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Abstract 

            This paper evaluates the usefulness of classification trees, a machine learning algorithm, 
as a tool for predicting the behavior of the marine layer in San Diego from late spring to early 
fall.  First, we provide background information about the marine layer and machine learning and 
discuss some motivation for applying machine learning to weather prediction problems.  We then 
implement a classification tree to answer the question: given certain meteorological conditions in 
the early morning, will the marine layer burn off by noon?  Finally, we use cross tabulation 
analysis to compare the classification tree model to a persistence forecast model and a 
climatological mean forecast model. 
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1. Introduction  
1.1 Marine Layer Overview 
     The following, including figures, are drawn from [1].   
            The marine layer is a phenomenon in which a temperature inversion forms over the ocean 
and low clouds are unable to escape from beneath this inversion.  This creates the famous “June 
gloom” that every San Diegan is familiar with.  
            A temperature inversion is a section of the atmosphere in which the temperature increases 
with height.  This is different form the normal atmospheric lapse rate, in which temperature 
decreases with height.  This temperature inversion creates a “lid” on the lower air; it does not 
allow surface air to travel past the inversion base.  See Figure 1.  
 

Figure 1—Idealized temperature inversion profile. 

Temperature inversions form as a result of high pressure and cold surface air.  The 
marine layer temperature inversion in Southern California is a combination of the pacific high 
and coastal upwelling. The pacific high is a region of high pressure over Southern California that 
forces warm air towards the surface.  Coastal upwelling is a process in which currents along the 
California coast cause cold deep water to be pulled up to the surface.  This in turn cools the air 
near the surface. At a certain height in the atmosphere, the warm air being forced down meets the 
cold air near the surface.  A temperature inversion forms at this interface because as height 
increases, the temperature is transitioning from cold to warm.   

Marine layer clouds are a combination of two factors: the mixing of moist air below the 
temperature inversion, and the spatial relationship between the lifting condensation level and the 
inversion base height.  Moist air trapped under the inversion layer is able to mix freely, and if 
this air reaches a height called the lifting condensation level (LCL), a cloud will form.  Marine 
layer clouds form on days when the LCL is below the inversion base height (IBH), as in Figure 
2.  These clouds are then trapped between the LCL and the IBH. However, as in Figure 3, there 
are days where the LCL is above the IBH, and marine layer clouds are unable to form.   
Therefore, “June gloom” days are often characterized by high relative humidity, LCL below 
IBH, and a strong temperature inversion. 
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Figure 2—IBH > LCL.  Marine layer clouds form and get trapped between the LCL and the IBH 
 

 
 
 
 

Figure 3—IBH<LCL.  Marine layer clouds are unable to form.   
 

 
 
 

The marine layer “burns off” when the sun rises.  This causes two processes to happen, 
both of which lead to decreased relative humidity and thus to cloud burnoff.  When the sun rises, 
the lower air warms.  Since warm air can “hold on” to more water vapor, the relative humidity of 
the warmer air is lower, even though the same amount of water vapor may be present.  Once the 
relative humidity drops, this causes the LCL to rise, making it harder for low clouds to form.  
Sunrise and the accompanying warming of the lower air also weakens the temperature inversion.  
This allows warm, dry air from above to mix into the low clouds.  This also serves to decrease 
relative humidity and raise the LCL.  These two processes work together until all of the marine 
layer clouds have dissipated.   

The time it takes for marine layer clouds to burn off depends on the thickness of the 
clouds and the strength of the temperature inversion.  Thicker clouds means more warm and dry 
air has to mix in in order for clouds to dissipate.  A stronger temperature inversion means that it 
takes more to warm up the lower air enough to start the processes that lead to cloud dissipation.  
 



5 
 

1.2 Machine Learning Overview 
 This section draws heavily on [2].   
 
What is machine learning?  
            Machine learning is a branch of computer and data science that deals with teaching 
computers to recognize patterns in given data and make predictions based on new data.  There 
are three types of machine learning: supervised learning, unsupervised learning, and 
reinforcement learning.  This paper will focus on supervised learning, which is when the 
programmer explicitly tells the computer which outcomes it must predict.  
             
