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Abstract. This is an expository paper on FDR control of sequential
hypotheses, with application to model selection in linear models with or-
thogonal design. We state the problem and outline, from start to finish,
a complete method to perform model selection—including variations,
recommendations, and some discussion of historical and current meth-
ods. Detailed proofs are provided for all main results and some of the
important tools. In particular, the author proposes the use of a lesser-
known test statistic, robust to nonorthogonality, and demonstrates its
efficacy compared to a standard method.
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1. Introduction
This work is motivated by the model selection problem in the usual linear

regression setup with iid Gaussian error:
y = X�⇤

+ ✏ (1)
where y 2 Rn,X 2 Rn⇥p,�⇤ 2 Rp, ✏ ⇠ Nn(0,�

2I).
Suppose we have a candidate estimate for the vector �⇤; call it ˆ�. Model

selection (and its cousin variable selection) attempt to answer the problem
of how to pick ˆ� such that it has nonzero entries where �⇤ does, and zero
entries where �⇤ does; a choice of nonzero ˆ�i’s is called a model, and if a ˆ�i
is nonzero we say it is included in the model.

One way to approach the problem is by considering an ordered sequence of
models, constructed by some mechanism (to be specified): M

1

,M
2

, ...,MN

for some N , where each model Mk ✓ {1, ..., p} indexes the included �i’s.
Given this sequence of models, how do we decide which Mk to settle on?

Different approaches exist. One method is to associate each with a certain
score function, and select the one that ranks highest (the score used is often
the BIC score). Another method is to use cross-validation.

For the sake of this work, we will pursue a method based on sequential
rejection of hypotheses, which, unlike the methods based on scores, give us
probabilistic guarantees. This means that we will treat the Mk in order,
using hypotheses for each that tests whether Mk is “right”, per the model
selection problem.

Specifically, we consider the hypotheses
H

0k : supp(�⇤
) ✓ Mk, H

1k : supp(�⇤
) 6✓ Mk (2)

where supp(�⇤
) ✓ {1, ..., p} denotes those true nonzero indices of the model.

Though once again we note that even here there are alternatives; there are
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different hypotheses one could use to quantify this idea of testing for the
“right” Mk, and they are not equivalent. We will discuss these at the end.

There are two parts to this method, and so the present work is modular,
also in roughly two parts, plus some space for background material. One part
is the problem of generating p-values corresponding to each of the hypothe-
ses H

0k, this is section 2 and 3. The second part, which is all subsequent
sections, is to combine these p-values in a sensible way to select a model
while respecting multiple testing concerns.

First, in section 2 we begin by discussing difficulties involved in generating
p-values, and then in section 3 describe an established method that works
called the covariance test. Also in section 3 we pursue a suggestion by T.
Tony Cai and Ming Yuan, and propose a second method which is more robust
to inexact assumptions; Cai and Yuan did not provide a proof, but we provide
it here. Second, we develop some background material in sections 4, 5, and
6, and then go into sequential hypothesis testing in sections 7, 8, and 9.
That is, we consider p-values as generated from some distribution and forget
about the calculation that produced them, and consider rejecting hypotheses
in sequence using these p-values. The goal is to control an analogue of type-I
error, called the FDR. Lastly, in section 10 we combine the p-values from
generated from the first part using the techniques from the second part and
compare performance between the covariance test and the proposed new
statistic.

So as not to detract from the main points—namely p-value generation
and FDR control—we will necessarily not prove everything. As far as facts
not taught in yearly undergrad or graduate courses at UCSD, we’ll use some
basic properties of the lasso path, as well as some of the major theorems from
extreme value theory and continuous time martingale theory. The relevant
results require a lot of setup for their proofs, so much of that will be left to the
references; in particular we will omit proofs for the needed standard results
on lasso properties [1] [2], and extreme distributions [3], in part because those
results can be simply stated, and we’ll sometimes refer to them casually in
prose. We will also assume the standard martingale results from discrete
time, but then prove the main theorem we need for continuous martingales,
because even though it takes some setup, the language of martingales is
rather more technical and I find it illuminating to set them up in detail.

