
Randomized Numerical Linear Algebra and its applications

Haoyang Li, supervised by Ery Arias-Castro

June 2020

1



1 Abstract

This thesis mainly studies some algorithms in randomized numerical linear algebra, from simple
randomized inner product and randomized matrix multiplication to more complicated ones includ-
ing randomized low rank matrix approximation with random projection and randomized low rank
approximation for positive semidefinite matrix with sketch method. These algorithms contributed
to improving the efficiency of some linear algebra algorithms or saving computer memory by sac-
rificing limited accuracy. This thesis also provides some analysis about the error bounds for these
algorithm. Finally, this thesis shows the application of randomized low rank matrix approximation
in Principle Component Analysis and Support Vector Machine.

Here is the link for my code on github:
https://github.com/HaoyangLi0507/Randomized-Numerical-Linear-Algebra.git

2



2 Randomized Matrix Multiplication

2.1 Randomized Inner Product

We know that the inner product of two vectors a and b in Rn is a>b =
∑n

i=1 aibi. The running time
for this process is O(n). When we deal with very large vectors and the variance of their elements
are not large, it is reasonable to choose a small sample independently and uniformly at random
with replacement from the population of the product aibi for i ∈ {1, . . . , n} to estimate the value
of a>b.

Algorithm 1: Randomized inner product

Data: vector a, b ∈ Rn and sampling size c.
Result: x>y as an approximation for a>b, x, y ∈ Rc.
Initialize xy = 0;
for i in 1 to c do

pick a number k ∈ {1, . . . , n} independently and uniformly at random with replacement;
set xi =

√
n
c ak and yi =

√
n
c bk;

set xy = xy + xiyi
end
Return xy;

Now we have an algorithm with running time O(c). Analysis for this algorithm is simple. We
can see that

E
[
x>y

]
= a>b,

because

E
[
x>y

]
= E

 c∑
i=1

xiyi


=

c∑
i=1

E

 1

n

n∑
j=1

√
n

c
aj

√
n

c
bj


=

c∑
i=1

1

c
E

 n∑
j=1

ajbj


=

c∑
i=1

1

c
E
[
a>b

]
= a>b.

2.2 Randomized Matrix Multiplication

Taking a closer look at the matrix multiplication, we can see that for some A ∈ Rm×n and B ∈ Rn×p,

AB =

n∑
i=1

A∗iBi∗.

This sum is in Rm×p. Similar to the randomized inner product, a reasonable randomized approx-
imation for the exact product AB can be the sum of c (c � n) rescaled terms randomly sampled

3



from n terms in
∑n

i=1A∗iBi∗ independently and with replacement, according to a probability dis-
tribution set {pk}nk=1.

AB ≈
c∑
t=1

1

cpit
A∗itBit∗

To write this approximation in matrix multiplication form, we can use sampling matrix S. Let
S ∈ Rn×c be a matrix that Sitt = 1√

cpit
and other elements equal to 0. Let X = AS and Y = S>B,

XY = ASS>B ≈ AB.

Algorithm 2: Randomized Matrix Multiplication [2]

Data: input matrix A ∈ Rm×n and B ∈ Rn×p, positive integer c� n, probability
distribution {pk}nk=1.

Result: an approximation to AB.
initiate XY be an empty m× n matrix;
for t in 1 to c do

Randomly select it from [1, n] with probability pit ;
Calculate tempo = rescaled outer product 1√

cpit
A∗it × 1√

cpit
Bit∗;

XY = XY + tempo;

end
Return XY ;

Note that S is not explicitly created in this algorithm. This algorithm has time complexity
O(mcp) while the exact matrix multiplication’s is O(mnp).
The following lemma and theorem are from [2].

Lemma 2.1. Let X and Y be constructed as described above, then for an arbitrary pair of (i,j), we

have E
[
(XY )ij

]
= (AB)ij and V ar

[
(XY )ij

]
≤ 1

c

∑n
k=1

A2
ikB

2
kj

pk
.

