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Abstract. We present several classical theorems in ergodic the-

ory and two examples of dynamical systems, geodestic flows on

quotients of the hyperbolic plane and non-singular actions of the

Heisenberg group. For the second example, we generalize recent

works on ratio ergodic theorem for discrete Heisenberg group ac-

tions to continuous actions of real Heisenberg group. Besides, we

will also summarize Hochman’s result on the equivalence of a ratio

maximal inequality and Besicovitch covering property of spaces.
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1. Ergodicity and Ergodic Theorems

In this section, we define ergodicity for dynamics systems on measure

spaces and discuss a few classical ergodic theorems. In a vague sense,

we say a system is ergodic if it does not have nontrivial independent

sub-systems. A rigorous definition is as follows.

Definition 1.1. Let (X,B, µ) and (Y,C , ⌫) be probability spaces. A

measurable function T : X ! Y is measure-preserving if µ(T�1B) =

⌫(B) for all B 2 C .

We use the pre-images instead of images to define measure-preserving

maps so that the examples such as the circle doubling map are included.

The following theorem, Poincaré recurrence theorem, shows that almost

all points in such dynamical systems return to a neighbourhood of

themselves infinitely often.

Theorem 1.2. (Poincaré Recurrence). Let (X,B, µ) be a proba-

bility space, T : X ! X be a measure-preserving map on X, and E 2 B

be a measurable set. Then, there exists a measurable set F 2 B with

µ(F ) = µ(E), so that for all x 2 F , there exist an increasing sequence

{n
i

}1
i=1 of positive integers such that T n

ix 2 E for all i.

Proof. Let B = {x 2 E|8n, T nx /2 E}. Then B is measurable since

B = E \
\

n2N

T�n(X \ E).

Then for m 2 N,

T�mB = T�mE \
\

n2N

T�n�m(X \ E),

so {T�nB}
n2N and B are mutually disjoint sets with same measure

since T is measure-preserving. Since X is a probability space, µ(B) = 0.

Let F1 = E \ B, then µ(F1) = µ(E), and every point in F1 returns to

E at least once. Apply the same argument to all T n, and for each

n 2 N, there exists F
n

2 B so that µ(F
n

) = µ(E) and every point

in F
n

returns to E at the k-th step where k is a multiple of n. Let
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F =
T

n2N F
n. Then µ(F ) = µ(E), and every point in F returns to R

infinitely often. ⇤

A system is said to be ergodic if the invariant measurable subsets

are of measure zero or have measure zero complement. An ergodic

system can be considered as an indecomposable system. The following

proposition presents several equivalent conditions for ergodicity.

Definition 1.3. Let (X,B, µ) be a probability space, T : X ! X be

a measure-preserving map on X. Then T is ergodic if for any B 2 B,

T�1B = B =) µ(B) = 0 or µ(B) = 1.

Proposition 1.4. Let (X,B, µ) be a measure space and T be a measure

preserving transformation on X. Then the following are equivalent.

(1) T is ergodic.

(2) For any B 2 B , µ(T�1B4B) = 0 implies that µ(B) = 0 or

µ(B) = 1.

(3) For A 2 B, µ(A) > 0 implies that µ(
S1

n=1 T
�nA) = 1.

(4) For A 2 B, B 2 B, µ(A)µ(B) > 0 implies that there exists n > 1

with µ(T�nA \B) > 0.

(5)For f : X ! C measurable function, f � T = f almost everywhere

implies that f is constant almost everywhere.

Proof. (1) =) (2): Let B 2 B, with µ(T�1B4B) = 0. Let C =
1
T

N=0

1
S

n=N

T�nB. Then for any N > 0,

B4
1
[

n=N

T�nB ✓
1
[

n=N

B4T�nB,

and for all n > 1,

B4T�nB ✓
n�1
[

i=0

T�iB4T�i�1B.

Thus, µ(B4T�nB) = 0 for all n > 1. Let C
N

=
S1

n=N

T�nB, then

C
N

are nested and µ(C
N

4B) = 0 for all N. Thus, µ(C4B) = 0, so
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µ(B) = µ(C). Then,

T�1C =
1
\

N=0

1
[

n=N

T�(n+1)B =
1
\

N=0

1
[

n=N+1

T�nB = C.

By ergodicity, µ(C) = 0 or 1, so µ(B) = 0 or 1.

(2) =) (3): Let A 2 B with µ(A) > 0, and set B =
S1

n=1 T
�nA.

Then, µ(T�1B4B) = 0, since µ(T�1B) = µ(B). Since T�1A ✓ B,

µ(B) 6= 0. Then by (2), µ(B) = 1.

(3) =) (4): Let A,B 2 B with µ(A)µ(B) > 0. By (3),

µ(
1
[

n=1

T�nA) = 1.

Then,
1
X

n=1

µ(B \ T�nA) > µ(
1
[

n=1

B \ T�nA) = µ(B) > 0

Thus, there exists n > 1 with µ(B \ T�nA) > 0.

(4) =) (1): Let A 2 B such that T�1A = A. Then for all n > 1,

µ(T�nA \X \ A) = µ(A \X \ A) = 0.

By (4), µ(A) = 0 or µ(X \ A) = 0.

(5) =) (2): Let B 2 B so that µ(T�1B4B) = 0. Then f = �
B

is a T-invariant function, so f is constant almost everywhere. Thus,

f = 1 almost everywhere or f = 0 almost everywhere, which implies

that µ(B) = 0 or 1.

(2) =) (5): Let f : X ! C be a measurable function so that f �T = f

almost everywhere. Then f = Re(f) + iIm(f), and Re(f) and Im(f)

are real valued functions. Let u = Re(f) and v = Im(f). Then

(u + iv) � T = u � T + iv � T = f = u + iv. Thus, u � T = u, and

v � T = v. For all k 2 Z and n 2 N, define Ak

n

= u�1([ k
n

, k+1
n

)). Then

for all k and n,

µ(T�1Ak

n

4Ak

n

) 6 µ({x 2 X|u(T (x)) 6= u(x)}) = 0.
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Since (2) holds, either µ(Ak

n

) = 0 or µ(Ak

n

) = 1. For each n, {Ak

n

} are

all disjoint and X =
S

k

Ak

n

. Therefore, there exists a unique k
n

so that

µ(Ak

n

n

) = 1. For x, y 2 Ak

n

n

,

|u(x)� u(y)| 6 |kn
n

� k
n

+ 1

n
| = 1

n
.

Let Y =
T

n

Ak

n

n

, then µ(Y ) = 1, and for x, y 2 Y and

|u(x)� u(y)| 6 1

n
8n 2 N.

Hence, u is constant on Y. Similarly, v is also constant almost every-

where, so f is constant almost everywhere. ⇤

For a probability space (X,B, µ) , a measure-preserving map T on it

induces linear operator U
T

: L2
µ

! L2
µ

, which is defined by U
T

(f) = f�T
for all f 2 L2

µ

. Note that L2
µ

is a Hilbert space and for all f, g 2 L2
µ

,

hU
T

f, U
T

gi = hf, gi. Thus, such U
T

is an isometry, and if in addition

T is invertible, then U
T

is a unitary operator.

