
UNIVERSITY OF CALIFORNIA, SAN DIEGO

The Intractability And The Tractability

Of The Orthogonal Vectors Problem

by

Karina M. Meneses-Cime

in the

Department of Mathematics

June 2018

Contents

1 Introduction 1

1.1 Orthogonal Vectors Problem (OVP) . 2

1.2 Edit Distance . 3

1.3 Outline . 4

2 From k-SAT to Orthogonal Vectors 6

3 An In-Depth Look At Orthogonal Vectors 11

4 From OVP To Edit Distance 17

Bibliography 33

i

Chapter 1

Introduction

The famous problem of P vs. NP attempts to understand the distinction between the

problems whose solutions can be computed in polynomial time and those whose solutions

can be verified in polynomial time. The theory behind P vs. NP looks at the problems in

the class P, those that can be solved in polynomial time, as the easiest type of problems.

Meanwhile, the problems in the class NP-Complete are considered to be hard problems.

An NP-Complete problem, ⇧, is an NP problem (that is, one whose solutions can be

verified in polynomial time) such that every other NP problem can be reduced to ⇧ in

polynomial time. The very first known NP-complete problem is the famous satisfiability

problem which asks if, given a formula F in conjunctive disjunctive normal (CNF) form,

F has a satisfying truth assignment. To show that an NP problem ⇧0 is NP-Complete

we only need to give a polynomial reduction from satisfiability to ⇧0.

The satisfiability problem has proven to be one of the central problems the theory of

computation. If there does not exist a deterministic algorithm which runs in polyno-

mial that solves the satisfiability problem then P 6= NP. However, showing that such

algorithm does or does not exist is one of Millennium problems. An exhaustive search

algorithm for satisfibaility takes time approximately O(2n), where n is the number of

variables. Despite e↵orts on improving the algorithm for satisfiability, the fastest known

algorithms to-date at best shave o↵ logarithmic factors. The fastest algorithm runs in

time O(2
n(1� 1

O(logmn)

)

) where m is the number of clauses and n the number of vari-

ables in the instance at hand ([1], [2]). The apparent intractability of this problem

led to the introduction of the Strong Exponential Time Hypothesis (SETH). In their

1999 paper,“Which Problems Have Strongly Exponential Complexity?”[3] Paturi and

Impagliazzo introduced the idea that under the assumption that the time needed to

answer an instance of the satisfiability problem with k many literals in each clause of

1

Introduction 2

the given CNF-formula and n variables approaches O(2n) as k grows larger, one can

prove the intractability of many di↵erent kinds of problems.

Under SETH, we are not confined to working with only the classes P and NP. Many of

the work in the field deals with much finer-grained reductions. Consider the following

problem. Given a set S of n integers, does S contain three elements that sum to zero?

This problem is known as 3SUM and has a simple running algorithm of time O(n2)[4].

Despite e↵orts, the best algorithm up to date shaves o↵ only logarithmic factors in the

exponent and runs in time O(n
2

(log logn)O(1)

log

2 n
) [5].

This leads us to the suspicion that perhaps there is no better algorithm and to our next

point. Under SETH we are able to show the intractability of problems which run in

polynomial time. That is, given some problem with an algorithm that is known to run

in time O(nk), we are able to show that there does not exist an algorithm of run-time

⌦(nk�✏) for ✏ > 0 that solves the original problem unless SETH fails. In this paper we

discuss two such reductions. We will show that under SETH there is no better algorithm

than the naive algorithm for the Orthogonal Vectors problem as well as the Edit Distance

problem. We then discuss the known algorithms for the Orthogonal Vectors Problems,

and present a not well known algorithm for the OVP problem.

1.1 Orthogonal Vectors Problem (OVP)

An instance of the Orthogonal Vector Problem consists of sets A and B of d-dimensional

binary vectors with |A| = |B| := N ; the problem is to determine whether there exist

vectors a 2 A and b 2 B such that a · b = 0. The obvious algorithm for this problem is

to check every possible pair of vectors and has a run-time of Õ(N2). Here we use the

notation Õ to mean big-O notation ignoring logarithmic factors.

We have already discussed the importance of the satisfiability problem. k-Satisfiability

(k-SAT) is a particular version of a satisfiability instance where each clause in the given

formula F contains exactly k literals. The obvious algorithm for this problem is to check

every single truth assignment and runs in time O(2n) where n is the number of variables

specified in the instance. k-SAT and SETH are our vehicles to showing that indeed OVP

has no algorithm with run time Õ(N2�✏) for ✏ > 0 unless SETH is false.

The reduction of k-SAT to OVP is particularly important as it is the first step in showing

the intractability of further problems. For example, in a 2018 paper, Backurs et al. [6]

have shown tight approximation bounds for Graph Diameter and Eccentricities under

SETH. The first step in showing such bounds begins with a reduction from k-SAT to

Introduction 3

OVP. Likewise, in this thesis, OVP is the first step of showing the hardness of the Edit

Distance [7].

Besides serving as an intermediate step in important reductions, OVP can serve as a tool

in rejecting SETH. That is, if we can find an algorithm that solves OVP in sub-quadratic

time then SETH is false. Much work has gone into giving sub-quadratic algorithms for

OVP. Through an application of the Sparsification Lemma [8], it is enough to consider

the case when the dimensionality of the vectors, d, is c logN for constant c > 0. In 2015,

Abboud, Williams and Yu ([7], [9]) showed, using the probabilistic method, that there

is an algorithm for OVP that runs in time n
2� 1

O(log c) . The probabilistic method focuses

on utilizing tools such as Markov’s Inequality, the Cherno↵ bound and the Lovasz local

lemma to show that an event takes place. In the use of the probabilistic method, one

usually has a parameter p which determines the probability that such event happens.

Thus, the probabilistic method involves a randomness. In order to use such techniques

to argue for the run-time of deterministic algorithms, one must de-randomize these

approaches. In [7], the algorithm given runs in the stated time with a high probability

of obtaining a correct answer while in [9] this algorithm is derandomized. In this thesis

we do not use the probabilistic method. Instead we give simple and intuitive algorithms.

In comparison, in this thesis we discuss an algorithm that has been discussed only in an

online forum [10] that runs in time Õ(N c) but now with c < 2 which does not use the

probabilistic method. We do so in hope of understanding exactly what it is that makes

OVP intractable.

1.2 Edit Distance

In the last section of the thesis, we discuss an example of the most useful property of

OVP: its ability to transform into di↵erent problems. As mentioned before, OVP is

known as an intermediate bridge between di↵erent types of problems, including Graph

Diameter, Eccentricity, Batch Partial Match, and Vector Domination ([6], [7]). In this

thesis, we are particularly concerned with the reduction of OVP into Edit Distance. An

Edit Distance problem takes as input two strings x and y. It considers the actions of

deleting, adding and replacing an entry in the string and assigns each a cost of 1. The

edit distance d(x, y) of strings x and y is the minimum cost required to transform x into

y. The Edit Distance problem is to compute d(x, y).

The last part of this thesis, starts by discussing the dynamic programming algorithm

usually utilized to solve the edit distance problem. We’ll see that this runs in time

O(N2) where N is the size of the strings. We will then give the reduction from OVP

to Edit Distance [11]. In conjunction with the reduction from k-SAT to OVP, this gives

Introduction 4

a reduction from k-SAT to Edit Distance. This means that there is no sub-quadratic

algorithm for Edit Distance unless SETH is false.

1.3 Outline

In chapter 2 we define k satisfiability. The obvious algorithm to solve an instance of

k-SAT with n variables runs in time O(2n). Despite e↵orts this algorithm, up-to loga-

rithmic factors in the exponent is also the fastest known. The hardness of k-satisfiability

leads us to hypothesize that there does not exist a substantially faster algorithm for k-

SAT. This is a famous hypothesis known as the Strong Exponential Time Hypothesis.

In this chapter, we state SETH as well as explore its implications. In particular, we

present the problem of orthogonal vectors. We see that the obvious algorithm for OVP

runs in time O(N2) where N is the size of the vector sets in the fixed instance of OVP.

