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Abstract

Although linear models enjoy widespread use in economics, due
in part to their simple but flexible form, real estate data generally
violates many of their standard assumptions. This paper presents
some methods that have allowed applied researchers to conduct more
principled analyses with real estate data, while still using linear mod-
els. We begin with a review of the motivation behind instrumental
variables and the two-stage least squares estimator. Then, we explore
some instrumental variable methods and, briefly, an application, under
four settings. The first is spatial dependence, which remains relevant
within the two topics that follow: quantile regression and simultane-
ous equation models. Finally, we give a brief overview of instrumental
variable estimation for probit regression, where the response is explic-
itly modeled as binary. This paper may be of interest to those looking
to survey how the familiar two-stage least squares estimator has been
adapted and generalized to less restrictive settings over the past few
decades, with many of the methods discussed remaining in active use.
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1 Instrumental Variables Review

First, we review the use of instrumental variables in the context of linear
regression models, with a focus on explaining the motivation behind the
use of two-stage least squares estimation. This forms the basis of many
econometric methods for causal inference.



1.1 Linear Causal Models

Consider the general model explaining the observed random variable y as
a function of P observed predictors x = [z1,...,xp] and all unobserved
random variables u

y=49g (Xa u)

Linear models make the following two assumptions
1. Additive error: g(x,u) = f(x) +u
2. Linearity: f(x) = x'3 where 3 is deterministic

This simplifies to
y=xB+u
Here f3; is the causal effect of a unit increase in z; on y, holding all else
constant. To make this notion more precise, consider a simple experiment
to find the causal effect of a drug on an individual’s blood pressure. Let the
treatment random variable x be binary, so

B {1 if the individual receives the drug

0 otherwise

and y is the individual’s blood pressure. We have the causal model
y = x4+ u with two potential outcomes to our experiment, holding all other
variables constant:

B yD =pF+u ifwesetx=1
Y y O =y if we set =0

The causal effect of the drug is simply the difference y — y(© = 5. The
issue, of course, is that we can only observe one of the two cases.

Suppose we then decide to run the experiment on a group, with indepen-
dent and identically distributed (iid) results (x;,v;), @ = 1,...,n, from the
model

Y = 13 + u;

Under random treatment assignment, we avoid two basic sources of bias:

LOur well-known framework for causation is often attributed to Neyman and Rubin.



1. Reverse causality: each x; will not depend on y,-(o), yz(l)

2. Omitted variables: each x; will not depend on w;
and so we can use the average causal effect estimate
~ 1 1 1 1
f=— Yi — — yi=0+ — Uy — — U;
ni 3; no %Z::O n1 962221 o a;]

which is unbiased, since

~

Elu;|x; = 1] = Elu;|x; = 0] so E[f] =

It is, in fact, the ordinary least squares estimate, whose assumptions and
optimality will be reviewed shortly.

The essential consequence of random assignment is that E[u;|z;] is con-
stant for all possible values of x;. In practice, the researcher may not be able
to randomly assign the variables of interest. This is certainly true in real
estate data, which will be our focus. Even in observational studies, however,
we can often reasonably assume the exogeneity condition

on the linear model
yi = X8+ u;

where some predictors may be included to control for confounding factors.

1.2 Ordinary Least Squares (OLS)

The standard linear regression model is: given iid data (x;,v;), i =1,...,n,
yi = X.3 + u;, or equivalently y = X3 + u, in matrix form,
where we assume
1. Exogeneity: Elu;|x;] =0
2. X has full column rank so 3 is uniquely specified

3. (x4, ;) have finite fourth moments (large outliers are unlikely)



Then the ordinary least squares (OLS) estimate
Bors = (X'X)™' X'y
is unbiased, consistent, and asymptotically normal. Furthermore, under

4. Homoskedasticity: Var(u;|x;) = o*

the OLS estimator is efficient? among the class of linear unbiased estima-
tors. It is also worth noting that OLS corresponds to maximum likelihood
estimation (MLE) under normal iid errors.

Since the OLS assumptions are restrictive, they often do not hold in
practice, so the estimator Bo 1 can often be inconsistent for 3. One prob-
lematic assumption in observational studies is exogeneity. The condition that
Elu;|x;] = 0 implies that all the predictors x; are uncorrelated with the error
term u,;. The latter is sufficient for the consistency of the OLS estimator.?

1.3 Endogeneity and Instrumental Variables

When Cov(z;,u) # 0, the predictor variable x; is called endogenous. In this
case there is an unobserved confounding factor that will generally bias the
OLS estimator. We may suspect endogeneity based on domain knowledge,
or more formally through, for example, the well-known Durbin-Wu-Hausman
test.

We can consider finding a variable z that can only affect the response
variable y through the endogenous predictor ;. Thus, conditional on all
other predictors, we require:

1. Relevance:* Cov(z,x;) # 0
2. Ezogeneity: Cov(z,u) =0

The variable z is called an instrument.
The instrumental variable regression model with K endogenous predictors
and P — K exogenous predictors is: given iid data (x;,2z;,v;), i =1,...,n,

yi = X;3 + u;, or equivalently y = X3 + u, in matrix form,

2Since homoskedasticity is rarely justified, in economics it is more common to use
heteroskedasticity-robust standard errors based on White (1980).