Proof. For t ∈ {1, 2, . . . , c}, define Rt =
AiitBitj
cpit

, which is the (i, j) term of
A∗itBit∗
cpit

and A∗it and

Bit∗ are the randomly chosen column and row. We can see that (XY )ij =
∑c

t=1Rt. Then since
we can choose A∗it and Bit∗ from all the n pairs in the sum for the exact result, we can see that

E [Rt] =
∑n

k=1 pk
AikBkj
cpk

= 1
c

∑n
k=1AikBkj = 1

c (AB)ij . Thus

E
[
(XY )ij

]
= E

 c∑
t=1

Rt

 =
c∑
t=1

E [Rt] =
c∑
t=1

1

c
(AB)ij = (AB)ij .

For variance, we know that V ar[Rt] = E[R2
t ]− E[Rt]

2. As E[Rt]
2 ≥ 0, V ar[Rt] ≤ E[R2

t ].

E[R2
t ] =

n∑
k=1

pk
A2
ikB

2
kj

c2p2k
=

1

c2

n∑
k=1

A2
ikB

2
kj

pk

V ar[(XY )ij ] =
c∑
t=1

V ar[Rt] ≤
c∑
t=1

E[Rt] =
1

c

n∑
k=1

A2
ikB

2
kj

pk

4



Next we discuss the choice of the probability distribution set {pk}nk=1 and we bound the error in
terms of Frobenius norm. If we use identical probability for every pair of A’s column and B’s row,
the approximation might behave poorly because it might miss the pair having the multiplication
result with relatively large Frobenius norm. This is important especially when dealing with cases
like A has an outstandingly large column and the corresponding row in B is not outstandingly
small.

Thus we use the probability set

pk =
‖A∗k‖2‖Bk∗‖2∑n

k′=1

∥∥A∗k′∥∥2∥∥Bk′∗∥∥2 .
Note that if we use uniform probability, which is pk = 1

n for all k ∈ {1, . . . , n}, the error bound will
be

E
[
‖AB −XY ‖2F

]
=
n

c

n∑
k=1

‖A∗k‖22‖Bk∗‖
2
2 .

Computing the weights can be more precise in general cases (especially when dealing with the
matrices with outstanding columns), but the computation of those weights also costs time.

Theorem 2.2. If we construct X and Y as described previously and approximate AB by XY, and
we choose

pk =
‖A∗k‖2‖Bk∗‖2∑n

k′=1

∥∥A∗k′∥∥2∥∥Bk′∗∥∥2 (1)

for all k ∈ {1, . . . , n}, then

E
[
‖AB −XY ‖2F

]
≤ 1

c
(
n∑
k=1

‖A∗k‖2‖Bk∗‖2)
2.

Proof. We know that

E
[
‖AB −XY ‖2F

]
=

m∑
i=1

n∑
j=1

E
[∥∥(AB)ij − (XY )ij

∥∥2
F

]
=

m∑
i=1

n∑
j=1

[V ar(
∥∥(AB)ij − (XY )ij

∥∥
F

)− E
[∥∥(AB)ij − (XY )ij

∥∥
F

]2
].

According to lemma 2.1, we know that E
[∥∥(AB)ij − (XY )ij

∥∥
F

]2
= 0. Thus

E
[
‖AB −XY ‖2F

]
=

m∑
i=1

n∑
j=1

V ar(
∥∥(AB)ij − (XY )ij

∥∥
F

)

≤
m∑
i=1

n∑
j=1

1

c

n∑
k=1

A2
ikB

2
kj

pk


If we use uniform probability, which is pk = 1

n for k ∈ {1, . . . , n},

5



E
[
‖AB −XY ‖2F

]
≤ 1

c

n∑
k=1

1

pk
‖A∗k‖22‖Bk∗‖

2
2 =

n

c

n∑
k=1

‖A∗k‖22‖Bk∗‖
2
2

If we choose pk according to (1),

E
[
‖AB −XY ‖2F

]
≤ 1

c

n∑
k=1

[(

∑n
k′=1

∥∥A∗k′∥∥2∥∥Bk′∗∥∥2
‖A∗k‖2‖Bk∗‖2

) ∗ (
m∑
i=1

n∑
j=1

A2
ikB

2
kj)]

=
1

c

n∑
k=1

[(
n∑

k′=1

∥∥A∗k′∥∥2∥∥Bk′∗∥∥2) ∗ (‖A∗k‖2‖Bk∗‖2)]

=
1

c
(
n∑
k=1

‖A∗k‖2‖Bk∗‖2)
2.