The ergodic theorems are generally presenting the relationship be-

tween the space average and the time average, where the time average

represents the average taken along orbits of iterating the map T, and

the space average represents the average taken over the whole space

with respect to a T-invariant measure.

Theorem 1.5. (Mean Ergodic Theorem). Let (X,B, µ, T ) be a

measure-preserving system and I = {g 2 L2
µ

|U
T

g = g}. Then I is a

closed subspace of L2
µ

. Let P
T

be the orthogonal projection onto I. Then

for any f 2 L2
µ

,

1

N

N�1
X

n=0

Un

T

f ! P
T

f in L2
µ

.

We may define A
N

= 1
N

N�1
P

n=0
Un

T

f as the Nth ergodic average of f. If T

is ergodic, then I is the subspace of functions that are constant almost

everywhere. Then the limit function is an almost everywhere constant

function that equals to the integral of f a.e., which can be realized as

the space average.
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Proof. Let {g
i

} be a convergent sequence in I ✓ L2
µ

, then U
T

g
i

= g
i

for all i, and let g = lim
i!1

g
i

. Then, kU
T

g � gk2 6 kU
T

g � U
T

g
i

k2 +
kg � g

i

k2 6 2kg � g
i

k2 for all i, since UT

is an isometry. Thus, U
T

g = g,

so g 2 I. Therefore, I is closed, and P
T

is well defined.

Let B = {U
T

g � g|g 2 L2
µ

}. Then for f 2 I and g 2 B,

hf, U
T

g � gi = hf, U
T

gi � hf, gi

= hU
T

f, U
T

gi � hf, gi

= hf, gi � hf, gi

= 0.

Thus, I ✓ B?. For f 2 B?,

hU
T

f, fi = hU
T

f � f, fi+kfk2 =kfk2 ,

and

hf, U
T

fi = hf, U
T

f � fi+kfk2 =kfk2 .

Then,

kU
T

f � fk2 = hU
T

f � f, U
T

f � fi

= hU
T

f, U
T

fi � hf, U
T

fi � hU
T

f, fi+ hf, fi

= kfk2 �kfk2 �kfk2 +kfk2
= 0.

Hence, I = B? and L2
µ

= I � B̄. Let f 2 L2
µ

, then f = P
T

f + h for

some h 2 B̄. We claim that lim
n!1

�

�

�

�

�

1
N

N�1
P

n=0
Un

T

h

�

�

�

�

�

2

= 0. If h 2 B, then

h = U
T

g � g for some g 2 L2
µ

. Then, as N ! 1
�

�

�

�

�

�

1

N

N�1
X

n=0

Un

T

h

�

�

�

�

�

�

2

=

�

�

�

�

�

�

1

N

N�1
X

n=0

Un

T

(U
T

g � g)

�

�

�

�

�

�

2

=
1

N

�

�

�

UN

T

g � g
�

�

�

2
! 0.

For h 2 B̄, there is a sequence {h
i

}1
i=1 of functions in B converging to

h in L2
µ

. Then for all i, there is g
i

2 L2
µ

so that h
i

= U
T

g
i

� g
i

. Then

for ✏ > 0, there exist N 2 N so that 8i > N ,kh� h
i

k2 < ✏/2. Then for
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each i > N , there exist M 2 N so that 8m > M ,
�

�

�

�

�

�

1

m

m�1
X

n=0

Un

T

h

�

�

�

�

�

�

2

6

�

�

�

�

�

�

1

m

m�1
X

n=0

Un

T

(U
T

h� h
i

)

�

�

�

�

�

�

2

+

�

�

�

�

�

�

1

m

m�1
X

n=0

Un

T

h
i

�

�

�

�

�

�

2

6 1

m

m✏

2
+
✏

2
= ✏

Hence, lim
n!1

�

�

�

�

�

1
N

N�1
P

n=0
Un

T

h

�

�

�

�

�

2

= 0, and

lim
n!1

�

�

�

�

�

�

1

N

N�1
X

n=0

Un

T

f � P
T

f

�

�

�

�

�

�

2

= lim
n!1

�

�

�

�

�

�

1

N

N�1
X

n=0

Un

T

h

�

�

�

�

�

�

2

= 0.

⇤

The following proposition is maximal inequality for positive opera-

tors. We will then use it to prove the maximal ergodic theorem, and

we will also show in section 4 that a similar results holds for general

metric spaces where the Besicovitch covering property holds.

Proposition 1.6. (Maximal Inequality). Let (X,B, µ) be a prob-

ability space and U : L1
µ

! L1
µ

be a positive linear operator with

kUk 6 1, and f 2 L1
µ

. Define f0 = 0, for n > 1, f
n

=
n

P

i=0
U if ,

and F
n

= max
06i6n

{f
i

}. Then for all N > 1,

Z

�{x|F
N

(x)>0}fdµ > 0.

Proof. Since F
n

> f
n

for all 0 6 n 6 N , and U is a positive linear

operator, UF
n

> Uf
n

. Then for all 0 6 n 6 N ,

UF
N

+ f > Uf
n

+ f = f
n+1.

Thus,

UF
N

+ f > max
16n6N

f
n

.
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Let S = {x|F
N

(x) > 0}, then on S, max
16n6N

f
n

= max
06n6N

f
n

= F
N

, and

therefore UF
N

+ f > F
N

on S. Then,
Z

S

fdµ >
Z

S

F
N

� UF
N

dµ

>
Z

X

F
N

dµ�
Z

X

UF
N

dµ

=kF
N

k1 �kUF
N

k1
> 0.

⇤

Theorem 1.7. (Maximal Ergodic Theorem). Let (X,B, µ, T ) be

a measure-preserving system on a probability space, and f 2 L1
µ

. Define

E
↵

= {x 2 X| sup
n>1

1

n

n�1
X

i=0

f(T ix) > ↵}.

Then, ↵µ(E
↵

) 6
R

E

↵

fdµ 6kfk1, and for all A 2 B so that T�1A = A,

↵µ(E
↵

\ A) 6
Z

E

↵

\A
fdµ.

Proof. Let g = f � ↵ and U be the linear operator induced by T, i.e.

Ug = g � T for all g 2 L1
µ

. Then U is positive with norm 1. With the

notation in the last proposition,

E
↵

= {x 2 X| sup
N>1

F
N

(x) > 0} =
[

N>1

{x|F
N

(x) > 0}.

By the last proposition,
R

E

↵

gdµ > 0. Thus,kfk1 >
R

E

↵

fdµ > ↵µ(E
↵

).

For A 2 B so that T�1A = A, consider the system restricted to A.

Then by the same argument,

↵µ(E
↵

\ A) 6
Z

E

↵

\A
fdµ.

⇤

Beside of this proof, there is also an alternative proof for this theorem

via the Vitali covering lemma, which presents a hint that the covering
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lemmas and maximal inequality may be presenting the same property

of the space.

The maximal ergodic theorem presents that the measure of the ex-

ceptional set where the ergodic sum goes beyond some value is con-

trolled by the L1 norm of the function. On the other hand, the

Birkho↵’s pointwise ergodic theorem presents the behavior of generic

points in a measure-preserving system.