Supervised Machine Learning 

Supervised machine learning happens in several steps. The first step is training, in which 
the programmer provides the computer with input and output data.  The machine learning 
algorithm then builds a model based on the given data.  The goal in the training phase is to find 
the best way to map inputs to outputs.   

The next step is called validation.  This stage is about evaluating the performance of the 
model that was built in the training phase.  This is done by handing the model inputs with known 
outputs and then allowing the model to create outputs of its own.  The programmer must then 
determine how well the model performed.  The validation phase is also a good time for the 
programmer to make any changes to the model in order to improve model performance.   

The final step is testing.  This is when the model makes predictions about real world data 
with unknown outputs.   

Frequently in supervised learning, the inputs are called predictors or features, and the 
outputs are called response or target variables.   
 
Classification and Regression 
 Supervised machine learning deals with classification and regression algorithms.     
Classification models group outputs into distinct bins, whereas regression models allow for 
output values to be continuous.    
 
What are some common machine learning algorithms? 
 Some common supervised algorithms include: linear regression, random forest, gradient 
boosting, support vector machines, and decision trees.  This paper will focus mainly on decision 
trees.  For more detailed information, see [2, algorithm overview].   
 

Linear Regression 
 Linear regression in machine learning works in much the same way as linear regression 
in statistics or numerical analysis.  It seeks to find the function of the form:  

𝑦 = 𝑎𝑥 + 𝑏 
which will best fit a collection of points.  It does this by least squares or gradient descent to 
minimize the error between the points and the line.   
 

Support Vector Machine (SVM) 
 Support Vector Machine is an algorithm in which each data point is a point in 𝑹𝑛, where 
n is the number of predictors.  These points are then plotted in n-dimensional space called the 
feature space, and the SVM finds the optimal hyperplane that either splits the points into groups 
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(classification) or is closest to all the points (regression).  For example, as in [3], the SVM tries 
to find a function of the form:  

𝑓(𝑥) = (𝑤. 𝜙(𝑥)) + 𝑏 
by calculating coefficients w and b and choosing nonlinear function ϕ.   
 

Decision Trees 
 Decision trees split data sets into smaller groups that are homogeneous internally and 
distinct from each other.  Since decision trees will be discussed in much greater depth in the later 
sections of this paper, for now I will just mention that they use the gini index, entropy, and chi 
squared statistic as well as weighted averages of these to split the population according to the 
most important variable.   
  

Random Forest (RF) 
 A random forest is a collection of decision trees, each of which gets a chance to classify 
new points and then “vote” for which class the points should belong to.  The class with the most 
votes is the class that the point is assigned to. A basic algorithm for creating a random forest is as 
follows:  

1. Train the trees, each on a random sample of size N that is taken from the total data set 
with replacement.   

2. Set a number m<M, where M is the number of predictors, and randomly select m 
predictors to try to split with respect to at each node.   

3. Trees grow as large as possible; pruning is not allowed. 
4. Voting process to classify new data 

 
 Gradient Boosting (GB)  
 According to [2], gradient boosting is used when there are a lot of predictors and the 
programmer wants an algorithm with “high predictive power”.  As explained in [4], gradient 
boosting is an algorithm that tries to find a function 𝑦 = 𝑓(𝑥) that will minimize a loss function.  
This function is approximated as a weighted sum of “weak learners”, which are predictors or 
predictive algorithms, according to [2].  The weighted sum is notated in [4] as: 

𝑓(𝑥) =  ∑ 𝛽𝑚ℎ(𝑥, 𝜃𝑚)
𝑀

𝑚=0

 

where 𝛽𝑚 and 𝜃𝑚 are chosen based on the fitting the training set and ℎ(𝑥, 𝜃𝑚) are decision trees.  
In a more general sense, ℎ(𝑥, 𝜃𝑚) can be any algorithm with “low predictive power”.   
 