3This alone does, however, result in a biased estimator.

4Weak correlation will result in poor finite-sample performance. See Bound et al.
(1995).
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i
contain the endogenous ones. We assume:

. W, . .
Partition x; = [XZ} where w; contain the exogenous entries of x; and x¢

2. X has full column rank
3. (Xi, 2, y;) have finite fourth moments

4. The L entries of z; are valid instruments

Let the matrix Z contain the instruments z; and the exogenous predictors
w;. Denote its projection matrix by

P, =7(Z'7)'Z

To extend the instrument conditions to multiple endogenous predictors, we
also assume

4a. PzX has full column rank
which implies
4b. L > K: there are not less instruments than endogenous regressors

Here the OLS estimator is generally not consistent due to the endogeneity.

1.3.1 The Two-Stage Least Squares (2SLS) Estimator

The most common estimator used in instrumental variable regression is two-
stage least squares:

1. Regress each endogenous variable on Z by OLS to get the predicted

values R
X =PzX

Note that the exogenous variables are not changed by the projection.

2. Replace X in the original regression with the exogenous X and estimate
B by OLS in R
y=XB+u

This gives the 2SLS estimator, which simplifies to
Bosrs = (X'P;X)'X'Py



The standard errors are calculated from the closed-form solution, usually
to be robust to heteroskedasticity. Although the 2SLS estimator is consistent
and asymptotically normal, it is generally biased in finite samples.

The intuitive formulation of the 2SLS procedure is one of its major
strengths® in applied research, contributing to its prevalence over other, po-
tentially more efficient estimators, such as IV-GMM. It can often be com-
puted much faster than methods that require iterative optimization, as is
often the case with MLE, for example. When discussing the applications, we
will note that many of the estimation procedures we cover are essentially gen-
eralizations of the familiar 2SLS procedure, in the presence of many available
alternatives.

1.3.2 Tests for the Instrument Conditions

Testing for relevant instruments given the jth endogenous predictor with
observations x\) can be accomplished via the first-stage regression

X(j) = Zé—i—ej

where if the instruments are relevant then their coefficients d should be
nonzero. Consequently, in applied research with only one endogenous pre-
dictor, the standard F-test for

Hy:6=0vs H:0#0

is often reported. Rejection is evidence that the instruments are significantly
correlated with the endogenous variable. When there are many endogenous
variables, the full column rank condition on X = P,X may be more conve-
nient to verify.

Recall L is the number of instruments and K is the number of endogenous
variables. Testing for exogenous instruments can only be done when L > K.
Consider the regression

Ugsrs = 2y + €

where iy, = y—X 344, ¢ are the residuals from the 2SLS estimate. Sargan’s
J-test statistic is like the F-test statistic for

Hy:v=0vs H :v#0

5Note that the 2SLS estimate can have a causal interpretation under milder conditions
than linearity. See Angrist and Imbens (1995).
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In the GMM framework, it tests the null hypothesis that all instruments and
exogenous predictors are indeed exogenous.

1.3.3 The Generalized Method of Moments (GMM)

To simplify our notation here, we denote the rows of Z as z; for only this
section. The exogeneity of these variables can be summarized as the vector-
valued moment conditions

Elg:i(8)] =0
for g:(B) = zui = z;(yi —x;B), i=1---n
Since including additional valid instruments could® increase efficiency, we
may have more exogenous variables (moment restrictions) than predictors

(parameters to optimize). The generalized method of moments procedure
seeks to minimize a norm of the sample mean

TORES L)

of the moments, given by

J(B) = g(B)Wa(B)
for some positive definite weight matrix W. Setting the gradient of this
convex function to zero, the optimum is found to be

Boyy = X'ZWZ'X) 'X'ZWZ'y

which is consistent and asymptotically normal.
Denote 2 = Z'FE [uu’] Z. The choice” of W that maximizes the estima-
tor’s asymptotic efficiency has been shown to be

Wox Q7!

This choice, where the variance estimate can be based on 2SLS residuals,
is commonly referred to as IV-GMM. Clearly the choice of W = (Z'Z)™!
corresponds to the 2SLS estimator, so we see that 2SLS is asymptotically
efficient among GMM estimators only under homoskedasticity, i.e. when
Euu’] = ¢’1.

6This may also affect the interpretation of the resulting estimates. In general, the
choice of instruments to include requires specific domain knowledge and is often a major
focus of research efforts.

"Note that any positive scalar multiple of W gives the same estimator.
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2 Extensions for Real Estate Data Analysis

Real estate data has many common features that can result in endogeneity.
The first two that we will cover, spatial dependence and quantile effects, are
in part consequences of having heterogeneous observations. With these, we
can model the endogeneity as an omitted variable problem. Simultaneity, on
the other hand, is a consequence of multiple variables being determined at
an equilibrium and requires an extension of the single-equation linear model.

