
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Evaluating IBM’s Quantum Compiler and Quantum
Computer Architectures As They Pertain to Quantum

Walk Simulation Algorithms

BY CLARA WOODS
Honors Thesis, Department of Mathematics, 2019

TABLE OF CONTENTS

Table of Contents . ii

Acknowledgements . iii

Abstract . iv

1 Introduction . 1

2 Background . 3

3 The Quantum Walk Problem . 6
3.1 The First Quantized Version . 7
3.2 The Second Quantized Version . 8

4 IBM’s Quantum Computers . 10
4.1 Directly Compiling a Simple Circuit 11
4.2 Implementing Unsupported CNOTs 11
4.3 Implementing Advanced Two-Qubit Gates 12

5 Compiling the First Quantized Version 16

6 Compiling the Second Quantized Version 20
6.1 Two Sites . 20
6.2 Four Sites . 27

7 Running Circuits . 32
7.1 First Quantized Version, Two Sites 32
7.2 First Quantized Version, Four Sites 33
7.3 Second Quantized Version, Two Sites 35
7.4 Second Quantized Version, Four Sites 37

8 Discussion . 39

References . 43

ii

ACKNOWLEDGEMENTS

My greatest thanks to Professor David Meyer from the UC San Diego Department

of Mathematics for advising me this past year and providing the requisite back-

ground knowledge of quantum computing to complete this project. I would also

like to thank Asif Shakeel for contributing to this project by creating the uncom-

piled circuits for both the first and second quantized versions of the quantum walk

problem.

iii

Evaluating IBM’s Quantum Compiler and Quantum

Computer Architectures As They Pertain to Quantum

Walk Simulation Algorithms

BY CLARA WOODS

Honor’s Thesis, Department of Mathematics

University of California, San Diego, 2019

ABSTRACT

Quantum computers, with their ability to place qubits into a superposition of

states, promise more computational power per qubit-timestep than classical com-

puters can deliver per bit-timestep. IBM is delivering some of the world’s first

quantum computers, known as noisy, intermediate-scale quantum computers, or

NISQs. We worked with two of these devices on the cloud, one with five qubits and

one with fourteen qubits. This project studies two data structures used to simulate

a quantum walk. The one-dimensional quantum walk problem consists of N sites

arranged in a circle, with a particle hopping among them. The first quantized ver-

sion represents the particle’s position using log
2

N qubits and uses an additional

qubit to store the velocity. The second quantized version uses 2N qubits, with

each pair of qubits representing a single site, and the particle’s position within

the pair indicating its velocity. I hand-compiled these two algorithms onto two

architectures o↵ered by IBM to determine which architecture works best for each

algorithm. I found that the five qubit architecture results in a shorter circuit for

the first quantized version with two sites whereas the fourteen qubit architecture

results in a shorter circuit for the second quantized version with two sites. Overall,

the first quantized version requires fewer qubits, gates, and timesteps than the

second quantized version does for both N = 2 and N = 4. I also compared my

hand-compiled circuits to those IBM’s compiler produces. By carefully determin-

ing the initial assignment of physical qubits, I produced circuits with smaller size

and less depth than IBM’s compiler did. I then ran all the compiled circuits on

iv

IBM’s quantum computers to see how close the distribution of measured states

was to the expected distribution of states. The first quantized version produced

better results than the second quantized version because it had smaller circuits

to run, so less noise was introduced. IBM’s circuits produced better distributions

than mine for the first quantized version with four sites, but my circuits produced

better distributions than IBM’s for the second quantized version with two sites.

v

1 Introduction

The theory behind quantum computing has been around for decades, but physical

quantum computing devices have only recently become available. IBM is at the

forefront of building these early quantum computers. The ones publicly available

have either five or fourteen qubits1 and a limited set of hardware-supported gate

operations2. As the name noisy, intermediate-scale quantum implies, these devices

are also incredibly noisy. Circuits that are too long or have too many gates output

distributions of almost pure noise. This motivates the optimization of circuits in

both depth and size, where depth refers to the number of timesteps required to

run the circuit and size refers to the number of gates included in the circuit.

IBM’s software package qiskit3 allows users to create circuits using an expanded

set of gates. When users execute their circuits on a certain architecture, qiskit first

compiles the circuit to OpenQASM4, the assembly-level code. This step compiles

the high-level circuit into a circuit composed solely of gates supported at the hard-

ware level. This makes creating circuits easy as one does not have to consider the

underlying hardware; however, it hides the true complexity of the circuit physically

running on the quantum computer. Often, what appears to be a simple circuit

on the user-end gets compiled into a longer circuit with additional gates. Some of

this lengthening is unavoidable given the hardware restrictions of IBM’s quantum

computers. However, the circuits IBM’s compiler produces are not always optimal

for the underlying hardware. Given a circuit and an architecture, hand-compiling

the circuit onto the architecture allows one to choose which physical qubits to use,

which often leads to savings in both depth and size compared to IBM’s compiler.

1

2

Ideally, running optimized circuits will reduce the amount of noise in the output

and lead to more accurate results. I quantify the accuracy of results by measuring

the `1 distance between the distribution of measured states and the expected dis-

tribution of states. Then I compare the `1 distances from running IBM’s circuits

against the `1 distances from running my hand-compiled, optimized, circuits. I

also consider the `1 distance between the uniform distribution of states and the

expected distribution of states to set a threshold above which the results cannot

be considered anything more significant than noise.

The remainder of this paper is structured as follows: Chapter 2 gives a brief

background of quantum computing theory intended to cover the basic concepts

needed to understand the rest of the paper. Chapter 3 introduces the quantum walk

problem and two di↵erent data structures we will use to implement it. Chapter

4 outlines the two quantum computer architectures we used and discusses how to

compile gates not supported at the hardware level. Chapters 5 and 6 investigate

how the first and second quantized versions of the quantum walk compile onto the

two architectures. Chapter 7 discusses the results of running the compiled circuits

and compares the distributions of measured states to the expected distributions of

states. Chapter 8 recaps the results of compiling and running circuits for the first

and second quantized versions.