To see why we choose pk, we can use Lagrange multiplier to solve the system that

minimize
m∑
i=1

n∑
j=1

1

c

n∑
k=1

A2
ikB

2
kj

pk

 subject to
n∑
k=1

pk = 1.

The specific proof is in [2] under section 4.1.

2.3 Numerical Experiment

In this section, I did some numerical experiments in Python to see the actual behaviors of this
randomized matrix multiplication in terms of accuracy and efficiency.

I randomly generated a series of matrices A and B with increasing sizes. Every element of A
and B is between 0 and 1. I fixed m = 700 and set n ∈ {3 × 104, 6 × 104, . . . , 6 × 105}. I use the
probability set described above and c = 50, 100, 150, ..., 500 to do the experiments. For each value
of c, I repeated the experiment for 40 times. I took the average time used to measure the efficiency

and took the average of
‖AB−XY ‖F
‖AB‖F

to measure accuracy.

Remark 1. From my experiments (some of the results are not shown), I found that this algorithm
can improve the efficiency greatly with the pair of original matrices having a large n and a relatively
small m and p. This is actually kind of trivial because we are sampling from A’s n columns (and
corresponding rows in B), not from A’s m rows or B’s p columns, and when we use a small c, we
can save a lot of time for the calculation.

Remark 2. From the experiments, we can see that computation time of this algorithm increases
approximately linearly with the increase of c. The errors decrease fast at first few c values and then
more and more slowly, approximately according to a log function. In my experiments, the elbows
for accuracy are at around 300 to 400 for c, no matter how large n is.

Remark 3. We can also see that calculating the probability set {pk} is also time consuming. When
dealing with small n (like below 24000) or very large n (like above 57000), sometimes the computer
even used more time to calculate the probability set than to calculate exact matrix multiplication.
I believe one of the reason is that my code is not optimized. But users should pay attention to
the efficiency of calculating probability set. This is also why sometimes uniform probability is a
good choice when users are not strict about accuracy. We can see that the Randomized Matrix
Multiplication algorithm itself runs pretty fast, especially for small c values.

6



7



8



9



10



11



3 Randomized Low Rank Matrix Approximation

3.1 Singular Value Decomposition

In low rank matrix approximation, one popular method is Singular Value Decomposition (SVD).
SVD can decompose the original matrix A ∈ Rm×n into three matrices:

A = UΣV >,

where U ∈ Rm×m, Σ ∈ Rm×n, V ∈ Rn×n. Suppose m > n. U and V are orthogonal matrices.
Columns of U are left singular vectors of A and columns of V are right singular vectors of A. The
only nonzero elements in Σ are those on its diagonal (Σ11,Σ22, ...,Σnn) and they are A’s singular
values. Let σ1, σ2,..., σn be A’s singular values with σ1 ≥ σ2 ≥ ... ≥ σn, u1, . . . , un and v1, . . . , vn
be the corresponding left and right singular vectors, we can also write

A =
n∑
i=1

uiσiv
>
i .

We know that the best rank k approximation in Frobenius norm for A is

Ak =
k∑
i=1

uiσiv
>
i .

In matrix notation, we let Σk be the k × k matrix with top k singular values of A in descending
order, Uk and Vk be the matrices of left and right singular vectors corresponding to the singular
values in Σk,

Ak = UkΣkV
>
k . (2)

In some of the following algorithms, we compare the computed approximating matrix with Ak to
analyze the accuracy of the approximating matrix.

Computing SVD can be accurate but expensive. Therefore, we have following randomized
algorithms to compute the approximation faster but with some loss of accuracy.

