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Abstract

Many techniques for solving general nonlinear unconstrained optimization
problems involve iteratively minimizing a model function that satisfies certain
interpolation conditions. These conditions provide a model that behaves like the
objective function in the neighborhood of the current iterate. The model func-
tions often involve second-order derivatives of the objective function, which can
be expensive to calculate. The fundamental idea behind quasi-Newton methods
is to maintain an approximation to the Hessian matrix. The practical success
of quasi-Newton methods has spurred a great deal of interest and research that
has resulted in a considerable number of variations of this idea. The analytical
difficulties associated with characterizing the performance of these algorithms
means there is a real need for practical testing to support theoretical claims.
The goal of this project is to describe, implement, and test these methods in a
way that is uniform, systematic, and consistent. In the first part of the paper,
we derive several classical quasi-Newton methods, discuss their relative ben-
efits, and show how to implement them. In the second part, we investigate
more recent variations, explain their motivation and theory, and analyze their
performance.
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1. Introduction

In this paper we will consider optimization problems of the form

min
x∈Rn

f(x). (1.1)

Since there are no constraints on the allowable values of x, (1.1) is referred to as an
unconstrained optimization problem. Our task is, given a function f : Rn → R, to
find a point x∗ ∈ Rn for which

f(x∗) ≤ f(x) for all x ∈ Rn with ‖x− x∗‖ < δ, (1.2)

for some δ > 0. The problem of global optimization, i.e. finding a point that satisfies
(1.2) for all x regardless of its proximity to x∗, is often intractable and will not be
considered in this paper.

One of the most foundational methods for solving (1.1) is Newton’s method. A
basic result of calculus is that a necessary condition for optimality is ∇f(x∗) = 0.
The aim of Newton’s method is to find a zero of the gradient function. It is an
iterative process in which, at each iteration, the function gradient is approximated
near the kth iterate using a linear approximation

∇f(xk + pk) ≈ ∇f(xk) +∇2f(xk)pk.

Treating this as an equality and setting the left-hand side to zero gives the Newton
equations ∇2f(xk)pk = −∇f(xk). The solution pk is the direction to the next iterate
xk+1.

This method relies on the availability of the Hessian ∇2f(xk) at each iteration.
Often the Hessian is expensive to compute or simply not available. The basic idea
of quasi-Newton methods is to approximate the Hessian and use the approximation
Hk ≈ ∇2f(xk) to determine the search direction. Rather than solve the Newton
equations, we solve the system Hkpk = −∇f(xk). The main question then is to
determine how to construct Hk+1 from Hk in a way that incorporates information
about the objective function f that is obtained by moving from xk to xk+1.

Many variations of this fundamental idea have been developed over the past 60
years. Among them is the well-known BFGS method, which seems to perform best
in practice for reasons that are not fully understood. This speaks to the difficulty
of theoretically characterizing how these methods perform and the importance of
practical testing to support claims of improved reliability or convergence.

Today we have numerical methods that were not available when these algorithms
were conceived. We will leverage the Constrained and Unconstrained Testing Envi-
ronment with safe threads (CUTEst) (see [10]) to compare these algorithms perfor-
mance.

1.1. Notation

In general, notation will be defined as needed throughout this paper. However the
notation summarized in 1.1 is used consistently and without further definition.
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Notation Meaning

pk Search direction

αk Step length
dk = αkpk = xk+1 − xk Step
yk = ∇f(xk+1)−∇f(xk) Change in gradient
Hk ≈ ∇2f(xk) Hessian approximation
Mk ≈ (∇2f(xk))−1 Inverse Hessian approximations

‖ · ‖ Euclidean vector or induced matrix norm

Table 1: Common notation.

1.2. Background

Almost all methods for unconstrained optimization generate a sequence of iterates
{xk }∞k=0 such that xk+1 is chosen to give a decrease in f that is at least as good as
a fixed fraction ηA (0 < ηA < 1) of the decrease in the local affine model f(xk) +
∇f(xk)

T(x−xk). If xk+1 is computed as xk+1 = xk +αkpk, where pk is a vector and
αk is a scalar step, then the sufficient-decrease condition may be written as

f(xk + αkpk) ≤ f(xk) + αkηA∇f(xk)
Tpk, (1.3)

(see, e.g., Armijo [2], Ortega and Rheinboldt [19]). Many practical methods satisfy
the Armijo condition in conjunction with a condition on the directional derivative
∇f(xk +αkpk)

Tpk. In particular, the strong Wolfe conditions require that αk satisfy
both (1.3) and

|∇f(xk + αkpk)
Tpk| ≤ ηW |∇f(xk)

Tpk|, (1.4)

where ηW is a preassigned scalar such that ηW ∈ (ηA, 1). (See, e.g., Wolfe [20], Moré
and Thuente [12], and Gill et al. [8]). Alternatively, the weak Wolfe conditions
involve the Armijo condition (1.3) in conjunction with the one-sided condition

∇f(xk + αkpk)
Tpk ≥ ηW∇f(xk)

Tpk (1.5)

instead of (1.4). The strong Wolfe conditions allow ηW to be chosen to vary the
accuracy of the step. If ηA is fixed at a value close to zero (e.g., 10−4), then a value
of ηW close to ηA gives a “tighter” or more accurate step with respect to closeness to
a critical point of ∇f(xk + αpk)

Tpk. A value of ηW close to one results in a “looser”
or more approximate step. If the Wolfe conditions are used in conjunction with
a quasi-Newton method, there is the additional benefit that the conditions (1.4)
and (1.5) guarantee a positive-definite approximate Hessian Hk can be updated to
give a positive definite Hk+1 for the next iterate. If αk satisfies either the strong
Wolfe condition (1.4) or the weak Wolfe condition (1.5), then yTk dk > 0, where
yk = ∇f(xk+1) − ∇f(xk), and dk = xk+1 − xk. The inequality yTk dk > 0 is a
necessary condition for the updated quasi-Newton Hessian to be positive definite.

A typical Wolfe line search may be viewed as a two-stage process. The first
stage involves the determination of an interval containing a Wolfe step, if one ex-
ists. The second stage is to locate a Wolfe step in this interval using safeguarded
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polynomial interpolation. If the first stage fails, then the objective function is neces-
sarily unbounded below. The key principle that drives the first stage is that certain
conditions may be formulated that determine if an interval contains a Wolfe step.
Much of the discussion in this section is based on the work of Morè and Thuente [12].
More information may be found in Wolfe [21] and Nocedal and Wright [13]. In order
to simplify the notation we omit the suffix k and consider the univariate function
φ(α) = f(x+ αp). With this notation the Wolfe conditions (1.3) and (1.4) may be
written in the form

φ(α) ≤ φ(0) + αηAφ
′(0), and |φ′(α)| ≤ ηW |φ′(0)|.

Much of the theory associated with a Wolfe line search is based on the properties
of the auxiliary function

ω(α) = φ(α)−
(
φ(0) + αηAφ

′(0)
)
, with ω′(α) = φ′(α)− ηAφ′(0).

Moré and Sorensen [11] show that a minimizer of this function at which ω is negative
satisfies the Wolfe conditions. The function ω and its relationship to φ are depicted
in Figure 1.

ω(α)

φ(α)

α

Figure 1: The graph depicts φ(α) = f(x + αp) as a function of positive α, with
the shifted function ω(α) = φ(α)−

(
φ(0)+αηAφ

′(0)
)

superimposed. The dashed line
represents the affine function φ(0) + αηAφ

′(0).

2. Quasi-Newton Methods

The class of quasi-Newton methods constitutes one of the great breakthroughs in
numerical optimization. The first quasi-Newton method was proposed in 1959 by
W. C. Davidon [3], in a technical report published at the Argonne National Labo-
ratory. A famous paper in 1963 by R. Fletcher and M. J. D. Powell [6], published
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in The Computer Journal improved on Davidon’s derivation and was largely re-
sponsible for making these methods widely known. Their subsequent success in
practice has essentially revolutionized optimization for problems in which only first
derivatives are available. In this section we introduce a simple quasi-Newton update
proposed by C. G. Broyden that may be considered as a particular type of secant
update.

2.1. The quasi-Newton conditions

Using the (n + 1)-point secant method as a starting point (see Gill and Wright [9,
Chapter 3]), let Dk be the matrix whose columns are composed of the previous n
values of dk = xk+1 − xk, and assume for simplicity that the columns of the matrix
Dk occur in the order dk−1, dk−2, . . . , dk−n. The (n+ 1)-point secant method gives
an approximate Hessian Hk+1 that may be written in form

Hk+1 = Hk + Uk = Hk +
1

vTkdk
(yk −Hkdk)v

T
k , vTkdk 6= 0,

with Hk+1 satisfying the secant conditions

Hk+1dj = Hkdj , j = k − 1, . . . , k − n+ 1,

Hk+1dk = yk.
(2.1)

This states that Uk leaves Hk “untouched” along the n−1 previous directions dk−1,
dk−2, . . . , dk−n+1, and makes Hk+1 behave like the exact Hessian along the “new”
direction dk. The last condition is justified by the expansion

Hk+1dk = yk = ∇f(xk + dk)−∇f(xk)

= ∇2f(xk)dk +

∫ 1

0

(
∇2f(xk + tdk)−∇2f(xk)

)
dk dt

= ∇2f(xk)dk +O(L‖dk‖2),

where L is the Lipschitz constant. If ∇f is an affine function—i.e., ∇f(x) = c+Hx
for some constant H and c, then the last relation (2.1) is exact, with

Hk+1dk = yk = ∇f(xk+1)−∇f(xk) = c+Hxk+1 − (c+Hxk) = Hdk = ∇2f(xk)dk.