These conditions, and some corresponding adaptations of the 2SLS es-
timator, are defined and discussed in the following sections. Additionally,
we discuss instrumental variable estimation when the response variable is
explicitly modeled as binary.

2.1 Spatial Dependence

Consider the linear model explaining housing price as a function of some
exogenous covariates: y = X3 +u. It is well-known that the price of a house
at one location is positively correlated with the prices of nearby houses. This
contradicts the assumption that observed data (x;,y;), i = 1,...,n, is iid.

The spatial lag model is a simple stationary spatial dependence model,
in which Cov(y;,y;) is a function of only their distance d;;. The response
variable is assumed to follow a spatial autoregressive process®

y = pWy + X3 + u with |p| < 1

where each row is .

i =p Y Wiy + X8+

j=1

The parameter p is the degree of autocorrelation and W is a matrix of de-
terministic weights w;; that are decreasing in the distance d;; and zero for
non-neighbors. Note that this model is equivalent to

y=(I-pW) " (XB+u)

where (I — pW) should be invertible so that 3 is uniquely specified. There
are a few other conditions on W, including that it should be row stochastic,’
to allow the power series expansion (I — pW)™' =14 pW + p*W? 4 . ..

8See Su (2012) for estimation of a spatial autoregressive model allowing the exogenous
variables to enter nonparametrically.
9All its row sums are equal to one.



Thus, we can also write the model as
y=XB+u+ pW(XB +u) + pP*W*(XB+u) + ...

where the pW term captures the feedback effect of the neighbors, the p>W?
term captures the effect of the neighbors-of-neighbors, and so on. Some
factors that have contributed to its widespread use are its similarity to au-
toregressive models in the time series context as well as readily available
software for estimation, giving economists without specialized knowledge in
geospatial data analysis a reasonable model option.

One major complication is that the matrix W has ~ n? entries, generally
far too many to estimate with n observations. For this reason, the weights
are often specified by the researcher as

0 ifi=jord;>c

Wi = % otherwise

for some threshold ¢ > 0 and function f. For example, Liao and Wang (2012)
choose f(d;;) = exp(—d;;), over f(d;;) = 1, since it allows the estimation
results to be less sensitive to the specific choice of ¢. Another common choice
is the inverse distance f(d;;) = d;'.

Since the spatially-lagged house prices Wy are endogenous, there are
two basic approaches for estimating 3 and p. While Ord (1975) outlined
a maximum likelihood estimation procedure, we will focus on a popular!®
instrumental variable approach.

2.1.1 A Spatial Two-Stage Least Squares (S2SLS) Estimator

Here we describe the model assumptions and 3-step estimation procedure
proposed by Kelejian and Prucha (1998), which allows for spatial autoregres-
sive disturbances!! and response. We will refer to it as the S2SLS estimator,
which is sometimes reserved for the case in which only the response variable
is autoregressive (this roughly corresponds to only the first of three steps
described shortly). The general model is then:

y = X8+ pWy +u with |p| < 1

101t is used in the Stata spatial regression commands spregress, for exogenous predic-
tors, and spivregress, for endogenous predictors, with MLE as an option in the former.

1 This dependence structure is intended to act as a proxy for omitted variables with
spatial dependence.



u = AMu+ e with [A\| <1

where the weight matrices W and M are chosen, € contains iid'? innovations
with finite fourth moments, and the parameters 3, A, and p will be estimated.
As discussed previously, we require that (I — pW) and (I — AM) be
invertible so that the model uniquely specifies our parameter of interest 3.
There are also some standard regularity conditions, omitted here for brevity.
Define the matrix H = [X Wy]| to contain all the regressors in the full

model, with coefficients § = [’? 1 The model is then summarized as:

y=Hd +u

with spatial autoregressive disturbances. The instrument matrix'® Z for H
is augmented with the columns of [X WX W32X ] corresponding to
exogenous predictors. As (possibly linear combinations of) variables not
correlated with the error term, they satisfy the exogeneity condition. The
intuition is that these instruments also satisfy the relevance condition with
respect to Wy since researchers only include a variable as a predictor when
it is correlated with the response. We now outline the three-step procedure:

1. Using the instrument matrix Z, proceed by 2SLS to obtain an estimate
d251,5. Although this estimator is consistent, despite the autocorrelated
disturbances, it is inefficient.

2. Use the estimated residuals tisgr,s = y — H325LS from the previous step
to obtain consistent estimates of A and the innovation variance. The
details of the relatively simple procedure are omitted here.

3. Subtract'* AMy = AMHSé + AMu from both sides of the model equa-
tion to get:
y— My =(H-\MH)d +¢

where the transformed model is now in terms of the same parameters 0
but with iid errors. Substituting!® our consistent estimator \ into the
equation above, we can again estimate & by 2SLS. This is the S2SLS

12This was later extended to allow for heteroskedasticity in Kelejian and Prucha (2010).