3.2 Low Rank Matrix Approximation with Random Projection

3.2.1 Intuition and Algorithm

One way of doing randomized low rank matrix approximation is using the idea of random projection,
which can be done in two stages. The first stage is to approximate the range of input matrix
A by multiplying A by a randomly created matrix Ω (for example a Guassian random matrix)
with much less columns. This would work because in a high-dimensional space there exist much
more almost orthogonal directions than orthogonal directions, and vectors with random directions
might be sufficiently close to orthogonal (from [1]). Therefore, multiplying A by Ω can be seen as
approximately projecting A onto a lower dimensional space. Then we find an orthonormal basis Q
of this product and Q should have same number of columns with Ω. We will have Q = orthonormal
basis of AΩ,

A ≈ QQ>A.

12



The next stage is to use this Q to help perform SVD. We set B = Q>A and B will have fewer rows
than A. Then we can do

UBΣBV
>
B = B.

Let ΣBk be the matrix of B’s top k singular values and UBk , VBk be the matrices of corresponding
left and right singular vectors,

U = QUBk

A ≈ UΣBkV
>
Bk
.

This two-stage algorithm idea comes from [5]. A complete introduction of this random projection
and random sampling based approximation can be found in [5].

In this algorithm, we choose the random matrix Ω according to randomized Hadamard transfor-
mation (this algorithm comes from [2]). We can also use Fourier Transformation or other structured
randomized transformations here. See [5] section 4.6 for more details.

Algorithm 3: Randomized Low Rank Matrix Approximation [2]

Data: A ∈ Rm×n, a rank parameter k � min(m,n), an error parameter ε ∈ [0, 12).

Result: Ũk ∈ Rm×k as an approximation to the Uk in (2).
Let c be a value such that c ≥ c0 k lnnε2

(ln k
ε2

+ ln lnn);
Initialize S be an empty matrix;
for t in 1 to c do

Select a column ei from n× n identity matrix In uniformly at random (i.i.d. with
replacement), multiplied by

√
n
c , append it to S;

end
Let D be a diagonal matrix, Dii = 1 with probability 1

2 and Dii = −1 with probability 1
2 ;

Let H be a n× n normalized Hadamard transform matrix;
Let Ω = DHS ∈ Rm×c;
Compute a orthonormal basis Q of AΩ;
Let B = QTA;
Compute UB,ΣB, VB = SV D(B) and take top k singular values and corresponding left
and right singular vectors UBk ,ΣBk , VBk ;

Return Ũk = QUBk ;

Note that c0 in this algorithm is an integer. In [2], the choice of c0 is not mentioned. In my
experiments, I use 0.01. Also if we fix n, we can see that c = O(k ln k). This algorithm has time
complexity O(mnc) (from [2]).

3.2.2 Analysis about Randomized Low Rank Matrix Approximation

Section 6 in [2] provides the following theorem for analyzing the error bounds of this algorithm.

Theorem 3.1. Let A ∈ Rm×n, k be a rank number, ε ∈ [0, 12). If we choose c ≥ c0
k lnn
ε2

(ln k
ε2

+
ln lnn), we can have ∥∥∥A− ŨkŨTk A∥∥∥

F
≤ (1 + ε)‖A−Ak‖F

with probability at least 0.85 and Ũk is the matrix returned by the Randomized Low Rank Matrix
Approximation.

13



The complete proof of this theorem is quite long and can be found in [2].

Remark 4. The probability for finding an approximation as good as the theorem stated is at least
0.85. However, if we run this algorithm for m times, the probability of not finding such a good
approximation is at most 0.15m, which approaches to 0 fast. Also comparing the approximation
with the original matrix is relatively not too time consuming (O(mn) for comparing the Frobenius
norm). Thus running a few times of this algorithm and picking the best approximation will produce
a good approximation efficiently with a very large probability.

3.2.3 Numerical Experiment

To see the behaviors of this randomized low rank approximation algorithm, I randomly generated
a series of matrices A for experimenting. For simplicity, I used square matrices. Also I only imple-
mented the random Hadamard transformation in a simplified way that multiplying the Hadamard
transformation matrix whose size is a power of 2. So when I experimented with different sizes, I
used {29, 210, . . . , 213} as the numbers of columns and rows of A. Then I also experimented with
different sparcity of A, which is defined by number of nonzero elements in A

number of A’s elements . For both size related exper-
iments and sparcity related experiments, I used target rank k ∈ {5, 10, . . . , 50}. I chose c0 = 0.005

and ε = 0.25. For accuracy, I used
∥∥∥Ã−A∥∥∥

F
as error, where Ã was the approximation gotten from

the randomized low rank matrix approximation algorithm. For each approximation, I repeated 15
times and took the average of running time and errors.