Theorem 1.8. (Birkho↵ ’s Pointwise Ergodic Theorem). Let

(X,B, µ, T ) be a measure-preserving system and f 2 L1
µ

. Then, there

exists a T-invariant function f ⇤ 2 L1
µ

so that

1

n

n�1
X

j=0

f(T jx) ! f ⇤(x) in L1
µ

almost everywhere, and
R

f ⇤dµ =
R

fdµ.

Moreover, if T is ergodic, then f ⇤(x) =
R

fdµ almost everywhere.

Proof. Define A
n

(f)(x) = 1
n

n�1
P

j=0
f(T jx) for all x, and set

L(f) = lim inf
n!1

A
n

(f)

and

M(f) = lim sup
n!1

A
n

(f)

pointwisely. Then observe that

A
n+1(f)(x) =

n

n+ 1
A

n

(f)(Tx) +
1

n+ 1
f(x).

Let {A
n

i

(f)(x)} be a subsequence such shat

lim
i!1

A
n

i

(f)(Tx) = M(f)(Tx).

Then

lim sup
n!1

A
n

(f)(x) > lim sup
i!1

A
n

i

+1(f)(x) > M(f)(Tx).

Let {A
n

j

(f)(x)} be a subsequence such shat

lim
j!1

A
n

j

(f)(x) = M(f)(x).
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Then

lim sup
n!1

A
n

(f)(Tx) > lim sup
j!1

A
n

j

�1(f)(Tx) > M(f)(x).

Thus, M(f)(Tx) = M(f)(x) for all x. Similarly, L(f)(Tx) = L(f)(x)

for all x. For ↵ 2 R, let E
↵

= {x 2 X : sup
n2N

A
n

(f)(x) > ↵}. For

↵, � 2 R, let E�

↵

= {x 2 X : L(x) < � and M(x) > ↵}. Then

T�1E�

↵

= E�

↵

and E�

↵

✓ E
↵

for all ↵ > �. By theorem 1.7,
Z

E

�

↵

fdµ 6 ↵µ(E�

↵

).

Then apply the same argument with -f, we have
Z

E

�

↵

fdµ > �µ(E�

↵

).

Then

µ({x 2 X : L(f)(x) < M(f)(x)}) 6
X

↵>�2Q

µ(E�

↵

) = 0.

Thus, for a.e. x, L(f)(x) = M(f)(x), and A
n

(f)(x) converges al-

most everywhere. Let f ⇤(x) = M(f)(x), then f ⇤ is T-invariant and

A
n

(f)(x) ! f ⇤(x) a.e. Then for all n,
Z

fdµ =

Z

A
n

(f)dµ,

and by dominated convergence theorem,
Z

f ⇤dµ =

Z

fdµ.

If T is ergodic, then f ⇤ is constant almost everywhere, and it follows

that

f ⇤(x) =

Z

fdµ

almost everywhere. ⇤

A natural generalization of the last theorem is the following theorem

due to Hoph.

Theorem 1.9. (Hoph’s Ratio Ergodic Theorem).

Let (X,B, µ, T ) be an ergodic conservative measure-preserving system
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with X ��finite and f, g 2 L1
µ

with g > 0 almost everyehere. Then

n�1
P

j=0
f(T jx)

n�1
P

j=0
g(T jx)

!
R

f
R

g

almost everywhere.

When X is a probability measure space, this theorem is equivalent

to Birkho↵’s ergodic theorem since in this case we may take g = 1 to

reduce this theorem to Birkho↵’s and the other implication is clear.

When X is not a probability space, however, the equivalence dose not

hold.

In the case where T is invertible, we can think of the transformation

generating an Z action on X. Then, the following theorem, proved by

Hochman,further generalizes Hoph’s ratio ergodic theorem: in stead of

Z actions, we now consider Zd actions.

Theorem 1.10. Let {T u}
u2Zd be a free, non-singular ergodic action

on a ��finite standard probability space (X,µ). Let k·k be a norm on

Rd. Let B
n

= {u 2 Zd :kuk 6 n}. Then for f, g 2 L1(µ) with
R

g 6= 0

and g > 0,
R

B

n

T̂ ufd⌫
R

B

n

T̂ ugd⌫
!
R

fdµ
R

gdµ

almost everywhere.

In section 5, we will further generalize this theorem to the Heisenberg

group. The følner sequence and ratio maximal inequality are two main

tools for proving our main theorem and they will be discussed in section

2 and 4, respectively. We also use the notion of ergodicity for group

actions in this theorem, which will be defined in the next section.
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2. Amendable Groups and Ergodicity of Actions

In the last section, we discussed about the ergodic theory in the

measure-preserving transformation setting. Most of the definitions and

theorems can be generalized to the group action setting.

In order to consider the group actions generally, the following basic

properties that a group action may possess will be used later in this

thesis.

Definition 2.1. Let G y X be a group action, then we say the action

is

(1) free if for all x 2 X and g 2 G, g · x = x implies that g = e;

(2) conservative if it has no nontrivial wandering sets;

(3) non-singular with respect to a measure µ on X if µ(A) = 0 if and

only if µ(g · A) = 0 for all g;

(4) transitive if for all x, y 2 X, there exists g 2 G such that g · x = y;

(5) isometric with respect to a metric d on X if for all x, y 2 X and

g 2 G, d(x, y) = d(g · x, g · y).

Definition 2.2. A measure-preserving system is a quartet (X,B, µ, T )

where (X,B, µ) is a probability space and T is a measure-preserving

group action on X.

The measure-preserving systems we discussed in the last section

can be regard as such systems where T is an N or Z action. Let

MPT (X,B, µ) be the group of invertible measure-preserving transfor-

mation of X. Then T induces a homomorphism from the group G to

MPT (X,B, µ).

For our purpose, we may assume that the group action T : G⇥X !
X is a continuous map, X is a ��compact and locally compact metric

space, and the group G is locally compact.

Definition 2.3. Let M (X) be the space of all Borel probability mea-

sures on X. A measure µ 2 M (X) is called T-invariant or invariant

under G if for all g 2 G and A 2 B
X

, µ(A) = µ(g�1A), i.e. g⇤µ = µ

for all g 2 G. We denote the set of all the G-invariant measures on X

as MG(X).
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There are examples of group actions where MG(X) is empty. To

ensure the existence of invariant measures, we introduce the notion of

amenablity.

Definition 2.4. Let G be a ��compact and locally compact group,

and m
G

be a left Haar measure on G. G is called amenable if for any

compact subset K and ✏ > 0, there is a measurable set F ✓ G with F̄

compact such that KF is measurable and that

m
G

(F4KF ) < ✏m
G

(F ).

Then, we call such set F a (K, ✏)-invariant set.

Definition 2.5. Let {F
n

}
n2N be a sequence of compact sets in G.

{F
n

}
n2N is a Følner sequence if for any compact subset K and ✏ > 0,

Fn is eventually (K, ✏)-invariant.