2. Model Selection
In the linear model y = X�⇤

+ ✏, the p columns of X represent data
corresponding to p predictors, while the rows correspond to the n samples.
For instance, math test scores may depend on socioeconomic factors for n
students. We may have their test score (an entry of y) and collect n data
rows with p entries (a row of X), such as family income, age of parents, or
whether they know a second language. In this case p = 3.
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When fitting this model, we have to select which parameters to include
and so which data to keep. Maybe we fear that are our parents’ age aren’t
really relevant (though in this hypothetical situation, it is). A researcher may
use either domain knowledge or, more often, statistical techniques to select
correct parameters and thereby improve prediction and interpretability.

There are no shortage of statistical techniques for variable selection, but
there are shortcomings with some of the more obvious (i.e. naive) procedures.

Here is a first try. Suppose we wish to test the nulls H
01

, ..., H
0k, ..., H0p

that �k = 0 (from here I will simply write Hk for the kth null.) The Wald
test statistic is

ˆ�k

cs.e.
h

ˆ�k

i

where ˆ�k is obtained by OLS and the denominator is an estimate of the
standard error (omitting here the exact formula). Under Hk, its distribu-
tion is tn�(p+1)

, so to perform variable selection, you can start with all the
variables in the model, compute their p-values, and then leave out the vari-
able with the largest p-value. Subsequently, you refit. This method is called
“backwards selection”.

There is no theoretical problem with this—but only as long as you don’t
ascribe any theoretical properties to it. Certainly what this will do is it will
give us a sequence of variables �j

1

,�j
2

, ...�jp to remove, but we cannot say we
are doing valid hypothesis testing at each stage. After refitting, if we compute
p-values again, then the new p-values we obtain have been affected by our
selection of those variables and are thus invalid. In other words, the model
we have selected and therefore the hypotheses we test have been influenced
by our data. This is problematic, because we expect the hypotheses to be
chosen beforehand.

Indeed, any procedure that reports p-values but does not account for the
hypothesis having been selected based on the data is invalid. A procedure
that does account for this selection is called an adaptive procedure.

As noted in the introduction, one does not require valid p-values or adap-
tive procedures to perform model selection. Backwards selection is still used,
for instance, since it is a mechanism that gives us a sequence of models, and
the researcher can select the set of variables with the best BIC score, or
pick one based on cross-validation. Other methods in use are forward step-
wise (like backwards elimination, but adds variables), forward stagewise (like
forward stepwise, but more restrictive), and best subset regression.

These techniques remain controversial, however, because they do not give
theoretical guarantees (except for best subset regression, which is computa-
tionally intractable for moderately sized datasets). But we can obtain some
guarantees using adaptive procedures; in particular we can control how many
type-I errors are made, as long as a correct null distribution can be derived.
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In section 3 we introduce the lasso estimator, from which an adaptive
procedure for model selection can be derived.

3. The Lasso and p-values for Model Selection
The lasso estimator is defined for the linear model (1) as the solution to

the following optimization problem:

ˆ�(�) := argmin

�

1

2

ky �X�k2
2

+ �k�k
1

(3)

where one can think of � � 0 as enforcing a penalty to the objective function
based on the size of the coefficients of �. This has the property that as
� ! 1, every �i ! 0, while as � ! 0, ˆ�� ! ˆ�OLS , the ordinary least
squares estimate.

For A ✓ {1, ..., p}, we will also soon use the following definition:

ˆ�A(�) := argmin

�

1

2

ky �XA�Ak2
2

+ �k�Ak
1

(4)

where a subscript XA is the matrix X but only including those columns
whose indices are in A, and likewise �A includes only those entries from �.

In practice, variables �i both enter the model (go from zero to nonzero)
and leave the model at finite values of �. These values of � are called knots,
and we have 1 > �

1

� �
2

� �
3

� ... � �N , where �
1

must be a knot where
a variable enters the model and N is bounded above by 3

p. If the columns
of X are in general position we have instead strict inequality, and the lasso
solutions are unique [2]. If XTX = I, we say that X satisfies orthogonal
design, or simply that X is orthogonal. In this case variables never leave the
model and N = p.