Much like k-SAT, despite e↵orts, the fastest known algorithm, up to logarithmic factors,

also runs in time O(N2). Because of this, we are motivated to show the intractability of

OVP. In fact we show that if one believes in the intractability of k-SAT then one must

also believe in the intractability of OVP. That is, we give a reduction from k-SAT to

OVP and conclude the chapter with the result that for any ✏ > 0 there does not exist

an algorithm of run time O(N2�✏) unless SETH is false. We visit a widely used theorem

that goes by the name of “the sparsification lemma” [8] that allows us to assume that

any given instance of k-SAT can be reduced to a number of k-SAT instances such that

the number of clauses m in each instance is O(n). This in turn will mean that we may

concentrate on OVP instances where the vector dimensional is O(logN).

If we can solve OVP in time O(N2�✏) for some ✏ > 0 then we can solve k-SAT in

time O(2n��) for some � > 0 and SETH is false. This would not prove that P = NP

but it would give us better k-SAT algorithms. This motivates us to understand the

hardness of OVP. In chapter 3 we continue exploring the OVP problem. In chapter 3,

we revisit the usual O(N2) algorithm and explore techniques that make certain OVP

instances easier to work with. By the sparsification lemma [8], we only consider instances

where the dimensionality d of the vectors is d = c logN for some fixed constant c > 0.

Following [9], we prove that when c < 1 there exists an algorithm that runs in time

O(Nmax{1,2c})  O(N2). We take this a step further and present the following result:

Fix c < 2. For an instance of OVP where d = c logN there is an algorithm with

running time O(N c) [10]. In contrast the best algorithm for OVP to date utilizes the

probabilistic method and is given in [9]. This algorithm assumes c  2o(
logN

log logN
) and runs

in time O(N
2� 1

O(log c)).

Reduction To Orthogonal Vector 5

The result for OVP is not unique. In fact, under SETH we are able to show hardness

for many di↵erent problems. However, a particular property of OVP is its versatility.

In chapter 4 we explore one example by considering the hardness of the Edit Distance

problem. The Edit Distance problem is to convert one string s into another string t over

some fixed alphabet in the fastest way possible. We convert this into a decision problem

by computing the edit distance d(x, y) of two given strings and deciding whether or

not d(x, y) < C for some fixed bound C. We take an in-depth look at the the usual

dynamic algorithm used to compute the edit distance of two strings. Such algorithm

runs in time O(n2) where n is the maximum of the length of x and y. Much like k-SAT

and OVP, the fastest known algorithm runs in time O(n2

log

2 n
)[12]. That is, as fast as the

standard textbook algorithm up to logarithmic factors. Just as with k-SAT and OVP,

it is possible to show the intractability of Edit Distance under the hypothesis of SETH.

We thus give an outline of the reduction from OVP to Edit distance as in the paper by

A. Backurs and P. Indyk [11]. This reduction runs in time O(n) and gives the following

result: For every ✏ > 0, there is no O(n2�✏) algorithm for the Edit distance decision

problem unless SETH is false.

Chapter 2

From k-SAT to Orthogonal

Vectors

An instance of the satisfiability problem takes as input a formula F in CNF form over

a set of variables x
1

, . . . , xn and asks for a satisfying truth assignment. An instance

of k-satisfiability (k-SAT) takes an instance of the satisfiability problem where each of

the clauses C
1

, . . . , Cm contains at most k literals. An instance of k-SAT is said to

be “satisfiable” if it has a satisfying truth assignment. The trivial algorithm simply

checks every truth assignment and runs in time equal to the number of possible truth

assignments, O(2n). The apparent intractability of SAT leads to the following two

hypothesis.

Definition 2.1 (ETH and SETH [3]). Let

sk = inf{� : there exists an algorithm for k-SAT with running time O(2�n)}.

It is clear that sk  1. The Exponential Time Hypothesis (ETH) states that sk > 0 for

k � 3. The Strong ETH (SETH) states that in addition lim
k!1

sk = 1.

The versatility of k-SAT is exploited through SETH. When one encounters a problem

which, after many failed attempts, proves itself to be particularly grim in respect to

improving its run time, SETH is a tool that may help showcase the intractability of

such problem.

An equivalent way to state SETH considers any k. In this form, SETH states the

following: For all ✏ > 0 there is a k such that k-SAT requires time ⌦(2(1�✏)n). The

way to use SETH to show the intractability of some decision problem is to give a valid,

fast reduction from k-SAT to the problem. By valid reduction we mean that given an

6

Reduction To Orthogonal Vector 7

instance of k-SAT the reduction gives an instance of the problem at hand such that the

instance of k-SAT is satisfiable if and only if the problem at hand has answer “Yes.” By

fast reduction, we mean that the transformation of the k-SAT instance into the problem

at hand can be computed faster than the time it takes to compute a solution of the

problem at hand. The fast requirement is imperatively necessary since it is possible to

give a reduction between two problems in such a way where the reduction takes more

time than to compute the answer. What remains is that in the end, we take more time

to write down the problem than to solve it so that no matter what we do, the problem

will always have run time at least the time we took to write it down.

In what follows, we use SETH to show the Õ(N2) hardness of OVP.

An instance of the Orthogonal Vector Problem consists of sets A, B of d-dimensional

vectors over the alphabet {0, 1} and where |A| = |B| =: N . The objective is to output

answer to the question, “Do there exist vectors a 2 A and b 2 B such that a · b = 0?” If

the answer is “Yes” then we say that the instance of OVP, (A,B) “has a solution.”

We will need to provide a valid, fast reduction from any instance of k-SAT to a particular

instance of OVP. Valid here means that the instance of k-SAT has a satisfying truth

assignment if and only if there is a pair of orthogonal vectors in our instance of OVP.

Fast here means that the instance of OVP can be computed in time strictly less than

Õ(N2). Note again, that if we give a reduction in time Õ(N2+⌘) regardless of the time

needed to compute the answer of the OVP instance at hand, the total computation time

would be at least Õ(N2+⌘). In this case, we know that the obvious algorithm for OVP

runs in time Õ(N2) so that regardless of improving the algorithm for OVP, the total

computation time is Õ(N2+⌘). For our purposes we need to show that if there exists a

fast algorithm for OVP then a reduction and a run of such algorithm is still fast.

We find that when dealing with k-SAT, the time of reduction necessary may be prob-

lematic. The reduction from a exponential time problem to a polynomial time problem

creates a barrier when simply trying to write down the equivalent OVP instance. In

our reduction below, the number m of clauses in our k-SAT instance will become the

dimension, d, of our vectors. If the dimension of our vectors gets too large then writing

them down could take possibly more time than actually computing the solution. Luckily,

this is not the first reduction with this problem. To overcome this barrier, we make use

of an important Theorem.

Theorem 2.2 (Sparsification Lemma [8]). For every k 2 N and ✏ > 0 there exists an

algorithm sparse(F, ✏) and a function c(k, ✏) such that the following properties hold:

Reduction To Orthogonal Vector 8

1. sparse(F, ✏) takes as input a k-CNF formula F over n variables and gives a list

of t many k-CNF formulas {F
1

, . . . , Ft} such that F is satisfiable if and only if at

least one of the Fis is satisfiable.

2. Each Fi uses only the variables x
1

, . . . , xn.

3. Each Fi has at most c(k, ✏)n clauses.

4. sparse(F, ✏) runs in time O(2✏n) and t < 2✏n.

We will now give the reduction.

Theorem 2.3. Fix ✏ > 0. There is an algorithm SATtoOV P which does the following:

1. Given an instance � of k-SAT as input, SATtoOV P (�, ✏) outputs t < 2✏n many

instances, (A
1

, B
1

) · · · (At, Bt), of OVP.

2. � is good if and only (Ai, Bi) is good for some i 2 [t].

3. SATtoOV P (�, ✏) runs in time O(2(
1

2

+✏)nn).