It follows from the definition that the existence of Følner sequences

implies amenablity. Moreover, along the Følner sequences, we can com-

pute the ergodic averages of G-actions. The mean ergodic theorem and

pointwise ergodic theorems can be generalized to amenable group ac-

tions via the Følner sequences.

The following theorem presents that amenablity of a group implies

existence of invariant measure. In fact, the existence of invariant prob-

ability measure of continuous actions and the existence of Følner se-

quences are both equivalent to the amenablity. However, the other

implications are not used in this thesis.

Theorem 2.6. Let G be a locally compact amenable group, X be a

compact metric space, and T : G ⇥ X ! X be a continuous action.

Then there exists a probability measure µ on X so that µ is T-invariant.

Proof. As G is amenable, let {F
n

}
n2N be a Følner sequence. Since T is

a continuous group action, it induces a G-action on M (X). For each

⌫ 2 M (X), we define the averaged measure µ
n

to be the measure so

that for all f 2 C(X),
Z

fdµ
n

=
1

m
G

(F
n

)

Z

F

n

Z

f(g · x)d⌫(x)dm
G

(g).
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Since X is compact and we equip M (X) with the weak⇤ topology, µ
n

would have a weak⇤ converging subsequence converging to µ 2 M (X).

Then,

�

�

Z

f(x)dµ
n

(x)�
Z

f(h · x)dµ
n

(x)
�

�

=
1

m
G

(F
n

)

Z

F

n

Z

f(g · x)d⌫(x)dm
G

(g)

� 1

m
G

(F
n

)

Z

hF

n

Z

f(g · x)d⌫(x)dm
G

(g)

6 1

m
G

(F
n

)

Z

F

n

4hF

n

Z

f(g · x)d⌫(x)dm
G

(g)

6 m
G

(F
n

4hF
n

)

m
G

(F
n

)
kfk1 .

Thus,

�

�

Z

f(x)dµ(x)�
Z

f(h · x)dµ(x)
�

�

= lim
n!1

�

�

Z

f(x)dµ
n

(x)�
Z

f(h · x)dµ
n

(x)
�

� = 0.

Therefore, µ is T-invariant. ⇤

A simpler case is that when G compact, then G is amenable and

unimodular, in which case we also have the existence of invariant prob-

ability measure.

Proposition 2.7. Let G be a compact group, X be a compact metric

space, and T : G ⇥X ! X be a continuous action. Then there exists

a probability measure µ on X so that µ is T-invariant.

Proof. Let m
G

be the normalized Haar measure, and t 2 X be an

arbitrary point. Define � : G ! X by �(g) = g · t for all g 2 G.

Then � is continuous and the pushforward measure µ = �⇤(mG

) is by
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definition T-invariant, since for g 2 G and A 2 B
X

,

µ(g�1 · A) = m
G

(��1(g�1 · A))

= m
G

(g�1 · ��1(A))

= m
G

((��1(A))

= µ(A).

⇤

Similar to the general setting, we can define ergodicity of group ac-

tions.

Definition 2.8. Let G be a group acting continuously on a compact

metric space X, and µ 2 MG(X). The action is said to be ergodic if

for all A 2 B
X

, µ(g�1A4A) = 0 for all g 2 G implies that µ(A) = 0

or µ(A) = 1.

There is a useful equivalent definition of ergodicity for group action,

which could be realized as a generalization of proposition 1.4.

Proposition 2.9. Let G be a group acting continuously on a compact

metric space X, and µ 2 MG(X). Then the following are equivalent:

(1) The action is ergodic;

(2) For all f : X ! C measurable function, f(gx) = f(x) for µ-a.e.

x 2 X and for all g 2 G implies that f is constant a.e.;

Proof. (2) =) (1): Let A 2 B so that µ(g�1A4A) = 0 for all g 2 G

and set f = �
A

to be the indicator function of A. Then for g 2 G,

µ({x 2 X : f(x) 6= f(gx)}) = µ(A4gA) = 0.

Thus, f(x) = f(gx) almost everywhere, so f is constant almost every-

where. Thus, f = 1 almost everywhere or f = 0 almost everywhere,

which implies that either µ(A) = 0 or 1.

(1) =) (2): Let f : X ! C be a measurable function such that

f(gx) = f(x) for all g 2 G and x 2 X. Since <(f)(gx) + i=(f)(x) =
<(f)(x) + i=(f)(x) implies that <(f)(gx) = <(f)(x) and =(f)(gx) =
=(f)(x), we may assume without loss of generality that f is a real
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valued function. For all k 2 Z and n 2 N, define Ak

n

= f�1([ k
n

, k+1
n

)).

Then for all k, g and n,

µ(g�1Ak

n

4Ak

n

) 6 µ({x 2 X|f(T (x)) 6= f(x)}) = 0.

Since action is ergodic, either µ(Ak

n

) = 0 or µ(Ak

n

) = 1. For each n,

{Ak

n

} are all disjoint and X =
S

k

Ak

n

. Therefore, there exists a unique

k
n

so that µ(Ak

n

n

) = 1. For x, y 2 Ak

n

n

,

|f(x)� f(y)| 6 |kn
n

� k
n

+ 1

n
| = 1

n
.

Let Y =
T

n

Ak

n

n

, then µ(Y ) = 1, and for x, y 2 Y and

|f(x)� f(y)| 6 1

n
8n 2 N.

Hence, f is constant almost everywhere. ⇤

Another condition for group actions is mixing, which also measures

how chaotic the system is. Mixing actions are necessarily ergodic, and

there are examples of ergodic actions that are not mixing.

Definition 2.10. Let G be a group acting continuously on a compact

metric space X, and µ 2 MG(X). The action is said to be mixing if

for all A,B 2 B, and sequence {g
i

}
i2N in G so that |g

i

\K| < 1 for

all compact subset K ✓ G,

lim
n!1

µ(A \ g�1
i

B) = µ(A)µ(B).

Proposition 2.11. Let G be a group acting continuously on a compact

metric space X, and µ 2 MG(X). If the action is mixing, then it is

ergodic.

Proof. Let A 2 B
X

such that µ(g�1A4A) = 0 and let{g
i

}
i2N be a

sequence in G so that |g
i

\ K| < 1 for all compact subset K ✓ G.

Then, for all i,

µ(g�1
i

A4A) = µ(A) + µ(g�1
i

A)� 2µ(A \ g�1
i

A) = 0.

Thus, µ(A) = µ(A \ g�1
i

A) = 0 for all i, and

µ(A) = lim
n!1

µ(A \ g�1
i

A) = µ(A)2.
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Hence, µ(A) = 0 or 1. ⇤

However, the other implication is not generally true. An example of

ergodic action which is not mixing is circle rotation R
↵

with ↵ irra-

tional.

Proposition 2.12. Consider S1 ⇠= R/Z as a circle and for ↵ 2 R \Q,

define R
↵

: S1 ! S1 as for all [s] 2 S1, R
↵

([s]) = [s + ↵]. Then the

Z�action generated by R
↵

is ergodic but not mixing with respect to the

Lebesgue measure.