13See Lee (2003) for the asymptotically optimal choice.

14This differencing approach is known as a Cochrane-Orcutt type transformation.

5Kelejian and Prucha (1998) show that the asymptotic distribution of the S2SLS esti-
mator is the same as it would be if the true value of A had been used instead.
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estimator and it is consistent and asymptotically normal, as well as

more efficient than the estimator from the first step.

When compared to the MLE, S2SLS is less efficient'® but much simpler

computationally.

2.1.2 Application: Measuring the Benefit of Air Quality Improve-

ment

The S2SLS estimator is used by Kim et al. (2003) to study the effect of
changes in pollution on housing values in Seoul. Their control variables in-
clude housing characteristics, such as number of rooms and time to the near-
est school, as well as the relative neighborhood income level. Two pollutants
are measured: SO2, which is primarily generated by heating and industrial
sources, and NOx, which is primarily generated by transportation.

Variable OLS ML S2SLS S2SLS robust
P 0.469%** 0.588%** 0.549 ***
(0.070) (0.096) (0.082)
House (binary) 0.127*** 0.138%** 0.141%** 0.123%**
(0.041) (0.039) (0.040) (0.042)
NhdIncome (binary) 0.223%** 0.162%** 0.147%** 0.156%**
(0.042) (0.040) (0.042) (0.041)
HouseFuel (binary) — 0.184***  0.186™** 0.187%** 0.176%***
(0.053) (0.051) (0.051) (0.056)
Bathrooms 0.0774%* 0.0813***  (.0823*** 0.0704**
(0.0317) (0.0304) (0.0307) (0.0340)
HouseAge -0.00462**  -0.00564** -0.00590***  -0.00658***
(0.00232) (0.00223) (0.00225) (0.00236)
NearestHospital -0.00359 -0.00423**  -0.00439**  -0.00417**
(0.00223) (0.00214) (0.00216) (0.00189)
SO2 -0.0151***  -0.00795** -0.00612* -0.00651**
(0.00300) (0.00311) (0.00326) (0.00303)
NOx 0.00252 0.00137 0.00108 0.00135
(0.00230) (0.00223) (0.00224) (0.00221)
R? 0.612 0.644 0.644 0.644

Table 1: Results summarized from Kim et al. (2003)

16See Lee (2007) for a GMM-based alternative that may improve upon this.
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They choose the spatial lag model, without spatial autoregressive errors,
using Lagrange multiplier tests.!” Four estimation procedures are compared:
OLS, assuming no spatial autocorrelation, maximum likelihood (ML), incor-
porating the spatial lag model and assuming the errors have a normal distri-
bution, and S2SLS under homoskedasticity as well as under heteroskedastic-
ity. Their results for a subset of their predictors are summarized in the table
above, where the number of asterisks indicate increasing levels of significance.

Compared to the final S2SLS estimates, using maximum likelihood un-
derestimates the degree of spatial autocorrelation. There are substantial
variations in other parameters’ magnitudes that Kim et al. (2003) attribute
in part to the normality assumption of ML not being appropriate for this
dataset.

2.2 Quantile Effects

Recall that, with exogenous predictors, OLS estimates the conditional mean
Ely;|x;] = x}8 by minimizing Y (y; — x;b)?. Another popular regression
approach is to estimate the conditional a-quantile

Qa<yiyxi) = Xg,@a, (OS (07 1)

by minimizing the weighted sum
D Uy —xib), w(k) = [k] ((2a = V)sign(k) + 1)
i=1

which attains its minimum value when a * 100% of the residuals are nega-
tive. Although there is no general closed-form solution, the estimate can be
computed relatively efficiently since the objective function is convex.

It is well-known that estimating the conditional median (i.e. « = 0.5, the
least absolute deviations estimator) has the advantage of being more robust
to outliers in the response than OLS, and general quantile regression shares
this feature through its minimization of absolute instead of squared residuals.

Another advantage is under the possibility that quantile effects are present.
For example, individuals who buy expensive houses may have different pref-
erences than those who buy cheaper houses. If our coefficients of interest

17See Anselin (1988).
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B, vary significantly along the conditional distribution of y, then these po-
tentially meaningful trends are “averaged-out” by the conditional mean es-
timate, which may provide misleading results.!8

Since 2SLS is also a conditional mean estimator, instrumental variable
methods have been developed specifically for quantile regression under endo-
geneity.

2.2.1 Two-Stage Quantile Regression (2SQR)

Kim and Muller (2004) proposed an intuitive generalization of the 2SLS
procedure to quantile regression, commonly referred to as 2SQR (or DSQR).
Although it has a few predecessors, 2SQR has excelled by having a form most
familiar to applied researchers in economics. Since the model assumptions are
analogous to the general instrumental variable regression model, we simply
state the procedure.