 
 
2. Machine Learning and the Marine Layer 
2.1 Machine Learning vs. GCMs 
            Normally, climate scientists use General Circulation Models (GCMs), Statistical-
Dynamical Models, or Numerical Weather Prediction to study trends in the Earth’s 
climate.  These models apply the Navier-Stokes equations, thermodynamics concepts, and 
statistical techniques to the Earth as a whole and evaluate them over time steps.    
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The marine layer is a local phenomenon rather than a global one, so GCMs are not the 
right tool for predicting its behavior.  Examining some differences between GCMs and NWPs 
and machine learning algorithms can make it clear why machine learning may be a good fit for 
studying the marine layer.  The first difference between more traditional weather prediction 
models and machine learning models is the underlying math.  GCMs and NWPs rely on partial 
differential equations, whereas machine learning algorithms rely on statistics and linear algebra.  
The other important difference is the problem of resolution.  GCMs are unable to resolve local 
weather phenomena accurately without the aid of a supercomputer.  With machine learning 
algorithms, on the other hand, one can study precise locations using a laptop.  In conclusion, it is 
worth trying out machine learning techniques for local weather because they simplify the 
underlying math and can give good results without using a supercomputer.   
 
2.2 Significant Papers 

Applying machine learning to weather and climate problems is not a new idea.  The three 
papers that I examined looked at using machine learning algorithms to predict temperature, 
marine layer clouds, humidity, and pressure.  They used a variety of techniques, including 
Support Vector Machines (SVMs), Random Forest (RF), Gradient Boosting (GB) and linear 
regression.  These three papers justify applying machine learning algorithms to local weather 
problems, and provide some inspiration regarding specific methods I can use to tackle predicting 
marine layer behavior.   

The first paper [4] deals with an application of SVM, RF, and GB to the problem of the 
marine layer and solar irradiance.  This paper concludes that machine learning algorithms did a 
better job than physics based numerical weather prediction models.  An additional conclusion is 
the fact that GB and RF are able to pick out the most important variables for prediction.   

The second paper [3] evaluates the usefulness of Support Vector Regression in predicting 
daily maximum temperatures. The conclusion is that SVMs perform better than artificial neural 
networks (ANNs) and could replace ANNs in some applications.   

The final paper [5] discusses how machine learning outperforms traditional numerical 
weather forecasting.  The argument is that machine learning techniques are “robust to 
perturbations”, meaning that small changes in initial data lead to only small changes of output 
data.  The paper analyzes a linear and a functional regression technique and concludes that linear 
regression works better over a shorter (2 days) time span of inputs than functional regression.   

These papers were useful because they illustrated that machine learning algorithms can 
have meaningful applications to weather problems.  In particular, [4] showed me that decision 
trees (the components of a Random Forest) are useful in predicting the marine layer’s behavior. 
There are many factors that influence marine layer cloud burn off, and I thought it would be 
interesting to see which factors the decision tree considered the most important.  [5] was useful 
because weather, and thus the inputs to the predictive model, is always changing, so it makes 
sense to use an algorithm that can accurately predict outputs for a wide range of inputs.    
 
 
3. Decision Trees 
3.1 Decision Trees Overview 

A decision tree is a kind of supervised classification algorithm in which the whole 
training data set is divided into smaller and smaller groups that are similar internally and distinct 
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from each other.  You can think of the outcome of a decision tree as a kind of flow chart that if 
you were to put a new data point into it, you could classify it based on one characteristic at a 
time (see figure 4).   
 Some important terms relating to decision trees are as follows:  
Node—Group of data points in a decision tree 
Predictor/Feature—Characteristic of a data point   
Response—Characteristic the programmer hopes to predict 
Split—Division of a node according to a certain predictor 
Root node—Node at the top of the decision tree.  It contains all the data points in the training set.   
Parent node—Node that will be split into smaller nodes 
Sub node—Nodes that result from a split  
Leaf/terminal node—Node at the bottom of the decision tree.  Leaf nodes should be 
homogeneous internally with respect to the response variable, but distinct from each other with 
respect to the predictor variables.  
Depth—Longest path from the root to a leaf.   Defined exactly this way in [5] 
 