2 Background

Quantum computers are fundamentally di↵erent from classical computers. In a

quantum computer, qubits store information. At any given time, a single qubit is

in a state

| i = ↵ |0i+ � |1i , (2.1)

where |↵|2 + |�|2 = 1 and ↵, � 2 C. The states |0i and |1i are the basis states,

analogous to bit values of 0 and 1 in classical computers. The state of a qubit can

also be represented in vector notation as

| i =

↵

�

!
. (2.2)

Quantum gates, represented by unitary matrices, manipulate qubits and are re-

versible. That is, given the output and the gate, we can reconstruct the input.

We perform gate operations by multiplying a qubit state vector by a unitary gate

matrix. Given these tools, we can construct quantum circuits as a series of quan-

tum gates acting on a set of qubits. The gains in computing power of quantum

computers come from the ability to entangle qubits and place them in superpo-

sitions, but a finer understanding of the physics is not necessary for the scope of

this paper.

We will need the following gates for this paper: X, CNOT, SWAP, Hadamard, the

general unitary, the controlled general unitary, RY ,RZ , and, while technically an

3

4

operation, not a gate, the measurement operation. Table 2.1 shows how the X,

CNOT, and SWAP gates act on basis qubit states. X is a one-qubit gate that flips

the value of the qubit. CNOT is a two-qubit gate that only flips the value of the

target qubit if the control qubit is in the state |1i. The SWAP gate is a two-qubit

gate that swaps the values of the two qubits.

Basis State X CNOT SWAP
|(0)0i |1i |00i |00i
|(0)1i |0i |01i |10i
|10i |11i |01i
|11i |10i |11i

Table 2.1: Truth Table for applying X, CNOT, and SWAP gates to basis states.
Note that X is a one-qubit gate and only acts on the basis states |0i and |1i while
the CNOT and SWAP gates are two-qubit gates and act on the basis states |00i,
|01i, |10i, and |11i. In the case of the CNOT gate, the leftmost qubit is the control
qubit, and the rightmost qubit is the target qubit.

The Hadamard gate is a one-qubit gate used to place a qubit in a superposition of

states and is represented by the following matrix

H =
1p
2

1 1

1 �1

!
. (2.3)

The one-qubit general unitary gate takes three arguments, ✓,� and �, and is rep-

resented by the following matrix

U(✓,�,�) =

cos(✓

2

) �ei� sin(✓
2

)

ei� sin(✓
2

) �ei�+i� cos(✓
2

)

!
. (2.4)

The two-qubit controlled general unitary gate acts on two qubits in a similar way

to CNOT, with the general unitary only acting on the target qubit if the control

qubit is in the state |1i. The RY and RZ one-qubit gates rotate the qubit’s state

around the Y� and Z�axes, respectively. The measurement operation performs

a measurement on the qubit on which it acts, collapsing it down to a classical bit

with a value of either 0 or 1.

5

Each of these gates has a representation in circuit diagrams. Figure 2.1 shows each

of these gates in a quantum circuit. q
0

and q
1

are qubits and are initialized in the

|0i state. c
0

and c
1

are classical bits and are initialized to 0. Outlined in red, the X

gate is represented by an ‘X’. This changes the state of q
0

from |0i to |1i. Outlined

in orange are two CNOT gates. The first one goes from q
0

to q
1

, so q
1

will get

flipped only if q
0

is in the state |1i. The X gate flipped q
0

from |0i to |1i, so the

first CNOT gate flips q
1

to the state |1i. The second CNOT gate goes from q
1

to

q
0

. q
1

is in the state |1i, so q
0

gets flipped back to the state |0i. The SWAP gate

is outlined in yellow. It swaps the states of q
0

and q
1

, so q
0

gets set to the state |1i
and q

1

gets set to the state |0i. Outlined in green are two Hadamard gates. The

one acting on q
0

is represented by an ‘H’ while the one acting on q
1

is represented as

a U
2

gate with parameters 0 and ⇡. A U
2

gate is equivalent to the general unitary

gate from Equation 2.4, with ✓ = ⇡
2

, the first parameter setting the value of �,

and the second parameter setting the value of �. When IBM compiles circuits, it

represents Hadamard gates this way. In circuits I compile, I represent Hadamard

gates with an ’H’ for easier readability. The general unitary gate, outlined in cyan,

is denoted as a U
3

gate in qiskit with the same parameters taken by the general

unitary gate defined in Equation 2.4. A controlled general unitary gate, outlined

in dark blue, goes from q
1

to q
0

, so the general unitary will only be applied to q
0

if q
1

is in the state |1i. Two rotation gates, RY and RZ , each take one parameter,

the angle of rotation, and are outlined in purple. Finally, the measurement gates

are outlined in pink. They collapse the qubits to classical bits, which can then be

read out at the end of the computation.

Figure 2.1: A quantum circuit diagram showcasing the gates we will use throughout
the paper.

3 The Quantum Walk Problem

This paper focuses specifically on circuits that simulate a finite, discrete quantum

walk. The quantum walk is the quantum analog to the classical random walk.

Quantum walks, which can be viewed as a discretization of the Dirac equation, are

prevalent in many quantum algorithms. For example, they provide a polynomial

speedup over classical algorithms that solve the element distinctness problem5, the

triangle finding problem6, and evaluating NAND trees7.