Given a fixed a € (0,1) and iid data (y;,X;,%;), @ = 1,...,n, where the
variables z; are valid instruments for the subset of the predictors x; that are
endogenous, to estimate the parameters in the ath conditional quantile:

Qa(yi|xi) = X;Ba

1. For the jth endogenous predictor with observations xU), use quantile
regression to obtain estimates d, , of the parameters in the linear model

Qoz (X(j) |Z) = Z(sj,oz

As before, the matrix Z contains the observations of all of the ex-
ogenous variables, including the instruments. Repeat this for every
endogenous predictor and construct the estimated conditional quan-
tiles ) )

Xj =200

2. Replace the endogenous variables with their estimated conditional quan-
tiles from stage one (the exogenous predictors are gnchanged) and use
quantile regression to obtain the 25QR estimator Bygqp from

Qu(y|X) = X,
18Zietz et al. (2008) investigate this issue and its relation to spatial autocorrelation,
both of which when unaccounted for have led to inconsistent findings among many housing
studies.
19See Chernozhukov and Hansen (2006) for a discussion of their causal interpretation
within the potential outcomes framework.
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The 2SQR estimator is consistent and asymptotically normal, although
its variance estimate is usually obtained by bootstrap. Kim and Muller
(2004) also show through both theoretical results and simulations that it is
more robust to outliers than 2SLS and offers better performance than some
alternatives, such as obtaining the stage-one predicted values from OLS.

2.2.2 Instrumental Variable Quantile Regression (IVQR)

The leading alternative to 2SQR is a GMM-based estimation procedure first
attributed to Chernozhukov and Hansen (2006) and commonly referred to as
IVQR. As with 2SQR, we omit the familiar model assumptions and simply
state the procedure.

Given a fixed a € (0,1) and iid data (y;,X;,%;), @ = 1,...,n, where the
variables z; are valid instruments for the subset of the predictors x; that are
endogenous, to estimate the parameters in the ath conditional quantile

Qulyilxi) = x;8,
first partition the matrix X = [Xe W], where X° contains the endogenous
predictors and W contains the exogenous ones. Similarly, partition 3, =
|:/8a,1
16(1,2

the exogenous predictors W. Rewrite the conditional quantile as

Qu(y[X,Z) = XB,, + Zd,

] . As usual, the instrument matrix Z contains the instruments z; and

Ya
IBa,Q

struments z;. Note that v, = 0 because of the instrument conditions. This
motivates the GMM objective function ||, |lw = 4, W%, for a positive def-
inite matrix W. Chernozhukov and Hansen (2006) suggest minimization via
grid search:

and partition §, = [ }, where the coefficients =y, correspond to the in-

(@)

a1:J = 1,...,J}, use quantile regression to

1. For a grid of values {3

obtain estimates 55) of the parameters in the linear model
Quly ~ X“B.|2) = 267

(k)
2. Choose the values BIVQR = [A ?k)ll where £ = argminj\l’yﬁf)llw‘
a,2
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The IVQR estimator is consistent and asymptotically normal. In compar-
ing IVQR with 2SQR, Kostov (2009) notes that the former offers better per-
formance in finite-sample inference with weak instruments. This, along with
the higher computational demand, makes IVQR more suitable for smaller
datasets.

2.2.3 Application: Housing Prices and Spatial Quantile Regres-
sion

Liao and Wang (2012) study how the implicit prices of housing characteristics
vary across the conditional quantiles of housing prices in an emerging Chinese
city. They are interested in households’ willingness to pay for proximity to
“oreen space” such as public parks. They estimate the spatial lag model
discussed in the previous section by 2SQR, using the spatial lags of the
exogenous housing characteristics as instruments for the spatial lag of housing
price. Some of their graphical results are presented below.

Panel 1: Spatially lagged house price Panel 2: Floor area
0.012

0.011

Coefficient
Coefficient

0.010

0.009 t
0 01 02 03 04 05 06 07 08 09 100 0 01 02 03 04 05 06 07 08 09 I
Quantile Quantile
Panel 9: Urban park distance Panel 10: Natural park distance
0.00 0.06
-0.01 0.04
5 002 g
Q Q
b=] £ 0.00
g -0.03 g
&} O -0.02
-0.04 -0.04
-0.05 : -0.06
0o 01 02 03 04 05 06 07 08 09 1.00 0 01 02 03 04 05 06 07 08 09 1!
Quantile Quantile

Quantile estimates
95% CI of quantile est.; lower bound
95% CI of quantile est.; upper bound

2SLS estimates
95% CI of 2SLS est.; upper bound .
95% CI of 2SLS est.; lower bound ~ =-=-=--

Figure 1: 2SQR and 2SLS coefficient estimates by Liao and Wang (2012)
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The coefficient estimates®® for park distances (panels 9 and 10) support
the idea that households with more expensive housing have a higher marginal
willingness to pay for environmental amenities, which cannot be captured
by the 2SLS estimates. A bit more unexpected is the distinct U-shape in
the estimated degree of spatial autocorrelation for different quantiles (panel
1). Liao and Wang (2012) propose some explanations involving local policy
decisions and note that it warrants further research.