Proof. Given an instance of k-SAT consisting of variables x
1

, . . . , xn, clauses C1

, . . . , Cm0

and CNF-formula F , apply the sparsification lemma to obtain formulas F
1

, . . . , Ft. By

1 in Theorem 2.2, we have that F is satisfiable if and only some Fi for i 2 [t] is satisfi-

able. Thus, solving the satisfiability questions for all the Fi is equivalent to solving the

satisfiability question for our original F .

Fix i 2 [t]. We reduce each Fi to an OVP question. By 2 in Theorem 2.2, the number

of variables in each Fi is no more than n. Let ↵ be a truth assignment on the first n
2

variables and define the vector v↵ coordinate by coordinate by setting

(v↵)i =

8
<

:
0 if ↵ makes some literal in Ci true

1 otherwise

Let A be the set of all vectors v↵ derived from every possible truth assignment ↵ on the

first n
2

variables. We assume for convenience that n is even. We have that |A| = N = 2
n
2 .

Similarly, let � be a truth assignment on the last n
2

vectors and define the variables v�

by

(v�)i =

8
<

:
0 if ↵ makes some literal in Ci true

1 otherwise

Reduction To Orthogonal Vector 9

Set B to be the set of all possible such vectors. We also have that |B| = N = 2
n
2 .

Now we claim that the truth assignment � defined by

�(xi) =

8
<

:
↵(xi) if 1  i  n

2

�(xi) if n
2

< i  n

is a satisfying truth assignment for Fi if and only if v↵ · v� = 0.

Indeed, � satisfies Fi if and only if � satisfies each Ci for all i 2 [m]. � satisfies each

Ci for all i 2 [m] if and only if either (v�)i = 0 or (v↵)i = 0 so that it is required for

(v�)i · (v↵)i = 0.

We have proven that every Fi can be reduced to an equivalent OVP problem. In what

follows we show the su�cient runtime to transform each Fi into its particular OVP

counterpart. For each formula Fi apply the following algorithm SINGLEOV P .

Define Function SINGLEOV P

//Function SINGLEOV P takes in an instance � of k-SAT

//and outputs an equivalent instance of OVP

Intialize empty sets of vectors A and B

//In the reduction given above, the size of the vector sets

//A and B are given by the possible number of truth assignments

//on half of the variables for formula Fi.

//That is, |A| = |B| = N  2
n
2 .

for each truth assignment ↵ to x
1

, . . . , xn
2

do

for each clause Ci 2 F do

Set (v↵)i =

8
<

:
0 if ↵ makes Ci true

1 otherwise

Put v↵ in A

end for

end for

for each truth assignment ↵ to xn
2

+1

, . . . , xn do

for each clause Ci 2 F do

Set (v�)i =

8
<

:
0 if ↵ makes Ci true

1 otherwise

Put v� in B

end for

end for

Output A and B

End Function SINGLEOV P

Algorithm for Orthogonal Vectors 10

The run time for the conversion of each Fi can be bounded as follows. There are

2
n
2 possible truth assignments on each half of the variables and by 3 of Theorem 2.2

m = O(n) many clauses in our given instance of SAT. Furthermore, the time it takes

to check if ↵ satisfies a certain clause is k = O(1). Thus, this algorithm takes time

O(2
n
2 mk) = O(2

n
2 n).

Now we define SATtoOV P (�, ✏).

Begin function SATtoOV P

//Function SATtoOV P takes in an instance of k�SAT with x
1

, . . . , xn,

//C
1

, . . . , Cm0 clauses and CNF-formula F .

//✏ > 0 is fixed.

Compute sparse(F, ✏)

// sparse gives us t formulas with the properties given in 2.2.

for all formulas Fi given by sparse(F, ✏) do

Output the OVP instance given by SINGLEOV P (Fi)

end for

Properties 1 and 2 of Theorem 2.2 follow from our discussions above. For property

3 we examine the overall runtime of SATtoOV P . By property 4 of Theorem 2.2,

sparse(F, ✏) runs in time O(2✏n). Computing SINGLEOV P (Fi) for all i < 2✏n runs in

time O(2
1

2

nn2✏n) = O(2(
1

2

+✏)nn) so in total we get a running time of O(2✏n+2(
1

2

+✏)nn) =

O(2(
1

2

+✏)nn).

From here, it is easy to argue the following.

Theorem 2.4. There does not exist an algorithm for OVP with time O(N2��) for

constant � > 0 unless SETH fails.

Proof. For the sake of contradiction, assume that there exists anO(N2��) time algorithm

for OVP for fixed � > 0. Fix k � 3. We will prove sk < 1� �
4

. Set ✏ = �
4

.

Apply the algorithm of OVP with run-time O(N2��) for fixed � > 0 to each of the

O(2✏n) instances of OVP. Each of these OVP instances can be solved with runtime

O((2
n
2)2��) = O(2n�

�n
2) = O(2n(1��)). As there are at most 2✏n of these instances, the

total run time to solve all of the OVP instances is O(2✏n2n�
�
2

n) = O(2(1�
�
2

+✏)n).

Thus, solving � runs in time O(2n(✏+
1

2

)n) + O(2(1�
�
2

+✏)n) = O(2n(
�
4

+

1

2

)n + 2(1�
�
4

)n) =

O(2(1�
�
4

)n). In other words, for any k � 3, sk < 1� �
4

which contradicts SETH.

Chapter 3

An In-Depth Look At Orthogonal

Vectors

An instance of the Orthogonal Vector Problem consists of sets A, B of d-dimensional

vectors over the alphabet {0, 1} and where |A| = |B| =: N . The objective is to output

an answer to the question, “Do there exist vectors a 2 A and b 2 B such that a · b = 0?”

We have seen in 2, that if we can give an algorithm for OVP that runs in time O(N2�✏)

for some ✏ > 0 then we will have refuted SETH. In fact, in Theorem 2.3, we reduced an

instance of k-SAT to OVP. In the process, we applied the sparsification lemma, Theorem

2.2, and obtained �
1

, . . . ,�t instances of k-SAT with the property that each had at most

cn clauses for some fixed constant c > 0. In our conversion of each such instance �i to

an OVP instance �0
i, the dimensionality of the vectors in A and B is given by the total

number of clauses in �i. That is, �0
i enjoys the property that d = cn. Recall that �0

i also

has the property that |A| = |B| = N = 2
n
2 so that n = 2 logN . Thus, �0

i has vectors

with dimensionality d = cn = c2 logN = O(logN). For this reason, in what follows we

focus on looking at di↵erent approaches to solve instances of OVP with dimensionality

O(logN) in time faster than O(N2).

The obvious algorithm for OVP is to check every possible combination of pairings of

vectors. As there are N2 many possible pairs this algorithm runs in time Õ(N2). The

fastest algorithm for OVP is given in [7] and uses the probabilistic method to obtain

a runtime of O(n2 logN). In a 2016 paper, R. Williams and T. Chan [9] showed that

under the assumption that c  2o(
logN

log logN
), the number of distinct u, v 2 {0, 1}c logN

such that u · v = 0 can be counted in N
2� 1

O(log c) time deterministically. What follows is

inspired by such result. Take note of the restriction that c  2o(
logN

log logN
). In our following

algorithms we take advantage of the implications of restricting the dimensionality of our

vectors to O(logN). Indeed, note that since d = c logN then 2d = N c. Thus, there

11

Algorithm for Orthogonal Vectors 12

are only 2d = N c possible d-dimensional vectors where c < 1 while there are N > N c

vectors in A (or B respectively). This means that we must have copies of vectors in sets

A and B.

In what follows we assume that we have eliminated duplicates from our given OVP

instances. There exist various implementations of algorithms in C++ that eliminate

repetitions in vectors and run in time Õ(n). One such implementation is to sort the

vector and then remove repetitions after scanning through the vector only once. Given

a vector V , sorting V takes time O(log(|V |)) while scanning through it to check for

repetitions takes time O(|V |) giving us a total running time of O(|V | log(|V |) + |V |) =
Õ(|V |).

Since the running time of our algorithms will be greater than Õ(|A|) = Õ(|B|), removing

repetitions does a↵ect the running time of the overall algorithms.