A quantum walk can be visualized as N sites, arranged in a circle. The particle

hops among these sites with a position and a velocity at each timestep. The

velocity indicates the direction the particle will hop at the next timestep. After

each hop, the velocity is scattered. Thus, if a particle has position x and velocity

v, at the next timestep it will hop to position x + v, and its velocity will scatter

according to the matrix

S = U(
⇡

2
,
⇡

2
,�⇡

2
) =

cos(⇡

4

) �ei
⇡
2 sin(⇡

4

)

ei
⇡
2 sin(⇡

4

) � cos(⇡
4

)

!
. (3.1)

The ⇡
4

argument to the cosines and sines quantifies the amount of scattering;

i.e., how much right-moving velocity switches to left-moving and vice versa. The

amount of coupling between left-moving and right-moving velocities is analogous

to the mass of the particle in the Dirac equation. Figure 3.1 shows one timestep

of evolution of a quantum walk with eight sites.

6

7

Figure 3.1: One timestep of evolution of a quantum walk with eight sites. The
purple site indicates the particle’s position, and the solid black arrow in the left
circle indicates its velocity. On the right circle, the particle has hopped in the
direction of its velocity, and the dashed black arrows indicate the scattering of the
velocity after its hop.

3.1 The First Quantized Version

We consider two di↵erent data structures to simulate a quantum walk. The first

quantized version uses log
2

N qubits to represent the particle’s position, where N is

the number of sites in the walk. For example, if N = 4, we would use two qubits,

and the basis states |00i , |01i , |10i, and |11i would indicate the particle at the

first, second, third, and fourth site, respectively. The first quantized version uses

an additional qubit to store the velocity, or direction, of the particle. The state

|0xxi indicates the particle moving to the right, and the state |1xxi indicates the
particle moving to the left. Overall, the first quantized version requires log

2

N +1

qubits. Figure 3.2 visualizes the role of the three qubits when N = 4.

Figure 3.3 shows the circuit for one timestep of evolution when N = 4. The most

important part of the circuit is outlined in purple. This sequence of CNOT from q
0

to q
1

followed by an X on q
0

adds one to the state |q
1

q
0

i. The parts of the circuit

outlined in green flip both q
0

and q
1

before and after the critical purple section

when q
2

is in the state |1i. This results in subtracting one from the state |q
1

q
0

i.
Thus, the particle hops forward (+1) when the velocity is in the |0i state and hops

8

Figure 3.2: A visualization of how the first quantized version utilizes qubits. Four
sites are shown as circles and labelled using two qubits. The velocity is shown
as two arrows, with the right-pointing arrow labelled by the |0i state and corre-
sponding to a +1 velocity, and the left-pointing arrow labelled by the |1i state and
corresponding to a �1 velocity.

backwards (�1) when the velocity is in the |1i state. The final part of the circuit,
outlined in blue, performs a scattering operation on the velocity.

Figure 3.3: Circuit for one timestep of the first-quantized version with four sites.
q
0

and q
1

are the two qubits representing position, and q
2

represents the velocity.

3.2 The Second Quantized Version

The second quantized version of the quantum walk uses 2N qubits, organized into

pairs. Each pair represents a single site, and the particle’s position within the pair

indicates its direction. Thus, for N = 2, the state |1000i represents the particle at

9

the first position hopping left while the state |0100i represents the particle at the

first position hopping right. Similarly, the state |0010i represents the particle at

the second position hopping left while the state |0001i represents the particle at

the second position hopping right. Figure 3.4 visualizes the role of the four qubits

when N = 2, and Figure 3.5 shows the circuit for one timestep of evolution. In

Figure 3.5, the swaps at the beginning outlined in pink are the inter-cell swaps

to move the particle to the next site. This swap does not preserve the particle’s

velocity, however, so a second intra-cell swap, outlined in purple for one site, is

needed. Finally, outlined in blue, the scattering of velocity takes place before the

second swap ends.

Figure 3.4: A visualization of how the second quantized version utilizes qubits. The
purple coloring in the far left representation of two sites indicates the state |0100i.
Thus, the particle jumps right to state |0001i at the next timestep, preserving its
velocity. The dashed arrow indicates the possible scattering of the velocity to move
to state |0010i, changing the particle’s direction to move left.

Figure 3.5: Circuit for one timestep of evolution of the second quantized version
with two sites. q

0

and q
1

make up the first site, or cell, and q
2

and q
3

make up the
second site, or cell.

4 IBM’s Quantum Computers

I compiled the first and second quantized versions of the quantum walk onto two

di↵erent architectures provided by IBM. For each architecture, IBM documents the

layout of the physical qubits and the allowed connections among them. The only

supported multi-qubit gate at the hardware level is the controlled-not, or CNOT

gate. Figure 4.1 shows the layouts of the IBM Q 5 Tenerife, a five qubit machine,

and the IBM Q 16 Melbourne, a fourteen qubit machine.

(a) IBM Q 5 Tenerife

8
. (b) IBM Q 16 Melbourne

9
.

Figure 4.1: The layouts of qubits and connections among them.

From here on out I will refer to them by their backend names in qiskit: ibmqx410

and ibmq 16 melbourne11, respectively. The arrows in the diagrams indicate which

qubits are connected, with the tail of the arrow indicating the control qubit and

the head of the arrow indicating the target qubit. Note that the ibmqx4 has a

bowtie structure of two connected triangles, and the ibmq 16 melbourne is laid out

into squares of connected qubits, with an extra qubit placed at either end. These

structural di↵erences will change how circuits compile onto each architecture. We

will see that choosing the correct architecture can influence the size and depth of

the compiled circuit.

10

11

4.1 Directly Compiling a Simple Circuit

As an example, we can compile the circuit for the first quantized version with two

sites. We know that this will require log
2

(2)+ 1 = 2 qubits, so it will fit onto both

architectures introduced above. Figure 4.2 shows the circuit we want to compile.