2.3 Simultaneity

Thus far we have focused on issues related to omitted variables in single-
equation models. We now consider a different approach, common in studies
concerning supply and demand dynamics, designed to account for feedback
simultaneity, which is also known as reverse causation.

Take, for example, the relationship between housing prices and migration.
When additional people migrate to a location, this increases the demand for
housing in that area, which would generally cause the local housing prices
to increase. But when housing prices increase, people have an incentive
to move to nearby, more affordable neighborhoods. Thus, our observations
of population changes and housing prices are the result of an equilibrium
between the two variables. To see why this induces endogeneity, consider the
relationship in terms of the two linear models

Price = Popchange x v, +x'81 + u

Popchange = Price * o + X'y + v

where v and v are independent error terms and X contains exogenous pre-
dictors. Substituting the top equation into the bottom one and simplifying,
we get

Popchange = (1 — y172) " (X' (B172 + Ba) + v + uye)

from which Cov(Popchange, u) = (1—y172) " '92 # 0 in general, so Popchange
is endogenous in the top equation. Thus, we cannot simply use OLS to esti-

mate the causal effect of a change in one variable on the other, but we could,

for example, use 2SLS with valid instruments found for each equation indi-

vidually. From the above expression, we see that the exogenous predictors x

would be natural candidates to satisfy the valid instrument conditions.

20The units here are in percentage change of housing price associated with a unit change
in the predictor, since the response is log-transformed.
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In the more general case, we have the linear simultaneous equations model
(SIM) of G equations, where the ith of n iid observations from equation g
has the form

/
Yig = ing} 5g T Uig, Y= [yi,l yi,G}/

By stacking the G' equations for a single observation, we get

Yi:B{Z}‘FUz‘, B:[51 5(}],

1

where we assume x; contains the exogenous predictors across all equations,
y,; contains the endogenous variables, the parameter matrices B and I' can
be determined uniquely from the data, and the errors u;, are uncorrelated
across observations, but possibly correlated across equations.

Although 2SLS can be applied to each of the G equations, using the
exogenous predictors x; as instruments, a system-wide estimator may be
more efficient.

2.3.1 The Three-Stage Least Squares (3SLS) Estimator

We outline the three-stage least squares (3SLS) estimation procedure for
simultaneous equation models, first proposed by Zellner and Theil (1962).
To simplify our notation, group the observations by equation as y, =

[yljg ymg}/, letting X, contain the corresponding observations of pre-
dictors {y; s, s # g} and x; 4, and stack them as

yl X.]_ O e 0 ﬁl u1
. - . . . . . - .
Yo 0 0 Ce XG BG’ Ug

with the equivalent matrix equation
y=XB8+u

Also, let the instrument matrix be Z, containing the observations of exoge-
nous predictors. Then the three stages are:
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1. Project each endogenous variable in X on Z to get the predicted values
X.

2. Use the stage-one X to obtain single-equation 2SLS estimates BZSLS'

3. The 2SLS residuals U = [ﬁl ﬁg} can be used to calculate a
consistent estimate for the error variance via
~ 1 ~74
X=-UU
n

Then obtain the 3SLS estimator by generalized least squares®!

~ _1 A~

~ A —1 ~ ~ —1
Basrs = | X (X L)X X(Z o)y

Note that, with normal errors, 2SLS is asymptotically equivalent to so-
called limited information maximum likelihood estimation, which is efficient
among single-equation estimators. Likewise, 3SLS is asymptotically equiva-
lent to full information maximum likelihood estimation. Although the 2SLS
estimates are consistent, they are less efficient than 3SLS. This, of course, de-
pends on the consistency of 3, so all the 3SLS estimates may be inconsistent
if even a single equation is specified incorrectly,?? while only that equation’s
estimates will be impacted when using 2SLS. The error variance estimator
may also perform poorly in small samples. For these reasons, 2SLS is often
preferred.

2.3.2 A Generalized S2SLS (GS2SLS) Procedure

The GS2SLS and GS3SLS procedures proposed by Kelejian and Prucha
(2004) generalize their previously discussed single-equation estimator to ob-
tain consistent estimates of the parameters in spatial autoregressive simul-
taneous equation models. It allows for spatial dependence in the response
variables y; , as well as in the disturbances u; 4, and optionally in some of the
exogenous predictors. The model for the gth equation has the familiar form

Yy = Xgﬁg + [Wy1 o WyG] p,tuy, u;= AWu, + €,

21Here ® denotes the Kronecker product.
22As with single-equation models, these instrumental variable estimates can have a
causal interpretation under milder conditions than linearity. See Angrist et al. (2000).
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where X, contains, as rows, the observations of predictors {y;s,s # g} and
X; 4, and the innovations € are generated as

€1
=e=(2®I,)v

Eg

for an iid mean zero random vector v with finite fourth moments and non-
singular G x G matrix 3. The chosen weight matrices are all identical to
simplify notation.