Proof. Let f 2 L2(m) be an invariant function. Then it can be written

as Fourier series f(x) =
P

n2Z
a
n

e2⇡inx almost everywhere. Then for all

m,

f(Rm

↵

x) =
X

n2Z

a
n

e2⇡inm↵e2⇡inx =
X

n2Z

a
n

e2⇡inx.

Thus, for all n and m, a
n

= a
n

e2⇡inm↵. For n 6= 0, since ↵ 2 R \ Q,

e2⇡inm↵ 6= 1, so a
n

= 0 Thus, f(x) = a0 almost everywhere, and the

action is ergodic.

Let A = {[x] : x 2 [0, 1
10 ]}, and fix {n

i

}
i2N a sequence in Z so that

|n
i

\ K| < 1 for all compact subset K ✓ Z. Then there are infinity

many i 2 N such that n
i

/2 {[x] : x 2 [�2
10 ,

3
10 ]}. Then for such i,

m(A \R�n

i

↵

A) = 0. Thus,

lim inf
i!1

m(A \R�n

i

↵

A) = 0 6= m(A)2,

so the action is not mixing. ⇤
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3. Example: Geodestic Flows on quotients of Hyperbolic

Plane

In this section, we will present a classical example of mixing group

actions. We first introduce a classical model in hyperbolic geometry.

Consider the upper half plane,

H = {x+ iy : x, y 2 R, y > 0}.

Then H is a connected Hausdor↵ smooth manifold, and we can define

tangent bundle on H. For our purposes, we can identify the tangent

bundle TH as a disjoint union of spaces for derivatives at each point in

H. For each z 2 H, let T
z

H = {z}⇥C. Then, TH ⇠= t
z2HTz

H ⇠= H⇥C.
For z = x + iy 2 H, we can define an inner product on T

z

H as, for

v, w 2 C ⇠= T
z

H, hv, wi
z

= 1
y

2

vw̄. The collection of such inner product

is a hyperbolic Riemannian metric on H, and it is a smooth structure

on H.

Given a di↵erentiable function f : [0, 1] ! H and t 2 [0, 1], we define

its derivative at t as Df(t) = (f(t), f 0(t)) 2 T
z

H. Then for z, w 2 C,
a function � : [0, 1] ! H is said to be a path from z to w if it is

continuous and piecewise di↵erentiable, with �(0) = z,�(1) = w. We

can also define its length as

L(�) =

Z 1

0

q

hD�(t), D�(t), i
�(t)dt.

Finally, we can define the distance between two points z, w 2 H as

the length of shortest path between them, i.e.,

d(z, w) = inf{L(�) : � a path from z to w}.

One can easily see from the construction that this is indeed a metric

on H, and it generates the same topology as the one induced by the in-

clusion map to C. We can also compute the metric explicitly, assuming

some of the following propositions, which is given by

d(z, w) = log(
|z � w̄|+ |z � w|
|z � w̄|� |z � w|)

for all z, w 2 H.
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Then, the projective special linear group

PSL2(R) = SL2(R)/{±I2}

acts naturally onH by the conformal maps, for g =

 

a b

c d

!

2 PSL2(R)

and z 2 H,

g · z =
az + b

cz + d
.

Each g 2 PSL2(R) can be realized as a di↵erentiable map from H
to H, and we may define the derivative action D

g

: TH ! TH by

D
g

(z, v) = (g(z), g0(z)v) = (
az + b

cz + d
,

v

(cz + d)2
)

for all (z, v) 2 TH. By the laws of di↵erentiation, one can check

that this is indeed an action on TH. Also, for g, z and v 2 T
z

H, let

(D
g

)
z

(v) = v

(cz+d)2 2 T
g·zH.

Proposition 3.1. The action defined above satisfies the following prop-

erties:

(1) it is a well defined action;

(2) it is transitive;

(3) it is isometric;

(4) Stab
PSL

2

(R)(i) = PSO2(R) = SO2(R)/{±I2}.

Proof. (1) Let g =

 

a b

c d

!

2 PSL2(R) and z = x+ iy 2 H. Then,

=(g · z) = =(ax+ b+ iay

cx+ d+ icy
) =

det(g)

y
> 0.

The axioms for group action follow from the law of matrix multiplica-

tion.

(2) Let z = x+ iy and w = a+ ib 2 H. Set

M
z

=

0

@

p
y xp

y

0 1p
y

1

A



A HOPF’S RATIO ERGODIC THEOREM FOR HEISENBERG GROUP 21

and

M
w

=

0

@

p
b ap

b

0 1p
b

1

A

Then M
z

and M
w

2 PSL2(R) Mz

· i = z and M
w

· i = w, so (M�1
w

M
z

) ·
z = w.

(3)Let z 2 H, then by calculation, for v, w 2 T
z

H,

h(D
g

)
z

(v), (D
g

)
z

(w)i
g·z = hv, wi

z

.

Thus, the length of vectors are preserved by the derivative map. It

follows that for any piecewise di↵erentiable path f, L(f) = L(g � f).

Then by definition of the metric, for all p, q 2 H and g 2 H,

d(p, q) = d(g · p, g · q),

and the action is therefore isometric.

(4) Let g =

 

a b

c d

!

2 PSL2(R). By calculation, we have for all

z 2 H that

=(g · z) = =(z)
|cz + d|2

Suppose g · i = i, Then |ci+ d| = 1. Therefore, there exists ✓ 2 [0, 2⇡)

such that c = sin ✓ and d = cos ✓. Then g · i = i if and only if

ai+ b

i sin ✓ + cos ✓
= i,

which is equivalent to a = � sin ✓ and b = cos ✓. Thus, g · i = i if and

only if g 2 PSO2(R). ⇤

By the last statement, we may make the identification that

H ⇠= PSL2(R)/PSO2(R).

In order to analyze the geodesic flows, we firstly find all geodesics of

H.

Proposition 3.2. For z, w 2 C, there is a unique path � of constant

unit speed with �(0) = z and �(d(z, w)) = w whose image is in

(1) a vertical line, if <(z) = <(w);
(2) a semicircle with center on the real line, if <(z) 6= <(w).
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Proof. (1) Suppose <(z) = <(w) = 0 and assume without loss of gen-

erality that =(z) = y
z

and =(w) = y
w

where y
z

< y
w

. Then the path

�(t) = iy
z

(
y
w

y
z

)
t

log(y

w

)�log(y

z

)

is of constant unit speed with length L(�) = log(y
w

) � log(y
z

). Then

for any path  from z to w, since  is piecewise di↵erentiable, =( )0 is
defined almost everywhere. Thus,

L( ) =

Z 1

0

�

� 0(t)
�

�

 (t)
dt >

Z 1

0

=( )0

=( ) dt = log(y
w

)� log(y
z

).

Since � achieves this lower bound, a reparameterization of � will have

the same length and reach w at t = 1. Thus, d(z, w) = log(y
w

)�log(y
z

).

In the inequality above, the equality holds if and only if <( )(t) = 0

a.e. and the uniqueness follows.

Now for z, w 2 H, we claim that there is a g 2 PSL2(R) so that

g · z = i and g · w = iy for some y > 1. If the claim holds, since

PSL2(R) acts transitively and isometrically, the unique path from i to

iy of unit constant speed will be translated to a unique path from z to

w with unit constant speed hitting w at time d(z, w).