If the n directions dk, dk−1, . . . , dk−n+1 are linearly independent, then the conditions
(2.1) are sufficient to define Uk uniquely. This means that some of the conditions
must be relaxed in order to define methods based on alternative choices for Uk. The
standard strategy is to relax the conditions Hk+1dj = Hkdj , j = k − 1, k − 2,. . . ,
k − n, but keep the last condition

Hk+1dk = yk, (2.2)

which is known as the quasi-Newton condition. The simplest possible form for Uk is
the rank-one matrix

Uk = ukv
T
k , (2.3)
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for some vectors uk and vk to be determined. Substituting (2.3) in (2.2), we have

Hk+1dk = (Hk + ukv
T
k )dk = yk, or uk(v

T
kdk) = yk −Hkdk, (2.4)

which has several interesting implications. First, Hk itself satisfies the quasi-Newton
condition if Hkdk = yk. Second, the rows of Uk are orthogonal to dk (i.e., Ukdk = 0)
if vTkdk = 0; if Hkdk 6= yk, the updated matrix Hk+1 can satisfy the quasi-Newton
condition only if vTkdk 6= 0. Finally, assuming that Hkdk 6= yk and vTkdk 6= 0, the
quasi-Newton condition will be satisfied by the rank-one matrix Uk = ukv

T
k only if

(Hk + Uk)dk = Hkdk + uk(v
T
kdk) = yk, so that uk must be a multiple of yk −Hkdk,

with

Hk+1 = Hk +
1

vTkdk
(yk −Hkdk)v

T
k . (2.5)

One obvious choice of vk is vk = dk, which makes Uk well-defined whenever dk
is not zero. In this case,

Hk+1 = Hk +
1

dTkdk
(yk −Hkdk)d

T
k , (2.6)

which is known by several names, including the Broyden update, the good Broyden
update, and Broyden’s second update.

Each iteration of a quasi-Newton method requires solution of the n × n linear
system Hkpk = −∇f(xk), and a “naive” implementation would require O(n3) flops1

to perform this calculation. In Section 3 we show how the special relationship
between consecutive Hessian approximations allows a factorization of the Hessian
to be updated in a numerically stable way (see Gill and Murray [7] and Dennis and
Schnabel [4]). Once these factors are known, the direction pk can be computed in
only O(n2) flops.

Methods for modifying matrix factorization were not available when quasi-Newton
methods were being developed, and so the earliest quasi-Newton updates were de-
rived in terms of the inverse Hessian. With exact arithmetic, every update to
Hk is associated with an equivalent update to H−1k , using the Sherman-Morrison-
Woodbury formula. For example, if Mk denotes H−1k , the inverse form of the general
update (2.6) is

Mk+1 = Mk +
1

vTkMkyk
(dk −Mkyk)v

T
kMk,

from which the inverse form of the Broyden update

Mk+1 = Mk +
1

dTkMkyk
(dk −Mkyk)d

T
kMk (2.7)

is obtained by setting vk = dk as before.
However, it is possible to derive quasi-Newton updates for the inverse Hessian

directly by considering update matrices Uk that satisfy the quasi-Newton condition

(Mk + Uk)yk = Mk+1yk = dk,

1floating-point operations
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(2.2). Using a formula analogous to (2.4) we can write all admissible rank-one
updates in the form

Mk+1 = Mk +
1

wTkyk
(dk −Mkyk)w

T
k ,

where wk is arbitrary, except for the fact that it must satisfy wTk yk 6= 0. In this
case, the “obvious” formula is defined by setting wk = yk, giving

Mk+1 = Mk +
1

yTkyk
(dk −Mkyk)y

T
k .

The derivation of this update predates the Broyden update (2.6) because of the
perceived additional expense of solving the equations Hkpk = −∇f(xk) rather than
forming the product pk = −Mk∇f(xk) at each step. This formula is not the same as
the Broyden update (2.6), and is known as Broyden’s first update or the bad Broyden
update. It is easy to see that we can write down this formula as an update to Hk

by simply interchanging “M” for “B” and “d” for “y” in the inverse formula (2.7),
giving

Hk+1 = Hk +
1

dTkHkyk
(yk −Hkdk)y

T
kHk.

2.2. The quasi-Newton Hessian

A quasi-Newton line-search method (or, when the meaning is clear, simply a quasi-
Newton method) is typically defined by the sequence of iterates xk+1 = xk + αkpk,
where pk is the solution of

Hkpk = −∇f(xk), (2.8)

αk satisfies appropriate sufficient decrease conditions, and Hk is updated at every
iteration using a quasi-Newton update. When Hk is symmetric and positive definite,
pk of (2.8) is the unique minimizer of the quadratic model qk(x) (2.9), whose Hes-
sian changes at every iteration—hence the name variable metric methods originally
suggested by Davidon and still used by some authors.

Up to this point, we have not made use of the fact that the Hessian H is actually
the second derivative of a scalar-valued function f . The two fundamental properties
of H that we plan to exploit are symmetry and definiteness.

An update formula Hk+1 = Hk + Uk is said to have the property of hereditary
symmetry if symmetry of Hk implies symmetry of Hk+1, and hereditary positive-
definiteness if the positive-definiteness of Hk+1 follows from that of Hk. A crucial
property of symmetric positive-definite approximate Hessians is they may be used
directly to define a quadratic model whose minimizer can be used to define the
next iterate. By analogy with a Newton-based line-search method, a quasi-Newton
approximation Hk may be used to define a local quadratic model of f :

qk(x) = f(xk) +∇f(xk)
T(x− xk) +

1

2
(x− xk)THk(x− xk), (2.9)

which has a unique minimizer only if Hk is symmetric positive definite.



2.3 The Symmetric Rank-One Update 9

The curvature of f plays a particularly important role in the development and
understanding of quasi-Newton methods for minimization. The curvature of f along
dk at an iterate xk is given by dTk∇2f(xk)dk, which cannot be computed exactly
because H is (by assumption) unknown. However, a Taylor-series expansion of the
gradient ∇f(xk + dk) gives

(∇f(xk + dk)−∇f(xk))
Tdk = dTk∇2f(xk)dk +

∫ 1

0
dTk (∇2f(xk + tdk)−∇2f(xk))dk dt,

and hence, if ‖dk‖ is “small enough”, the curvature at xk should be “close” to the
curvature at the intermediate point xk + tdk, and

yTk dk ≈ dTk∇2f(xk)dk.

The quantity yTk dk, defined from only first-order information, is known as the approx-
imate curvature of f at xk. An important property of the quasi-Newton condition
is that it forces the new quadratic model qk+1 to have curvature yTk dk along dk; i.e.,

dTkHk+1dk = yTk dk. (2.10)

We say that the quasi-Newton condition installs the approximate curvature yTk dk
as the exact curvature of the new quadratic model. With this interpretation, the
approximate Hessian Hk, represents (in some sense) curvature information that has
been accumulated at iterates preceding xk. The move from xk to xk+1 provides
further information about curvature that may be incorporated in a new Hessian
approximation Hk+1.

2.3. The Symmetric Rank-One Update

The rank-one update of the form

Hk+1 = Hk +
1

vTkdk
(yk −Hkdk)v

T
k

satisfies the quasi-Newton condition Hk+1dk = yk for all dk such that yTk dk is nonzero
(see (2.5)). For this formula, hereditary symmetry can be achieved only if vk is a
multiple of yk − Hkdk. It follows that there is a unique rank-one update with
hereditary symmetry:

Hk+1 = Hk +
1

(yk −Hkdk)Tdk
(yk −Hkdk)(yk −Hkdk)

T , (2.11)

called (not surprisingly) the symmetric rank-one (SR1) update. The SR1 update is
defined only if (yk −Hkdk)

Tdk 6= 0.

The picture becomes more complicated if we seek symmetric quasi-Newton up-
dates with hereditary positive-definiteness. It is easy to see that relation (2.10)
implies that a positive value for the approximate curvature is a necessary condition
for the existence of a positive definite Hk+1.
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Unfortunately, positive approximate curvature is not a sufficient condition for
Hk+1 to be positive definite. For example, the symmetric rank-one update (2.11)
does not possess hereditary positive-definiteness, even if the approximate curvature
is positive. For example, consider the SR1 update with

Hk =

(
2 1
1 1

)
, dk =

(
−1
−1

)
and yk =

(
−3

2

)
.

In this case, Hk is positive-definite and yTk dk = 1, yet the new Hessian is the
indefinite matrix

Hk+1 =

(
2 1
1 −3

)
.

2.4. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) Update

As the SR1 update is the only rank-one update with the property of hereditary
symmetry, update matrices Uk with rank greater than one must be used to obtain
hereditary positive definiteness. Arguably the simplest possible Uk (other than a
matrix of rank one) is a matrix of rank two, with

Uk = γkuku
T
k + δkvkv

T
k ,

for vectors uk, vk, and scalars γk, δk to be determined. Substituting Uk in the
quasi-Newton condition Hk+1dk = (Hk + Uk)dk = yk, yields

yk −Hkdk = Ukdk = γ(uTk dk)uk + δk(v
T
k dk)vk,

which implies that suitable uk and vk can be found as linear combinations of yk
and Hkdk. Of course, there are an infinite number of possible choices for uk and
vk. However, as we saw in our derivation of the Broyden update, it usually pays to
“keep it simple”. In this case, one of the simplest possible choices is uk = Hkdk and
vk = yk, giving

Uk = γkHkdkd
T
kHk + δkyky

T
k .

It remains to find γk and δk, which are used to ensure that the quasi-Newton con-
dition Hk+1dk = yk is satisfied. Using the form of Uk above, we have

Hk+1dk − yk = (Hk + Uk)dk − yk = Hkdk(1 + γkd
T
kHkdk)− yk(1− δkyTk dk).

An obvious choice of γk and δk that makes Hk+1dk − yk = 0 is γk = −1/dTkHkdk,
and δk = 1/yTk dk, which leads to the well-known BFGS (Broyden-Fletcher-Goldfarb-
Shanno) update:

Hk+1 = Hk −
1

dTkHkdk
Hkdkd

T
kHk +

1

yTk dk
yky

T
k , (2.12)

which is a symmetric, rank-two update to Hk.
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The BFGS update has the property of hereditary positive definiteness if yTk dk > 0.
There are a number of ways to show this. It is easily verified by direct multiplication
that

Hk+1 = (I + vkd
T
k )Hk(I + dkv

T
k ), with (2.13)

vk = ± 1

(yTk dk)
1/2(dTkHkdk)1/2

yk −
1

dTkHkdk
Hkdk.