The parameters to be estimated are the degrees of autocorrelation p, and
Ag, the coefficient vectors B,, and, in the full-information case, the cross-
equation innovation variance matrix 3. Note that the vector p, captures
spatial dependence of the gth endogenous variable on itself as well as on the
other response variables. The full model assumptions are analogous to the
single-equation case, so they are omitted here.

The same instrument matrix Z is used for the endogenous variables y,
and their spatial lags in each equation. As before, it is augmented with
spatial lags of exogenous predictors. Define the matrix H, to contain all

B,

} to contain their
g

the regressors in the gth model equation and §, = [
respective parameters, so
y, = Hy0, +1u,

with spatial autoregressive disturbances. The limited information GS2SLS
procedure is as follows:

1. Proceed by 2SLS, which is still consistent even though the disturbances
are autocorrelated spatially and across equations, and use the instru-
ment matrix Z to obtain an inefficient estimate d,251s-

2. Use the estimated residuals from the previous step in a GMM proce-
dure to obtain a consistent estimate of the autoregressive disturbance
parameter \,. The details of the procedure are omitted here.

3. Apply a Cochrane-Orcutt type transformation to obtain the final GS2SLS
estimate. As before, we subtract A,Wy, = A\,;WH,4d, + A\,;Wu, from
both sides of the model equation to get:

y; =y, — AWy, = (H, — \,WH,)d, + ¢, = H;ég + g,
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where the transformed model is now in terms of the same parameters
0, but with iid errors. Substitute the consistent estimate of A, into the
above equation and then get the final estimate by 2SLS

8yas2ss = (H P H)) 'HP 1y,
The GS2SLS estimator is consistent and asymptotically normal.
In the full information GS3SLS procedure, there is an additional step:

4. After applying GS2SLS to each of the G equations, use the estimated
innovations E = [él . ég} for the consistent estimate

Stack the differenced model equations y;, = H 4, + €, as
vy =H'd+e¢

where H* = diag¢", (H}). Denoting H = diagS, (PzH}), obtain the
3SLS estimator by generalized least squares

A Al a—1 PN el SN PN |
dGs3sLs = [H* (X @L)H| H(X L)y

which is efficient relative to GS2SLS but with the same caveat regarding
specification errors.

2.3.3 Application: Modeling Population Migration and Housing
Price Dynamics

Jeanty et al. (2010) study the relationship between population migration
and housing prices in their dataset of Michigan census tracts, using two
simultaneous equations. Since migration and housing price changes are likely
to have spillover effects onto neighboring areas, they compare the standard
OLS and 2SLS estimates with GS2SLS. We summarize their results for the
following variables: log median housing value (Inval), 10-year population
change (popch), log household average income (lincome) and log population
density (Ipopden).

The SARLS model allows for spatial autocorrelation but not feedback
simultaneity, while the FS-SARLS model allows for both and OLS allows
neither. 2SLS allows only feedback simultaneity.
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Variable OLS 2SLS
Inval popch Inval popch
Inval 0.2657*** 0.0832
popch 0.3538*#* 0.7671***

lincome 0.5835%**  _(0.2116***
Ipopden -0.0223*%**  _0.0731%**

0.5203*** - 0.1186***
0.0109 - 0.0877***

Table 2: Summarized non-spatial results from Jeanty et al. (2010)

Variable GS2SLS (SARLS) GS2SLS (FS-SARLS)
Inval popch Inval popch

Inval 0.2647#+* -0.1189**
popch 0.3312%** 0.1607**

Spatial Lags

winval 0.2830%** 0.3220%**

wpopch 0.0627 0.7270***
lincome 0.4837***  -0.1567*** 0.5014*** 0.0202
Ipopden -0.0054 -0.0705%#* -0.0186**  -0.0766***

Table 3: Summarized spatial results from Jeanty et al. (2010)

We see substantial variation in the estimates’ magnitude, sign, and sig-
nificance across the four specifications. Recall that we noted increases in
housing prices tend to incentivize people to migrate to other neighborhoods.
This corresponds to a negative coefficient of Inval in the equation for popch,
which only appears in the FS-SARLS model estimate. This is evidence that
failing to account for the feedback simultaneity and cross-sectional spatial

dependence produces biased results.

2.4 Binary Response

We now move beyond standard linear models into the classification setting,
which explicitly incorporates the fact that the response variable y is binary.