Figure 4—Example decision tree model found online.  In this case, the response variable 
is a binary (yes/no) answer to the question: Should I go outside? And the predictors are: outlook, 

humidity and rain. From [10]. 
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3.2 Pros and Cons of Decision Trees 
            Decision trees are one of many machine learning algorithms, so what makes them useful 
for studying the marine layer? One reason to use decision trees is that they are easy to 
visualize.  This means that the programmer can actually produce a picture of what the tree looks 
like, complete with all the splits and how the splits were created.  Another reason that decision 
trees are useful in the marine layer problem is that they can predict categorical and continuous 
outcomes.  In the context of predicting marine layer dissipation, that means decision trees can 
predict specific burn off times as well as whether or not the clouds will be gone by a certain time.  
            Another reason to use decision trees in local weather problems like the marine layer is 
because decision trees can pick out which predictor is the most significant.  There are many 
factors in determining marine layer burn off time, and I thought that might be interesting to know 
what the algorithm thought was the most important variable in determining dissipation.   
            One thing that the programmer must be aware of when using decision trees is 
overfitting.  Overfitting is when a model predicts the training set well and does not generalize to 
predicting new data such as a test or validation set.  However, data analysts have come up with 
methods to avoid overfitting that are at the programmer’s disposal.   
 
3.3 Building a Decision Tree 
The following is heavily drawn from [2, Decision Tree Specifics].   
Here is a bare bones algorithm for building a decision tree: 

1. For each split, beginning at the root node and going all the way to the terminal nodes  
a. Split the parent node with respect to each predictor.   
b. For each predictor 

i. Use a splitting criterion to evaluate the split 
c. Split the parent node based on the most significant split as determined by the 

splitting criterion.   
2. Repeat step 1 until a stopping criterion is reached 

 
As can be seen above, building a decision tree is all about splitting up the training data 

set.  There are three techniques for making classification tree splits: gini index, chi square, and 
entropy and information gain. 
 
Gini Index 

The first splitting criterion is the Gini Index.  This measures the homogeneity of the new 
sub node, or the likelihood that if we picked two data points from the same sub node, they would 
have the same value for the response variable.  The values p and q are defined as the probability 
of each target variable in the new node.  Thus, Gini Index works only for binary response 
variables.   

The following is an algorithm for how to split based on Gini Index: 
1. For each predictor 

a. Split with respect to that predictor  
b. Calculate the Gini Index for each sub node with the formula: 𝑔 =  𝑝2 + 𝑞2 
c. Calculate the weighted Gini Index with the formula: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑔𝑖𝑛𝑖 =

 𝑎1𝑔1 + 𝑎2𝑔2 
2. Determine which predictor resulted in the highest weighted Gini Index, and split with 

respect to that predictor.   
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Note that using Gini Index as a splitting criterion will only produce binary splits.   
 
Entropy and Information Gain 

The second splitting criterion is entropy and information gain.  This method measures 
how disorganized a node is, or how much information is needed to describe that node.  Entropy 
is defined to be zero if the node is pure (all the data points are in the same class for the outcome 
variable) and 1 if the node is split 50/50.   

The following is an algorithm for how to split based on entropy.  Please note that p and q 
are defined the same way as for Gini Index:  

1.  For each predictor  
a. Split with respect to that predictor  
b. Calculate the entropy for each sub node with the formula:                            

𝑒 =  −𝑝 log2 𝑝 − 𝑞 log2 𝑞 
c. Calculate the weighted entropy with the formula:            

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  𝑎1𝑒1 + 𝑎2𝑒2 
2. Determine which predictor resulted in the lowest entropy and split with respect to 
that predictor.   