Figure 4.2: The circuit for one timestep of the first quantized version with two
sites. q

0

stores the particle’s position, and q
1

stores the particle’s velocity.

There is only one unique two-qubit gate, a CNOT from q
1

to q
0

. Looking at Figure

4.1, we can see that this gate is directly supported between these qubits by both

architectures, so we can compile the circuit exactly as it is. This circuit contains

four gates and has a depth of four. It is simple enough that IBM also compiles it

exactly onto both architectures. Thus, all the compiled versions of this circuit are

identical to the circuit in Figure 4.2.

4.2 Implementing Unsupported CNOTs

In both architectures, compiling a CNOT from qubit A to qubit B is not necessarily

a straightforward task. For example, in the ibmqx4 architecture, one can perform

a CNOT with Q1 as the control and Q0 as the target, but the reverse direction

is not supported. Fortunately, it is simple to reverse the direction of a CNOT.

Figure 4.3(a) shows that adding Hadamard gates to either side of the CNOT on

both qubits involved reverses the direction of the CNOT.

12

(a) Reversing a CNOT12. (b) Connecting two unconnected qubits12.

Figure 4.3: Two examples of implementing an unsupported CNOT.

Implementing a CNOT between two unconnected qubits can be accomplished by

going through a third qubit to which they are both connected. For example,

Figure 4.3(b) depicts a CNOT from Q1 to Q3 in the ibmqx4, and we can remove

the Hadamard gates at either end to get a CNOT from Q3 to Q1. Thus, we can

see that reversing the direction of a CNOT gate adds four Hadamard gates and

two timesteps to the circuit while implementing a CNOT gate for two unconnected

qubits can add up to seven gates and five timesteps depending on the direction.

4.3 Implementing Advanced Two-Qubit Gates

As shown in Figure 3.5, the second quantized version of the quantum walk uses

swap gates in its circuit. This two-qubit gate is not natively supported at the

hardware level. We can implement a swap gate as a series of three alternating

CNOTs between the two qubits getting swapped13. We already know how to

reverse the direction of a CNOT, so implementing a SWAP gate between two

connected qubits will require five timesteps and seven gates. Figure 4.4 shows this

decomposition assuming that we can perform a CNOT from q
0

to q
1

. Note that

the direction of the CNOTs can go either way in this case, so we could just as

easily implement this swap gate given a supported CNOT from q
1

to q
0

without

adding any extra gates or timesteps.

Figure 4.4: Reducing a SWAP gate to a series of CNOTs.

13

Figure 3.5 also depicts a controlled general unitary gate, or controlled-U gate. This

is more tricky to implement, as the parameters to the controlled-U gate determine

its decomposition into CNOTs and single-qubit gates. In general,

U(✓,�,�) = RZ(�)RY (✓)RZ(�), (4.1)

where RZ , RY are rotations about the Z-axis and Y -axis, respectively14. Let

A = RZ(�)RY (
✓

2
), (4.2)

B = RY (�
✓

2
)RZ(�

�+ �

2
), (4.3)

C = RZ(
�� �

2
). (4.4)

Then the equivalence shown in Figure 4.5 holds14.

Figure 4.5: Circuit for reducing a controlled unitary gate to a series of single-qubit
and CNOT gates14.

If the control qubit is in the state |0i, then the circuit should not change the target

qubit; i.e., ABC = I should be true, and if the control qubit is in the state |1i,
then the circuit should apply U to the target qubit; i.e., AXBXC = U should

be true14. Note that for any rotation gate, R, and the X gate, the following

equivalences hold14:

R(✓ + �) = R(✓)R(�), (4.5)

R(0) = I, (4.6)

XR(✓) = R(�✓)X, (4.7)

X = X�1. (4.8)

14

We can use these identities to prove ABC = I14:

ABC = RZ(�)RY (
✓

2
)RY (�

✓

2
)RZ(�

�+ �

2
)RZ(

�� �

2
) (4.9)

= RZ(�)RY (
✓

2
� ✓

2
)RZ(�

�+ �

2
+
�� �

2
) (4.10)

= RZ(�)RY (0)RZ(��) (4.11)

= RZ(�)IRZ(��) (4.12)

= RZ(�)RZ(��) (4.13)

= RZ(�� �) (4.14)

= RZ(0) (4.15)

= I (4.16)

Furthermore, we can show AXBXC = U14:

AXBXC = RZ(�)RY (
✓

2
)XRY (�

✓

2
)RZ(�

�+ �

2
)XRZ(

�� �

2
) (4.17)

= RZ(�)Ry(
✓

2
)RY (

✓

2
)XXRZ(

�+ �

2
)RZ(

�� �

2
) (4.18)

= RZ(�)RY (
✓

2
+
✓

2
)IRZ(

�+ �

2
+
�� �

2
) (4.19)

= RZ(�)RY (✓)RZ(�) (4.20)

= U (4.21)

Thus, we have decomposed a controlled general unitary gate into CNOTs and

single-qubit rotations.

For our scattering operation, we have ✓ = � = ⇡
2

and � = �⇡
2

. Thus,

A = RZ(�
⇡

2
)RY (

⇡

4
), (4.22)

B = RY (�
⇡

4
)RZ(0) = RY (�

⇡

4
), (4.23)

C = RZ(
⇡

2
). (4.24)

Figure 4.6 shows the decomposed circuit for the controlled general unitary gate

15

shown in Figure 3.5 in terms of rotation gates and CNOTs, using the equivalence

shown in Figure 4.5, with the A,B and C gates defined in Equations 4.22, 4.23,

and 4.24.

Figure 4.6: The decomposed circuit for the controlled unitary gate we use for
scattering in the second quantized version.

