2}: [Tial v | Unif|0,1]

n n— 00

We note that this derivation is a special case of 2. In particular, they are identically
distributed and hence

T 2
n

limsup P (¢(1) > (1 —€)n) < limsup]P’(

n—-+oo n—-+4oo

>(1—e)‘i€{1,2}) = 2

3. Let 7 be a vertex which was added after the first K vertices were added. We observe
that from removing the path between ¢ and those K vertices the inequality

K
NS . _
o) > min 3 [Tl
J=1,j#k
Recall that the vector = (|Ty k|, ..., |Tk, k|) converges in distribution to a Dirichlet

distribution with parameters (1,...,1), it follows that:

K
1
= N Tkl % Beta(K —1,1) (3)
J=1jk e

More information on the Beta distribution can be found in any standard textbook
on probability, such as [13].

13

As a result,
limsup P (3i > K : ¢(i) < (1 —¢€)n)

n——+oo

n—-+o0o

K
< limsup P <Hk‘ € [K]: min Z T k] < (1 —e)n)

< K(1 -kt

Let K > 2.5%. From steps 2, 3,4 above, we have:

P(1¢ H,) < P(@(l)Z(l—e)n) +]P’(Hz'>K:gp(i)§(1—e)n)
< 2+ K(1—e)f?

and the result follows. [|

Theorem 3.2: Preferential attachment model on tree, [3]

Consider the preferential attachment model starting with a singleton and has n vertices,
denoted by T'(n). Let T°(n) be its unlabeled copy. Let K > C logi# for some constant
C > 0, then

liminf (1€ Hy(T°(n)) > 1-¢

n—-+4o0o

The proof of this result follows the same outline as given at the beginning of the proof of
theorem 3.1. We note here the key difference.

Assume the same definition of Tj;. Whereas in Theorem 3.1, (|T17k|, ce |Tkk|) follows a
standard Polya urn model with &k bins, here, 2 (]TL,C\, e \Tkk]) follows a Polya urn model
with k& bins and replacement matrix 21 (a replacement matrix simply tracks the number of
new balls to be added to each bin at each iteration). Further details on this variant can be
found in [9] by Janson.

As a result, conditioned on the graph T'(k), we have the convergence

<\T1,k\ Tl er,k\> P Dz’r(dT(k)(l) dnmk)) @

n ' n 77 n n—oo 9 9

where dp)(u) is the degree of vertex v in the graph T'(k).

14

3.3 Simulation

We would like to study the algorithm via simulations. In particular, the focus is on
1. how fast the accuracy converges, if any, and

2. how many vertices need recovered to achieve significant accuracy

3.3.1 Simulation Data

We will build graphs of sizes over the range of:
n € {5000k : k € [16]}

(from 5000 to 80,000, in increments of 5000). In each graph size, we will build 1000 simulations.
We will then run the algorithms over those 1000 simulations, and calculate the number of times
1 is recovered. We will do that over different choices of K:

K € [10]U {5k : k€ [20]}

We will repeat the same procedure for two sets of graphs: one generated by a uniform attachment
model on tree, and one by a preferential attachment model on tree.

Disclaimer: Due to the significant cost of implementing algorithm 1, we will only compute
the ¢ value of the first 5000 vertices in all the simulations. However, based on subsequent
tests, we do not expect the results would be significantly different if we computed the ¢ value
on all the vertices.

15

3.3.2 Simulation Results

We first note that in the analysis, we use the terms accuracy and recovery rate (which is the
ratio of times vertex 1 is recovered over the number of simulations) interchangably. We will
focus on the results on the preferential attachment model.

Figure 7 shows the recovery rate across different value for K on preferential attachment model
on trees of size 50,000, via the method of minimum maximum subgraph. We have some ob-
servations:

1. The accuracy converges very quickly.
2. We only need to return 20 vertices to achieve an accuracy of at least 90%.

3. If we only take the vertex with the minimum ¢ value, we would be correct more than
one third of the time, which increases to over two thirds with only three such vertices.

Pref. Attm. Model on Tree - Method: Minimum Maximum Connected Components

Proporion of imes verex 1 was recoverad on graph of size n = 50000

4

Recovery Rate
. &

Figure 7: Recovery rates of vertex 1 on preferential attachment model on tree across different
K on graphs of size 50, 000.