The lasso is used in high dimensional problems (p > n) because it is effi-
ciently computable and has nice theoretical properties regarding consistency
and support recovery1, up to some technical conditions on X. For us, the
lasso is nice because it provides valid p-values to judge the significance of
the models that it selects.

The null distribution will turn out to be exact for orthogonal X, so we
consider this scenario2; then we have that N = p. Consider a knot �k. Let
Ak ✓ {1, ..., p} be the nonzero indices of � just before � = �k (this is called
the active set) and suppose that at this knot the variable �ik enters the
model. Let supp(�⇤

) ✓ {1, ..., p} denote those true nonzero indices of the
model.

With the hypotheses
H

0k : supp(�⇤
) ✓ Ak, H

1k : supp(�⇤
) 6✓ Ak (5)

1Support recovery means that for some �, the entries of ˆ�� are zero where �⇤, and
their signs match when they are not, so that this � “recovers” the correct nonzero entries
and signs.

2Certainly this is a restrictive condition; we discuss it at the end.
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we define the test statistic

Tk =

1

�2

⇣

hy,X ˆ�(�k+1

)i � hy,XAk
ˆ�Ak

(�k+1

)i
⌘

(6)

which is the difference in the (uncentered) covariance of the response y and
the fitted values X� with the inactive data left in and left out, normalized
by the true variance. Tk is called the covariance test statistic.

Theorem 1 (Covariance Test). Under H
0k and with XTX = I,

Tk
d! Exp(1) (7)

as p ! 1, with n > p, and their p-values are independent.

Before proceeding with the proof, we need a lemma. We only state it:

Lemma 1. Under orthogonal design, Tk can be expressed in “knot form”:

Tk =

1

�2

· �k(�k � �k+1

) (8)

The proof of Lemma 1 starts from a closed form for the lasso estimator
ˆ� given in [4] and proceeds through a (very) long chain of algebraic manip-
ulations to obtain (8). The manipulations were done in great detail in the
UCSD honors thesis [5] and we do not repeat them here.

We now use Lemma 1 and rewrite (8) into a form where the random
variables involved are explicit. We will use a basic fact about the lasso,
found in introductory sources such as [1]: Under orthogonal design, the
lasso solution has the closed form

ˆ�j(�) = S�(
ˆ�OLS
j ) (9)

where S� : R ! R is the soft-thresholding function

S� =

8

>

<

>

:

x� � if x > �

0 if ��  x  �

x+ � if x < �

We note also that under orthogonal design ˆ�OLS
j = XT

j y. Let Uj = XT
j y.

Then the knots of the lasso are simply the values of � where the coefficients
become nonzero (cease to be thresholded):

�
1

=

�

�U
(1)

�

�,�
2

=

�

�U
(2)

�

�, ...,�p =
�

�U
(p)

�

� (10)

where
�

�U
(1)

�

� � �
2

=

�

�U
(2)

�

� � ... � �p =

�

�U
(p)

�

� denote the order statistics
in reverse order of |U

1

|, ..., |Up|. This is a slight abuse of notation—they are
not the absolute values of the order statistics U

(1)

, ..., U
(p).

Under the null hypothesis, the entries of the OLS estimate are iid N (0,�2

),
so |Ui|/�2

iid⇠ |N (0, 1)|, and we write

Tk =

1

�2

�

�U
(k)

�

� · ���U
(k)

�

�� ��U
(k+1)

�

�

�

(11)



LINEAR MODELS AND SEQUENTIAL HYPOTHESIS TESTING 7

Proof of the covariance test. Because in the orthogonal case, variables
never leave the model and N = p, we have A