5 Compiling the First Quantized

Version

We already compiled the circuit for the first quantized version with two sites, but

it was a trivial example. It is more interesting to compile the circuit shown in

Figure 3.3. That circuit includes CNOTs from q
2

to q
0

, q
2

to q
1

, and q
0

to q
1

. The

ibmqx4 supports CNOTs from q
2

to q
0

and q
2

to q
1

, but the CNOT between q
0

and q
1

goes from q
1

to q
0

. Therefore, we can compile the circuit by switching q
0

and q
1

, so the CNOT instead goes from q
1

to q
0

, which is supported. Figure 5.1

shows my compiled circuit. Note that this circuit is identical to the one in Figure

3.3, just with q
0

and q
1

exchanged. This circuit has seven gates and a depth of six,

identical to the size and depth of the circuit in Figure 3.3.

Figure 5.1: The circuit from Figure 3.3 I compiled onto the ibmqx4 architecture.

IBM, however, does not produce such a concise circuit when it compiles the one in

Figure 3.3 onto the ibmqx4. IBM’s documentation of qiskit does not tend to match

what is actually implemented in the latest version, so it is unclear exactly how IBM

16

17

compiles circuits and what degree of randomness goes into each compilation. For

simpler circuits, such as the ones we have compiled so far, IBM always produces

the same compiled circuit. For larger circuits, however, IBM sometimes produces

di↵erent circuits of varying depth and size for subsequent compilations of the same

circuit.

Figure 5.2 shows the circuit IBM produces when compiling the circuit from Figure

3.3. It has ten gates and a depth of eight. The extra three gates and two timesteps

come from having to switch the direction of the CNOT from q
0

to q
1

. Note that the

Hadamard gate on q
0

after the reversed CNOT gets combined with the following

X gate into a single unitary gate operation, outlined in purple. IBM did not

switch q
0

and q
1

and thus could not perform the CNOT between them directly.

This demonstrates that choosing the initial assignment of physical qubits to be

di↵erent from the order given in the uncompiled circuit can lead to savings in both

gates and depth in the compiled circuit.

Figure 5.2: The circuit from Figure 3.3 IBM compiled onto the ibmqx4.

We can also compile the circuit from Figure 3.3 onto the ibmq 16 melbourne. The

square layout of this architecture does not lend itself as readily to the compilation

of this particular circuit as the triangle layout of the ibmqx4 did. By choosing

q
0

= q
12

, q
1

= q
3

, and q
2

= q
11

, we can directly compile the CNOTs from q
2

to q
0

and q
2

to q
1

as CNOTs from q
11

to q
12

and q
11

to q
3

are supported, but the CNOT

from q
0

to q
1

has to go through another qubit, from q
12

to q
2

to q
3

as q
12

and q
3

are

not connected. Using the circuit from Figure 4.3(b) without the Hadamard gates,

we can compile this CNOT, only adding three gates and three timesteps to the

circuit. Figure 5.3 shows my compiled circuit with ten gates and a depth of nine.

18

Figure 5.3: The circuit from Figure 3.3 I compiled onto the ibmq 16 melbourne,
showing all the available qubits in the architecture.

Figure 5.4 shows the circuit IBM compiled onto the ibmq 16 melbourne, which has

twenty-two gates and a depth of sixteen. IBM chose to use the same three qubits

indicated by the uncompiled circuit, q
0

, q
1

, and q
2

, which are arranged linearly in

this architecture. This layout requires more manipulation of CNOTs to compile

the circuit than my choice of four qubits arranged in a square does. IBM did,

however, preserve the original number of qubits in the circuit while I added one

19

for convenience.

Figure 5.4: The circuit from Figure 3.3 IBM compiled onto the ibmq 16 melbourne.

6 Compiling the Second

Quantized Version

6.1 Two Sites

The second quantized version with two sites requires four qubits, so it will fit onto

both the five qubit and fourteen qubit architectures provided by IBM. Let us start

by compiling it onto the ibmqx4. We can perform the two initial swaps from Figure

3.5 by first swapping q
0

and q
2

, then simultaneously swapping q
2

with q
3

and q
0

with q
1

, and finally swapping q
0

and q
2

again. Figure 6.1 shows this series of swaps,

tracking the positions of the original qubits’ values.

Figure 6.1: The steps to swap qubits q
0

with q
3

and q
1

with q
2

. The colored pairs
at each stage indicate which two qubits will be swapped next. Note that in this
diagram it is the original values of the qubits I am tracking. The physical layout
of qubits in the architecture remains constant.

Figure 6.2 shows the circuit I compiled onto the ibmqx4, which has fifty gates

and a depth of twenty-four. Outlined in purple, more than half of the gates and

timesteps are spent implementing the swaps at the beginning of the circuit. The

remaining inner swaps among pairs and controlled scattering compile well onto this

20

21

architecture. The gates outlined in blue indicate the compilation of the controlled

scattering. Due to combining the X gates surrounding the controlled scattering

in Figure 3.5 and Hadamard gates to flip the direction of the CNOTs with the

rotation gates in Figure 4.6, this sub-circuit does not exactly match the one from

Figure 4.6. The circuit in Figure 4.6 was isolated, and when placed into the larger

circuit from Figure 3.5, its single-qubit gates combine with other single-qubit gates

to produce unitary gates with di↵erent parameters.

Figure 6.2: The circuit from Figure 3.5 I compiled onto the ibmqx4 architecture.

Figure 6.3 shows the circuit IBM compiled with sixty gates and a depth of twenty-

eight. IBM employs a similar initial swap strategy as I do, but does not implement

it as e�ciently. By switching qubits around, IBM’s compiler could have benefitted

from CNOTs running in opposite directions to the ones it used.