Then we prove the claim. By the previous proposition, there is a

g0 2 PSL2(R) so that g0 · z = i. We pick g1 2 PSO2(R) such that

=(g1g0 · w) = sup{=(gg0 · w) : g 2 PSO2(R)}. Then let g = g1g0 and

by calculation, <(g · w) = 0 and =(g · w) > 1. Since PSO2(R) fixes i,
g · z = i.

Note that PSL2(R) acts on H by fractional linear transformations,

so the image of the positive imaginary line will either be a subset

of straight line or a subset of circle in the complex plane. Then if

<(z) = <(w) = b, take g =

 

1 b

0 1

!

and g maps the positive imaginary

line to a vertical line with real part b. Otherwise, we consider the

intersection points t, s of the real line with the semicircle containing

z and w. Take g such that g�1 is the fractional linear transformation

that maps t to 0, z to i, and s to 1, then g maps the positive imaginary

line to the circle as desired. ⇤
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A restatement of this proposition is that the geodesic curves in H
is either a vertical line or a semicircle with center on the real line. It

follows from the previous two proposition that given z, w 2 H the geo-

desic curve is determined by the initial point z and the initial direction

v of the geodesic path. Moreover, there is a unique g 2 PSL2(R) so

that D
g

(i, i) = (z, v) 2 T1
z

H.

Then we can define the geodesic flow on H as g
t

: T1H ! T1H,

for (z, v) 2 T1H, its image under g
t

is the image and direction of the

geodesic path determined by (z,v) at time t.

Note that we may identify T1H with PSL2(R), since we may identify

H with PSL2(R)/PSO2(R), and for each z 2 H, T1
z

H ⇠= PSO2(R). We

can also easily check that the action of PSL2(R) on T1H is transitive,

free, and of no non-trivial isotropy groups.

Via this identification, the geodesic flow R y T1H corresponds to

the action T y PSL2(R) by left translation, where

T = {g
t

2 PSL2(R) : gt =

 

et/2 0

0 e�t/2

!

, t 2 R}.

Proposition 3.3. Let � be a lattice in PSL2(R), i.e., � is discrete and

PSL2(R)/� has finite measure. Then the geodesic flow of �\PSL2(R)
is mixing.

Proof. Let X = �\PSL2(R) and µ be the normalized Haar measure

on X. Then T y X by left translation, which also induces an action

⇡ : T y L2(X) defined for g
t

2 T and f 2 L2(X),

⇡(g
t

)f(x) = f(g
t

· x).

Then for each g
t

2 T , ⇡(g) is a unitary transformation on L2(X). We

observe in this setting that the geodesic flow of �\PSL2(R) is mixing

if and only if for all f, g 2 L2(X),

hf, ⇡(g
t

)gi !
Z

fdµ

Z

ḡdµ.

Suppose for contradiction that there exist f, g 2 L2(X) and t
n

i

! 1
so that the equation above does not hold. By linearity, we may assume
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without loss of generality that
R

fdµ =
R

gdµ = 0. Then,

hf, ⇡(g
t

n

i

)gi 9 0.

Since the ball of radius kgk is weakly compact in L2(X), there is a

subsequence {⇡(g
t

n

i

j

)g} ! ĝ 2 L2(X) weakly. Let h
j

= g
t

n

i

j

for all j,

and define

U = {u
s

=

 

1 s

0 1

!

: s 2 R}.

Then by calculation,

h�1
j

u
s

h
j

= u
se

�t

n

i

j

! I2.

Then for all � 2 L2(X),

h⇡(u
s

)ĝ � ĝ,�i = lim
j!1

h⇡(u
s

)⇡(h
j

)g � ⇡(h
j

)g,�i

= lim
j!1

h⇡(h
j

)⇡(u
se

�t

n

i

j

)g,�i � lim
j!1

h⇡(h
j

)g,�i

= 0

Thus, ĝ is invariant under U. We can also check by a similar calculation

that h⇡(g
t

)ĝ, ĝi = kĝk2. Thus, ĝ is invariant under SL2(R). For all

A 2 SL2(R), ĝ(x) = ĝ(Ax) a.e.. Thus, ĝ = c for some c 2 C almost

everywhere since the action is transitive. Then,

c = hc, 1i = lim
j!1

h⇡(h
j

)g, 1i = 0,

but that implies

hf, ⇡(g
t

n

i

)gi ! 0,

which is a contradiction. ⇤
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4. Maximal Inequality and Besicovitch Covering

Property

In the proof for maximal ergodic theorem in section 1, we used the

maximal inequality on probability spaces. That maximal inequality

gives a bound of the size of the set where the partial sum of functions

exceeds a given bound. In fact, inequalities with similar idea are helpful

tools for proving ergodic theorems. In order to prove a ratio ergodic

theorem, we will make use of the ratio maximal inequality. On the

other hand, Besicovitch covering property is describing the behaviour

of open covers in a metric space.

Definition 4.1. Let (M, d) be a metric space. We say M admits the

Besicovitch Covering Property if there exist N 2 N so that for all

bounded subset A ✓ M , and family {B
↵

}
↵2I of balls such that B = B

↵

is centered at ↵ for all ↵ 2 I, there exists a subfamily F ✓ B such that

F covers A and each point in M is contained in at most N balls in F.

Similarly, in our setting, we may define Besicovitch Covering Prop-

erty for subsets of a group as follows:

Definition 4.2. Let {B
n

}
n2N be a sequence of subsets of group G.

We say it has the Besicovitch covering property with constant C if for

all E ✓ G finite, and a collection of subsets D = {D
g

}
g2E such that

D
g

= B
n

g for some n 2 N, there exists a subfamily F ✓ D so that F

covers E and each point in G is contained in at most N subsets in F.

Then if G can be equipped with a metric d so that (G, d) has the

Besicovitch Covering Property with multiplicity N, then any sequence

of subsets of G will satisfy the Besicovitch Covering Property with

constant N.

In order to introduce the ratio maximal inequality, we first define the

ratio ergodic mean for measure-preserving systems of group actions.

Definition 4.3. Let G be a amendable group acting on measure space

(X,µ), and {B
n

}
n2N be a sequence of subsets containing the identity.
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For f, g 2 L1(µ), let

R
n

(f, g) =

R

B

n

f � ud⌫(u)
R

B

n

g � ud⌫(u)

where ⌫ is the Haar measure on G.

Definition 4.4. Let G y X be an ergodic action, and {B
n

}
n2N be a

sequence of subsets containing the identity. We say the action admits

the ratio maximal inequality with respect to {B
n

} if for every g 2 L1

and g > 0, there exists a constant M so that for all f 2 L1, and ✏ > 0,

µ
g

{x 2 X : sup
n

R
n

(f, g) > ✏} 6 M

✏

Z

fdµ

where dµ
g

= gdµ. We say G admits the ratio maximal inequality with

respect to {B
n

} if every action of it has the ratio maximal inequality.

We notice that for probability space, the ratio maximal inequality

can be reduced to the ordinary maximal inequality since we can take

g to be constant 1.