In [9], R. Williams and T. Chan state that OVP, with the restriction of d = c logN , can

be solved in time min{O(cN2 logN), O(N c+1)}. This means that when c > 1, we seek

to solve OVP in time O(cN2 logN) and when c < 1 we may solve it in time O(N c+1).

We claim that in fact, when c < 1, OVP can be solved in time Õ(Nmax{1,2c}). In what

follows, we give an explicit algorithm for this run time.

Theorem 3.1. (An improvement of [9] from [10]) For an instance of OVP where d =

c logN , and c < 1 there is an algorithm with running time Õ(Nmax{1,2c}) .

Proof. For each vector for each b 2 B, consider the set �b := {v 2 ⌦ : v · b = 0}. Each

set takes time Õ(2d) to compute. Now apply the following algorithm.

Remove duplicates from A and store them in data structure ⇧A

Remove duplicates from B and store them in data structure ⇧B

for all b 2 ⇧B do

Compute �b

for all v 2 �b do

if v 2 ⇧A then

Output “Yes” and halt

end if

end for

end for

Output “No”

Building ⇧A and ⇧B takes time Õ(N). There are at most 2d vectors in ⇧B and at

most 2d vectors in �b for every b. Searching for v 2 ⇧A can be done in time Õ(N)

Algorithm for Orthogonal Vectors 13

inside an e�cient data structure. Thus, this gives an algorithm with running time

Õ(2d2d +N) = Õ(22d +N) = Õ(N2c +N) = Õ(max{N2c, N}).

We now take this a step further. Previously, we took advantage of the fact that the sets

A and B contain repetitions. We now take advantage of the structure given by the all

possible orthogonal vectors to a set. Doing this leads us to the following result.

Theorem 3.2. For an instance of OVP where d = c logN , c < 2, there is an algorithm

with running time O(N c).

Notice that this is an improvement over the algorithms given in 3.1 and [9] as we expand

our constant c selection to c < 2. Furthermore, the fastest algorithm thus far for

OVP assumes that c  2o(
logN

log logN
) and runs in time N

2� 1

O(log c) deterministically. Such

algorithm is obtained using the probabilistic method and requires more sophisticated

techniques than the ones presented in this paper. Instead, we give a simple deterministic

algorithm for OVP that does not rely on probability but that competes with the result

of algorithm in [9].

Throughout this chapter, we consider the following sets of 4-dimensional vectors, A =

{0111, 0101, 1101} and B = {0001, 0010, 1001} as examples for our definitions.

Notation: In what follows, the ith coordinate in a vector w is denoted wi.

Definition 3.3 (Orthogonalization of a vector). For a vector b = b
1

...bd, the orthogo-

nalization of b, o(b) is defined as the vector with entries over the set {0,⇥} with entries

defined as follow: o(b)i =

8
<

:
0 if bi = 1

⇥ otherwise

For example, for 0001 2 B, o(0001) = ⇥⇥⇥0. This vector represents all the vectors

that can be obtained by replacing ⇥ with either a 0 or a 1. These vectors are also

exactly all of the vectors orthogonal to 0001. Consider the orthogonalization of the set

B, o(B) = {o(b) : b 2 B}. If a 2 A is a vector such that ai = 0 if o(b)i = 0 for all i, then

a is orthogonal to b. To search for such vector a 2 A easier, we build the following set.

Definition 3.4 (Orthogonal Extension of a set). Let A be a set of vectors from {0, 1}d.
The orthogonal extension of a set A is

AOE = {a0 2 {0,⇥}d : there exists a 2 A, a0i = 0) ai = 0}

The orthogonal extension of a set A contains every possible way to represent a vector

in A. That is, if w 2 AOE then there is a way to replace all ⇥s, some with 0’s and some

Algorithm for Orthogonal Vectors 14

with 1’s, to obtain a vector in A. In our example, the orthogonal extension of A is the

following:

AOE = {0⇥⇥⇥, 0⇥0⇥,⇥⇥0⇥,⇥⇥⇥⇥}

Take w = ⇥⇥0⇥. Replace w
0

= 0, w
1

= 1, w
3

= 1 and we obtain the string 0101 2 A.

Theorem 3.5. v 2 {0, 1}d is orthogonal to some a 2 A if and only if o(v) 2 AOE.

Proof. ())If o(v)i = 0 then vi = 1 which forces ai = 0 since viai = 0 for all i 2 [d].

Thus o(v) 2 AOE .

(()If o(v) 2 AOE then there exists some a 2 A such that if o(v)i = 0 then ai = 0 for

all i 2 [d]. If vi = 0 then aivi = 0. On the other hand, if vi = 1 then o(v)i = 0 which

implies ai = 0 and so viai = 0.

We thus have that o(b) 2 AOE for some b 2 B if and only if there is a pair of orthogonal

vectors in our OVP instance.

We now discuss the time complexity necessary to build AOE . First, we define some

useful tools.

Definition 3.6 (Abstraction). Let w 2 {0, 1}d. The abstraction of w, ↵(w) is defined

coordinate by coordinate by ↵(w)i =

8
<

:
0 if wi = 0

⇥ if wi = 1

In general, the abstraction of a set of vectors A ⇢ {0, 1}d, is ↵(A) = {↵(a) : a 2 A}.

Thus, for our example where A = {0111, 0101, 1101},

↵(A) = {0⇥⇥⇥, 0⇥0⇥,⇥⇥0⇥}

Definition 3.7 (0-replacement). Let w 2 {0,⇥}d. The 0-replacement set of w, ⌦(w), is

defined by⌦(w) = {w0 2 {0,⇥} : w0 is obtained by replacing exactly one 0 by a ⇥ in w}.
For a set X ⇢ {0,⇥}d, the 0-replacement set is defined as ⌦(X) =

S
x2X ⌦(x).

The recursive 0-replacement process defined on a set A puts X
1

= ↵(A) and Xi+1

=

⌦(Xi).

For ↵(A) := X
1

we have

Algorithm for Orthogonal Vectors 15

⌦(X
1

) = {⇥⇥⇥⇥,⇥⇥0⇥, 0⇥⇥⇥} := X
2

and

⌦(X
2

) = {⇥⇥⇥⇥} := X
3

It is easy to see that for the 0-replacement process of any set A, there exists a j 2 Z+

such that {⇥⇥⇥⇥} = Xj . Thus, the sets X1

, ..., Xj can be computed in a finite amount

of time. Furthermore, the following results will allow us to specify an algorithm for to

compute AOE .

Theorem 3.8. Let A be a set of d-dimensional vectors and let X
1

, ..., Xd be the sets

given by the 0-replacement process then
S

z2[d]Xz = AOE.

Proof. If v 2 AOE then there is some a 2 A such that if vi = 0 then ai = 0. If ↵(a) 6= v,

because ↵(a) 2 X
1

maintains this property, then ↵(a) di↵ers in finitely many places

from v by means of having a 0 instead of an ⇥. Thus, taking the 0-replacement of ↵(a),

that is, replacing each 0 with an ⇥ one at a time, yields v in a set Xz for z 2 [d] so that

v 2
S

z2[d]Xz.

Take v 2
S

z2[d]Xz. If v 2 ↵(A) then v 2 X
1

⇢
S

z2[d]Xz, otherwise v is obtained for

some a 2 A by replacing 1s by ⇥s and some 0s to ⇥. Thus, if vi = 0 then ai = 0.

To compute AOE , we do the following:

Initialize X
0

as an empty array of maximum size 2d

Initialize X
1

= ↵(A)

while X
1

6= ; do

Pick w 2 X
1

Remove w from X
1

Add w to X
0

for v 2 ⌦(w) do

if v 62 X
0

[X
1

then

Add v to X
1

end if

end for

end while

Theorem 3.9. For a set A ⇢ {0, 1}d, computing AOE takes time Õ(d2d +N).

Proof. We refer to the algorithm given above and discuss its run-time. First, initializing

X
0

takes time Õ(1).

Edit Distance 16

Now, in order to compute ↵(A), we simply run the following algorithm.