1

✓ A
2

✓ ... ✓ Ap. Then as-
suming the truth of the H

0k : supp(�⇤
) ✓ Ak implies assuming the falsehood

of every H
0k0 : supp(�⇤

) ✓ Ak0 for k0 < k. In other words, under H
0k all

variables added to the model before step k are not null3 and the remaining
knots

�

�U
(k)

�

�, ...,
�

�U
(p)

�

� are the order statistics of the remaining |Ui|, so
�

�U
(k)

�

�

may be thought of as the maximum of them and
�

�U
(k�1)

�

� the second largest.
Hence we need only show the result for T

1

=

�

�U
(1)

�

� · ���U
(1)

�

�� ��U
(2)

�

�

� �

�2,
which depends on a maximum and second largest order statistic, and the
result follows with the exact same proof for the other Tk. For a similar
reason, the resulting p-values are independent; the distribution we derive for
Tk is conditional on the null being false for the k0 < k and true at k, while
the Tk0 is conditional on the null being true at k0 < k, which are disjoint
events. So the p-values pk are always independent of p

1

, ..., pk�1

. Then any
set of p-values pk

1

, ..., pkj is mutually independent because

P (pk
1

 x
1

, ..., pkj  xj) = P (pk
1

 x
1

, ..., pkj�1

 xj�1

)P (pkj  xj)

= ... =

j
Y

i=1

P (pki  xi)

Now we show the result for T
1

. Each |Ui|/�2 has CDF

F (x) = (2�(x)� 1) {x > 0}
We would like to know the distribution of its extreme order statistics

as p ! 1, and apply some basic extreme order statistics theory. Let H
denote the left continuous inverse of 1/(1�F ). Then Theorem 1.1.8, Remark
1.1.9, and Theorem 2.1.1. from de Haan and Ferreira (2006) [3] together
immediately imply that if

lim

t!1
(1� F (t))F 00

(t)

F 0
(t)2

= �(� + 1)

then for ap = H�1

(p) and bp = pF 0
(ap), we have that W

1

= bp
�

�

�U
(1)

�

�� ap
�

and W
2

= bp
�

�

�U
(2)

�

�� ap
�

converge jointly in distribution:

(W
1

,W
2

)

d!
 

E��
1

� 1

�
,
(E

1

+ E
2

)

�� � 1

�

!

where if � = 0 the right hand side is interpreted as (� log(E
1

),� log(E
1

+

E
2

)), which is its limit as � ! 0, and the E’s are iid Exp(1).

3Lockhart et al. assume some mild technical assumptions, but they don’t condition on
the first k0 variables entering being those in the true model, and prove a stronger result in
their Theorem 1 [6]. Since we’ll always be rejecting hypotheses sequentially (see section
7), we won’t need to do this.
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Indeed � = 0; we compute
(1� F (t))F 00

(t)

F 0
(t)2

=

F 00
(t)

F 0
(t)

1� F (t)

F 0
(t)

=

�2t�(t)

2�(t)

2� 2�(t)

2�(t)
= �t · 1� �(t)

�(t)

so that

lim

t!1
(1� F (t))F 00

(t)

F 0
(t)2

= lim

t!1�t · 1� �(t)

�(t)
= lim

t!1�t ·m(t)

where m(t) is the Mills’ ratio (1 � �(t))
�

�(t) for the standard normal, for
which it’s well known that m(t) ⇠ 1/t for large t. So the limit is �1, implying
� = 0 and

(W
1

,W
2

)

d! (� log(E
1

),� log(E
1

+ E
2

))

Note that
�

�U
(1)

�

� · ���U
(1)

�

�� ��U
(2)

�

�

�

= (ap +W
1

/bp)(W1

�W
2

)

1

bp

=

ap
bp

(W
1

�W
2

) +

W
1

(W
1

�W
2

)

bp

Now, writing explicitly ap and bp, we have ap = F�1

(1�1/p) = �

�1

(1�1/2p)
and bp = 2p�(ap).