This identity implies that Hk+1 is positive definite if Hk is positive definite and
I + dkv

T
k is nonsingular (i.e., if vTk dk 6= −1). As Hk+1 satisfies the quasi-Newton

condition, we have from (2.10) and (2.13) that

yTk dk = dTkHk+1dk = dTk (I + vkd
T
k )Hk(I + dkv

T
k )dk = (1 + vTkdk)

2dTkHkdk.

As yTk dk > 0 by assumption, it must hold that (1 + vTkdk)
2 > 0, which implies

that I + dkv
T
k must be nonsingular. The initial matrix H0 is usually defined as the

identity, in which case the first quasi-Newton direction is identical to a steepest-
descent direction.

The conditions imposed on the step length αk in a quasi-Newton line-search
method are more stringent than in a Newton-based method, because of the re-
quirement that yTk dk > 0 for every k to retain positive-definiteness. An important
advantage of using a line search based on the Wolfe conditions is that yTk dk is always
positive. This property is a consequence of the Wolfe step satisfying the inequal-
ity ∇f(xk+1)

T pk ≥ ηW∇f(xk)
T pk, which is implicitly imposed via the first Wolfe

condition. The definition of yTk dk yields

yTk dk = αk
(
∇f(xk+1)

T pk −∇f(xk)
T pk
)
≥ −αk(1− ηW )∇f(xk)

T pk > 0.

This property does not necessarily hold for the Armijo backtracking condition.

2.5. The Davidon-Fletcher-Powell (DFP) Update

The earliest quasi-Newton methods were based on updating an explicit approxi-
mation of the inverse Hessian. Let Mk represent an approximation to the inverse
Hessian. Rather than solving Hkpk = −∇f(xk) at each iteration, pk is computed by
forming the matrix-vector product

pk = −Mk∇f(xk).

where Mk ≈
(
∇2f(xk)

)−1
. By analogy with (2.2), the quasi-Newton condition for

the updated approximate inverse Mk+1 is

Mk+1yk = dk,

and Mk+1 is obtained by updating Mk. If we work with the inverse and apply the
same “simple” derivation used for the BFGS formula we obtain the formula

Mk+1 = Mk −
1

yTkMkyk
Mkyky

T
kM +

1

dTkyk
dkd

T
k ,
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which is the original Davidon-Fletcher-Powell (DFP) update.
As we would expect, this update is suggestive of the BFGS update, with dk

replaced by yk, yk replaced by dk and Hk replaced by Mk. In fact, a whole family of
interesting relationships can be derived between so-called complementary updates.
With exact arithmetic, every update to Hk is associated with an equivalent update
to Mk that may be computed using the following version of the Sherman-Morrison-
Woodbury formula (specialized to the symmetric case):

(M + αuuT )−1 = M−1 − α

1 + αuTM−1u
M−1uuTM−1.

Some tedious manipulation of this formula gives the DFP update in terms of Hk

and Hk+1 as

Hk+1 = Hk −
1

dTkHkdk
Hkdkd

T
kHk +

1

yTk dk
yky

T
k

+
(
dTkHkdk

)( 1

yTk dk
yk −

1

dTkHkdk
Hkdk

)( 1

yTk dk
yk −

1

dTkHkdk
Hkdk

)
T . (2.14)

Given any approximate Hessian Hk, the BFGS and DFP updates to Hk are related
by the expression

HDFP
k+1 = HBFGS

k+1 + (dTkHkdk)wkw
T
k , where wk =

1

yTk dk
yk −

1

dTkHkdk
Hkdk. (2.15)

This observation is crucial to the discussion of the next section.

2.6. The Broyden class of updates

In this section we consider the definition of a one-parameter family of quasi-Newton
updates. It can be verified by direct multiplication that the vector wk of (2.15)
satisfies wTkdk = 0. Hence, the symmetric rank-one matrix wkw

T
k may be added to

any matrix Hk+1 without changing the satisfaction of the quasi-Newton condition
Hk+1dk = yk (2.2). This observation leads to the Broyden class of updates

Hk+1 = Hk −
1

dTkHkdk
Hkdkd

T
kHk +

1

yTk dk
yky

T
k + φk (dTkHkdk)wkw

T
k , (2.16)

where the scalar φk may depend on yk and Hkdk. The set of updates (2.16) is
sometimes called the Broyden one-parameter family.

If φk = 0, (2.16) is the BFGS update (2.12). If φk = 1, (2.16) is the DFP (2.14).
If φk = yTk dk/(y

T
k dk − dTkHkdk), (2.16) is the symmetric rank-one update (2.11).

2.7. The convex class of updates

The convex Broyden class of quasi-Newton updates includes all convex combinations
of the BFGS and DFP updates, and is usually written as a function of the parameter
ϕ:

Hk+1(ϕ) = (1− ϕ)HBFGS
k+1 + ϕHDFP

k+1 , (2.17)
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where 0 ≤ ϕ ≤ 1; ϕ = 0 corresponds to the BFGS update, and ϕ = 1 corresponds
to the DFP update. All updates Hk+1(ϕ) (2.17) have the property of hereditary
positive-definiteness.

We now consider a specific example to see the effects of different updates. Let

Hk =

(
2 1
1 2

)
, dk =

(
−1
−1

)
, and yk =

(
−3

2

)
.

The matrix Hk is symmetric and positive definite (with eigenvalues 1 and 3). In
addition, yTk dk > 0. The (unsymmetric) Broyden update (2.6) is

Hk+1 = Hk +

(
0 0
−2.5 −2.5

)
=

(
2 1
−1.5 −0.5

)
.

The symmetric rank-one (SR1) update (2.11) gives

Hk+1 = Hk +

(
0 0
0 −5

)
=

(
2 1
1 −3

)
,

which is symmetric but indefinite (with eigenvalues 2.19 and −3.19). In contrast,
the BFGS update (2.12) is

Hk+1 = Hk +

(
7.5 −7.5
−7.5 2.5

)
=

(
9.5 −6.5
−6.5 4.5

)
,

which is positive definite (with eigenvalues .036 and 13.96). Finally, the DFP update
(2.14) is

Hk+1 = Hk +

(
45 −45
−45 40

)
=

(
47 −44
−44 42

)
,

which is also positive definite (with eigenvalues 0.43 and 88.6). For interest, it is
worth verifying that each of these updated matrices Hk+1 satisfies Hk+1dk = yk.

2.8. Relationships between the updates

An interesting historical note about quasi-Newton methods is that a vast amount
of effort was devoted during the late 1960’s and early 1970’s to devising “new”
quasi-Newton updates. Naturally, the researchers developing the updates argued
vehemently about which update was “best”, and cited extensive numerical experi-
ments to prove that a certain update (usually, their own) was superior to the others.
All this controversy ceased with an important theorem, proved by L. C. W. Dixon in
1972, which showed that, under certain conditions, all updates in the Broyden class
generate identical iterates when applied to the same function f , with the same x0
and H0, when the step length αk is taken as the step to the first minimizer of f along
pk. The observed differences in performance were thus attributable to variations in
the step length selection strategy rather than to properties of the updates.
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Theorem 2.1. (Equivalence of members of the Broyden class)
Let f(x) ∈ C2, and assume that x0 and H0 are given. Let {xk}, {Hk}, {pk} and

{αk} denote the sequences generated by the BFGS line-search method, with {xφk },
{Hφ

k }, {p
φ
k }, and {αφk } the corresponding values for the line-search method in which

Hk+1 is defined by any member of the Broyden class (2.16). If each of the sequences

{Hk} and {Hφ
k } is well-defined, and, for all k, αk and αφk are the minimizers of

f(xk + αpk) that are nearest to the point α = 0, then

xφk = xk, αφkp
φ
k = αkpk and Hk = Hφ

k +

(
φk−1

∇f(xk−1)Tp
φ
k

)
∇f(xk)∇f(xk)

T . (2.18)

Proof. To limit clutter we use gk to denote the gradient of f at xk. The proof
is by induction. The use of an exact line search for both methods implies that
yTk dk = −gTkdk and yTk d

φ
k = −gTkd

φ
k . Using these expressions and the definition

Hkpk = −gk, in the update (2.16) gives

Hφ
k+1 = Hφ

k +
1

gTkp
φ
k

gkg
T
k −

1

αφkg
T
kp
φ
k

yky
T
k − φk

1

gTkp
φ
k

gk+1g
T
k+1. (2.19)

As Hφ
0 ≡ H0, it follows that pφ0 = p0 and αφ0 = α0, and hence that xφ1 = x1. The

updated matrix (2.19) for k = 0 satisfies

Hφ
1 = H1 −

(
φ0

gT0p
φ
0

)
g1g

T
1 ,

so that (2.18) holds for k = 1.

Assume that the result is true at iteration k. The BFGS update is given by
(2.19) with φk = 0, i.e.,

Hk+1 = Hk +
1

gTkpk
gkg

T
k −

1

αkg
T
kpk

yky
T
k .

The induction hypothesis allows us to substitute for Hk from (2.18), so that

Hk+1 = Hφ
k +

1

gTkpk
gkg

T
k −

1

αkg
T
kpk

yky
T
k +

(
φk−1

gTk−1p
φ
k−1

)
gkg

T
k .

Re-arranging terms and using (2.16), we obtain

Hk+1 = Hφ
k +

1

gTkp
φ
k

gkg
T
k −

1

αkg
T
kpk

yky
T
k −

(
φk

gTkp
φ
k

)
gk+1g

T
k+1

+

(
φk

gTkp
φ
k

)
gk+1g

T
k+1 +

(
φk−1

gTk−1p
φ
k−1

+
1

gTkpk
− 1

gTkp
φ
k

)
gkg

T
k .
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Applying the induction hypothesis αφkp
φ
k = αkpk and using (2.19), this relation

becomes

Hk+1 = Hφ
k+1 +

(
φk

gTkp
φ
k

)
gk+1g

T
k+1 +

(
φk−1

gTk−1p
φ
k−1

+
1

gTkpk
− 1

gTkp
φ
k

)
gkg

T
k . (2.20)

Post-multiplying this expression by αφkp
φ
k ( = αkpk), and replacing both Hk+1dk and

Hφ
k+1d

φ
k by yk gives

φk−1

gTk−1p
φ
k−1

+
1

gTkpk
− 1

gTkp
φ
k

= 0,

so that (2.20) gives the required relationship (2.18) between Hk+1 and Hφ
k+1.