     3. Information gain is then defined to be: 1 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 
Note that entropy can make binary and nonbinary splits.   

 
Chi Squared  

The final splitting criterion is the chi squared statistic for each possible split based on 
predictor.  It measures the statistical significance of differences between parent and sub nodes.  
Success and failure are defined the same way as p and q.   

An algorithm for splitting based on chi squared is as follows:  
1. For each predictor 

a. Split with respect to that predictor 
b. Calculate the chi squared for each node  

i. Calculate chi squared for success and failure 

ii. Chi squared formula: 𝛸2 = √(𝑂−𝐸)2

𝐸
  

c. Chi squared for the split = ∑ 𝛸2
𝑛𝑜𝑑𝑒𝑠  

2. Split with respect to the predictor with the highest 𝛸2 value.   
 
3.4 Overfitting  
     Data scientists use size restriction, pruning, and k fold cross validation in order to avoid 
over fitting in a decision tree.  Size restriction can be thought of as setting maximums or 
minimums on certain aspects of the tree.  For example, the programmer can set a maximum or 
minimum number of terminal nodes, splits or predictors considered in a split.  The programmer 
can also set limits on the depth of the tree or the number of observations required to make a new 
node.   
            Pruning is when the tree “looks ahead” and gets rid of nodes that are not beneficial.  This 
is accomplished by first making a tree with many levels, and then calculating net gain/loss of 
each path down the tree.  The tree then gets rid of branches that have net loss.  Pruning is 
generally considered “better” than just a decision tree alone.   
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 K-fold cross validation is when the training set is divided into k subsets, and k-1 of them 
are used for training the model and 1is used to validate it. This process is repeated k times, and 
each subset takes a turn at being the validation set.  The model’s performance (percentage of 
correct predictions) is then averaged over the k trials.   
  
4. Experiment   
4.1 Overview  

In the experiment, I trained a decision tree using MATLAB’s classification learner on 
sounding and coastal low cloudiness data taken in May-September in the even years from 1996-
2017.  Then, once MATLAB had built the decision tree model, I used the model to make a 
prediction about marine layer burn off in May-September of the odd years from 1996-2017.  
Theoretically, this model should be able to predict whether or not the marine layer clouds over 
UCSD (latitude: 32.88 and longitude: =117.23) will dissipate by noon.   

4.2 Inputs 
In my background research into the marine layer, I determined that there were six 

important parameters that help determine marine layer burn off.  They are as follows: 
x Relative Humidity (RH): Amount of water is in the air parcel as a fraction of the 

amount of water in the air parcel when it is saturated.  If RH = 1, there is a cloud.   
x Temperature Inversion Strength: The change in temperature from the bottom to 

the top of the inversion.   
x Lifting Condensation Level (LCL): The height that an air parcel must be lifted to 

to form a cloud.  
x Inversion Base Height (IBH): The height where the temperature inversion 

begins.   
x Morning Coastal Low Cloudiness (Morning CLC): A binary variable that shows 

whether or not there will be a cloud at a certain coastal coordinate at 5 am.  1 = 
yes cloud, 0 = no cloud.   

x Cloud Thickness: Vertical height of marine layer clouds. Calculated as LCL-IBH. 
(Note that because of this definition, thickness < 0 means there is a cloud and 
more negative thickness means the cloud is thicker).   

x Time: Year, month, day  
These six parameters will be considered predictors in the decision tree algorithm.  RH, 

LCL, IBH, and Morning CLC can be used to determine if there is a cloud present.  Thickness 
and Inversion Strength are used to determine cloud persistence and therefore whether or not the 
cloud will burn off by noon.   

The response variable will be: 
x Noon Coastal Low Cloudiness (Noon CLC): A binary variable that shows 

whether or not there will be a cloud at a certain coastal coordinate at 12pm.  1 = 
yes cloud, 0 = no cloud.   