16

Figure 8 shows the long-run behavior of the recovery rate when the graph size increases while
returning only 20 vertices. We have some observations:

1. Except for the rugged segment between sizes of 5,000 to 15,000, the recovery rate
changed minimally even after the size increased by over 10 times.

2. The accuracy consistently stayed above 90% regardless of the graph sizes.

Pref. Attm. Model on Tree - Method: Minimum Maximum Connected Components

Proparion of timas veriey 1 was recoverad when refuming K = 20 verices

0oz

=

o

0.89

Recovery Rate

=
o
5=

£y

o) Ny 0 2 (3 o 0 5y S o P E)
S &S PSSP S S S

Graph Size

Figure 8: Recovery rates of vertex 1 on preferential attachment model on tree across different
graph sizes when returning K = 20 vertices.

Figures 7 and 8 give us an impression that the algorithm is very robust: it can be precise and
concise very quickly. Figures 9 and 10 show the recovery rates when we return only vertices
with the smallest ¢ values. One observation significantly stands out:

1. The recovery rates remained unchanged across a wide range of graph sizes.

17

Pref. Attm. Model on Tree - Method: Minimum Maximum Connected Components
Proportion of imes vertex 1 was recoverad over K =12 3, 4,5

oo
ne

o7
o
s

—— S ————9

—y— iy S @ & g & J

@05
o4
Eos
0.2
01

‘:@Q \ég@ v\ép {‘@Q flfs?P '§¥9 4 ﬁ‘§§§> »-@g hép hépﬁ e‘ﬁQ é&a 6‘599 '\‘:&Q «‘ép é&g

Graph Size

@@ ® @ ks

Figure 9: Recovery rates of vertex 1 on preferential attachment model on tree across different
graph sizes when returning only 1,2, 3,4 or 5 vertices.

Pref. Attm. Model on Tree - Method: Minimum Maximum Connected Components
Proportion of times vertes 1 was recoverad over K= 5, 25 50,100

1

085 S——— o ————— g p——S——————0
& 5 & 2 =
p b4 - - b - b = 2 2 b
@ (s 5 £ S {3 £} B ry i@ o S5y =5
] & 2 & & = 4 - - £ - a & a & 8 8
X po L . g & . 2 2 == . & s = b
&
@
=
Soss
@
x
08
e . . B . & . e i 4. . o A 2 . -
075 & 2 & 3 = = & = & & = & % % = 2
2 o] £] £ ol £ 2 £
& o & L w@a &£ & &'@ & £ & £ «dgg) @‘590

Graph Size

& x5 @ ks @ k5o @ Koo

Figure 10: Recovery rates of vertex 1 on preferential attachment model on tree across different
graph sizes when returning 5, 25,50 or 100 vertices.

We would like to now compare the two methods:

minimum maximum connected component vs. maximum degree

method (A) method (B)

18

Figure 11 gives a look at how the two methods fare. We have some observations:

1. The naive approach of returning vertices of maximum degree yielded recovery rates that
closely resembled that of the ¢ method.

2. Across all sizes, the accuracy from method (A) was strictly better than that of method
(B).

3. Although less accurate, the accuracy gaps between the two methods were relatively
small, at most 15% when we wanted to return less than 5 vertices, but reduced to less

than 5% as soon as we were willing to return 50 vertices or more, as seen in figures 12
and 13.

Pref. Attm. Model on Tree - Comparison:
Minimum Maximum Connected Components vs. Maximum Degree
Proportion of imes vertex 1 was recoverad over graph sizes and K = 1,520
1
0.9 e T S . il il Tl miat y e gy S 1
R T T T T T I T T O T T T T T T
20
ED&.
204
803
02
o1
]

1?’
L B

S -

L 2 o
' 3 3

(SR Sy e e Sy Ny gy Sy g Sy SyS— §

\-.99 «ég? vx‘spe m‘g?p rf’?“ ,ﬁ ».fﬁp s@pQ sé?p ég&" : 6;;5’“ &5590 e;é’?o @59 1@@ %690
Graph Size
i (| e—— g —— 7] —— gz = e m S

Figure 11: Recovery rates of vertex 1 on preferential attachment model on tree across different
graph sizes when returning 1,5, or 20 vertices over the two methods.