I also compiled the circuit shown in Figure 3.5 onto the ibmq 16 melbourne. As

is clear from Figure 6.4, this architecture with its squares is more suited to the

second quantized version than the triangles of the ibmqx4 are. On this architecture,

only thirty-six gates and fourteen timesteps are required. The only optimization I

made was in the initial swap routines; what comes after is identical to the ibmqx4

compiled circuit. The square architecture allows implementing the two swaps at

22

Figure 6.3: The circuit from Figure 3.5 IBM compiled onto the ibmqx4.

the beginning directly and in parallel, leading to a swap circuit with only fourteen

gates and five timesteps, compared to the twenty-eight gates and fifteen timesteps

used to implement the same two swaps on the ibmqx4.

IBM’s compiler behaved atrociously on this compilation of the circuit from Figure

3.5, producing a circuit with 149 gates and 104 timesteps, much larger than its

compilation onto the ibmqx4 was. IBM chose qubits q
0

, q
1

, q
2

, and q
13

at the left

corner of the machine. This layout was worse than the triangles the ibmqx4 o↵ers.

Figure 6.5 shows the long circuit across several pages.

Despite the worse performance of IBM’s compiler on the ibmq 16 melbourne ar-

chitecture, it is clear from my compilations that this machine provides a natural

architecture for the second quantized version while the ibmqx4 does not. This

is primarily due to the square structures allowing the initial inter-cell swaps to

be executed in parallel as well as the intra-cell swaps and scattering that can be

executed in parallel on both architectures.

23

Figure 6.4: The circuit Figure 3.5 I compiled onto the ibmq 16 melbourne archi-
tecture. The two swap subcircuits outlined in purple can be executed in parallel.

It is notable in this case that simply choosing the right architecture is not enough

to compile a good circuit. The most important factor is the layout of qubits chosen;

the architecture matters only in what layouts it provides as options.

24

25

26

27

Figure 6.5: The circuit from Figure 3.5 IBM compiled onto the ibmq 16 melbourne
architecture.

6.2 Four Sites

The advantages of the ibmq 16 melbourne architecture for the second quantized

version can further be seen by compiling the circuit for the second quantized ver-

sion with four sites. As four sites require eight qubits to implement, this circuit will

not fit on the ibmqx4 architecture, which only has five qubits. Figure 6.6 shows

the uncompiled circuit, and Figure 6.7 shows my compiled circuit on the ibmq 16

melbourne architecture. Both circuits are essentially the same as their two site

counterparts, just doubled in number of qubits and gates. In fact, the compiled

circuit on the ibmq 16 melbourne still only requires fourteen timesteps while the

number of gates has doubled to seventy-two. By choosing the right rectangle of

qubits, the inter-cell swaps can still all be done in parallel, followed by the remain-

ing intra-cell swaps and scattering done in parallel as before. This suggests that

the second quantized version might scale better than the first quantized version in

terms of circuit depth. However, it scales linearly rather than logarithmically in

28

terms of number of qubits, making it quickly impossible to compile for larger N

onto IBM’s publicly available architectures.

Figure 6.6: This circuit shows one timestep of evolution for the second quantized
version of the quantum walk with four sites.

IBM produced a much better circuit compiling the one in Figure 6.6 onto the

ibmq 16 melbourne than it did compiling the circuit in Figure 3.5 onto the same

architecture. In fact, IBM’s compiled circuit contains eighty-one gates and has

a depth of sixteen, only nine gates and two timesteps more than my compiled

circuit. Figure 6.8 shows IBM’s circuit. It is noticeably shorter and more e�cient

than the compiled circuit it produced for the two site second quantized version.

This improvement can be explained by the layout of physical qubits IBM chose

to compile onto. Instead of choosing an odd shape of qubits at the edge of the

ibmq 16 melbourne architecture, IBM used the same rectangle of qubits as I did.

This allowed IBM to execute most of the circuit in parallel among pairs of qubits,

reducing the number of gates and timesteps it used swapping qubits around in the

two site version.

29

Figure 6.7: The circuit from Figure 6.6 I compiled onto the ibmq 16 melbourne
architecture.

30

31

Figure 6.8: The circuit from Figure 6.6 IBM compiled onto the ibmq 16 melbourne.

7 Running Circuits

I ran the circuits compiled in previous chapters to experimentally compare them.

For each run, I computed the `1 distance between the distribution of measured

states and the expected distribution of states. I also computed the `1 distance

between the corresponding uniform distribution of states and the expected distri-

bution to quantify what pure noise would look like. The possible values of the `1

distance between two distributions range from 0 (when the two distributions are

identical) to 1 (when the two distributions are disjoint). Thus, the lower the `1

distance between them, the closer two distributions are to each other.

7.1 First Quantized Version, Two Sites

Figure 7.1 shows the expected distribution of states after running the circuit shown

in Figure 4.2 along with the corresponding uniform distribution of states generated

by two qubits. The `1 distance between these two distributions is 0.5. Thus, we

expect the `1 distance between the distributions of measured states and the ex-

pected distribution for the first quantized version with two sites to be significantly

less than 0.5. If the `1 distances are not significantly less than 0.5, then we can

conclude that the measured distributions of states are no better than noise.

Figure 7.2 shows example distributions of runs of the circuit from Figure 4.2 on

the ibmqx4 and ibmq 16 melbourne. The circuit run on the ibmqx4 produces

a distribution with an `1 distance of 0.177, and the circuit run on the ibmq 16

32

33

Figure 7.1: Expected distribution of states for the first quantized version with two
sites (left). Uniform distribution of states generated by two qubits (right).

melbourne produces a distribution with an `1 distance of 0.099. Both `1 distances

fall well below 0.5, so we can conclude that these distributions contain the signal we

expected to see. Furthermore, because the same circuit was run on both machines,

these results suggest that the ibmqx4 is noisier than the ibmq 16 melbourne.

Figure 7.2: Example distributions of measured states after running the circuit for
the first quantized version with two sites.