To establish that αφk+1p
φ
k+1 = αk+1pk+1, we post-multiply both sides of (2.18)

by pφk+1 and substitute −gk+1 for Hφ
k+1pk+1. Then

Hk+1p
φ
k+1 = φk

(
gTk+1p

φ
k+1

gTkp
φ
k

− 1

)
gk+1 = γgk+1,

where γ is a scalar. As Hk+1pk+1 = −gk+1, and Hk+1 is nonsingular, pk+1 must be

a multiple of pφk+1. This completes the induction.

Theorem 2.1 shows that, when an exact line search is used, the iterates generated
by different quasi-Newton methods formulas are identical. However, the number of
function evaluations required for convergence varies significantly among updates,
because the trial step length of unity (usually used to initiate the line search) is
much closer to the univariate minimizer for some updates than for others.

When implemented with an inexact line search, the differences in efficiency
among updates become even more striking. Quasi-Newton methods display signifi-
cant differences in efficiency and reliability when implemented with typical “relaxed”
step length criteria. Most researchers today agree that the BFGS method is “best”
in practice, but the reasons for its superiority have not yet been fully explained.

2.9. Properties of quasi-Newton methods on a quadratic

One of the fascinating characteristics of certain quasi-Newton methods is their be-
havior when applied to the quadratic f(x) = cTx+ 1

2x
THx, with H symmetric and

positive definite. In particular, updates of the Broyden class (2.16) are intricately
related (and, in some situations, equivalent) to conjugate-direction methods, which
arose originally in an entirely different context.

The special feature of quasi-Newton methods to be emphasized here is usually
called the finite termination property. Suppose that we minimize the quadratic by
applying a line-search method with the following features: each iterate is defined as
xk+1 = xk + αkpk; pk satisfies Hkpk = −∇f(xk), where Hk+1 is obtained from Hk

using any update from the convex Broyden class (2.17); and αk is the step from xk
to the (unique) minimizer of f(x) = cTx + 1

2x
THx along pk. Then, for any x0 and
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any symmetric positive definite H0, there exists m ≤ n such that xm = x∗. This
remarkable result states that a quasi-Newton method will locate the exact minimizer
of the quadratic in no more than n iterations. Furthermore, if xm 6= x∗ for m < n,
then Hn = H, which means that the final quasi-Newton approximation will be exact
if the iterations do not terminate “prematurely”.

In the following, we prove the results discussed above. Consider the BFGS
method with an exact line search applied to a quadratic function, i.e., the step
length is given by αk = −∇f(xk)

T pk/p
T
kHpk. If H0 is any symmetric positive-

definite matrix, the iterates of the BFGS method with an exact line search satisfy

Hkpk = −∇f(xk);

xk+1 = xk + αkpk ≡ xk + dk;

∇f(xk+1)
T pk = 0;

Hk+1 = Hk −
1

dTkHkdk
Hkdkd

T
kHk +

1

yTk dk
yky

T
k .


(2.21)

Theorem 2.2. Suppose that the BFGS algorithm with an exact line search is ap-
plied to the quadratic function f(x) = cTx+ 1

2x
THx. Then, for any k (1 ≤ k ≤ n),

Hkdj = Hdj , 0 ≤ j < k;

dTjHdi = 0, 0 ≤ j < k, 0 ≤ i < k, i 6= j.

Proof. Algorithm (2.21) terminates when ∇f(xj) = 0, and therefore we assume
that ∇f(xj) 6= 0 for j = 0, 1, . . . , k.

As f is quadratic and the quasi-Newton condition is satisfied at every iteration,
we have

yj = Hdj = Hj+1dj . (2.22)

An inductive argument is used to show that

Hkdj = Hdj 0 ≤ j ≤ k − 1 (2.23a)

dTiHdj = 0, 0 ≤ i ≤ k, 0 ≤ j ≤ k, i 6= j. (2.23b)

The quasi-Newton condition implies that H1d0 = y0. Using (2.21) and (2.22) for
j = 0, the result is

dT1Hd0 = dT1y0 = dT1H1d0 = α1p
T
1H1d0 = −α1∇f(x1)

Td0 = 0.

It follows that (2.23) holds for k = 1.

Assume now that (2.23) is true for k (1 < k ≤ n). Then, given j < k, we
substitute the expression yj = Hdj and use the induction hypothesis (2.23b) to



2.9 Properties of quasi-Newton methods on a quadratic 17

obtain

Hk+1dj = Hkdj −Hkdk
dTkHkdj

dTkHkdk
+ yk

yTk dj

yTk dk

= yj −Hkdk
dTkHdj

dTkHkdk
+ yk

dTkHdj

yTk dk

= yj = Hdj . (2.24)

This verifies that (2.23a) holds for k + 1.
As f is quadratic, the definition of {xk} gives

∇f(xk+1) = c+Hxk+1 = c+Hxj+1 +H(dj+1 + · · ·+ dk).

The inner product of this expression with dj gives

∇f(xk+1)
Tdj = ∇f(xj+1)

Tdj + dTjH(dj+1 + dj+2 + · · ·+ dk).

Substituting the identities dk = αkpk, ∇f(xk+1)
T pk = 0, and using the inductive

hypothesis dTj Hdk = 0, yields ∇f(xk+1)
Tdj = 0 for j < k. Using (2.24), (2.22) and

the relation yj = Hdj in this identity gives

dTk+1Hdj = dTk+1yj = dTk+1Hk+1dj = −αk+1∇f(xk+1)
Tdj = 0. (2.25)

This completes the induction.

Given a symmetric, positive-definite matrix H, a set of non-zero vectors {dj}
such that

dTiHdj = 0, i 6= j,

are said to be conjugate with respect to the matrix H. Conjugate vectors are always
linearly independent, which may be used to establish the following theorem.

Theorem 2.3. (Finite termination of the Broyden class)
If the BFGS method defined by (2.21) is applied to the quadratic function f(x) =
cTx+ 1

2x
THx, there exists an integer m (m ≤ n) such that ∇f(xm) = 0. Moreover,

if ∇f(xk) 6= 0 for k = 0, 1, . . . , n− 1, then Hn = H.

Proof. If ∇f(xk) = 0 for any k < n, the theorem holds. Therefore, we assume that
∇f(xk) 6= 0 for k = 0, 1, . . . , n− 1. As αn > 0, relation dTk+1Hdj = 0 (2.25) shows
that

∇f(xn)Tdj = 0 for j = 0, 1, . . . , n− 1.

As the vectors { dj } are linearly independent, these relations imply that ∇f(xn) is
orthogonal to n linearly independent vectors, which can be the case only if ∇f(xn) =
0.

To establish the second part of the theorem, let S denote the matrix with j-th
column dj . Then (2.24) for k = n − 1 can be written as HnD = HD, because
yi = Hdi. Because D is non-singular, this last relation implies that Hn = H.
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This result is somewhat surprising, especially because intermediate quasi-Newton
approximations may bear little resemblance to the exact Hessian, and may appear
unrelated to other updates from the convex Broyden class. For example, consider
the quadratic cTx+ 1

2x
THx with

c =

(
1
2
7
22

)
, H =

(
11 −8

−8 6

)
.

If the initial iterate is

x0 =

(
8
11

1

)
, H0 =

(
1
3

1
6

1
6

1
3

)
,

then

∇f(x0) =

(
1
2
1
2

)
, p0 =

(
−1

−1

)
α0 = 1,

and the first iteration gives

x1 =

(
− 3

11

0

)
, ∇f(x1) =

(
−5

2
5
2

)
, and y0 =

(
−3

2

)
.

Using (2.12) and (2.14), the associated BFGS and DFP updates (rounded to four
figures) are

HBFGS
1 =

(
9.083 −6.083
−6.083 4.083

)
, HDFP

1 =

(
15.33 −12.33
−12.33 10.33

)
. (2.26)

Using HBFGS
1 to compute the search direction gives

p1 =

(
−60
−90

)
, α1 = .04167, and x2 =

(
−2.7727
−3.75

)
,

which is the exact minimizer. At this point, both HBFGS
2 and HDFP

2 are equal to H.
However, neither intermediate matrix in (2.26) is “close” to H, and that HBFGS

1 and
HDFP

1 are quite different from one another.
In contrast, if we choose

x0 =

(
1
0

)
, H0 =

(
1 0
0 1

)
,

then the first iteration yields

x1 =

(
1.6820
0.4560

)
, HBFGS

1 =

(
11.27 −7.59
−7.59 10.61

)
,

and HDFP
1 is equal to HBFGS

1 to within four figures. (In addition, the very first
quasi-Newton approximation is similar to H.)



19

Despite this encouraging result for the quadratic case, a quasi-Newton approxi-
mation to the Hessian of a general nonlinear function need not resemble the Hessian
at the solution. In particular, if f(x) is separable and a certain variable is set
initially to its optimal value, the corresponding diagonal element of the Hessian
approximation will never change. However, the superlinear convergence properties
of quasi-Newton methods mean that Hk must eventually resemble the true Hessian
along certain critical directions.

3. Matrix Factorization

In this section we describe how to maintain a factorization of the approximate Hes-
sian Hk = RTkRk where Rk is upper triangular. This turns out to be more expensive
computationally than maintaining the inverse approximation Mk ≈ ∇2f(xk)

−1 but
substantially more reliable.

A significant drawback to the explicit and inverse BFGS methods is the inability
to efficiently monitor the conditioning or positive definiteness of their respective ap-
proximations. The theoretical property of hereditary positive definiteness does not
always hold in finite-precision arithmetic and the approximations may become in-
definite, in which case the search directions obtained from solving pk = −Mk∇f(xk)
or Hkpk = −∇f(xk) may not even be descent directions, ultimately leading to line
search failure.