19

Pref. Attm. Model on Tree - Comparison:
Minimum Maximum Connected Components vs, Maximum Degree
Proportion of times 1 was recovered over K=1,2,3,4,5

02
Eo1s

& 0.16

Eom

s’

o 012

-]

[| 1 ! | |

= i 2
; p.og N: - i E:) & & e .2 ety B
(=]

£ 0.06
g 0.04
E 0.02

F L LT PSP F IS FSSS
Graph Size

L NS B NG RN W

Figure 12: Differences in the recovery rates of vertex 1 on preferential attachment model on
tree between the two methods when returning only 1,2, 3,4 or 5 vertices.

Pref. Attm. Model on Tree - Comparison:
Minimum Maximum Connected Components vs, Maximum Degree
Proportion of times 1 was recovered over K =5, 25, 50, 100

02
Eo1s
016
@
gD.‘Irl g
2012 ——"
@

X 01 T T
'EDDB

o —e—0p ———g—8
£ 0.06

g 0.04 ® &

& s = . - ® 5 B
b - w it - L 4

]
]
3

I

E 0.02

A T A e
Graph Size

& x5 @ ks @ k5o @ Koo

Figure 13: Differences in the recovery rates of vertex 1 on preferential attachment model on
tree between the two methods when returning only 5, 25,50 or 100 vertices.

20

3.4 Proposed Variant

Inspired by the analysis, we have two observations regarding the two methods of ¢ versus
degree.

1. Their accuracy rates closely resemble each other.

2. Method (A) can get very expensive compared to method (B), indeed while computing
vertex degree can be done in real time, computing ¢ value even for only 5,000 vertices
per simulation can take more than 24 hours when the sizes get above 70,000 for each
batch of 1,000 simulations for instance.

As such, we desire to keep the accuracy while bringing down the computation cost. We pro-
pose a combination of both methods.

We consider a 2-step procedure, in which we first look at M vertices with the maximum
degree, to narrow down the set of vertices on which we now compute the ¢ value. We can
describe the algorithm as:

Algorithm 2 Recovering vertex 1: Variant 1

: Input: an unlabeled tree graph G(n), K, M

: Step 1: Return M vertices with the maximum degree
: Step 2: Compute ¢ values among those M vertices

: Output: K vertices with the smallest ¢ values

N N R

We now run the proposed algorithm on the same set of data. Figure 14 shows the result. We
have some observations:

1. There appeared no significant (or even observable) changes in the accuracy when we
computed the ¢ values on only a subset of vertices compared to that on all the vertices.

The simulation gives us support for our proposed variant, that to save computation time, we
can incorporate the naive method of looking at the vertex degree to narrow down the set of
suspected vertices.

21

Pref. Attm. Model on Tree - Method:

Minimum Maximum Subgraph among Top M Vertices of Maximum Degrees
Proportion of imes vertex 1 was recovered over K=1,2, 3,4, 5

1
(ER:]
0.8

o7 ! ..I ! .I
- L & & &
Lt = a - =
E‘D.s
2
o b4 # r P =
o L 4 - L4 e
Eoz
02
0.1
0
M=n M= 1,000 M= 500 M= 100
Graph Size

@@ ® @ ks

Figure 14: Recovery rates of vertex 1 on preferential attachment model on tree under the
proposed 2-step algorithm to narrow down the set of vertices we want to compute ¢, and
returning only 1,2, 3,4, or 5 vertices.

22

4 Recovering First L Vertices

4.1 Set-up and Objectives
4.1.1 Set-up

We follow the same set-up introduced in section 3.1.1. In particular, we focus on the prefer-
ential attachment model on tree.

4.1.2 Objectives

Generalizing the idea of recovering vertex 1, we would like to now recover the first L vertices.
Ideally, we look for an algorithm that could be as accurate and precise as possible, in the hope
of achieving performances similar to what we see in section 3.3.2.

4.2 Algorithm

A natural first guess is to simply apply algorithm 3.2 and possibly return more vertices. At
the same time, a different and common approach is to do a local search conditioned on what
we know at the current stage. The idea is popular, such as by Frieze and Pegden in [], where
the authors propose using local search starting at an arbitrary vertex u to recover the vertex
1. We will apply the idea but to recover L vertices.

We propose a sequential local search algorithm in stages, where at each stage we consider
only the set of neighboring vertices of the current known vertices and then update those

known vertices.