Remark 5. For the experiments with different sizes of A but same sparcity (= 1), we can see that
running time of both randomized low rank matrix approximation and SVD increases approximately
linearly with the increase of k. The randomized method behaves better in terms of efficiency when
the size of A is large. The error of randomized method decreases fast for the first few k and then it
also decreases approximately linearly with the increase of k.

Remark 6. We can see that in the experiments with same size but different sparcity, when the
matrix is very sparse, the errors of both exact SVD and randomized low rank matrix approximation
increases as the k increases. I think one of the reason can be the ill condition of input matrix A.
But this should arise attention. Also compared with the running time with different input matrices’
sizes, it does not change much with the change of input matrices’ sparcity.

Remark 7. Note that generating random matrix also costs time. Generating a 8192×8192 random
matrix with Python function numpy.random.rand() uses 1.13s, which cannot be ignored. However,
generating random number from normal distribution in Python is almost free as it cost so little
time, like less than 0.06s for the 8192× 8192 random matrix.

The following figures show the results of experiment with different sizes but same sparcity (= 1).

14



15



The following figures show the results of experiment with same size (4096) but different sparcity.

16



3.3 Low Rank Approximation for Positive Semidefinite Matrix

3.3.1 Introduction

Positive semidefinite matrix (PSD matrix) is an important kind of matrix in today’s data world. For
example, when we want to analyze a group of data like stock price, we might want to consider about
the correlation between each of the instance in the dataset. The matrix with all the correlation
values is a PSD matrix. If we want to use Principle Component Analysis or other methods to do
some analysis about this matrix, a low rank approximation can help save a lot of time and memory.
For another example, the gram matrix in Support Vector Machine is also a PSD matrix and a
low rank approximation for gram matrix can speed up the Support Vector Machine algorithm.
Therefore, in many cases finding a low rank approximation for the PSD matrix can be helpful.

17



3.3.2 Algorithms and Analysis

A thesis ([4]) I read provides one way to approximate a PSD matrix A. It is different from the one
we introduced before that using the idea of random projection: let S ∈ Rn×l be a sampling matrix
with l� n and let C = AS and W = S>AS, we use

A ≈ CW †C>

(W † represent the Moore-Penrose pseudoinverse of W) as the PSD sketch of A with rank at most
l.

This PSD sketch has several different kinds of extensions, regarding different choices of sampling
matrix S. The first one is Nystrom extension, which samples the columns from A with unifrom
probability (i.i.d.). Note that this extension needs to use the coherence of the matrix and I will
talk more about this in analysis section. The second one is Gaussian extension, which uses n × l
sampling matrix S with each entry coming from normal distribution. The thesis ([4]) also provides
other extensions, like the one using Fourier transformation, in section 6.

Algorithm 4: Randomized Low Rank Matrix Approximation for PSD Matrix [4]

Data: PSD matrix A ∈ Rn×n, sampling number l.
Result: Ã as an approximation to A.
Nystrom: pick l columns from identity matrix In to form sampling matrix S;
Gaussian: create a n× l sampling matrix S by randomly generating each of its elements
from normal distribution;

Let C = AS and W = S>AS;

Return Ã = CW †C;

3.3.3 Error Bounds for This Sketch Method

The thesis ([4]) provides a complete analysis of this sketch method’s behaviors in terms of accuracy
and efficiency. I will just state the theorem about the accuracy here and the proof can be found in
the thesis.

Theorem 3.2. With Nystrom extension, if we choose l ≥ 2µε−2k log(kδ ), we can have

∥∥∥A− CW †C>∥∥∥
F
≤‖A−Ak‖F + (

√
2

δ
√

1− ε
+

1

(1− ε)δ2
)Tr(A−Ak)

with probability at least 1 − 4δ. µ is the measure of coherence of the matrix, which is defined as
µ(A) = n

kmaxi(PA)ii, where PA is the projection onto the range of A.