The Besicovitch covering property only describes the property of the

metric, while the ratio maximal inequality shows the well behavior of

the whole analytic structure on the space. Thus, it is not apparently

that they are actually equivalent. It is known to us before that the

Besicovitch covering property implies the ratio maximal inequality, and

Hochman showed the converse also holds for countable groups and

proved the following theorem.

Theorem 4.5. Let G be a countable group and {B
r

} ✓ G an increasing

sequence of symmetric sets with \B
r

= {e}. Then G has the ratio

maximal inequality if and only if {B
r

} has the Besicovitch property.

For our purpose, we want the same equivalence to hold for locally

compact Hausdor↵ groups generally, and make the following claim.

Theorem 4.6. Let G be a locally compact and �-compact Hausdor↵

amendable group and {B
r

} ✓ G an følner sequence with \B
r

= {e}.
Then G has the ratio maximal inequality along {B

r

} if and only if {B
r

}
has the Besicovitch covering property.
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Proof. Suppose the Besicovitch covering property does not hold for

{B
r

}. We consider the group acting on itself by left translation. For

✏ > 0 and f, g 2 L1 with
R

fdµ 6= 0, let

C(f, g) =
µ
g

{x 2 G : sup
n

R
n

(f, g)(x) > ✏}
R

fdµ

where dµ
g

= g · dµ and µ is the left Haar measure on G. As the

Besicovitch covering property does not hold for {B
r

}, for every C > 0

there exists a s > 0 and A, B finite subsets of G such that

|A|
|B| <

s

C
,

and for any g 2 A [B,
|A \ B

n

g|
|B \B

n

g| > s

for some n 2 N. Then for all x 2 B,

sup
n

|{z 2 B
n

: z · x 2 A}|
|{z 2 B

n

: z · x 2 B}| > s.

Let f = �
A

and g = �
B

, then

µ
g

({z 2 G : sup
n

R

B

n

f(w · z)dµ(w)
R

B

n

g(w · z)dµ(w)
> s}) > µ

g

(B),

and

µ
g

(B) = |B| > C

s
|A| = C

s

Z

fdµ.

Since C is arbitrary, this implies that the maximal inequality does not

hold for this action and thus G does not admit the ratio maximal

inequality.

Suppose the Besicovitch covering property holds with multiplicity C.

Let G y X be an ergodic action, and f, g 2 L1 with g > 0. Define

T
n

(f, g)(h, x) = R
n

(T̂ hf, T̂ hg)(x)

for all x 2 X and h 2 G. Set

S
k

(f, g)(h, x) = sup
06n6k

T
n

(|f |, g)(h, x),
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and

S(f, g)(h, x) = sup
n>0

T
n

(|f |, g)(h, x).

Then S
k

(f, g) 6 S
l

(f, g) for all k < l, and lim
k!1

S
k

(f, g) = S(f, g)

pointwisely. Let ✏ > 0, and consider A
✏,k

= {(h, x) : S
k

(f, g)(h, x) > ✏}.
We can observe that since \B

n

= {e},
Z

A

✏,k

T̂ sg(x)dm
G

(s)dµ
X

(x) > m
G

(B
k

)

Z

E

gdµ
X

,

where E = {x : (e, x) 2 A
✏,k

} = {x : sup
n

R
n

(|f |, g)(x) > ✏}.
On the other hand, we define

T ⇤(f, g)(h, x) = sup
n>0

T
n

(f, g)(h, x)

and

T ⇤
k

(f, g)(h, x) = sup
06n6k

T
n

(f, g)(h, x).

Then T ⇤
k

(f, g) 6 T ⇤
l

(f, g) for all k < l, and lim
k!1

T ⇤
k

(f, g) = T ⇤(f, g)

pointwisely. Fix x, let Ex = {h 2 G : T ⇤
k

(f, g)(h, x) > ✏}. Then

for each h 2 Ex, there exists n
h

6 k so that T ⇤
n

h

(T̂ hf, T̂ hg)(x) > ✏.

Consider the family {hB
n

h

}
h2Ex , since Besicovitch covering property

holds, there is a subfamily {h
i

B
n

h

i

}
i2I such that

�
E

x 6
X

i2I

�
h

i

B

n

h

i

6 C.

Then,
Z

A

✏,k

T̂ sg(x)dm
G

(s)dµ
X

(x) 6
Z Z

E

x

T̂ hg(x)dm
G

(h)dµ
X

(x)

6 C

✏

Z Z

|f |dm
G

dµ
X

=
C

✏
kfk1 .

Hence, let k ! 1, we get
Z

E

gdµ  C

✏
kfk1 .

⇤
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In fact, by a similar method, one can show that if the Besicovitch

covering property does not hold, then the ratio maximal inequality also

fails for any free action of G.

The Besicovitch covering property is a rare condition for metric

spaces and is sensitive to the local property of the metric. The follow-

ing lemma gives a characterization of the Besicovitch covering property

when the metric is doubling.

Proposition 4.7. Let (X, d) be a doubling metric space, i.e., there

exists a constant M > 0 so that for any x 2 X and r > 0, there

exists at most M points x1, x2, . . . xM

0 so that B(x, r) ✓
S

M

0

i=1 B(x
i

, r

2).

Then (M, d) admits the Besicovitch covering property if and only if

there exists a constant N so that for any collection of balls B = {B
i

=

B(c
i

, r
i

)}
i2I such that \

i2IBi

6= ; and x
i

/2 B
j

for i 6= j, the cordiality

of B, |I| 6 N .

The later condition may also be called the weak Besicovitch cover-

ing property. As the name suggested, spaces with Besicovitch cover-

ing property will share this property and there are examples of non-

doubling metric spaces where the weak Besicovitch covering property is

satisfied but the Besicovitch covering property is not. With this propo-

sition, we can think of the Besicovitch covering property as describing

the roundness of the balls in a space. A good example for this intuition

is that in R2, we may not have infinite many balls covering the origin

with each center not in other balls. In fact, we can prove that Rn with

the usual metric admits the Besicovitch covering property in this way.
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5. Example: Non-singular Actions of Heisenberg Group

In the last section, we discussed the ratio maximal inequality. One

of the application of it is proving the ratio ergodic theorems. A general

method for proving such theorem is proving the convergence of ratio

ergodic mean for a dense set of L1, and then use the ratio maximal

inequality to control the measure of the exceptional set. To illustrate

this method, we use the example of the Heisenberg group.

H =

(

2

6

6

4

1 x z

0 1 y

0 0 1

3

7

7

5

: x, y, z 2 R

)

Our goal is to prove the ratio ergodic theorem for H . To shorten

our writing, we first do the following identification. As sets, H = R3

via the bijection
2

6

6

4

1 x z

0 1 y

0 0 1

3

7

7

5

7! (x, y, z).

Then the multiplication on H
2

6

6

4

1 x z

0 1 y

0 0 1

3

7

7

5

2

6

6

4

1 x0 z0

0 1 y0

0 0 1

3

7

7

5

=

2

6

6

4

1 x+ x0 z + z0 + xy0

0 1 y + y0

0 0 1

3

7

7

5

can be translated to the following binary operation on R3

(x, y, z)(x0, y0, z0) = (x+ x0, y + y0, z + z0 + xy0).