If the approximations become ill-conditioned or indefinite they can be reset.
Unfortunately, it is difficult to determine when this happens. In general it is too ex-
pensive to compute the condition number or the eigenvalues of Hk or Mk. However,
if a method based upon updating a factorization is being used, only the factor Rk
is stored and updated, which implies that RTkRk can never be indefinite. Moreover,
a lower bound on the condition number of Hk is readily available from the bound

cond(Rk) ≥
max |rjj |
min |rjj |

.

Based on this bound, if cond(Rk)
2 becomes large, then the (implicit) approximate

Hessian Hk is reset.

3.1. Factored Hessian BFGS (bfgsR)

Next we derive a variant of the BFGS method that maintains the Cholesky factor
described in the following result.

Result 3.1. (The Cholesky Factorization) If H is positive definite then there
exists a unique n× n upper-triangular matrix R such that H = RTR.

Given the Cholesky factorization Hk = RTkRk, we can write the system Hkpk =
−∇f(xk) as

RTkRkpk = −∇f(xk).
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To obtain the solution pk, first solve the lower-triangular system RTk zk = −∇f(xk)
followed by the upper-triangular system Rkpk = zk. In general, given

Hk+1 = Hk −
1

dTkHkdk
Hkdkd

T
kHk +

1

yTk dk
yky

T
k ,

we need to compute Rk+1 such that Hk+1 = RTk+1Rk+1. In order to do this, write

Hk+1 = (I−vkdTk )Hk(I−dkvTk ) where vk =
1

dTkHkdk
Hkdk−

1

(yTk dk)
1
2 (dTkHkdk)

1
2

yk.

Assuming that, at the kth iteration, we have the factorization Hk = RTkRk, then

Hk+1 = (I − vkdTk )RTkRk(I − dkvTk ) = R̂Tk R̂k,

with R̂k = Rk(I − dkvTk ). Substituting the expression for vk and expanding gives

R̂k = Rk +
1

(dTkHkdk)
1
2

Rkdk

(
1

(yTk dk)
1
2

yk −
1

(dTkHkdk)
1
2

Hkdk

)T
.

Notice that dTkHkdk = dTkR
T
kRkdk = (Rkdk)

T (Rkdk) = ‖Rkdk‖2. The expression for

R̂k then becomes

R̂k = Rk +
1

‖Rkdk‖
Rkdk

(
1

(yTk dk)
1
2

yk −
1

‖Rkdk‖
Hkdk

)T
,

or simply R̂k = Rk + ukv
T
k with uk = Rkdk/‖Rkdk‖ and vk = yk/(y

T
k dk)

1
2 −RTk uk.

The matrix R̂k = Rk + ukv
T
k has the desired property that R̂Tk R̂k = Hk+1,

however it is not upper-triangular. This is corrected by premultiplying R̂k by a
sequence of orthogonal plane rotations, whose product we denote by Qk, so that
QkR̂k is upper-triangular. If we let Rk+1 = QkR̂k then Rk+1 is upper triangular
and

Hk+1 = R̂Tk R̂k = R̂TkQ
T
kQkR̂k = (QkR̂k)

T (QkR̂k) = RTk+1Rk+1.

At each iteration we need only solve two triangular systems for pk, compute R̂k, and
use orthogonal plane rotations to arrive at Rk+1.
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Algorithm 1 bfgsR: BFGS with Factored Hessian Approximation

Choose x0 ∈ Rn; k← 0;
while ‖∇f(xk)‖ > ε and k ≤ N do

Solve RTk zk = −∇f(xk); Solve Rkpk = zk;
αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = xk + αkpk; xk+1 = xk + dk;
yk = ∇f(xk+1)−∇f(xk);
if yTk dk > −µ(1− ηW )αk∇f(xk)

T pk then

uk =
Rkdk
‖Rkdk‖

; vk =
1

(yTk dk)
1
2

yk −RTk uk;

Qk = planerot(Rk, uk, vk);
Rk+1 = QkRk;

else
Rk+1 = Rk;

end if
k = k + 1;

end while

4. Self-Scaled Updates

An important factor in the numerical performance of quasi-Newton methods is the
conditioning (i.e., the magnitude of the matrix condition number) of each approxi-
mate Hessian Hk. This conditioning is influenced by a number of factors, including
the step length αk, the initial approximate Hessian H0 and the condition of the
exact Hessian at a solution. Self-scaled quasi-Newton methods are designed to limit
the bad effects of the choice of the initial approximate Hessian H0 on the efficiency
of a method. Self-scaled updates were first proposed by Oren and Luenberger [17].
Addition references include Oren [14–16], and Oren and Spedicato [18],

Scaling the BFGS Hessian for a quadratic. The influence of H0 may be seen
by considering the BFGS method applied to the strictly convex quadratic f(x) =
cTx+ 1

2x
THx. If an exact line search is used, then Result 2.2 shows that Hkdj = Hdj ,

for 0 ≤ j < k. As H is nonsingular, we get H−1Hkdj = dj , which implies that
H−1Hk has k unit eigenvalues corresponding to the k eigenvectors { dj }, 0 ≤ j < k.
This property means that the BFGS method moves the eigenvalues of H−1H0 to
unity, one at a time as the iterations proceed.

If H0 is chosen so that the eigenvalues of H−1H0 are all large, relative to unity,
then the first update will make H−1H1 ill-conditioned. It follows that any quasi-
Newton method is affected by the spread of the spectrum of each H−1Hk, which is
the length of the interval with end-points given by the smallest and largest eigenvalue
of H−1Hk. The idea is to scale each Hk before applying the quasi-Newton update.
This scaling is chosen to make the spectrum of H−1Hk+1 is no worse than that of
H−1Hk.

The next result considers the properties of the eigenvalues ofH−1Hk andH−1Hk+1.
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As H is positive definite, we can write

H−1Hj = H−1/2
(
H−1/2HjH

−1/2)H1/2, (4.1)

which implies that the eigenvalues of H−1Hj are real and positive for all 0 ≤ j ≤ k.

Result 4.1. Consider the application of the BFGS method to a quadratic with
positive-definite Hessian H. Let λ1, λ2, . . . , λn denote the eigenvalues of H−1Hk

ordered so that
0 < λn ≤ λn−1 ≤ · · · ≤ λ1.

Then, if 1 ∈ [λn, λ1], the eigenvalues of H−1Hk+1 are all contained in [λn, λ1].

Proof. Let Qk denote the matrix Qk = H−1/2HkH
−1/2, which has positive eigen-

values from Sylvester’s law of inertia. The identity (4.1) implies that Qk and H−1Hk

have the same eigenvalues. For a quadratic f , the gradient difference satisfies
yk = Hdk, and the updated BFGS matrix (2.12) may be written as an update
to the matrix Qk, i.e.,

Qk+1 = Qk −
1

qTkQkqk
Qkqkq

T
kQk +

1

qTkqk
qkq

T
k = Pk +

1

qTkqk
qkq

T
k ,

where

Qk+1 = H−1/2Hk+1H
−1/2, qk = H1/2dk and Pk = Qk −

1

qTkQkqk
Qkqkq

T
kQk.

Direct multiplication gives Pkqk = 0 and qk is an eigenvector of Pk with zero eigen-
value. If the eigenvalues of Pk are denoted by µ1, µ2, . . . , µn, then

0 = µn ≤ µn−1 ≤ · · · ≤ µ1,

and the eigenvalue interlacing theorem gives

0 = µn ≤ λn ≤ µn−1 ≤ · · · ≤ µ1 ≤ λ1.

From the definition of Qk+1, it holds that Qk+1qk = qk, so that Qk+1 has one
eigenvector qk, and n − 1 eigenvectors that are orthogonal to qk. It follows that
the spectrum of Qk+1 consists of a unit eigenvalue and the n− 1 eigenvalues of Pk.
This implies that the eigenvalues of Qk+1 are 1, and µn−1, . . . , µ1. But 1 ∈ [λn, λ1],
and λn ≤ µn−1 ≤ · · · ≤ µ1 ≤ λ1, which implies that 1, µn−1, . . . , µ1 ∈ [λn, λ1], as
required.

The result is easily extended to the Broyden convex class.

As H−1Hk and H−1Hk+1 have k and k + 1 unit eigenvalues, respectively, the
assumptions for this result hold for all k > 0. A simple inductive argument shows
that the bound on the eigenvalue ratio of H−1Hk is determined by the eigenvalues
λ1, λ2, . . . , λn of H−1H0. If H0 is chosen so that this eigenvalue ratio is small; and
1 ∈ [λn, λ1], then the ratios for H−1Hk will be small for all subsequent steps.
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An appropriate choice of H0 may be achieved as follows. First, an update pair
(d1, y1) is computed using a given initial H0. However, before H0 is updated it
is rescaled as H0←S0H0, where S0 is a positive-definite scaling matrix chosen so
that the eigenvalues λ1, λ2, . . . , λn of H−1(S0H0) satisfy 1 ∈ [λn, λ1] and λ1/λn is
“small”. The optimal choice of S0 is obviously S0 = H, which is unknown. However,
practical rescaling techniques are based on a simple diagonal scaling of the form
S0 = γI for some γ > 0. If the eigenvalues of H−1H0 are 0 < λn ≤ λn−1 ≤ · · · ≤ λ1
and γ is any value such that 1/λ1 ≤ γ ≤ 1/λn, then the eigenvalues of H−1(γH0)
are 0 < γλn ≤ γλn−1 ≤ · · · ≤ γλ1, with

0 < γλn ≤ 1 ≤ γλ1 and 1 ∈ [γλn, γλ1].

These results are based on f being quadratic. In the next section we consider
rescaling techniques for the general nonlinear case.