Initialize ↵(A) to be an empty set of maximum size N

for a 2 A do

Define a d-dimensional vector vi by

vi =

8
<

:
x if ai = 0

0 if ai = 1

Add v to ↵(A)

end for

We see that initializing ↵(A) to be an empty array runs in time O(1). We then have

that running through every a 2 A and scanning every coordinate in a takes time O(dN).

Thus, computing ↵(A) takes time O(N + dN) = O(N + c log(N)N) = Õ(N).

Note that the line if v 62 X
0

[X
1

guarantees that every v 2 {0,⇥} appears in X
0

at

most once. Since there are at 2d d-dimensional vectors over {0,⇥} this guarantees that

the loop executes at most 2d times. Now for a d�dimensional vector w, |⌦ (w)|  d so

that the inner for loop runs in time Õ(d). Thus, this the construction of AOE runs in

time Õ(d2d). The result now follows.

From this, we are now ready to give a faster algorithm for OVP in a special instance.

Theorem 3.10. For an instance of OVP where d = c logN , c < 2, there is an algorithm

with running time O(N c).

Proof. Build o(B)

Build AOE

for b 2 o(B) do

if b 2 AOE then

Output “Yes”

end if

end for

Output “No”

Building o(B) runs in time Õ(N). By the previous theorem, building AOE runs in time

Õ(d2d +N) and checking for membership in AOE runs time O(logN) with an e�cient

data structure. Thus, the algorithm runs in time Õ(N + d2d) = Õ(N c).

We return to the example sets given at the beginning of the chapter. From above, o(B) =

{⇥⇥⇥0,⇥⇥0⇥, 0⇥⇥0} and AOE = {0⇥⇥⇥, 0⇥0⇥,⇥⇥0⇥,⇥⇥⇥⇥}. Since ⇥⇥0⇥ 2
AOE then the answer is yes for this instance of OVP.

Chapter 4

From OVP To Edit Distance

In the previous chapters we explored the intractability of OVP. However, OVP is most

famous for its versatility as a bridge to show intractability of other problems. k-SAT is

an exponentially hard problem while OVP is a quadratic hard problem. That is, while

there remains to find a sub-exponential algorithm for k-SAT, there remains to find a

sub-quadratic algorithm for OVP. When discussing P vs NP we are interested in only

exponentially hard problems. We are looking to find polynomial run-time algorithms

for problems with easy exponential time solutions. However, notice that OVP’s easy

solution runs in time O(dN2) and that furthermore, we were able to show the hardness

of OVP despite it being a problem with a polynomial run-time. This is precisely what

makes OVP versatile.

In what follows we convey this property of OVP by introducing a new problem, Edit

Distance. The Edit Distance problem takes two strings x and y over some alphabet ⌃

and asks for the minimum number of operations required to transform some string x

into another string y. To talk about measuring such distance we define the function

de(x, y) : ⌃⇥ ⌃ ! R�0

to be the minimum number of symbol insertions, deletions and

substitutions required to transform x into y.

Theorem 4.1. de forms a metric.

Proof. We have that x 2 ⌃ requires no actions to transform into itself and thus de(x, x) =

0. Furthermore, if de(x, y) = 0 then x is identical to y and thus x = y.

Every substitution of a letter, substitute ⌧ with ⌧ 0, can be reversed by substituting ⌧ 0

with ⌧ . Every deletion of a letter ⌧ can be undone by the insertion of the letter ⌧ and

conversely every insertion of a letter ⌧ can be undone by the deletion of a letter ⌧ . Thus,

it follows that if n actions are minimally required to change x into y then at most n

17

Edit Distance 18

actions are required to change y into x. Further, it must be the case that also n actions

are required to change y into x, for if not let � be actions needed to change y into x,

then the reverse of � yields a shorter conversion of x into y violating the minimality of

n. We thus have that de(x, y) = de(y, x).

It remains to show that de(x, z)  de(x, y) + de(y, z) for all strings y. Although de(x, z)

is fixed, there may be many minimal ways to transform x into z. Let �
1

, . . . ,�k be all

the possible ways to transform x into z. For each �j , applying �j to x yields a list of

strings xj
1

, . . . , xjn such that xj
1

= x and xjn = y. A string z is optimal if xji = z for some

i 2 [n] and j 2 [k]. If z is optimal, it follows that de(x, y) + de(y, z) = de(x, z). If z is

not optimal then the actions of converting x to y and then y to z is a way to convert x

into z that is not minimal. Thus, de(x, z)  de(x, y) + de(y, z).

The naive approach to solving an instance of Edit Distance utilizes a dynamic pro-

gramming algorithm [13]. Let n = max(|x|, |y|). The dynamic programming algorithm

approach uses a |x| ⇥ |y| table to keep track of possible e�cient routes to convert the

string x into string y and runs in time O(n2). Suppose string x consists of symbols

x
1

. . . xn and string y of symbols y
1

. . . yn, the mentioned table constructs de(xi, yj) for

all i 2 [n] and j 2 [m] and then looks for the shortest combination of such i’s and j’s

such the sum is de(x, y).

Suppose we are given strings x =BCAAD and y =CAAB. Our task is to find the

minimum number of deletions, substitutions and insertions necessary to convert x into

y. We first note that the shortest way to do this may involve deleting every character

in the initial source string x. Thus, instead of considering just x we consider the string

x to make the point that when the whole of x is deleted, remains. We also do this

with string y. The algorithm to compute de(x, y) begins by initializing an empty n+ 1

by m+ 1 matrix and associating the source string x with the horizontal axis and the

target string y with the vertical axis as shown below.

B C A A D

C

A

A

D

Entry (i, j) in the table will correspond to the number of least computations necessary

to convert the substring x
1

. . . xi into the substring y
1

. . . yj . We start filling out the

easiest entries in such table, (i, 1) for i = 1, 2, 3, 4, 5 and (1, j) for j = 1, 2, 3, 4, 5, 6. It

is clear (i, 1) = i � 1 for all i = 1, 2, 3, 4, 5 as the shortest way of converting an empty

Edit Distance 19

string into a non empty string consists of inserting the non-empty string characters into

the empty string. Likewise, (1, j) = j � 1 for j = 1, 2, 3, 4, 5, 6 since the shortest way

of converting a non-empty string into an empty string is to simply delete all characters.

We thus have the following table.

B C A A D

0 1 2 3 4 5

C 1

A 2

A 3

D 4

Now we fill out the rest of the table inductively by columns. As mentioned above, moving

down on the table indicates an insertion of a character and moving right indicates

a deletion. By process of elimination, moving diagonally must indicate substitution.

Indeed, consider entry (2,2) on the above table. The shortest way to convert the string

x
1

=B into y
1

=C is to replace B with a C. This induces a cost of +1 in our table so

entry (2,2) = (1,1) + 1 = 0+1 = 1.

What does it mean if we would have picked to add one to the entry right above (2,2)

(That is (1,2))? This would first force us to find the cost to transform the string B into

as per indicated by that entry. Then by moving down we are inserting the necessary

letter C. What this looks like is B ! ! C, two moves. Similarly, if we were to take

the entry to the left of (2,2), our first move would indicate a deletion. That is, B !
! C, again two moves.

From this we learn that moving down represents insertion, moving left represents deletion

and moving diagonally represents substitution. At each entry we look for the smallest

cost possible and thus for the minimum of these three entries. If we choose to operate

with the diagonal at entry (i, j) and if xi = yj then we simply leave that characters

alone. That is, there is no extra cost for that move. We then have that we set entry

(i, j) = min((i� 1, j), (i, j � 1), (i� 1, j � 1) + cost(i, j)) where cost(i, j) = 0 if xi = yj

and 1 otherwise. From this, we recursively fill our table.

B C A A D

0 1 2 3 4 5

C 1 1 1 2 3 4

A 2 2 2 1 2 3

A 3 3 3 2 1 2

D 4 4 4 3 2 1

Edit Distance 20

de(x, y) = (n,m). Indeed, the fastest way to turn x to y is to delete B from x which has

a 1 operation. A more interesting example is below.