The algorithm can be described iteratively as:

Algorithm 3 Recovering first L vertices via local search

. Input: an unlabeled tree graph G(n), K, L
. Initialize a list M = () by default
: foreachle1:L do
if M = () then
Return K vertices with the smallest ¢ values
else
Create X containing neighbors of all vertices in M
Choose from X K vertices with the smallest ¢ values
end if
Update M with those K vertices returned
: end for
: Output: M vertices

© P PR w Y

—
N = O

23

In other words, we start by recovering vertex 1. Having returned a set of vertices which we
believe contain 1, denoted by K7, we look at the vertices’ neighbors, and choose from them
another set of vertices with the smallest ¢ values, denoted by K5. We note that K1 N Ky = (),
and we believe in the likelihood that {1,2} C K; U K. To recover subsequent vertices, we
repeat the same procedure.

Let G(n) be a tree graph with n vertices. We introduce some notations:

Notation 4.1. (T, u)y,y 4s the subtree rooted at v not containing u, as illustrated in figure
15.

Notation 4.2. (T,u), is the subtree rooted at a child of u containing 1 and not containing
u, as illustrated in the sae figure 15.

Notation 4.3. (T,u)\r, is the subtree rooted at u not containing any of the first L vertices,
as illustrated in figure 16.

We conjecture two observations:

Conjecture 4.1

Let G(n) be a tree graph grown under a preferential attachment model starting with a
singleton and with an increasing label starting from 1. Let u > 1 be a vertex not 1. Let
N (u) be the set of vertices neighboring w.

Then in the limit as n goes to infinity, the expected value of the size of (G, u){l} is
pairwise bounded from below by the size of (G,u)(,y for all v in N(u).

(CON

Figure 15: Examples of how conjecture 1 applies.

Conjecture 4.1 asserts that as n — oo, for any vertex u > 1, we can expect that computing
¢(u) reduces to computing the size of the component containing vertex 1 once u is removed.

24

Conjecture 4.2

Let G(n) be a tree graph grown under a preferential attachment model starting with a
singleton and with an increasing label starting from 1. Suppose the first L vertices are
known. Let N([L]) be the set of vertices neighboring any of those L vertices. Let u be the
L + 1% vertex.

Then in the limit as n goes to infinity, the expected value of the size of (G, “)\[L} is
pairwise bounded from below by the size of (G,v)\[r) for all v in N([L]).

N F\/\/Z/%(s @ @y

Figure 16: Examples of how conjecture 2 applies.

Conjecture 4.2 asserts that for any vertices u and v neighboring the first L vertices, as n — oo,
if u appears before v, then we can expect that if all L vertices are removed, the component
containing u will be as least as big as that containing v.

Assuming the two conjectures, we combine them to give support to the proposed algorithm
3: suppose in returning the first L vertices, we have returned the set X7, we now look at the
neighbors of Xy :

1. Conjecture 4.1 implies that for any vertex u € N(AXL), it is reasonable to expect that
©(u) reduces to the size of the component containing X7, once u is removed.

2. Continue on from point (1), we observe that for any v and v € N(XL), comparing ¢(u)
and ¢(v) reduces to comparing the sizes of (G, u)\() and (G,v)\[z], as seen in figure 16,
since the portions containing X7, and what grow out of X7, are the same.

3. Conjecture 4.2 implies that in comparing (G, u)\[z] and (G,v)\|r), if u appeared before
v, then it is reasonable to expect that [(G,u)\izj| = [(G,u)\(z)|, which implies that

p(u) < p(v).

4. Hence, in doing pairwise comparison of the ¢ values, we could expect that vertex L + 1
will have the minimum ¢ value.

25

4.3 Simulation

4.3.1 Simulation Data

We would like to study the two algorithms proposed. We will test the algorithms on the same
data set used in section 4.3.1..

4.3.2

Proportion

Simulation Results

Pref. Attm. Model on Tree:
Recovery of The First L Vertices
Method: Local Search with Constant K per Step

000, Over different K Aumed al each of fe L verfices b
o are tha folal numbs slurmed al fhe end ¢

Graph size: 50 be recovered,
Alsa ahale -

hase L vertices,

5
K {per step)

First L vertices to recover @ Fist1 @ Firsts @ First 10

Figure 17: Recovery rates of the first L vertices on preferential attachment model on tree
via the sequential local search across different K from 1 to 10 at each step on graphs of size
50,000. Also labeled is the total number of vertices returned at the end of the search.

Figures 17 and 18 show the recovery rate of the first 1,5 and 10 vertices under the local search
algorithm on graphs of size 50,000. At each step, we returned K from 1 to 10 vertices, and
larger K such as 10 to 50 per step. We have some observations:

1. The recovery rates decreased significantly when we wanted to recover 5 and 10 vertices,
compared to simply recovering vertex 1.