If we can show that ap/bp ! 1, then we are done, by the following argu-
ment. Because since ap ! 1 (since F�1

(1) = 1) then bp ! 1 and would
imply

ap
bp

(W
1

�W
2

) +

W
1

(W
1

�W
2

)

bp
! (W

1

�W
2

)

where (W
1

�W
2

) is asymptotically distributed as log(E
1

+E
2

)� log(E
1

) =

� log

⇣

E
1

/(E
1

+E
2

)

⌘

. The sum of n exponentials is Gamma(n, 1); a routine
multivariate integral shows then that E

1

/(E
1

+ E
2

) is uniform4, so that
(W

1

� W
2

) is asymptotically standard exponential (by inverse transform
sampling), as we wanted to show.

To show that ap/bp ! 1, apply F to ap to find 1��(ap) =
1

2p , and recall
bp = pF 0

(ap). The Mills’ ratio inequalities (well known, but can be found in
[7]) say

x

1 + x2
· �(x) = 1

1 + 1/x2
· �(x)

x
 1� �(x)  �(x)

x
Using x = ap and multiplying by 2p we find

1

1 + 1/a2p
· bp
ap

 1  bp
ap

Taking p ! 1 and and noting ap ! 1, as we observed earlier, we’ve shown
bp/ap ! 1 by the squeeze theorem. ⇤

4Or use the well known fact that for X ⇠ Gamma(↵
1

, 1) and Y ⇠ Gamma(↵
2

, 1), we
have X

X+Y
is distributed as Beta(↵

1

,↵
2

), where ↵
1

= ↵
2

= 1 is the special case of the
standard uniform.



LINEAR MODELS AND SEQUENTIAL HYPOTHESIS TESTING 9

Before we move on we’ll make a few remarks about the covariance test.
Lockhart et al. in fact proved that this test is also applicable in the nonorthog-
onal setting, but then the true null distribution is stochastically smaller than
Exp(1). What this means is you can control Type-I error if you wanted, but
you’ve likely lost power.

The covariance test is simple and easy to apply. I think it enjoys great
popularity, being the one of the first tests of its kind to answer the question of
adaptive p-values for model selection. And yet, as Lockhart et al. themselves
note, it can be quite conservative in its rejection, such as in the nonorthogonal
setting. Meanwhile, the more modern selective inference methods (I’ll discuss
some at the end) are complicated to state and to use, which makes them less
appealing.

Now I would like to define what seems to me an underused and unknown
test statistic, and prove its null distribution under the same null hypothesis as
in (5). This statistic and associated hypothesis test, which I’ll call the Lasso-
G statistic (and test), was proposed by T. Tony Cai and Ming Yuan in a short
discussion paper [8] in response to Lockhart et al. The Lasso-G statistic,
which they denoted eTk, was said to be asymptotically Gumbel(� log(⇡), 2).
The CDF is

F (x) = exp
n

�e�(x+log(⇡))/2
o

The authors performed numerical experiments to show that it was robust
to correlation between the features, and they reported that the that the
covariance test statistic was not robust. We reproduce the plots from their
paper in figure 1.

Figure 1. Experiments by T. Tony Cai and Ming Yuan for
eT
4

, computed from X generated by different ⇢.
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Figure 1 shows QQ-plots of eT
4

against the Gumbel. The authors choose
� = (6, 6, 6, 0, 0, ...)T for n = 100, p = 50 and generated X from a multivari-
ate normal distribution where Cov(Xi, Xj) = ⇢|i�j|. Then they generated eT

4

for 500 independent datasets. The points match up well with Gumbel; we see
that not only are they robust to ⇢ as big as 0.8, but that the approximation
is quite good for moderately sized p.

Our treatment of the Lasso-G statistic in this section is theoretical; we
provide a proof of its null distribution (which was not provided by Cai and
Yuan). Our practical contribution is later, when we apply this statistic to the
FDR control setting and show that it gets more power than the covariance
test (see section 10).