Z A P A T O

0 1 2 3 4 5 6

P 1 1 2 2 3 4 5

A 2 2 1 2 2 3 4

P 3 3 2 1 2 3 4

O 4 4 3 2 2 3 3

In short, we have introduced the following algorithm to compute de(x, y).

First define the function cost:

Define function cost(i,j)

if xi = yj then

Return 0

else

Return 1

end if

End function

Now define the algorithm to compute de(x, y):

Initialize an empty |x|⇥ |y| 2D matrix

for i in range(|x|) do
Set (i, 1) = i� 1

end for

for j in range(|j|) do
Set (1, j) = j � 1

end for

for i = 2 in range(|x|) do
for j = 2 in range (|y|) do

Set (i, j) = min((i, j � 1) + 1, (i� 1, j) + 1, (i, j)+cost(i, j))

end for

end for

This runs in time O(n2). Despite e↵orts, the fastest algorithm to compute Edit Distance

runs in time O(n2

log

2 n
) [12]. Ignoring logarithmic factors this is as fast as the usual

textbook algorithm. This gives us a motivation to show the intractability of OVP.

To do this, we use SETH and give a reduction from k-SAT to edit distance. As it was

mentioned earlier, such reduction will not be explicitly between k-SAT and edit distance.

Instead, we utilize the result given by Theorem 2.3 and use OVP as an intermediate

Edit Distance 21

bridge between k-SAT and edit distance. What we will give is an explicit reduction

from OVP to Edit distance. Indeed, such reduction exists and is given in [11]. In this

reduction we implicitly convert the problem of finding de(x, y) to the decision problem

of “Is de(x, y) = C?,” for some explicit, fixed C.

Theorem 4.2. [11] There exists a reduction from OVP to Edit distance which runs in

time O(N).

Proof. We give such reduction. Without loss of generality we assume that the first entry

in every vector in B is 1.

We work from the inside out. We first give vector gadgets for each coordinate in each

vector. Then we will concatenate them to make up vector gadgets for each vector in sets

A and B. Lastly, we concatenate these vectors to get an instance of two strings, each

representing either set. In the end we construct two strings sA and sB representative of

each corresponding set A and B where de(sA, sB) = C if there are no two orthogonal

vectors in A and B and de(sA, sB)  C � 2 otherwise.

First, we will talk about the vector gadgets of each coordinate. Throughout the re-

duction, we will define parameters of length lc, lv, and ls. The reason behind choosing

these parameters will become apparent as we progress into discussing the validity of the

reduction.

Coordinate Gadgets:

Define

CG
1

(i) =

8
<

:
2lc01112lc if i = 0

2lc00012lc if i = 1

CG
2

(i) =

8
<

:
2lc00112lc if i = 0

2lc11112lc if i = 1

for i 2 {0, 1} and lc = 1000 · d.

These are our coordinate vector gadgets. At every step of complexity, we must address

how our construction impacts the edit distance of the objects at hand. Here, note that

the edit distance between the two coordinate vector gadgets is 1 when the product of

the inputs of each coordinate gadget is zero and 3 when the product of the inputs is

nonzero. That is, for i, j 2 {0, 1},

Edit Distance 22

de(CG
1

(i), CG
2

(j)) =

8
<

:
1 if i · j = 0

3 if i · j = 1

Now we define the vector gadgets. In what follows, we denote the concatenation of two

strings x and y as x [y. First, let lv = (1000d)2, and define

PadL = PadR = Pad = 3lv

EdgeL = EdgeR = 4lv

Conca =
[

i2[d]

CG
1

(ai)

Concb =
[

i2[d]

CG
2

(bi)

Vector Gadgets:

Now define the vector gadgets as follows.

V G
1

(a) = EdgeLConcaPadConca0EdgeR where a0 = 10d�1

V
2

(b) = PadLConcbPadR

We thus have the following strings for V G
1

and V G
2

respectively.

Edit Distance 23

We must now talk about de(V G
1

(a), V G
2

(b)). This part of the proof is what makes the

construction of this reduction work.

Claim: Let |Conca| = |Concb| = |Conca0 | = µ.

de(V G
1

(a), V G
2

(b)) =

8
<

:
V
o

:= 2lv + µ+ d if a · b = 0

V
no

:= 2lv + µ+ d+ 2 if a · b � 1

Before proving the claim, we give intuition of a fundamental notion. We wish to make

the notion of “aligning” strings precise. Intuitively, an alignment between two strings

occurs when the necessary actions to transform string x into a string y only include

preserving or substituting symbols. However, one may go in a round-about way of doing

this. For example, one may delete symbols only to insert them again with the same

or a di↵erent symbol and only to find out that the operation could have been done

in a smaller amount of steps by substituting or preserving the symbol. However, the

transformation of string x into string y, takes a particular set of instructions that once

applied to x yield y. These instructions can always be applied onto string x by traversing

the string from left to right and applying the necessary actions on the scanned symbol

at hand. If applied in such manner, the tape head will always scan the first and last

symbols of strings x and y at the same times whenever x aligns with y. This notion is

useful as we seek to generalize the intuition of alignment to substrings.

Definition 4.3. Consider a transformation of string s into string t, a contiguous sub-

string of s, s0 = s
0

. . . sk and a contiguous sub-string of t, t0 = t
0

. . . tp. We say that s0 is

aligned with t0 if there is a time in the conversion of s into t such that s
0

is scanned at

the same time as t
0

and sk is scanned at the same time as tk.

This means that either si = ti or si is eventually replaced with ti for all i 2 [k]. Here we

use the word eventually as it may be the case that si takes a long route to be replaced

by ti. Take for example the action of deleting si and then inserting ti. The presented

notion of alignment still allows us to say that si is aligned with ti although si was not

explicitly substituted with ti. This notion will be critical to the rest of the proof as we

will need the gadgets to have a certain alignment and we show that the alignment we

want is in fact the optimal alignment.

Upper bound of claim:

The upper bounds of our claims will always be the “easy” cases as we simply give the

alignment we actually want to be optimal.

Edit Distance 24

One of the alignments we show to be optimal occurs when a · b = 0. Delete Conca0

and EdgeR. This costs µ + lv. Then convert EdgeL into PadL which adds a cost of

lv. Finally, convert Conca into Concb. Because a and b are orthogonal, this only costs

d. We then get a final distance of 2lc + µ + d. The following image summarizes this

alignment.

On the other hand, if a · b 6= 0 then delete Edgel and Conca. This costs µ + lv. Now

convert EdgeR into PadR which induces a cost of lv. Convert Conca0 into Concb.

Since a0 is zero every where but its first coordinate and b’s first coordinate is 1 we have

that a0 · b = 1. Thus, converting Edger into Padr gives us a cost of d + 2. Thus, the

distance is 2lc + µ+ d+ 2. This case is summarized with the following image.

Putting the previous arguments together we have that de(V G
1

(a), V G
2

(b)) is bounded

above by our claim.

We now show that the alignment that we have chosen is in fact the optimal. Note that

in our upper bound we had an alignment between Concb and either Conca or Conca0 .

In what follows we show that this is indeed the ideal route in which to convert V G
1

(a)

to V G
2

(b).

Edit Distance 25

Lower bound of claim:

We will prove the lower bound by exhaustion. In particular, we must show that the

cases below yield a greater bound than our intuitive alignment above.

Concatenated Middle Strings:

In what follows, we refer to a contiguous sub-string of some string x as a “part” of

x. First one may ask, what would happen if in the conversion of V G
1

(a) into V G
2

(b),

aligning parts of Concb with parts of the merged string ConcaConca0 gives a smaller

cost than our desired alignment. This can be pictured below.

In this case, we would be required to delete Pad and change substrings PadL and

PadR into EdgeL and EdgeR respectively. This induces as cost of at least 3lv so that

de(V G
1

(a), V G
2

(b)) � 3lv. However, simply by deleting substringsConca,Conca0 ,Concb,EdgeR

and replacing every 4 in PadL with a 3, in order to convert PadL into EdgeL we obtain

the upper bound 2lv + 3µ. By simple counting we obtain µ = de(4 + lc) and through

our choice of lc and lv one can confirm that lv > 3µ so that 2lv + 3µ < 3lv which shows

that this is not optimal.