 
4.3 Data     
Processing the Data  

All the data except the CLC data came from NOAA’s Integrated Global Radiosonde 
Archive (IGRA).  This experiment uses the IGRA derived data.  This data was already processed 
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and parameters relevant for my algorithm calculated.  The sounding data is measured from the 
San Diego/Miramar MCAS station (IGRA code: USM00072293, METAR code: NKX). They 
send up radiosondes attached to weather balloons twice a day at 0 and 12 UTC.  This project 
uses the 12UTC derived sounding data as predictors, because that is equivalent to 5am PDT.  
PDT is used here because I am studying the marine layer from May-September, when daylight 
savings time is in effect.  

The IGRA data came as a very large text file, and contained soundings all the way back 
to the 1940s.  Each sounding was in the form of a header line containing some of the calculated 
parameters I needed followed by the actual measurements of temperature, pressure, RH, etc., 
which the weather balloon had made on its way up.   

In order to extract the LCL, all I had to do was write a MATLAB code that would pull 
out the header lines and from there pull out the LCL values and store them in a vector.  I then 
stored this vector in a spreadsheet.   

I had to work a little harder to extract the RH, IBH, and Inversion Strength.  I obtained 
code from [6] which would take as inputs a vertical temperature profile vector, a height vector, 
and an elevation constant.  I then wrote code that would extract the temperature and height 
vectors from the IGRA soundings (and convert them into the correct units).  Then, I plugged 
these vectors into the code from [6] and obtained values for RH, IBH and Inversion Strength for 
each 12UTC sounding for May-Sept, 1996-2017.  I then stored these vectors in the same 
spreadsheet.   

The CLC data comes from [8], and it came in the form of a spreadsheet for each month 
for May-September of 1996-2017.  Each spreadsheet can be thought of as a time x space matrix, 
with each row being a half hourly measurement in PST (so 1488 or 1440 rows depending on the 
month) and each column being a spatial coordinate (189446 columns corresponding to that many 
spatial coordinates).  The data from [8] also included a file called COORDcoast that related 
specific coordinates to column numbers in the CLC matrix.  For UCSD, which is at latitude: 
32.88 and longitude: =117.23, this corresponded to a column number of 82796.    Each element 
in the matrix was either 1 for yes cloud, 0 for no cloud, or -1 for insufficient data.  

Since [8] gave the data in PST, I needed to extract the 4am and 11am PST columns to get 
the 5am and 12pm PDT data that I wanted.  To do this, I wrote a combination of R and 
MATLAB code that would convert the data files from .rda to .csv and then extract the 4am and 
11am cloudiness from the 82796th column.  These vectors all went into the same spreadsheet 
where I had been storing everything else.   

 Finally, I used the spreadsheet to calculate the thickness as LCL-IBH.  The final 
spreadsheet can be seen in Figure 5. 
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Figure 5—Final spreadsheet.  Contains values for predictors and response variables in for May-
September of 1996-2017.   

 
Cleaning and Preparing the Data 

My next step was to clean the data that I had extracted.  First, I made sure that I had the 
same number of CLC measurements as I did IGRA measurements.  Once that was done, I simply 
deleted days that had insufficient data.  The two places where insufficient data occurred were in 
CLC and IBH (and hence thickness).  I got rid of days that had -1 for their LCL value and also 
days that had N/A as their IBH value.  I did this because I didn’t think these days would give me 
meaningful predictions.   
           The next step was to split the data into a training set and a validation set.  I decided to 
train the model on the data from the even years and then test the model on the data from the odd 
years.  I did this so I could take advantage of any changes in the marine layer behavior over the 
past 20 years and maybe more accurately predict the odd years.   
 