4.1. Self-Scaled Explicit BFGS (bfgsHS)

For a general nonlinear f , scaling the initial approximate Hessian is not sufficient
to provide a favorable eigenvalue distribution in all the subsequent matrices Hk.
Instead, it is necessary to rescale every Hk so that Hk+1 has a favorable approximate
eigenvalue ratio. The idea is to scale Hk by a scalar γk so that 1 ∈ [λn, λ1], i.e., the
spread of the spectrum of ∇2f(xk)

−1(γkHk) includes 1 to first order.
If Hk is replaced by γkHk in the BFGS update (2.12) we obtain

Hk+1 = γk

(
Hk −

1

dTkHkdk
Hkdkd

T
kHk

)
+

1

yTk dk
yky

T
k . (4.2)

A suitable value of γk may be derived from the choice of scaling for Hk in the
quadratic case. In this case, if the eigenvalues of H−1Hk are 0 < λn ≤ λn−1 ≤ · · · ≤
λ1, then any γk such that 1/λ1 ≤ γ ≤ 1/λn will give

0 < γkλn ≤ 1 ≤ γkλ1 and 1 ∈ [γkλn, γkλ1]. (4.3)

Recall that, for a quadratic, we can define

Qk = H−1/2HkH
−1/2, qk = H1/2dk,

in which case dTkHkdk = dTkH
1/2QkH

1/2dk = qTkQkqk and yTk dk = dTkHdk = qTkqk.
This implies that dTkHkdk/y

T
k dk = qTkQkqk/q

T
kqk, giving the bounded Rayleigh quo-

tient

λn ≤
dTkHkdk
yTk dk

≤ λ1 or, equivalently,
1

λ1
≤ yTk dk
dTkHkdk

≤ 1

λn
.

It follows that in the nonlinear case, if we choose γk = yTk dk/d
T
kHkdk in (4.2) then

(4.3) will hold to first order. Note that

dTk(γkHk)dk = yTk dk,

which implies that the scaling installs the approximate curvature yTk dk before the
update.
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These results suggest a two-parameter family of updates:

Hk+1 = γk

(
Hk −

1

dTkHkdk
Hkdkd

T
kHk

)
+

1

yTk dk
yky

T
k + γkθk (dTkHkdk)wkw

T
k ,

with wk = (1/yTk dk)yk − 1/(dTkHkdk)Hkdk, and 0 ≤ θk ≤ 1.

The choice of γk is extended Oren in [16] to be a convex combination

γk = ϕ
∇f(xk)

T yk
∇f(xk)THkdk

+ (1− ϕ)
yTk dk
dTkHkdk

, (4.4)

where ϕ ∈ [0, 1].

Algorithm 2 bfgsHS: Self-scaled Explicit BFGS

Choose x0 ∈ Rn; k← 0;
while ‖∇f(xk)‖ > ε and k ≤ N do

Solve Hkpk = −∇f(xk);
αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = αkpk; xk+1 = xk + dk;
yk = ∇f(xk+1)−∇f(xk);
if yTk dk > −µ(1− ηW )αk∇f(xk)

T pk then
Pick θ, ϕ ∈ [0, 1];

γk = ϕ
∇f(xk)

T yk
∇f(xk)

THkdk
+ (1− ϕ)

yTk dk
dTkHkdk

;

wk =
1

yTk dk
yk −

1

dTkHkdk
Hkdk;

Hk+1 = γk

(
Hk −

1

dTkHkdk
Hkdkd

T
kHk

)
+

1

yTk dk
yky

T
k +γkθk (dTkHkdk)wkw

T
k ;

else
Hk+1 = Hk;

end if
k = k + 1;

end while

4.2. Self-Scaled Inverse BFGS (bfgsMS)

The equivalent update for the inverse is

Mk+1 = γk

(
Mk −

1

yTkMkyk
Mkyky

T
kMk

)
+

1

dTkyk
dkd

T
k + γkθk (yTkMkyk)uku

T
k ,

with uk = (1/dTkyk)dk − 1/(yTkMkyk)Mkyk, 0 ≤ θk ≤ 1, and γk chosen similarly to
self-scaled explicit BFGS (4.4) but with the inverse equivalent

γk = ϕ
∇f(xk)

Tdk
∇f(xk)TMkyk

+ (1− ϕ)
yTk dk

yTkMkyk
, for ϕ ∈ [0, 1].
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Algorithm 3 bfgsMS: Self-scaled Inverse BFGS

Choose x0 ∈ Rn; k← 0;
while ‖∇f(xk)‖ > ε and k ≤ N do

Solve Hkpk = −∇f(xk);
αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = αkpk; xk+1 = xk + dk;
yk = ∇f(xk+1)−∇f(xk);
if yTk dk > −µ(1− ηW )αk∇f(xk)

T pk then
Pick θ, ϕ ∈ [0, 1];

γk = ϕ
∇f(xk)

Tdk
∇f(xk)TMkyk

+ (1− ϕ)
yTk dk

yTkMkyk
;

uk =
1

dTkyk
dk −

1

yTkMkyk
Mkyk;

Mk+1 = γk

(
Mk −

1

yTkMkyk
Mkyky

T
kMk

)
+

1

dTk yk
dkd

T
k +γkθk (yTkMkyk)uku

T
k ;

else
Mk+1 = Mk;

end if
k = k + 1;

end while

4.3. Self-Scaled Factored BFGS (bfgsRS)

All that is needed to apply the scaling described in Section 4 is to use the square
root of the scaling factor. Since Hk = RTkRk, then Hk may be scaled implicitly as

Rk← γ
1/2
k Rk just before the triangular factor is updated. This does not increase

the operation count significantly.

5. Modified quasi-Newton Methods

In the next section we derive and analyze several modifications of the BFGS method.
These take the form of either changing the update formula while still satisfying the
classic quasi-Newton condition (2.2), or by changing the quasi-Newton condition
itself and then finding a suitable update that satisfies the modified condition.

These modifications are motivated by various assumptions. For example, incor-
porating more accurate curvature information will yield better search directions;
or reducing the condition number of the approximate Hessian will provide better
numerical stability.

5.1. Function Interpolation (bfgsHY)

Consider the quadratic model defined by qk(p) = f(xk) + pT∇f(xk) + 1
2p
THkp. The

search direction obtained by solving Hkpk = −∇f(xk) is also the solution of the
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Algorithm 4 bfgsRS: Self-Scaled BFGS with Factored Hessian Approximation

Choose x0 ∈ Rn; k← 0;
while ‖∇f(xk)‖ > ε and k ≤ N do

Solve RTk zk = −∇f(xk); Solve Rkpk = zk;
αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = αkpk; xk+1 = xk + dk;
yk = ∇f(xk+1)−∇f(xk);
if yTk dk > −µ(1− ηW )αk∇f(xk)

T pk then

γk =
yTk dk
‖Rkdk‖

; Rk = γ
1
2
k Rk;

uk =
1

‖Rkdk‖
Rkdk; vk =

1

(yTk dk)
1
2

yk −RTk uk;

Qk = planerot(Rk, uk, vk);
Rk+1 = QkRk;

else
Rk+1 = Rk;

end if
k = k + 1;

end while

following quadratic subproblem:

min
p∈Rn

qk(p).

For small values of p, qk(p) is approximately equal to f(xk + p), in particular, qk(p)
satisfies the following standard interpolation conditions.

qk(0) = f(xk), ∇qk(0) = ∇f(xk), and ∇2qk(0) = Hk. (5.1)

If the quasi-Newton condition (2.2) holds at xk−1 then the interpolation conditions
(5.1) imply

∇qk(xk−1 − xk) = ∇f(xk) +Hk(xk−1 − xk)
= ∇f(xk)−Hkdk−1

= ∇f(xk)− (∇f(xk)−∇f(xk−1))

= ∇f(xk−1).

These properties show that qk(x− xk) is a quadratic interpolant of f(x) at xk and
xk−1.

We want to introduce an extra parameter γk and update the Hessian approxi-
mation using the scaled update

Hk+1 = Hk −
1

dTkHkdk
Hkdkd

T
kHk + γk

1

yTk dk
yky

T
k . (5.2)

In order to determine γk we need to impose an extra condition. The quasi-Newton
variant derived by Yuan in [22] is based on the condition

qk(xk−1 − xk) = f(xk−1). (5.3)
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Notice that this requires the quadratic model qk(x − xk) to interpolate f(x) at
x = xk−1. It is similar to the relation ∇qk(xk−1 − xk) = ∇f(xk−1) that followed
naturally from the interpolation conditions (5.1) in that the same x values are
considered, but the interpolation condition is imposed on qk rather than its gradient.

To derive a usable method from this condition, observe that if k is increased by
one in (5.3) it becomes qk+1(xk − xk+1) = f(xk). Rewriting the quadratic model
with k increased by one as well yields qk+1(p) = f(xk+1) + pT∇f(xk+1) + 1

2p
THk+1p.

Substituting p = xk − xk+1 into the model and setting the result equal to f(xk),
i.e., applying (5.3), gives

qk+1(−dk) = f(xk+1)− dTk∇f(xk+1) +
1

2
dTkHk+1dk = f(xk).

This can be solved for dTkHk+1dk to get the relation

dTkHk+1dk = 2
(
f(xk)− f(xk+1) +∇f(xk+1)

Tdk
)
. (5.4)

We want to update the approximate Hessian Hk using

Hk+1 = Hk −
1

dTkHkdk
Hkdkd

T
kHk + γk

1

yTk dk
yky

T
k ,

so that the expression for dTkHk+1dk (5.4) is true. To determine what value of γk
will accomplish this, left- and right-multiply the scaled BFGS update (5.2) by dk to
get

dTkHk+1dk = dTkHkdk −
1

dTkHkdk
dTkHkdkd

T
kHkdk + γk

1

yTk dk
dTk yky

T
k dk

= dTkHkdk −
1

dTkHkdk
(dTkHkdk)

2 + γk
1

yTk dk
(yTk dk)

2

= γky
T
k dk.

Solving this expression for γk and substituting (5.4) into the result gives the scaling
factor

γk =
1

yTk dk
dTkHkdk =

2

yTk dk

(
f(xk)− f(xk+1) +∇f(xk+1)

Tdk
)
.

By using this value of γk in the scaled update (5.2) we arrive at Algorithm bfgsHY

below.

5.2. Adaptive Scaling (bfgsMN)

The method proposed by Andrei in [1] is derived as a combination of conjugate
gradient methods and scaled BFGS. It aims to scale the gradient difference yk by
a factor to be determined, so that the scaling corrects large eigenvalues of the ap-
proximate inverse Hessian Mk and satisfies conjugacy conditions.