Given iid data (x;,y;), i = 1,...n, the linear classification model is

yi = 1(y; >0), v

21
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where Ely;|x;] = P(y; = 1|x;) = F(x}8) for some link function F' mapping
the real number line to the interval (0,1). The probit?® model uses F = @,
the standard normal cumulative distribution function. Then the conditional
error distribution is u; ~ N (0, 1). This follows from the simple calculation

P(u; < x;8) = P(y; = 0| =x;) = 1= P(y; = 1] —x;) = 1-®(—x;8) = (x;0)

Setting the conditional error variance to one guarantees that 3 is uniquely
specified, since multiplying x;3+u; by any positive constant does not change
the value of y;. For exogenous predictors, the most used estimator is maxi-
mum likelihood, using the specified Bernoulli distribution

By = argmaxy, Y [y;log ®(x/b) + (1 —y;) log(1 — & (x/b))

i=1
Note that the causal effects are

oP(y = 1 o
%Tb():@(xﬁ)ﬁj

whereas in standard linear models they are

OFIx] _ 5

afﬁj
In practice, the estimates from using a probit model may not differ much
from OLS. Nevertheless, in the structural approach to causal inference, where
we assume a correctly specified model and our objective is to estimate its pa-
rameters, OLS is fundamentally inappropriate.?* In general, researchers use
the probit model, or another link function, when there is a binary response.

2.4.1 IV Probit Estimation

Many instrumental variable estimators have been developed to deal with
endogenous predictors in the probit model. We describe an approach that

23Which is often favored over logit models in economics, due in part to its similarity to
tobit models for censored data.

24 Angrist (2001) argues, however, that the case of a binary response is not fundamentally
different from the continuous case and so OLS and 2SLS estimates may still have a causal
interpretation
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is analogous to the exogenous probit maximum likelihood. Given iid data
e
(x4,2;,Y;), © = 1,...,n, where we partition x; = {X’] so that w; contains
i
the exogenous predictors and x{ contains the endogenous ones, we have the
model
vi =1(y; > 0), yf =xiB+u
Xf = H1WZ' + H2Zi + v;

where the second equation is simply the relevance condition for the valid
instruments z;. Assume, conditional on w; and x§, iid errors [u; Vi ~
N(0, %) with, as before, the conditional variance of u; set to one.

We can factor the joint density function into
[y, x{|wi, zi; 8,11, Ty, 30)

= g(yilxi, zi; B, Iy, Iy, ) h(x§|wy, z;; 1T, T, 35,

where ¢ is a probit likelihood and % is a normal likelihood. We can then
maximize the log-likelihood to estimate all parameters jointly. This seems
to be the most used estimator, by far.2

A popular two-stage IV probit estimator is an extension?® of the two-stage
conditional maximum likelihood (2SCML) procedure of Rivers and Vuong
(1988). The latter proposed:

1. First maximize the likelihood A by OLS regression of x{ on w; and z;
to estimate II; and II,. Use the estimated residuals in the variance

estimate
. 1 &
Ev = E Z ViV;
i=1
2. Using the stage-one estimates, maximize the likelihood g over the re-

maining parameters by probit maximum likelihood

Strictly speaking, these estimators assume that the endogenous predic-
tors are continuous, since otherwise the model would be a system of probit
equations.

25Tt is the default in the Stata command ivprobit, for example, with the option of
using Newey’s two-step estimator instead.
26The minimum chi-squared estimator of Newey (1987).
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2.4.2 Application: The Effect of Housing Wealth on Labor Force
Participation

Fu et al. (2016) study the effect that a change in housing wealth has on the
choice to participate in the labor force in urban China. Since they have strong
reasons to suspect that an individual’s housing wealth is correlated with some
influential unobserved variables, such as housing and income preferences,
they treat it as endogenous. Their instrumental variable is the average change
in housing value for other houses in the same neighborhood since it should
not directly affect the individual’s decision to work. Their estimation results,
for treating labor force participation as continuous (OLS and 2SLS) as well
as under the probit model (probit and IV probit) are summarized in the table
below.

Effect of housing wealth change on labor force participation, IV estimation.

(1) (2) (3) (4) (5) (6)

Variables Full sample Female sample Male sample Full sample Female sample Male sample

Panel 1: linear probability model results

OLS 2SLS
HousingWealthChange —-0.0011 —0.0013 —0.0002 —-0.0038 —0.0137** 0.0055
(0.0010) (0.0017) (0.0017) (0.0050) (0.0056) (0.0069)
Sample size 4332 1896 2436 4332 1896 2436
R? (Centered R?) 0.1820 0.2139 0.1953 0.1642 0.1734 0.1556
First-stage regression
Instrumental variable for 0.7500%* 0.7517* 0.7513**
HousingWealthChange (0.1080) (0.1403) (0.0924)
First stage F test 48.19 28.69 66.07
Panel 2: probit results
Probit IV Probit
HousingWealthChange —0.0011 —0.0018 —0.0005 —0.0034 —0.0143** 0.0025
(0.0010) (0.0019) (0.0014) (0.0043) (0.0057) (0.0053)
Sample size 4317 1889 2356 4317 1889 2356
Pseudo R? 0.2472 0.2470 0.2694

Figure 2: Results summary from Fu et al. (2016)

Note that, both with and without instruments, using the probit model
produces roughly the same?” estimate signs and significance as treating the
response as continuous. There are, however, substantial differences between
estimates with and without accounting for endogeneity. The IV probit results
suggest that a gain in housing wealth significantly decreases labor force par-
ticipation for women, while the standard probit results show no significant
impact.

27 Although they are estimates of different quantities.
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