4.4 Running the Model 

This decision tree was built with MATLAB’s Classification Learner App, which is part 
of the Statistics and Machine Learning Toolbox.  This app lets the user upload a data set and then 
use it to train a wide variety of models.  It then assesses the performance of each model and 
assigns each model an accuracy percentage.  This accuracy score is based on some internal 
validation (usually k-fold cross validation) that the app performs on the training set. If the user is 
not satisfied with the accuracy score, he or she can consider restricting/setting the number of 
splits or selecting which features the algorithm considers when making splits.  After the user has 
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optimized the model, he or she can then pick one or more models to output.  These models are 
then exported to the MATLAB wokspace, and from there they can be used on testing or 
validation sets. 

In this experiment, I trained a coarse tree and a medium tree on the even year data set, 
and then chose the coarse tree because it had a higher accuracy score. I did not perform pruning, 
size restriction, or feature selection in an attempt to improve the accuracy score.  In this case, the 
validation scheme was 5-fold cross validation, which was chosen to prevent overfitting.  See 
Figure 6. 

After choosing the tree, I exported it into the MATLAB workspace.  Then I uploaded the 
odd year data set, called it SoundingDataS4, and ran the following MATLAB code: 

 
>> oddYearPredictions = trainedModel.predictFcn(SoundingDataS4); 
>> view(trainedModel.ClassificationTree, 'Mode', 'graph') 
 
The first line of this code makes applies the model that we created in the classification 

learner app to the validation data set (odd years) and makes a prediction for noon CLC.  The 
output is a vector of ones and zeros.  The second line of this code outputs a picture of the 
decision tree. See figure 7. 

 
 
Figure 6—MATLAB’s Classification Learner with the steps I performed to train and export the 

model 
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Figure 7—Decision tree built with the even years as the training set.  The splits that were made 
show that the most important variables were cloud thickness and morning CLC.  The idea is that 

clouds thinner than 538.25m will burn off by 12pm and that clouds thicker than 538.25m will 
persist if they were present in the morning but will not persist if there were no clouds in the 

morning. 

 
5. Results 
5.1 Persistence and Climatology  

In order to analyze the performance of a forecast model, it must outperform two basic 
weather prediction techniques.  These are persistence and climatology.  If a model cannot do 
better than these two, it is not considered a very good model.   

The persistence model says that whatever weather conditions are present today will also 
be present tomorrow.  In the case of marine layer clouds, persistence says that if an observer sees 
low clouds one day, he or she will see low clouds the next day.   

Climatology is based on long term averages for specific weather phenomena.  It says that 
the forecast for any given day is the average of what that phenomenon has done over the past 
years.   For the marine layer, it assumes that the marine layer clouds on any given day will burn 
off at the average of the burn off times over the past years.  Another way to put this is that the 
predicted noontime cloudiness will behave like the average of past noontime cloudiness.     

 
5.2 Cross Tabulation Analysis 
 As mentioned in [9], cross tabulation analysis is a technique that tallies up occurrences of 
a nominal variable, that is to say a variable grouped by name rather than number.  A cross 
tabulation, also called a contingency table, has outcomes of one variable on one axis and 
outcomes of another variable on the other.  The entries in the table are the times each 
combination of outcomes (one from each variable) occurs.  Contingency tables are normally used 
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to determine if there is an association between two variables, and they are often used in 
hypothesis testing for independence.   
 In this paper, I use contingency tables to compare the performance of a decision tree 
based forecast with the performance of a persistence forecast and a climatology forecast.  In each 
table, true class is given in the column label and predicted class is given in the row label.  For 
example, the number in the cell in the first row and first column is the number of days that the 
predicted class and the observed class were both zero.  Thus, the numbers in the diagonal cells 
represent days that were correctly predicted.  Days with a predicted value of 1 and an actual 
value of zero will be called false alarm days.  I will evaluate the three forecast methods 
(persistence, climatology, and classification tree) against the known noon CLC for the odd years 
by comparing the correct prediction rate and the false alarm rate.  These are as follows: 
 

%𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  
∑ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑐𝑒𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑥 100 

 

%𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 =  
𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑟𝑜𝑤, 𝑓𝑖𝑟𝑠𝑡 𝑐𝑜𝑙𝑢𝑚𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑥 100 

 
 
 And ideally, the correct correction rate should be 100% and the false alarm rate should be 
0%.   
 