Theorem 3.3. With Gaussian extension, if we choose l ≥ (1 + ε2)k, we can have∥∥∥A− CW †C>∥∥∥
F
≤‖A−Ak‖F + c0

√
‖A−Ak‖2 Tr(A−Ak) + c1‖A−Ak‖2 +

c2√
k
Tr(A−Ak)

with probability at least 1 − 2k−1 − 4e
−k
ε2 . c0, c1, c2 are integers relating to ε. c0 = 11ε + 544ε2,

c1 = 815ε2, and c2 = 91ε.

18



3.3.4 Numerical Experiment

To see the behaviors of this randomized low rank approximation algorithm for PSD matrix, I ran-
domly generated a series of matrices A for experimenting. When I experimented with different sizes,
I used {2000, 3000, . . . , 8000} as the numbers of columns and rows of A. Then I also experimented
with different sparcity of A, which is defined by number of nonzero elements in A

number of A’s elements . For both size related
experiments and sparcity related experiments, I used target rank k ∈ {5, 10, . . . , 50}. I choosed

δ = 0.1 and ε = 0.9. For accuracy, I used
∥∥∥Ã−A∥∥∥

F
as error, where Ã was the approximation

gotten from the randomized low rank matrix approximation for PSD matrix algorithm. For each
approximation, I repeated 10 times and took average of running time and errors.

The following figures show the results of experiment with different sizes but same sparcity (= 1).

19



20



The following figures show the results of experiment with same sizes (3000) but different sparcity
(= 1).

21



22



Remark 8. First from the experiments with different sizes but same sparcity, we can see that
the randomized low rank approximation for PSD matrix with both extensions did run faster than
SVD. The behaviors of both extensions are almost the same in terms of efficiency and accuracy.
According to the range of l given in the theorem, Gaussian extension requires a smaller l than
Nystrom extension, especially for some large k. However, when I used the relatively small l for
Gaussian extension, the error was large. Therefore, I used the same l for both of the algorithms.
Running time of the randomized methods increases almost linearly with the increase of k, and the
error decreases approximately according to a log function as k increases. The elbows of accuracy
are at around 35 for all sizes and sparcity of A.

3.4 Randomized Principle Component Analysis

3.4.1 Introduction

In data science and machine learning, when we do classification, we usually have many variables
for data. On the one hand, if we want to visualize the data, it is impossible for us to visualize
the data with more than three variables because we live in a three-dimensional world and we don’t
know how to plot the data in a higher-dimensional space. On the other hand, higher dimension and
rank mean harder to processe the data, causing memory or efficiency issues. But simply dropping
some variables is not ideal because it ignores the relationship between the variables. Therefore, we
have Principle Component Analysis (PCA) here to help us create a few new variables, which are
the combination of original variables, and find the most important ones, i.e. the ones explain the
variance of our data best.

A common way to calculate PCA is first centered the original matrix A so that each row of A
has mean = 0. Then we calculate the covariance matrix A>A and calculate

U,Σ, V > = SVD(A>A).

23



Suppose the diagonal elements of Σ are in the descending order and the vectors in U are arranged
according to the order of the diagonal elements of Σ. The top k vectors in U are the k principle
directions that we want. Then we can transform A by calculating AUk, where Uk is the matrix of
the k principle directions.

I will introduce 2 ways of calculating PCA, one of them using randomness, in this section.

The first one is from my supervisor Ery Arias-Castro. Without calculating SVD of A>A, we
calculate the SVD of A: UΣV > = SVD(A). We can see that

A>A = V ΣU>UΣV > = V ΣV >.

Therefore, if we order the rows of V > according to the order of sorted singular values, V >’s top k
rows are actually principle directions in transpose. Let Vk be the matrix with the top k principle
directions. We can transform A by calculating AVk, which has same effect as the method described
above.

The next algorithm is from [3] that actually the top k left singular vectors of A are the k principle
components we want (before rescaled by sigular values). Therefore, finding a approximation to
the top k singular vectors with a randomized method can be an efficient way to calculate an
approximation of exact PCA.