Recall the conjugacy condition derived in Section 2.9 for BFGS method applied
to a quadratic function f(x) = cTx+ 1

2x
THx given by

dTiHdj = 0, i 6= j, (5.5)



28 5 MODIFIED QUASI-NEWTON METHODS

Algorithm 5 bfgsHY: BFGS with Function Interpolation

Choose x0 ∈ Rn; k← 0;
while ‖∇f(xk)‖ > ε and k ≤ N do

Solve Hkpk = −∇f(xk);
αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = αkpk; xk+1 = xk + dk;
yk = ∇f(xk+1)−∇f(xk);
if yTk dk > −µ(1− ηW )αk∇f(xk)

T pk then

γk =
2

yTk dk

(
f(xk)− f(xk+1) +∇f(xk+1)

Tdk
)
;

ỹk = γkyk;

Hk+1 = Hk −
1

dTkHkdk
Hkdkd

T
kHk +

1

ỹTkdk
ỹkỹ

T
k ;

else
Hk+1 = Hk;

end if
k = k + 1;

end while

with H symmetric and positive definite. This condition can be extended to general
nonlinear twice continuously differentiable functions. By the mean value theorem
there exists some ξ ∈ (0, 1) for which

∇f(xk + dk)−∇f(xk) = ∇2f(xk + ξdk)dk.

Noting that the left-hand side is yk and taking the inner product with dk+1 gives

dTk+1yk = dTk+1∇2f(xk + ξdk)dk.

If this is to satisfy the conjugacy condition (5.5) then it may be reasonable to seek
to achieve dTk+1yk = 0. Since αk+1 6= 0 this amounts to

pTk+1yk = 0. (5.6)

The quasi-Newton condition for the inverse approximate Hessian update, given by
dk = Mk+1yk, can be combined with (5.6) to write

pTk+1yk = (−Mk+1∇f(xk+1))
Tyk

= −∇f(xk+1)
T(Mk+1yk)

= −∇f(xk+1)
Tdk.

Therefore one objective is to find a scaling factor γk so that when yk is scaled to
γkyk the magnitude of −γk∇f(xk+1)

Tdk is minimized.

An important consideration in the performance of inverse quasi-Newton methods
is the conditioning of the inverse Hessian ∇2f(xk)

−1 and its approximation Mk. If
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Mk is ill-conditioned then the search direction obtained from pk = −Mk∇f(xk) may
be a poor choice or possibly not even a descent direction resulting in a line-search
failure. To prevent this we hope to find γk so that the diagonal matrix γkI, which
is always well-conditioned, is such that γkI ≈ ∇2f(xk+1). In this case it would
want ‖Mk+1yk − γkIyk‖ as small as possible, i.e., γk is an eigenvalue of Mk+1 with
eigenvector yk. Therefore another objective is to find γk for which ‖dk − γkyk‖2 is
minimized and γk ≤ 1.

Most likely these two objectives cannot be satisfied simultaneously, so instead
we seek the best compromise. Our strategy is to select γk as

γk = argmin
γ≤1

‖dk − γyk‖2 + γ2|dTk∇f(xk+1)|,

which yields

γk = min

(
yTk dk

‖y‖2 + |dTk∇f(xk+1)|
, 1

)
.

With γk selected, the adaptive-scaled update to the Hessian approximation is

Hk+1 = Hk −
1

dTkHkdk
Hkdkd

T
kHk + γk

1

yTk dk
yky

T
k . (5.7)

A critical property of the BFGS update is that if Hk is positive definite then so
is Hk+1. In the next result we see that the proposed scaling preserves hereditary
positive definiteness

Result 5.1. (bfgsMN: Hereditary Positive Definiteness) If the step length αk
is determined by the Wolfe line search, Hk is positive definite, and γk > 0, then
Hk+1 as given by the scaled inverse update (5.7) is also positive definite.

Proof. If x 6= 0 then by the Cauchy-Schwarz inequality we have

(dTkHkx)2 ≤ (dTkHkdk)(x
THkx).

Conjugating the scaled inverse update (5.7) by x gives

xTHk+1x = xTHkx−
1

dTkHkdk
xTHkdkd

T
kHkx+ γk

1

yTk dk
xTyky

T
k x

= xTHkx−
1

dTkHkdk
(xTHkdk)

2 + γk
1

yTk dk
(xTyk)

2

≥ xTHkx−
1

dTkHkdk
(dTkHkdk)(x

THkx) + γk
1

yTk dk
(xTyk)

2

= γk
1

yTk dk
(xTyk)

2

> 0.

Therefore xTHk+1x > 0 for all x 6= 0, so Hk+1 is positive definite.
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Using the Sherman-Morrison-Woodbury formula, we arrive at the corresponding
rank-two update to the approximate inverse Hessian

Mk+1 = Mk −
1

ỹTkMkỹk
Mkỹkỹ

T
kMk +

1

ỹTk dk
dkd

T
k + (ỹTkMkỹk)wkw

T
k ,

with ỹk = γkyk.

Algorithm 6 bfgsMN: Adaptive, Scaled BFGS with a Wolfe Line Search

Choose x0 ∈ Rn; k← 0;
while ‖∇f(xk)‖ > ε and k ≤ N do

pk = −Mk∇f(xk);
αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = αkpk; xk+1 = xk + dk;
yk = ∇f(xk+1)−∇f(xk);
if yTk dk > −µ(1− ηW )αk∇f(xk)

T pk then

γk = min

(
yTk dk

‖y‖2 + |dTk∇f(xk+1)|
, 1

)
;

ỹk = γkyk;

Mk+1 = Mk −
1

ỹTkMkỹk
Mkỹkỹ

T
kMk +

1

ỹTk dk
dkd

T
k + (ỹTkMkỹk)wkw

T
k ;

else
Mk+1 = Mk;

end if
k = k + 1;

end while

5.3. Multistep quasi-Newton Equations (bfgsMZ)

The next method to be considered is the result of deriving modified quasi-Newton
equations, rather than a new method satisfying the original quasi-Newton condition
(2.2). At each iteration, the data

f(xk), f(xk+1), ∇f(xk), and ∇f(xk+1), (5.8)

are all available, but are not fully utilized by other methods. The approach de-
veloped by Zhang in [23] is to arrive at a better approximation to ∇2f(xk)dk by
using the data (5.8) to scale yk to some ỹk, so that the quasi-Newton condition
Hk+1dk = ỹk imparts more accuracy to the Hessian approximation.

The path from xk to xk+1 can be parameterized with parameter t by defining

x(t) = xk + t

(
1

‖dk‖
dk

)
.

To understand how the gradient of f is changing at xk+1, take the derivative with
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respect to t and evaluate at t = ‖dk‖. This gives us

d

dt
∇f(x(t))

∣∣
t=‖dk‖

= ∇2f(x(t))
d

dt
x(t)

∣∣
t=‖dk‖

= ∇2f(x(t))
dk
‖dk‖

∣∣
t=‖dk‖

= ∇2f(xk+1)
dk
‖dk‖

.

This shows that∇2f(xk+1)dk = ‖dk‖ ddt∇f(x(t)). It seems reasonable to approximate
∇f(x(t)) with a quadratic polynomial

h(t) = at2 + bt+ c,

for some a, b, c ∈ Rn. For h to interpolate ∇f(x(t)) at t = 0 and t = ‖dk‖ it is
required that h(0) = ∇f(x(0)) = ∇f(xk) and h(‖dk‖) = ∇f(x(‖dk‖)) = ∇f(xk+1).
Since h is meant to approximate ∇f(x(t)), it should satisfy the identity∫ ‖dk‖

0
∇f(x(t))Tx′(t) dt =

∫ ‖dk‖
0

∇f(x(t))Tdx(t) = f(xk+1)− f(xk),

which gives us a third condition∫ ‖dk‖
0

h(t)Tx′(t) dt = f(xk+1)− f(xk).

Putting these together gives the following conditions that h is required to meet

h(0) = ∇f(xk),

h(‖dk‖) = ∇f(xk+1),∫ ‖dk‖
0

h(t)Tx′(t) dt = f(xk+1)− f(xk).

 (5.9)

Requirements (5.9) have several implications. The first is that c = ∇f(xk), which
follows from evaluating h at t = 0. The second is that ‖dk‖2a + ‖dk‖b = yk and
comes from evaluating h at t = ‖dk‖. Lastly we have that

‖dk‖2aTdk = 3(∇f(xk) +∇f(xk+1))
Tdk − 6(f(xk+1 − f(xk)),

which follows from∫ ‖dk‖
0

h(t)Tx′(t) dt =

∫ ‖dk‖
0

1

‖dk‖
(at2 + bt+ c)Tdk dt

=
1

‖dk‖

(
1

3
at3 +

1

2
bt2 + ct

)T
dk

∣∣∣∣‖dk‖
0

=
1

6

(
3yk − a‖dk‖2 + 6c

)T
dk.
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Now define

γk = 3(∇f(xk) +∇f(xk+1))
Tdk − 6(f(xk+1)− f(xk)).

The simplest choice for a that satisfies ‖dk‖2aTdk = γk is a = γdk/‖dk‖4. Now we
can finally give an approximation for ∇2f(xk+1)dk in terms of the data available at
any given iteration:

∇2f(xk+1)dk = ‖dk‖
d

dt
∇f(x(t))

∣∣∣
t=‖dk‖

≈ ‖dk‖
d

dt
h(t)

∣∣∣
t=‖dk‖

= ‖dk‖(2at+ b)
∣∣∣
t=‖dk‖

= 2‖dk‖2a+ ‖dk‖b
= y + ‖dk‖2a
= y +

γk
‖dk‖2

dk.

This leads to a new quasi-Newton condition analogous to the conventional quasi-
Newton condition (2.2)

Hk+1dk = ỹk,

ỹk = yk +
γk
‖dk‖2

dk,

γk = 3(∇f(xk) +∇f(xk+1))
Tdk − 6(f(xk+1)− f(xk)).

(5.10)

It is clear that all the data (5.8) is being incorporated by the method if the modified
quasi-Newton condition (5.10) is enforced at each iteration.