5.3 Analysis Process  
 The first step in the analysis process was to create a persistence forecast based on the 
assumption that noon CLC conditions from the previous day would persist into the next day.  To 
do this, I wrote MATLAB code that took the noon CLC data as a vector input and outputted a 
vector that shifted each entry in the input down by one.  The first entry was left unchanged; I 
made the assumption that the first day’s conditions were persistent from the day before, for 
which I had no available data.  The persistence forecast was made for the odd years.   
 Next, I wrote MATLAB code to simulate a climatology forecast. This was different form 
the persistence forecast in that it predicted only the 2017 summer.  I did this because climatology 
forecasts rely on long term averages.  First, I calculated the average cloudiness for each day, 
using the years form 1996-2016.  Then, I used a random number generator to generate a value in 
the interval (0, 1).  If this randomly generated value was below the average value for the day, 
then I predicted a 1 for noon time cloudiness.  If the randomly generated value was above the 
average value for the day, then I predicted a 0 for no noontime cloudiness.   
 The next step was to perform the cross tabulation.  For the decision tree and persistence 
forecasts, this was relatively easy to do. I started out with three vectors, which are as follows:   
 
oddYearObservation—the vector of actual observations for the odd years from [8] 
oddYearPersistence—vector obtained from the persistence forecast code 
oddYearPrediction—vector obtained from the decision tree model 
 
 To perform the cross tabulation, I simply plugged these vectors into MATLAB’s crosstab 
function, as follows:  
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>> [tbl,chi2,p,labels] = crosstab(oddYearObservations, oddYearPersistince) 
>> [tbl,chi2,p,labels] = crosstab(oddYearObservations, oddYearPrediction) 
  
 The first line of code cross tabulates the persistence model with the actual observations 
for the odd years, and the second one cross tabulates the classification tree based model with the 
actual observations for the odd years.   
 I had to work a little harder to get the contingency table for the climatology forecast.  
Since I was dealing with random numbers in creating the climatology forecast, what I ended up 
doing was creating multiple climatology forecasts and the associated contingency tables, and 
then taking the average of those tables.   

After some manipulation with MATLAB’s uitable command, which allows the user to 
turn a table into a figure and edit it, I obtained the contingency tables shown in Figures 8, 9, and 
10.   
 

Figure 8—Contingency table for persistence based forecast.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9—Contingency table for decision tree based forecast.   
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Figure 10—Contingency table for climatology forecast.   
 
 
 
 
 
 
 
 
 

 
 
 
As mentioned above, I evaluate the performance of these models by checking the 

percentage of correct predictions and the false alarm rate for each forecasting method.  The 
results are as follows:   

%𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 =
808

1166 × 100 = 69.3% 
and 

%𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦 =
68.69
125 × 100 = 55.0% 

and finally 

%𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑒𝑒 =  
824

1166 × 100 = 70.7% 
 
Additionally, 

%𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 =
179

1166 × 100 = 15.4% 
and 

%𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦 =
36.586

125 × 100 = 29.3% 
and finally 

%𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑒𝑒 =  
270

1166 × 100 = 23.3% 
 

From this one trial, this unmodified classification tree forecast model appears to 
outperform a persistence and climatology model in terms of correct predictions.  It also has a 
better false alarm rate than climatology, but the false alarm rate for the classification tree is not 
as good as it is for persistence. I conclude that decision trees are worth pursuing further as a 
method of predicting marine layer behavior in San Diego.   
 
5.4 Future Steps 
 Some future goals that I think are worth pursuing further would be to experiment with 
things like pruning and feature selection and see if these increase the accuracy of the decision 
tree as a forecasting method.  Another interesting future problem would be to use a regression 
tree instead of a classification tree and see if a decision tree can correctly predict the time that the 
marine layer will burn off.   
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