7.2 First Quantized Version, Four Sites

Figure 7.3 shows the expected distribution of states after running the circuit shown

in Figure 3.3 along with the corresponding uniform distribution of states generated

by three qubits. The `1 distance between these two distributions is 0.75. Thus, if

34

the `1 distances between the distributions of measured states and the expected dis-

tribution are not significantly less than 0.75, we cannot conclude that the measured

distributions of states are any more significant than noise.

Figure 7.3: Expected distribution of states for the first quantized version with four
sites (left). Uniform distribution of states generated by three qubits (right).

Figure 7.4: Example distributions for the first quantized version with four sites.

35

Figure 7.4 shows example distributions of runs on the ibmqx4 and ibmq 16 mel-

bourne for both the circuits I compiled and the circuits IBM compiled for the first

quantized version with four sites. The circuit I compiled onto the ibmqx4 pro-

duces a distribution with an `1 distance of 0.338, which is larger than the 0.188 `1

distance of the distribution the circuit IBM compiled onto the ibmqx4 produces.

These `1 distances are clearly below the 0.75 threshold, with IBM’s circuit per-

forming better than mine. This is surprising considering that IBM’s circuit uses

the same three qubits as mine, yet has three more gates and two more timesteps.

The circuit I compiled onto the ibmq 16 melbourne produces a distribution with

an `1 distance of 0.649, which is larger than the 0.482 `1 distance of the distribu-

tion the circuit IBM compiled onto the ibmq 16 melbourne produces. Again, this

is surprising considering my circuit has less than half as many gates as IBM’s. I

do, however, use a di↵erent set of physical qubits than IBM. The qubits I chose

may be noisier than the qubits IBM chose, which could lead to worse results even

though my circuit contains fewer gates.

7.3 Second Quantized Version, Two Sites

Figure 7.5 shows the expected distribution of states after running the circuit shown

in Figure 3.5 along with the corresponding uniform distribution of states generated

by four qubits. The `1 distance between these two distributions is 0.875. Thus, the

distributions of measured states after running this circuit are only meaningful if

their `1 distances from the expected distribution are significantly less than 0.875.

Figure 7.6 shows example distributions of runs from circuits compiled by myself

and IBM onto the ibmqx4 and ibmq 16 melbourne. The circuit I ran on the ibmqx4

produces a distribution with an `1 distance of 0.559, which is close to the 0.578 `1

distance of the distribution the circuit IBM ran on the ibmqx4 produces. Both of

these `1 distances are below the 0.875 cuto↵ for noise, but they still demonstrate a

heightened level of noise compared to the best runs for the first quantized version.

The circuit I ran on the ibmq 16 melbourne produces a distribution with an `1

36

Figure 7.5: Expected distribution of states for the second quantized version with
two sites (left). Uniform distribution of states represented by four qubits (right).

Figure 7.6: Example distributions of measured states after running the circuit for
the second quantized version with two sites.

distance of 0.738, which is lower than the 0.851 `1 distance of the distribution

the circuit IBM ran on the ibmq 16 melbourne produces. While the `1 distance

37

of the distribution my circuit produces on the ibmq 16 melbourne is technically

below the cuto↵ noise level, it would be di�cult to pick out the expected states

without knowing what the expected distribution looks like. The `1 distance of the

distribution IBM’s circuit produces on the ibmq 16 melbourne is not significantly

below the noise cuto↵, and, indeed, the distribution of measured states looks almost

uniform.

7.4 Second Quantized Version, Four Sites

Figure 7.7 shows the expected distribution of states after running the circuit shown

in Figure 6.6. The corresponding uniform distribution of states generated by eight

qubits cannot be plotted nicely, but each state has a probability of 1

256

. The

`1 distance between these two distributions is 0.9921875. The noise threshold is

almost 1 in this case because, as there are so many possible states, the uniform

distribution is almost disjoint from the expected distribution.

Figure 7.7: Expected distribution of states for the second quantized version with
four sites.

Example distributions for runs of this circuit contain 256 di↵erent states, so plots

are less helpful for visualization purposes here. My circuit run on the ibmq 16

melbourne produced a distribution with an `1 distance from the expected distri-

bution of 0.984, and IBM’s circuit produced a distribution with an `1 distance of

38

0.985. While these `1 distances fall slightly below that of the uniform distribution’s

they are not significantly below, and the distributions of measured states are still

mostly, if not entirely, made up of noise.

8 Discussion

After compiling two di↵erent algorithms onto two di↵erent architectures, it is ev-

ident that the choice of architectural layout influences the size and depth of the

compiled circuit. Furthermore, there does not appear to be a generally superior

architecture, as each algorithm preferred a di↵erent configuration of qubits and

connections between them. For example, the first quantized version compiles more

neatly onto the ibmqx4 when N = 4 whereas the second quantized version compiles

more neatly onto the ibmq 16 melbourne when N = 2.

Table 8.1 shows all the compiled circuits presented in this paper with their num-

ber of gates and depth. Comparing the best compiled circuits for each version for

N = 2 and N = 4, the first quantized version is more e�cient than the second

quantized version with regard to the number of qubits used, number of gates, and

depth. Even when compiled onto the ibmq 16 melbourne, the first quantized ver-

sion still produced smaller and shorter circuits than the second quantized version

also compiled onto the ibmq 16 melbourne. It is possible that the second quan-

tized version scales better in terms of circuit depth for large N , but this would

require more qubits to test than are currently available on IBM’s publicly available

quantum computers.

When IBM’s compiler chose the same layout of physical qubits as I did, its compiled

circuits were longer than mine, but by a smaller margin than they were when it

chose a di↵erent layout of physical qubits. Its main fault lay in its initial assignment

of physical qubits, which led to unnecessary CNOT reversals and more complicated

swaps.