Thus, it follows that some parts of Concb must be aligned to either some parts of Conca

or some parts of Conca0 but not both. However, regardless of which string parts the

parts of Concb are aligned to, we prove that de(V G
1

(a), V G
2

(b)) � 2lv + µ. Indeed

suppose that some parts of Concb aligns with some parts of Conca0 (Conca respec-

tively). This means that we must substitute or delete every symbol in EdgeLConca

(Conca0EdgeR respectively). This induces a cost of lv + µ. Furthermore, because all

symbols in EdgeR (EdgeL respectively) are 4’s while all symbols in PadR (PadL re-

spectively) are 3’s, we will a cost of lv in order to edit EdgeR (EdgeL) into PadR

(PadL). Thus, we have established a minimum cost of 2lv+µ. The rest of the cases will

be dedicated to computing lower bounds for the contribution of vector gadgets Conca,

Conca0 , and Concb.

Edit Distance 26

Alignment with Conca0:

We have proved that Pad acts as a divider between Conca and Conca0 . This means

that if Concb has an alignment with Conca (Conca0 respectively), then every symbol

in Conca0EdgeR (EdgeLConca resp.) must be either deleted or substituted. This

operation will then contribute to a cost of µ+lv. We conclude that the optimal alignment

cost is at least µ+ lv. Furthermore, at least part of only one, either Conca or Conc

0a

must be aligned with Concb.

Without loss of generality, we look at the case where Conca has an alignment with

Concb. Conca is made up of concatenated coordinate vectors. In each one, we have

blocks of 1’s decided by whether the vector at each coordinate is orthogonal or not.

Denote the ith run of 1s in Conca as (Conca)i and likewise denote the jth run of 1s

in Concb as (Concb)j .

Case 1:

Suppose that we have an alignment between two “o↵” blocks of 1’s. That is, there is

an alignment between block i of Conca and j of Concb for i 6= j, i, j 2 [d] as shown

below.

We then have that the number of symbols by which Conca and Cb di↵er by after the i

and j block of 1’s is at least 2lc. We thus have an addition to the minimum cost of our

edit distance of 2lc � d + 2. We then have an overall minimum cost of 2lv + µ + d + 2

as desired.

Case 2:

If no such alignment between two “o↵” blocks exists then for all i 2 [d] the ith block of

0s and 1s from Conca has an alignment with the ith block of 0s and 1s in Concb.

Edit Distance 27

If the ith run of 0s and 1s in Conca is aligned with the ith run of 0s and 1s in Concb

then by design, the optimal way to convert the ith run of 0s and 1s from Conca to the

ith run of Concb. This gives a cost of 1 + 2a0ib
0
i.

In the runs of 0s and 1s where we do not have alignment we must get rid of the

runs of 1s. We have that since each run of 1s has at least 2 1s in Ca and each

run of 1st has at least 1 1s in Cb, then the edit cost is at least 2 + 1 = 3. Let

I = {i : ith run in Conca0 has an alignment with the ith run in Concb}. We have that

edit cost over all runs is the following.

X

i:i2I
(1 + 2a0ibi) +

X

i:i2[d]�I

3 �
dX

i

(1 + 2a0ibi) = d+ 2(a0 · b)

Since all of these changes are minimal independent changes taken to convert string

V G
1

(a) into V G
2

(b), we have de(V G
1

(a), V G
2

(b)) � 2lv + µ+ d+ 2(a0 · b).

Alignment with Conca

The very last case happens when Conca0 has alignment with Concb. This case is almost

identical to the case when Concb has no alignment with EdgelConca as we did not

make assumptions about a. By symmetry, it holds that minimal cost in this case is

X

i:i2I
(1 + 2aibi) +

X

i:i2[d]�I

3 �
dX

i

(1 + 2aibi) = d+ 2(a · b) (2)

Putting (1) and (2) together we obtain the bound de(V G
1

(a), V G
2

(b)) � d+2min (a · b, a0 · b).
Since a0 · b = 1 holds for every a, b 2 {0, 1}d and a · b � 1 if and only if a and b are not

orthogonal the claim follows.

Pattern Gadgets:

Before building the complete Set Gadgets, we first take a step back into a di↵erent

notion.

Edit Distance 28

Definition 4.4. Define the pattern distance of x and y, dp(x, y), to be the minimum

edit distance between x and any contiguous sub-string of y.

Pattern distance will be useful to us by letting us argue bounds of only the concatenated

vector gadgets. Define the set pattern gadgets as follows:

SG
1

=
[

a2A
5lsV G

1

(a)5ls

SG
2

= (

|A|�1[

i=1

5lsV G
2

(1)5ls)(
[

b2B
5lsV G

2

(b)5ls)(

|A|�1[

i=1

5lsV G
2

(1)5ls)

where ls = 1000d|V G
1

(a)| = O(d3) and 1 = 1d.

Claim:

dp(SG1

, SG
2

) = NVno if a · b � 1 for all a 2 A, b 2 B

dp(SG1

, SG
2

)  NVno � Vno + Vo if a · b = 0 for some a 2 A, b 2 B

Upper Bound:

Consider the transformation of SG
1

in to the contiguous sub-sequence
S

b2B 5lsV G
2

(b)5ls

of SG
2

. We obtain the transformation by aligning the vector gadget of the ith element

in A with the vector gadget of the ith element in B. By our previous results, this results

on the cost Vo if the ith element of A is orthogonal to the ith element of B and Vno

otherwise. Thus, if there is no pair of orthogonal vectors in A or B, we have that the

cost is |A|Vno = NVno. Otherwise, there exists some elements a 2 A and b 2 B such

that a · b = 0. We subtract the cost created by a non-orthogonal pair of vectors and add

the cost of a orthogonal pair of vectors. This gives us NVno � Vno + Vo.

Lower Bound:

Now we claim that if there does not exist a pair of orthogonal vectors in sets A, B then

dp(SG1

, SG
2

)  NVno. To show this, we will focus on every vector gadget that makes

up SG
1

and SG
2

. We will show that every vector gadget independently contributes a

cost of at least Vno. We consider various cases.

Fix a 2 A. Case 1:

Edit Distance 29

V G
1

(a) has an alignment with V G
2

(b) for more than one b 2 B. In this case, we have

that we must remove the 5’s in between V G
2

(b) gadgets. Thus, we have a minimum

cost of 2ls > Vno.

Case 2:

V G
1

(a) has an alignment with a single V G
2

(b) for unique b 2 B. Let I be the contiguous

substring of SG
2

that achieves dp(SG1

, SG
2

). Two scenarios exist.

Case 2.1:

The first is that the vector gadget V G
2

(b) is fully contained in the intermediate substring

I.

Case 2.1.1:

In this case, if no symbol of V G
1

(a) or V G
2

(b) is aligned with a 5 then by our previous

results, de(V G
1

(a), V G
2

(b)) � Vno.

Case 2.1.2:

On the other hand, suppose symbols with indexes Ja in V G
1

(a) and symbols with indexes

Jb in V G
2

(b) align with 5s in the intermediate string I, then each of these contribute a

cost of 1 to the final distance. Thus, we may produce a lower bound by first deleting

all symbols with indexes Ja from V G
1

(a) to produce V G0
1

(a) and also all symbols with

indexes Jb from V G
1

(b) to produce V G0
2

(b) then computing de(V G0
1

(a), V G0
2

(b)). From

our results above, it follows that the pattern distance to which V G
1

(a) and V G
2

(b)

contribute is at least de(V G0
1

(a), V G0
2

(b)) + |Ja| + |Jb| = de(V G
1

(a), V G
2

(b)) = Vno as

required.

Case 2.2:

The string is not fully contained in I. If V G
2

(b) is not fully contained in I then it must

be the case that V G2(b) is either the rightmost or the leftmost vector gadget in the sub

string I. WLOG, suppose it is the rightmost vector gadget. Then it follows that the

symbols from V G
2

(b) missing in I are replaced 5s which must be substituted or deleted.