A natural metric for H is the Carnot-Carathéodory metric, which

is defined as the minimal time for connecting two points with curve of

derivative in the eigenspace with eigenvalue 1. Its explicit formula is

d
C�C

((x, y, z), (x0, y0, z0)) = max{
p

(x� x0)2 + (y � y0)2,
p

|z � z0|}.

The unfortunate fact proved by Rigot is that H with such metric does

not satisfy the Besicovitch covering property. Thus, by the previous

theorem, the ratio maximal inequality would not hold for the balls
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centered at I3 with radius n 2 N, and the method we introduced does

not apply.

However, H does admit a homogeneous metric with which it satisfies

the Besicovitch covering property, as defined below.

Definition 5.1. For each � > 0, let �
�

: H ! H be defined as

�
�

(x, y, z) = (�x,�y,�2z).

For p, q 2 H , let

d(p, q) = inf{r > 0 : �
r

�1(pq�1) 2 B},

where B = {(x, y, z) 2 R3 :
p

x2 + y2 + z2 6 1}.

Donne and Rigot proved in 2004 that the distance function defined

above is indeed a homogeneous metric on H , and the Besicovitch cov-

ering property holds on H with this metric. In fact, their result is

much stronger: they proved that the definition above could be gen-

eralized to the n-dimensional Heisenberg group H n and we can also

replace B by any closed ball centered at the origin of R2n+1 with any

radius ↵ > 0. The corresponding metric would be a homogeneous

metric and H n equipped with such metric will satisfy the Besicovitch

covering property. Thus, we could expect the results in this section can

be generalized to H n.

Let B
n

= {p 2 H : d(p, I3) 6 n} for all n 2 N. Then, {B
n

} satisfies

the Besicovitch covering property. In fact, it is shown by Jarrett that it

is also a Følner sequence. Thus, we have the ratio maximal inequality

for H along {B
n

}.
With this Følner sequence, the ratio ergodic sum make sense and we

expect the following theorem holds.

Theorem 5.2. Let {T u}
u2H be a free, non-singular ergodic action on

a standard probability space (X,µ). Let ⌫ be a left Haar measure on

H . Let B
n

= {u 2 H : kukH 6 n}. Then for f, g 2 L1(µ) with
R

g 6= 0 and g > 0,
R

B

n

T̂ ufd⌫
R

B

n

T̂ ugd⌫
!
R

fdµ
R

gdµ



32 QINGYUAN CHEN

almost everywhere.

Following the generic method, in order to prove this theorem, we

need to firstly construct a dense subset in L1(µ). The candidate for

the dense set is

S = {c+ h� ĝh : c 2 R, g 2 H , h 2 L1}.

Lemma 5.3. S is dense in L1(µ).

Proof. Suppose for contradiction that S is not dense in L1, then by

Hahn Banach theorem, there exists f 2 L1 \ {0} such that for all

s 2 S,
R

sfdµ = 0. Then for all h 2 L1 and g 2 H ,
Z

(h� ĝh)fdµ = 0.

Then,
Z

h(x)f(x)dµ(x) =

Z

h(x)f(g�1x)dµ(x)

. Since L1 dense in L1 and h 2 L1 arbitrary, f(x) = f(ĝx) for

all g 2 H . By ergodicity, f is constant almost everywhere. Then
R

cfdµ = 0 for c 2 R. Hence, f = 0 a.e., which is a contradiction. ⇤

Lemma 5.4. Let {T u}
u2H be a free, non-singular ergodic action on a

standard probability space (X,µ). Let ⌫ be a left Haar measure on H .

Let B
n

= {u 2 H : kukH 6 n}. Then for f 2 S,
R

B

n

T̂ ufd⌫
R

B

n

T̂ u1d⌫
!
Z

fdµ

almost everywhere.

Proof. Let f = c+ h� ĝh 2 S, then
R

fdµ = c, and
R

B

n

T̂ ufd⌫
R

B

n

T̂ u1d⌫
=

R

B

n

T̂ u(c+ h� ĝh)d⌫
R

B

n

T̂ u1d⌫
= c+

R

B

n

4gB

n

T̂ uhd⌫
R

B

n

T̂ u1d⌫
.

Since h 2 L1, it su�ces to show that for all g 2 H ,
R

B

n

4gB

n

!
a

d⌫(a)
R

B

n

!
a

d⌫(a)
! 0 a.s.,
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where !
a

= a⇤dµ
dµ

is the Lebesgue derivative. This follows from the fact

that {B
n

}
n2N is a følner sequence, which implies that for all g 2 H ,

⌫(B
n

4gB
n

)

⌫(B
n

)
! 0,

and the doubling property and Besicovitch covering property of the

metric. ⇤

With these two lemmas, we can start to prove theorem 5.2.

Proof. First observe that

R
n

(f, g) =
R

n

(f, 1)

R
n

(g, 1)

for all n,f and g, and that the theorem follows if it holds in the case

g ⌘ 1. Thus, without loss of generality, we may assume that g ⌘ 1.

For f 2 L1, there is a sequence {f
i

} in S converging to f in L1. Suppose

for all i,

f
i

= c
i

+ h
i

� ĝ
i

h
i

for some c
i

2 R, g
i

2 H , h
i

2 L1. Then for all i,
R

f
i

dµ =
R

c
i

dµ = c
i

.

Thus, lim
i!1

c
i

=
R

fdµ. Then we apply the ratio maximal inequality to

f � f
i

and constant function 1. Let ✏ > 0, since µ1 = µ, we have that

there exists M such that for all i,

µ({x 2 X : sup
n

R

B

n

(f � f
i

)(ux)d⌫(u)
R

B

n

1d⌫(u)
> ✏}) 6 M

✏
(

Z

fdµ� c
i

).

Thus,

µ({x 2 X : lim sup
n!1

|R
n

(f, 1)� c
i

| > 2✏}) 6 2M

✏
(

Z

fdµ� c
i

).

Then there exists N 2 N such that for all i > N , |
R

fdµ � c
i

| < ✏2.

For such i,

µ({x 2 X : lim sup
n!1

|R
n

(f, 1)�
Z

fdµ| > 2✏+ ✏2}) 6 2M✏.

Hence, R
n

(f, 1) !
R

fdµ almost everywhere, which completes the

proof. ⇤
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Balls centered at origin with respect to the Carnot-Carathéodory

metric does not satisfy the Besicovitch covering property. Thus, this

standard method for proving ratio maximal inequality does not gen-

eralize to that case. However, there are examples where the maximal

fails but the ergodic theorems hold. For this specific example, we have

neither a counter example of functions f, g 2 L1 where ratio ergodic

theorem fails, nor new methods for proving it.

The ergodic theorem for Rn has helped us understanding the action

n

"

1 z

0 1

#

: z 2 R
o

y SL2(R)/�

where � is a discrete, finite generated subgroup with infinite co-volume.

In the same way, this theorem would help us understanding the orbits

of the Heisenberg group acting on a homogeneous space with infinite

volume.
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