26

. Although the recovery rates appear low, they appear to be on an increasing trend, as
seen in figure 18, where it showed that it was possible to achieve accuracy of over 50%
if we were willing to return a total of 50 or 400 vertices (for recovering the first 5 and

10 vertices respectively).

Pref. Attm, Model on Tree:

Recovery of The First L Vertices

Method: Local Search with Constant K per Step
weecd Al each of Be L vedices to be recovered;
tuned at fe end of recovering those L vertices.

Graph size; 50000, Cver afferent K vemices
Alsa labeled are the tolal number of varlics

m @ @ B

£ e [;
o 07 @ 110 [lrj et —
‘a @ mmlfgp— (180
[S i ’ 4320 L'__|
> ——— R =
@05 (3] g 5 !
H
204
-3 .

5]

10 4 16 22

26 » 34 38 2 Ll
K (per step)

First L vertices to recover @ Firsts @ Fir 10

260

Figure 18: Recovery rates of the first L vertices on preferential attachment model on tree
via the sequential local search across different K from 2 to 50 at each step on graphs of size
50,000. Also labeled is the total number of vertices returned at the end of the search.

Figure 19 shows the recovery rate of the first 5 and 10 vertices under the local search algorithm
across different graph sizes. At each step, we returned K being 10,30 and 50 vertices. We
have some observations:

1. Fixing the number of vertices returned per step (K), the recovery rates remained es-

sentially unchanged over a wide range of graph sizes whether we returned 10,30 or 50

vertices at each step.

27

Pref. Attm. Model on Tree:
Recovery of The First 5 and 10 Vertices
Method: Local Search with Constant K per Step

Over different graph size; Over different K verices refurned at each of the L vertices to be recoverad;

02 G mp= O == P == =G == G == B == =@ = G —P

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 ROOOD
Graph Size

First L vertices {0 recover w5 == == Fsti0 K (per step) == () s—e— 50 e 5)

Figure 19: Recovery rates of the first 5 and 10 vertices on preferential attachment model on
tree via the sequential local search with K € {10,30,50} across different graph sizes.

We note the significant observation of the recovery rates being stable across a wide range
of graph sizes. This gives an impression that we would only need to tune K, the number of

vertices returned at each step, to increase the recovery rate. This behavior is further confirmed
by figures 20 and 21.

Pref. Attm. Model on Tree:
Recovery of The First 5 Vertices
Method: Local Search with Constant K per Step
Over different graph size; Over different K verices refurned at each of the L vertices to be recoverad;
1
oo
o8

207 s S e == —— |

Eps B e P e = B e]
& i ok e ag

gD.S —p o iy - @ & G & & & @ 2 & <& .
=]

go_a

02

02
6.1
1

5000 10000 15000 20000 25000 20000 35000 40000 45000 50000 55000 60000 65000 70000 75000 BOOOD
Graph Size

K (perstep) @ 10 @ 20 @ 30 @ 40 ® 50

Figure 20: Recovery rates of the first 5 vertices on preferential attachment model on tree via
the sequential local search across different K.

28

Pref. Attm. Model on Tree:
Recovery of The First 10 Vertices
Method: Local Search with Constant K per Step

Oner different graph size; Over different K vertices refurned at each of the L vertices to be recoverad;

1

09

08

Eov
o

® s

@05
3

o 04

T

[

e
L N
® S0

[W |

® lbl}ﬂ
® 9eh
¢ SO0
& 990
9 994
® 00
L B 1]
[& 1]
® 990
[1]
¢ o8

1! L 4

-]

@03
02
6.1

$

5000 10000 15000 20000 25000 20000 35000 40000 45000 50000 55000 60000 65000 70000 75000 BOOOD
Graph Size

K (perstep) @ 10 @ 20 @ 30 @ 40 ® 50

Figure 21: Recovery rates of the first 10 vertices on preferential attachment model on tree via
the sequential local search across different K.

Given those observations, we can now compare the local search algorithm with the simple
search of simply returning K vertices with the smallest ¢ values.

Figure 22 shows the recovery rates between the two algorithms. We have some observations:

1. There appear no significant differences between the two algorithms: for the same number
of vertices returned, the accuracy of a simple search closely resembles that of the more
complicated sequential search.