One important consideration is preserving the property yTk dk > 0. If yk is scaled
by the new condition (5.10) then

ỹTkdk =

(
yk +

γk
‖dk‖2

dk

)T
dk = yTk dk + γk.

For numerical stability, if yTk dk+γk < ε̃‖dk‖2 then γk is set to zero and the unscaled
yk is used for the remainder of the iteration. A value of ε̃ = 10−18 was used by
Zhang in [23] and in our implementation. (See Algorithm bfgsMZ below.)

6. Numerical Methods

We consider a set S of nS solvers run on a problem set P of nP problems. In this
project nS = 9 and nP = 234. Data of interest is collected for each solver s ∈ S
as it is run on P. We recorded the number of iterations, the number of function
evaluations, the CPU time, and the outcome. The outcome is categorical, defined
by specific tolerances (see Section 6.2), and classifies the result as optimal, near
optimal but badly scaled, line search failure, or too many iterations. Once the body
of data is generated, a systematic method of comparison is needed.
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Algorithm 7 bfgsMZ: Multistep, Scaled BFGS with a Wolfe Line Search

Choose x0 ∈ Rn; k← 0;
while ‖∇f(xk)‖ > ε and k ≤ N do

pk = −Mk∇f(xk);
αk = Wolfe(xk, f(xk),∇f(xk), pk);
dk = αkpk; xk+1 = xk + dk;
yk = ∇f(xk+1)−∇f(xk);
if yTk dk > −µ(1− ηW )αk∇f(xk)

T pk then
γk = 3(∇f(xk+1) +∇f(xk))

T − 6(f(xk+1) + f(xk));
if yTk dk + γk < ε̃‖dk‖2 then

γk = 0;
end if

ỹk = yk + γk
1

‖dk‖2
dk; wk =

1

ỹTk dk
dk −

1

ỹTkMkỹk
Mkỹk;

Mk+1 = Mk −
1

ỹTkMkỹk
Mkỹkỹ

T
kMk +

1

ỹTk dk
dkd

T
k + (ỹTkMkỹk)wkw

T
k ;

else
Mk+1 = Mk;

end if
k = k + 1;

end while

6.1. Performance Profiles

One approach is to use the average or cumulative total metric value over the entire
problem set. However, the most difficult problems can potentially dominate the re-
sults and eliminate the ability to make fine comparisons. Averaging also necessitates
discarding problems that were not solved. In this case the failed problem can be
removed for all solvers or only for those that failed, both of which bias the results
against more robust solvers. Another tactic is to rank the solvers, i.e., recording
the number of times a solver came in kth place for k = 1, 2, . . . , nS . This avoids the
pitfalls described above, but fails to measure the magnitude of the improvement. In
this paper we use performance profiles, described in [5].

For each p ∈ P and s ∈ S, define mp,s to be the metric value recorded for solver
s on problem p. This could be the number of iterations, function evaluations, CPU
time, or any other measure of performance. To establish a baseline for comparison,
define the performance ratio

rp,s =
tp,s

min{tp,s
∣∣ s ∈ S} ,

that is, the ratio of the particular solver’s metric value against the best value of any
solver on this particular problem. This means that rp,s ≥ 1 and the best possible
value is 1. To deal with solve failures, we define

rM = 2 max{rp,s
∣∣ p ∈ P, s ∈ S},
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and set rp,s = rM if solver s fails to solve problem p.
In order to measure how each solver does on the entire problem set relative to

the other solvers, define

ρs(τ) =

∣∣{p ∈ P ∣∣ rp,s ≤ τ}∣∣
nP

to be the performance profile for solver s. The function ρs : R → [0, 1] can be inter-
preted as follows. For a given value of τ ∈ [1, rM ], ρs(τ) is the number of problems
for which the solver’s performance ratio is within a factor of τ of the best possible
value (relative to solver set S), out of the total number of problems nP . With this in
mind, ρs(τ) is a cumulative distribution function for the solver’s performance ratio.
The two extremes ρs(1) and ρs(rM ) give the proportion of problems on which solver
s had the best possible value and the proportion of problems solver s was able to
solve respectively.

6.2. Hardware and Software

The code for each solver was written in MATLAB version R2019b by Jeb H. Runnoe.
Each of the solvers makes use of a number of constants and tolerances that determine
termination, optimality, unboundedness, line-search failure, etc.. These values are
described in Table 2. The data collection, analysis, and plotting software was written

Parameter Value Parameter Value

Stationary tolerance ε 1.00e-04 Iteration limit N 3000

Gradient tolerance ηW 9.00e-01 Maximum ∆x 100

Function tolerance ηA 1.00e-04 Line-search function limit 20

Condition number limit 1.00e+16

Update rejection tolerance µ 1.00e-08

Unbounded objective -1.00e+09

Table 2: Constants and tolerances used across all problems and solvers.

in Python using Numpy, Pandas, Matplotlib and Seaborn. All computations were
carried out on a 2017 MacBook Pro with a 2.3 GHz Intel Core i5 processor and 8GB
2133 MHz LPDDR3 memory.

6.3. Discussion and Results

There is a trade off between the use of iterations and function evaluations, and which
one is minimized depends on their relative cost. If iterations are computationally
expensive in comparison to function evaluations, then the goal is to use as many
function evaluations as needed to get the most out of each iteration. What this
means in practice is the tolerances used in the line search are adjusted to demand
a greater reduction in the objective value. Conversely, if function evaluations are
expensive we accept a smaller decrease in the objective in the interest of limiting the
number of evaluations used per iteration. Except for some specific circumstances,
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the assumption that functions are more expensive than iterations is reasonable. In
this project we assume this to be the case and so the function evaluation profiles
are the primary tool for comparison. Iteration profiles are also provided to illustrate
this trade off.

The comparison of standard BFGS with the factored Hessian variation highlights
the importance of numerical stability in the update formula. The fact that the
relation Hk = RTkRk is an equality means that in infinite precision arithmetic bfgsH

and bfgsR should perform identically. In practice they do not, and the difference in
their performance seen in Figure 2 is owed entirely to the management of numerical
factors like conditioning and indefiniteness, made possible by the use of matrix
factorization.
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Figure 2: Performance profiles comparing function evaluations (left) and iterations
(right) for bfgsH and bfgsR.

The self-scaled updates, whose purpose is to limit the negative effects of ill-
conditioning, provide another example of the benefits of taking stability into con-
sideration. Whether the explicit, inverse, or factored Hessian approximation is used
as the base method, self-scaling improves overall performance. Notice that in Fig-
ure 3 the self-scaled method’s performance in iterations is arguably worse than the
standard. This is an example of the function-iteration trade off discussed at the
beginning of this section. The improvement for the inverse method bfgsMS is more
consistent than that of bfgsHS. Notice also that iteration performance bfgsMS does
not suffer from scaling.

Out of all the variants considered in this thesis, the self-scaled factored Hessian
bfgsRS is the highest performing method (see Figure 5). As bfgsRS makes use of
both self-scaling to manage conditioning, and resetting in the event of indefiniteness,
this supports the idea that numerical stability makes a real difference.
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Figure 3: Performance profiles comparing function evaluations (left) and iterations
(right) for bfgsH and bfgsHS.
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Figure 4: Performance profiles comparing function evaluations (left) and iterations
(right) for bfgsM and bfgsMS.
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Figure 5: Performance profiles comparing function evaluations (left) and iterations
(right) for bfgsR and bfgsRS.
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Figure 6: Performance profiles comparing function evaluations (left) and iterations
(right) for bfgsH and bfgsHY.
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Figure 7: Performance profiles comparing function evaluations (left) and iterations
(right) for bfgsM and bfgsMN.

Methods based on scaling or shifting yk rather than the Hessian do not appear
to be as effective as those based on scaling the Hessian. The more recent variations
bfgsHY, bfgsMN, and bfgsMZ are all implemented by scaling or shifting yk. Look-
ing at 6, it seems imposing an extra interpolation condition seems to have little
measurable effect.

Similarly, in Figure 7 bfgsMN shows slight improvement in both function evalua-
tions and iterations, but the improvement is negligible compared to other methods.
It is important to emphasize the need for uniform analysis and systemic numeri-
cal testing in order to draw meaningful conclusions about these algorithms’ relative
performance. Without this kind of rigorous comparison, results have the potential
to be misleading. To illustrate, looking at the references in [1], our problem sets
have 38 problems in common. If we restrict our test set to the common problems
and consider only the CPU time metric, then bfgsMN appears to be far superior.
However, if the test set is expanded to the full 234 problems then it is clear that
there is actually no significant difference. Note that Figure 8 is different from the
other figures in that both the left and right plots are CPU time profiles, but the left
is on the full set while the right is just the common set.
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Figure 8: Performance profiles comparing CPU time for bfgsM and bfgsMN on the
full problem set (left) and the common problem set (right).
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Figure 9: Performance profiles comparing function evaluations (left) and iterations
(right) for bfgsM and bfgsMZ.

Using the modified quasi-Newton condition and corresponding update also seems
to reduce the number of function evaluations and iterations used, but only slightly
(see Figure 9).
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7. Conclusion

In this thesis we developed the theory, derived the algorithms, and analyzed the
performance of variations of quasi-Newton methods for unconstrained optimization.

A systematic and rigorous comparison revealed that some newer modifications
show little or no improvement, while a novel combination of self-scaling and a fac-
tored Hessian shows significant and consistent improvement. Surprisingly, most
authors in the optimization community have dismissed factored Hessian methods.
From page 201 of Nocedal and Wright [13] (a standard graduate and undergraduate
text on optimization):

“However, computational experience suggests no real advantages for this
variant, and we prefer the simpler strategy of Algorithm 8.1.”

(In Algorithm 8.1 Nocedal and Wright update the inverse.)
Variations of quasi-Newton methods that focus on managing the condition num-

ber and preserving positive definiteness result in significant improvement in function
evaluations and iterations. In contrast, those based on imposing additional condi-
tions and then scaling the update to satisfy them seem to have little or no measurable
effect. This reminds us that stability must be taken into account in numerical op-
timization. A method might have wonderful theoretical properties, but if it fails to
deal with numerical issues these properties simply cannot be realized.
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