Thus, this still induces a distance of Vno.

Since each vector gadget V G
1

(a) provides its own independent cost we have that in total

the cost induced for all the vector gadgets of type 1 is Vno and so the total cost is NVno.

From this, it follows that dp(SG1

, SG
2

) � NVno. To obtain equality, we simply choose

I =
S

b2B 5lsV G
2

(b)5ls and run our original bound between every V G
1

(a) and V G
2

(b)

over all N vector gadgets.

Edit Distance 30

Set Gadgets

We now transform our problem from Pattern to Edit distance. Define

SG0
1

= 6|SG2

|SG
1

6|SG2

|

SG0
2

= SG
2

Claim:

If there exist a 2 A and b 2 B such that a·b = 0 then de(SG0
1

, SG0
2

)  2|SG
2

|+NVno�2.

Otherwise, de(SG0
1

, SG0
2

) = 2|SG
2

|+NVno.

Case 1:

Suppose that there does exist a pair of orthogonal vectors. We then have that an upper

bound for de(SG0
1

, SG0
2

) is to delete all 6s from SG0
1

and then convert the remaining

string V G
1

into V G0
2

= V G
2

. Deleting all 6 symbols costs 2|SG
2

| and converting the

remaining string gives a cost of  NVno�Vno+Vo = NVno� 2 by the above discussion.

Case 2:

Suppose that there does not exist a pair of orthogonal vectors. To convert SG0
1

into SG0
2

we must at least delete or replace the 6s in SG0
1

which gives a cost of 2|SG0
2

| external
to the cost given by the substring SG

1

of SG0
1

. Now, the substring SG
1

of SG0
1

gives a

cost of at least dp(SG1

, SG0
2

) = 2|SG
2

| +NVno by the above results. Thus, we get the

lower bound de(SG0
1

, SG0
2

) � 2|SG
2

|+NVno. Equality follows as the same computation

gives the upper bound.

Runtime: We now explore the run time of the conversion from OVP to Edit Distance.

For each vector coordinate, the transformation takes computing time 2lc + 4. For each

a 2 A, its corresponding vector gadget, V G
1

(a) takes computing time 3lv +2de(2lc+4),

and for each b 2 B, its corresponding vector gadget, V G
2

(b) takes computing time

2lv + 2lc + 4.

When we convert into a pattern instance by defining SG
1

and SG
2

, we concatenate 5’s

at the front and back of each V G
1

(a) and V G
2

(b). This costs us 2ls+(3lv+2de(2lc+4))

and 2ls + (2l
1

+ 2l
0

+ 4) for each V G
1

(a) and V G
2

(b) respectively.

Edit Distance 31

The pattern gadget SG
1

then has computation time N(2ls + (3lv + 2de(2lc + 4))). On

the other hand, the gadget SG
2

has computation time 2(N � 1)(2ls + (2lv + 2lc + 4)) +

N(ls + (2lv + 2lc + 4)).

We then transform pattern to Edit Distance by defining SG0
1

= 6|SG2

|SG
1

6|SG2

| and

SG0
2

= SG
2

. This leaves the cost of computing SG0
2

fixed at 2(N � 1)(2ls + (2lv + 2lc +

4)) + N(2ls + (2lv + 2lc + 4)) and adds onto the cost of computing SG0
1

by 2|SG
2

| so
that the final cost of computing SG0

1

is 4(N � 1)(2ls + (2lv + 2lc + 4)) +N(2ls + (2lv +

2lc + 4)) +N(2ls + (3lv + 2de(2lc + 4))).

Now, the cost of computing SG0
1

is

4(N � 1)(2ls + (2lv + 2lc + 4)) +N(2ls + (2lv + 2lc + 4)) +N(2ls + (3lv + 2de(2lc + 4)))

where lc = 1000d, lv = (1000d)2, ls = O(d3) so that the cost is

4(N � 1)(2O(d3) + (2(1000d)2 + 2(1000d) + 4))+

N(2O(d3) + (2(1000d)2 + 2(1000d) + 4))+

N(2O(d3) + (3(1000d)2 + 2de(2(1000d) + 4)))

= O(d3N)

Similarly, the cost of computing SG0
2

is

2(N � 1)(2ls + (2lv + 2lc + 4)) +N(2ls + (2lv + 2lc + 4))

= 2(N�1)(2O(d3)+(2(1000d)2+2(1000d)+4))+N(2O(d3)+(2(1000d)2+2(1000d)+4))

= O(d3N)

then it follows that the edit distance instance can be computed in time O(d3N) =

Õ(N).

We recall that we may transform the problem of computing the edit distance of two

strings x, y to a decision problem by asking if de(x, y)  C. We have shown that there

is a reduction from OVP to the decision problem of Edit distance. Thus, we have the

following result.

Theorem 4.5. Edit Distance cannot be computed time Õ(N2�✏) for ✏ > 0 unless SETH

fails.

Edit Distance 32

Proof. Suppose that edit distance can be computed in Õ(N2�✏) time for some ✏ > 0.

Given an OVP instance, apply the reduction above. The reduction only takes time

Õ(N) and yields two edit distance strings x and y. Now compute de(x, y). We assumed

that there is algorithm that can do this in time Õ(N2�✏) for some ✏ > 0. Thus, in

time Õ(N2�✏), we will know if de(x, y)  2|SG
2

| + NVno � 2. By 4.2 this happens if

and only if the answer to the original OVP problem is “No.” Otherwise, we will obtain

de(x, y) = 2|SG
2

| + NVno and the answer to the original OVP problem will be “Yes.”

We have thus solved the OVP problem in time O(N2�✏) + Õ(N) = Õ(N2�✏) which by

Theorem 2.4 violates SETH.

Bibliography

[1] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between

clause width and clause density for SAT. In IEEE Conf. on Computational Com-

plexity (CCC’06), pages 252–260, 2006.

[2] Evgeny Dantsin and Edward A. Hirsch. Worst-case upper bounds. In Handbook of

Satisfiability, volume 185, chapter 12, pages 403–424. IOS Press, Amsterdam, 2009.

[3] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal

of Computer and System Sciences, 62:367–375, January 2001.

[4] Je↵ Erickson. Lower bounds for linear satisfiability problems. In Symposium on

Discrete Algorithms (SODA’95), pages 388–395, 1999.

[5] Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median,+)-

convolution, and some geometric 3SUM-hard problems. In Symposium on Discrete

Algorithms (SODA’18), pages 881–897, 2018.

[6] Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and

Nicole Wein. Towards tight approximation bounds for graph diameter and eccen-

tricities. In Symposium on the Theory of Computing (STOC’18), 2018.

[7] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the

polynomial method to algorithm design. In Symposium on Discrete Algorithms

(SODA’15), pages 218–230, 2015.

[8] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have

strongly exponential complexity? Journal of Computer and System Sciences, 63:

512–530, December 1999.

[9] Timothy Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and

more: Quickly derandomizing Razborov-Smolensky. In Symposium on Discrete

Algorithms (SODA’16), pages 1246–1255, 2016.

[10] Pairwise comparison of bit vectors. Theoretical Computer Science Stack Exchange,

January 2017. URL https://cstheory.stackexchange.com/q/37361.

33

https://cstheory.stackexchange.com/q/37361

Bibliography 34

[11] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly

subquadratic time (unless SETH is false). CoRR, 2014.

[12] William J. Masek and Michael S. Paterson. A faster algorithm computing string

edit distances. Journal of Computer and System Sciences, 20(1):18–31, 1980.

[13] Gonzalo Navarro. A guided tour to approximate string matching. JACM Computing

Suveys, 33(1):31–88, 2001.

	1 Introduction
	1.1 Orthogonal Vectors Problem (OVP)
	1.2 Edit Distance
	1.3 Outline

	2 From k-SAT to Orthogonal Vectors
	3 An In-Depth Look At Orthogonal Vectors
	4 From OVP To Edit Distance
	Bibliography