Recall Ak is the active set just before the kth knot, and let |Ak| be its car-
dinality. Suppose variables enter the lasso model in the order {j

1

, j
2

, ..., jp}
and define Rjk(Ak) =

�

RSSAk
� RSSA[{jk}

� �

�2, which is the drop in resid-
ual sum of squares from OLS regression on only those variables in {Ak}
versus {Ak} including the new variable entering the model. Then define the
Lasso-G test statistic:

eTk = Rjk(Ak)� 2 log(|Ak|c) + log log(|Ak|c) (12)

One can think of �2 log(|Ak|c) + log log(|Ak|c) a correction factor to just
the drop in RSS, which for the OLS problem is known to have a chi-square
distribution. The factor corrects for the selection of {Ak}; without it we
don’t have an adaptive method.

Theorem 2 (Lasso-G test). Under H
0k and with XTX = I,

eTk
d! Gumbel(� log(⇡), 2) (13)

as p ! 1, with n > p, and their p-values are independent.

Proof. Let ˆ�A :=

ˆ�OLS
A be the OLS solution regressed against just those

variables in A ✓ {1, ..., p}, and XA be X just including those columns. Then

RSSA = ||y �XA
ˆ�||2

2

and expanding the sum and applying XTX = I gives

RSSA = kyk2
2

� 2

ˆ�T
AX

T
Ay + || ˆ�A||2

2

Again applying orthogonality, now using ˆ�OLS
j = XT

j y, we simplify

RSSA = kyk2
2

� 2yTy + || ˆ�A||2
2

= || ˆ�A||2
2

� kyk2
2

so that the RSSA � RSSA[{j} for some j not in A is

RSSA � RSSA[{j} = || ˆ�A[{j}||2
2

� || ˆ�A||2
2

which is maximized over j by picking the one with |XT
j y| the largest. As

for the lasso, in the case of orthogonal design, inspecting equations (10) tells
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us that the jth variable to enter the model is also the one where |XT
j y| is

largest, out of all those that have not yet been added. So then
Rjk = max

m2Ac
k

Rm(Ak)

Classical regression theory says that each Rm(Ak), under the null, has a �2

1

distribution. So Rjk is a maximum of �2

1

, whose distribution we can get
through extreme value theory.

Before we do that let’s note that the p-values are independent by the same
reasoning as the proof of the covariance test. Also analogously to what we
said in the covariance test, we only need to prove it for eT

1

, because whenever
we assume H

0k to be true, we can always think of Rjk as a maximum order
statistic of �2

1

, and we may as well do the proof for Rj
1

.
Let V

1

� V
2

� ... � Vp be the order statistics of an absolute standard
normal. Then every Vk is equal in distribution to the U

(k) from the proof of
the covariance test, and we can define W

1

= bp (V1

� ap) just as before and
recall we proved it is distributed as � log(E) for E a standard exponential,
when ap = �

�1

(1 � 1/2p) and bp = 2p�(ap). The fact is that � log(E) ⇠
Gumbel(0, 1).

Now by Example 1.1.7 in de Haan and Ferreira, we could have chosen
instead different constants ap and bp and still gotten this result. Following
the logic in that example (with a minor modification since we have absolute
standard normals, not standard normals)5 we can redefine

ap =
p

2 log p� log log p+ log ⇡

2

p
2 log p

bp =
p

2 log p

and have the same result of asymptotic convergence hold. Now
V
1

+ ap
bp

=

V
1

� ap
bp

+ 2

ap
bp

Clearly ap
bp

= 1+o(1). But also V
1

� ap
�

bp = W
1

/b2p ! 0 almost surely, since
bp ! 1 and W

1

goes to a nondegenerate distribution. So V
1

+ ap
�

bp ! 2

almost surely, and then

V 2

1

� a2p = W
1

·
⇣

V
1

+ ap
�

bp

⌘

! 2 · Gumbel(0, 1) = Gumbel(0, 2)

But after explictly squaring a2p you can see a2p ⇡ 2 log(p) � log log(p) �
log(⇡) for large p. Rearranging, and noting that under the null Rjk as �2

1

is distributed just like V 2

1

which is a squared normal, we have that eTk !
Gumbel(� log(⇡), 2).