AkVk = UkΣkV
>
k Vk = UkΣk

Figure 1: Algorithm from [3]

3.4.2 Experiment

I used the data found on Kaggle.com ([1] under Data Reference). The data is used for classification
and has 7352 rows and 561 columns, which means 561 variables. I used PCA to reduce the dimension
to 2 with 2 functions described above on Python. These two algorithms were implemented by myself
so the code might run slowly because my code was not optimized.

The run time for PCA with calculating A’s SVD was 0.16s, and randomized PCA only took
0.03s. However, ‖result from PCA−result from randomized PCA‖

‖result from PCA‖ = 2, which means the result from random-
ized algorithm was relatively far from the result from exact PCA. In this special case the randomized
algorithm is not that optimal, but I will do more experiments on this part and make updates on
my github.

24



3.5 Low Rank Approximation for PSD Matrix Used in Support Vector Machine

3.5.1 Introduction

Support Vector Machine(SVM) is a popular machine learning algorithm for classification. In the
running process, SVM with linear kernel needs to calculate based on a gram matrix, which is a
PSD matrix. Therefore, inspired by [6], I think probably replacing the gram matrix by a low rank
approximation can help speed up SVM’s calculation process and save memory space when dealing
with super large dataset.

3.5.2 Experiment

I used two datasets from Kaggle.com to run the experiments ([1] and [2] under Data Reference).
Mnist contains data about images, trying to label the numbers in the images. Human Activity
Recognition contains data about human, trying to classifying human’s activities according to the
data. Mnist data has 42000 rows and 785 columns (one of the column is for y value). I splitted
the Mnist data into train and test datasets. Train set has 80% of the whole dataset while test has
the rest 20%. I standardized the data before using it and I recorded the accuracy of the model by
the percentage of correct classifications in test dataset. I used gaussian extension with different k
values to do the experiments. The time I recorded included the time used by approximation.

Remark 9. From the result we can see that for Mnist data, low rank approximation did a bad job
that costing more time and having a lower accuracy than standard SVM. But for Human Activity,
it did help increase the runing speed of SVM while keep a relatively good accuracy. My naive idea is
that low rank approximation is not that suitable for image recognition problem, but I will do more
experiments about this and update it on my github.

Figure 2: Result from SVM

4 Data Reference

[1]: mnist-svm-m4, Nikhil Sai
https://www.kaggle.com/jnikhilsai/data

[2]: Human Activity Recognation with Smartphones, UCI Machine Learning
https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones

25



References

[1] Ella Bingham and Heikki Mannila. Random projection in dimensionality deduction: Appli-
cations to image and text data. In Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 245–250, 2001.

[2] Petros Drineas and Michael W Mahoney. Lectures on randomized numerical linear algebra. The
Mathematics of Data, 25:1, 2018.

[3] Xu Feng, Yuyang Xie, Mingye Song, Wenjian Yu, and Jie Tang. Fast randomized pca for sparse
data. arXiv preprint arXiv:1810.06825, 2018.

[4] Alex A Gittens. Topics in Randomized Numerical Linear Algebra. PhD thesis, California
Institute of Technology, 2013.

[5] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review,
53(2):217–288, 2011.

[6] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems, pages 1177–1184, 2008.

5 Acknowledgement

Here I want to thanks my supervisor Ery Arias-Castro. He provided me much help that without
him I could not finish this project. I also want to thanks my parents providing me support of doing
this.

26


	Abstract
	Randomized Matrix Multiplication
	Randomized Inner Product
	Randomized Matrix Multiplication
	Numerical Experiment

	Randomized Low Rank Matrix Approximation 
	Singular Value Decomposition
	Low Rank Matrix Approximation with Random Projection
	Intuition and Algorithm
	Analysis about Randomized Low Rank Matrix Approximation
	Numerical Experiment

	Low Rank Approximation for Positive Semidefinite Matrix
	Introduction
	Algorithms and Analysis
	Error Bounds for This Sketch Method
	Numerical Experiment

	Randomized Principle Component Analysis
	Introduction
	Experiment

	Low Rank Approximation for PSD Matrix Used in Support Vector Machine
	Introduction
	Experiment


	Data Reference
	Acknowledgement