39

40

Table 8.1: Summary of compiled circuits with their number of gates and depth.
The rows highlighted in green indicate the best circuit for that combination of
version and number of sites. The first quantized version with two sites has no
highlighted row because all the compiled circuits were identical.

Running the compiled circuits on the ibmqx4 and ibmq 16 melbourne allowed

us to see how the circuits performed in practice. Table 8.2 shows the average `1

distances with errors for the distributions the compiled circuits produced when run

on their respective architectures. I calculated these averages and errors from five

distributions produced one after another. The low error values are thus indicative

of a relatively constant amount of noise at any given time in IBM’s quantum

computers and do not reflect variations in noise across hours, days, or weeks.

For the first quantized version with two sites, the ibmq 16 melbourne produced

distributions with smaller `1 distances than the ibmqx4. Because the same circuit

ran on both architectures, this suggests that the qubits used in the ibmqx4 are

noisier than their corresponding qubits in the ibmq 16 melbourne. Both architec-

tures, however, produced distributions with very low `1 distances, so we can easily

pick out the expected states.

41

Table 8.2: Summary of `1 distances for the first and second quantized versions
compiled onto the ibmqx4 and ibmq 16 melbourne by myself and IBM. I ran each
circuit for the indicated number of shots to produce a distribution, and I took five
such distributions to calculate the average `1 distance with the standard deviation
used as error.

For the first quantized version with four sites, IBM’s circuits produced better

distributions than mine on both the ibmqx4 and the ibmq 16 melbourne despite

my circuits having fewer gates and smaller depths. IBM used a di↵erent set of

qubits on the ibmq 16 melbourne than I did, so I suspect that those three qubits

were less noisy than the four qubits I used. Thus, when picking physical qubits

to compile a circuit onto, we may also want to consider the noise of each qubit

instead of only optimizing for number of gates and depth. I do not currently have

any hypotheses as to why IBM’s circuit ran better on the ibmqx4 because I used

the same three qubits and CNOTs among them as IBM, but IBM used three more

gates. For all circuits except the one I compiled onto the ibmq 16 melbourne, the

`1 distances of the produced distributions fall below the uniform distribution’s `1

distance. This confirms that we can run one timestep of the first quantized version

with four sites and get significant results as long as we choose the correct circuit

to run. In this case, the circuit IBM compiles onto the ibmqx4 performs best.

For the second quantized version with two sites, my circuits slightly outperformed

IBM’s on both architectures. This met my expectations as my circuits were shorter

with fewer gates than IBM’s. However, my circuit runs on the ibmqx4 did better

42

than my circuit runs on the ibmq 16 melbourne even though the circuit I compiled

onto the ibmq 16 melbourne was smaller. Again, I presume that this di↵erence

stems from the qubits I chose in the ibmq 16 melbourne being noisier than the

qubits I chose in the ibmqx4. This pushed my circuit runs on the ibmq 16 mel-

bourne close to the `1 distance of the uniform distribution, suggesting that they

no longer contain the signal we expect. The `1 distances from the ibmqx4, how-

ever, fall comfortably below the uniform distribution `1 distance. Therefore, even

though they are higher than the `1 distances from the first quantized version, we

should still be able to pick out the signal if we know what the correct answer is

(which we do).

For the second quantized version with four sites, there was no real di↵erence in

the `1 distances calculated from the runs of my compiled circuit, runs of IBM’s

compiled circuit, or the uniform distribution. Despite my circuit having the same

depth as the two site case, the number of gates and qubits doubled, which increased

the noise. Thus, the constant depth for the second quantized version does not

outweigh the cost of the linear scaling in number of qubits and gates. We cannot

get any significant results for one timestep of the second quantized version with

four sites.

References

[1] https://www.research.ibm.com/ibm-q/technology/devices/

[2] https://quantumexperience.ng.bluemix.net/qx/editor

[3] https://qiskit.org/

[4] https://github.com/Qiskit/openqasm

[5] Andris Ambainis, Quantum walk algorithm for element distinctness, SIAM
J. Comput. 37 (2007), no. 1, 210239, arXiv:quant-ph/0311001, preliminary
version in FOCS 2004.

[6] F. Magniez, M. Santha, and M. Szegedy, Quantum algorithms for the triangle
problem, Proc. 16th ACM-SIAM Symposium on Discrete Algorithms, pp.
11091117, 2005, quant-ph/0310134.

[7] E. Farhi, J. Goldstone, and S. Gutmann, A quantum algorithm for the Hamil-
tonian NAND tree, Theory of Computing 4 (2008), no. 1, 169190, quant-
ph/0702144

[8] https://github.com/Qiskit/ibmq-device-information/blob/master/backends/
tenerife/images/ibmqx4-connections.png

[9] https://github.com/Qiskit/ibmq-device-information/blob/master/backends/
melbourne/images/melbourne-connections.png

[10] https://github.com/Qiskit/ibmq-device-information/tree/master/backends/
tenerife/V1

[11] https://github.com/Qiskit/ibmq-device-information/tree/master/backends/
melbourne/V1

[12] Gerhard W. Dueck, Anirban Pathak, Md Mazder Rahman, Abhishek Shukla,
and Anindita Banerjee, Optimization of Circuits for IBMs five-qubit Quantum
Computers, arXiv:1810.00129v1 [cs.ET] 29 Sep 2018.

43

44

[13] https://quantumexperience.ng.bluemix.net/proxy/tutorial/full-user-guide/
004-Quantum Algorithms/061-Basic Circuit Identities and Larger Circuits.html

[14] John Hayes and Igor Markov (2001). Quantum Circuit Decomposition from
unitary matrices into elementary gates [PowerPoint slides]. Retrieved from
http://vlsicad.eecs.umich.edu/Quantum/EECS598/lec/7a.ppt.