2. However, when returning more vertices, the gap in the accuracy appear to be widening,
as illustrated by the gaps on the far right of each set of curves.

29

Pref. Attm. Model on Tree:
Recovery of The First 5 and 10 Vertices
Comparison: Local Search vs. Simple Search
Graphsize: 50000 Cver dflerent K verices retumed in botal

06

=
Io
£
Sg3
g
[-
-8 =
" e . -
0 - - -
S 2 e
=E "
31
B
10 15 20 2 30 £ 4 5 73] 55 &0 65 70 75 a0 a5 @ 85 100
K (total)
Vertices to recover == Fsis == == Fri(0 Method =—®= LocalSearch ===@== Simple Search

Figure 22: Comparison of the recovery rates of the first 5 and 10 vertices via the local search
and the simple search algorithms.

Those observations give us an impression that while there is little difference between the two
algorithms initially, the gap would start to grow as we return more vertices. We plan to
further study the trade-off between accuracy and precision of returning the first L vertices.

30

4.4 A Second Look at the Problem

We note the significant drop in the accuracy rates when we started recovering more than just
vertex 1. We would like to look further into this behavior.

We will use a variant of the local search algorithm as described in 3. In particular, we
will look to recover vertex L assuming that we know exactly all the X = {1,2,...,L — 1}
vertices and will search among the neighbors of X. We will refer to this as local search with
perfect knowledge. The objective is to study how hard the problem becomes once we start
looking for vertices away from 1.

Figures 23, 24 and 25 show the recovery rates of a local search with perfect knowledge, using
the methods of both the ¢ values and degree. We have some observations:

1. Comparing between recovering vertex 2 and vertex 10, the drops in accuracy can be
significant.

2. We could expect the accuracy of using the maximum degree to closely match that of
using the ¢ values for the earliest vertices. However, as we move further away from
vertex 1, the difference in accuracy can get more significant, as illustrated in figure 25.

Pref. Attm. Model on Tree:
Vertex Recovery based on Perfect Knowledge
Method: Minimum Maximum Subgraph
Graphsize: 50000 Over dflerent K

1

[+8:]

Proportion
- =) =] E=1 =
: & =~ om

Vertex.lo.Recover =——@=— o &] & 4 = H 5 E 5 7 & 2 L —) e——]

Figure 23: Recovery rates of the first 11 vertices via a local search with perfect knowledge
using ¢ values.

31

Pref. Attm. Model on Tree:
Vertex Recovery based on Perfect Knowledge
Method: Maximum Degree

Graph sire: 50,000, Over diferent K

1

g

Veriexlo,Recover =@ ; e] —— | —— —— ——] ——] ——) ——] —— 1]

Figure 24: Recovery rates of the first 11 vertices via a local search with perfect knowledge
using vertex degree.

Pref. Attm. Model on Tree:

Vertex Recovery based on Perfect Knowledge

Comparison: Minimum Maximum Subgraph vs. Maximum Degree
Graph sire: 50,000, Over diferent K

1

g

Vertex.lo.Recover —@—— 1 —@— : —@— u |Method == mge: = =@ = Sugaphs

Figure 25: Comparison of the recovery rates via a local search with perfect knowledge.

32

We observe that the problem of recovering vertices after 1 can get hard quickly. Although
the experiment appears to show that it would still be possible to achieve certain high level of
accuracy, we will have to trade a lot in terms of being concise. In particular, we will have to
return a much larger range of vertices to get to certain accuracy.

This observation is indeed noted by Lugosi and Pereira in [10]. The paper studies the same
problem of recovering the seed graph. Although the paper focuses only uniform attachment
model on tree, we suspect that the result will carry to a large extent over to that of preferential
attachment model on tree. The paper shows that even when we assume additional structures
on the seed graph, as soon as the seed graph exceed certain size, any algorithm must miss at
least half the number of vertices with probability at least some €. We cite the results here.

Theorem 4.1: Uniform attachment model on tree, seed graph is a path, [10]

Let € € (0, e_ez). Suppose that T}, is a uniform attachment tree with the seed graph, S,
being a line graph of size [for

log(1/e)
~ loglog(1/e)
then for any n > 2l (where n is the graph size), any seed-finding algorithm that outputs
a vertex set H of size [has

P><U7rWIﬁ|§ ;) > ¢

Theorem 4.2: Uniform attachment model on tree, seed graph is a star, [10]

Let € € (0, 6*62). Suppose that T}, is a uniform attachment tree with the seed graph, S,
being a star graph of size [for
log(1/¢)

~ loglog(1/e)

then for any n > 2] (where n is the graph size), any seed-finding algorithm that outputs
a vertex set H of size [has

P(\Hﬂlﬂgé) > €

33

5 Conclusion

In this paper, we studied the problem of recovering the first vertices in a model assumed to
have grown under the preferential attachment rules. We focused on a special case where the
graphs are trees. We revisited the approach of looking at the maximum subgraph created
when removing each vertex. We provided a more detailed proof and studied the efficiency
with simulations. We summarize the key findings below:

1.

In recovering vertex 1, we can get accurate in terms of finding a set of vertices in which 1
belong and that the set is small very quickly. In particular, we can achieve an accuracy
of about 90% by returning only 20 vertices regardless of the graph size, as seen in figure
7.

. Once we want to recover more than just vertex 1, the problem becomes much harder

quickly. Not only is the drop in accuracy significant, but we would now need to return
a lot more vertices to be of certain confidence that the first L vertices have been fully
recovered.

. This phenomenon brings to our attention the trade-off between being

accurate vS. precise
N !

that L vertices

have beon rocoomad that only a small number

of vertices have been returned

The findings from section 4.3.2 suggest that if we are willing to forgo being precise, we
could improve the accuracy, although the trade-oftf appear significant.

. Once we have fixed the objective (number of vertices to recover), the method (either

using vertex degree or the ¢ values), and the approach (local search of simple search),
the accuracy remains constant regardless of graph sizes, ranging from size of 5,000 to
even 15 times larger of size 75,000. This suggests that the difficulty of the problem lies
in the structure of such a model and not so much on the size.

. Although always trailing behind in terms of accuracy, simply looking at the vertex degree

can get us quite far, compared to using the more complicated algorithm of looking at
the ¢ values. However, computing vertex degree is straightforward and is much cheaper.
As such, when the computation cost can get expensive, we propose a two-step approach
where (1) we look at the vertex degree to narrow down the set of suspected vertices,
and then (2) compute the ¢ values with little compromise on the accuracy, as seen in
section 3.4.

34

[10]

[11]

[12]

[13]

References

Albert-Laszl6 Barabasi and Réka Albert. Emergence of scaling in random networks.
Science, 286(5439):509-512, 1999.

B’ela Bollobas, Oliver Riordan, Joel Spencer, and Gédbor Tusnady. The degree sequence
of a scale-free random graph process. Random Structures €& Algorithms, 18(3):279-290,
2001.

Sébastien Bubeck, Luc Devroye, and Gédbor Lugosi. Finding adam in random growing
trees. Random Structures Algorithms, 50(2), 2016.

Fan Chung and Linyuan Lu. Complex Graphs and Networks. Number 107. American
Mathematical Society, 2006. CBMS Regional Conference Series in Mathematics.

S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Structure of growing networks
with preferential linking. Physical Review Letters, 85(21), 2000.

Alan Frieze and Wesley Pegden. Looking for vertex number one. Ann. Appl. Probab.,
27(1):582-630, 02 2017.

Bela A Frigyik, Amol Kapila, and Maya R Gupta. Introduction to the dirichlet dis-
tribution and related processes. Department of FElectrical Engineering, University of
Washignton, UWEETR-2010-0006, (0006):1-27, 2010.

Remco van der Hofstad. Random Graphs and Complexr Networks, volume 1 of Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2016.

Svante Janson. Limit theorems for triangular urn schemes. Probability Theory and Related
Fields, 134(3):417-452, 2006.

Gébor Lugosi and Alan S. Pereira. Finding the seed of uniform attachment trees. Elec-
tron. J. Probab., 24:15 pp., 2019.

Mark Newman. Networks. Oxford university press, 2018.

Derek De Solla Price. A general theory of bibliometric and other cumulative advantage
processes. Journal of the American Society for Information Science, 27(5):292-306.

Sheldon Ross. A first course in probability. Pearson, 2014.

35

	Introduction
	Overview
	Recovering Vertex 1
	Set-up and Objectives
	Set-up
	Objectives

	Algorithm
	Simulation
	Simulation Data
	Simulation Results

	Proposed Variant

	Recovering First L Vertices
	Set-up and Objectives
	Set-up
	Objectives

	Algorithm
	Simulation
	Simulation Data
	Simulation Results

	A Second Look at the Problem

	Conclusion
	References