⇤
5If we’d had standard normals we would write ap =

p
2 log p� log log p+log 4⇡p

2 log p
. According

to a paper of Hall [9], this is, in a supremum error sense the best choice of constants for
the standard normal (it converges fastest).
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That’s as far as we’ll go for generation of p-values. Naturally this is not the
end of that story; are there other statistics? Other tests? Other hypotheses?
And are there methods that still have guarantees when XTX 6= I? Yes, of
course, to all; since the covariance test was proposed, there came to exist
something of a menagerie of methods, and they make up the field called
selective inference. We mention some of these methods at the end. However,
the covariance test stands out as the field’s progenitor, and remains the
simplest test. Meanwhile, the lasso-G test was simply another, simpler way
to do the same thing, which may obtain better results under orthogonality
and remain robust outside of it.

4. Multiple Hypothesis Testing and the FDR
We turn to multiple hypothesis testing—the problem of how to combine

p-values to test multiple hypotheses, subject to false discovery concerns. The
point of this section is to illustrate those concerns.

Consider now a genome-wide association study, which has a disease in
mind and searches the entire human genome for genes that might be risk
factors or causal factors for its development. There are tens of thousands
of genes to search through, and each kth gene corresponds to another null
hypothesis Hk—namely, does gene k contribute to the disease? As a different
example, if one is searching for certain subsequences in a chromosome to
understand the synthesis of a protein, the number of nulls towers into the
millions [10].

Each hypotheses Hk has a p-value pk, and we reject, say, if pk < t, so t is
some threshold. For N hypotheses, let V (t)  N be a (unobserved) random
variable equal to the number of false rejections.

Classically, to control type I error means to control for any mistake under
the null hypothesis, so for a multiple testing analogue we may wish to choose
t so that P (V (t) � 1) < q for some desired q (this probability is called the
family-wise error rate, or FWER). So we bound the probability that we
falsely reject even once. But when we have millions of null hypotheses this is
an unreasonably stringent criterion, because as we consider more and more
nulls, it becomes more and more likely that a null p-value is less than ↵ by
chance. We could adjust t to make ↵ very small, but then we will hardly
ever reject, even when we should. So we have lost power.

Large datasets in technology and in biology have led researchers to the
following attitude; making a few type I error type mistakes is not the end of
the world. If we are interested the genes for which Hk is rejected, it is worth
some false positives to have the actual interesting genes be revealed.

Let R(t) be the total number of rejected hypotheses. There are some
competitors for a looser criterion to control, but the standard one is the
false discovery rate, or the FDR:

FDR(t) = E


V (t)

max(R(t), 1)

�

(14)
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Type I error control becomes: Pick t so that FDR(t)  q for some chosen
threshold q. This is a loose criterion; controlling an expectation means that
we may do badly on FDR control on any one experiment, but that on average
we do not.

5. Continuous-time Martingales and the Optional Stopping
Theorem

We have defined the FDR, but we have not actually given procedures for
how to control it when testing N hypotheses.

Before we define these procedures and prove their FDR controlling prop-
erties, we need some results on martingales. This is essentially because the
quantity V (t)/t, and other similar quantities (where recall V (t) is our num-
ber of false rejections at t and t is our threshold) turn out to be martingales
in t, or sub- or supermartingales. In any case, this allows us to apply the
useful optional stopping theorem.

We assume basic results from martingales in discrete time—specifically we
will assume the backwards martingale convergence theorem, which can be
mostly proven by modifying the proof of the usual martingale convergence
theorem6.

Now we define martingales in continuous time, as well as some related
concepts. Note that conditional expectation is taken over �-algebras rather
than events—one distinction is that a conditional expectation is a random
variable.

Let (⌦,F , P ) be a probability space. We have the following definitions:

Definitions.

• A filtration is a collection {Ft}t�0

of �-algebras such that every Ft ✓
F and Fs ✓ Ft for s < t.

• A stopping time is a random variable ⌧ : ⌦ ! [0,1] such that for all
t, {! 2 ⌦ : ⌧(!)  t} 2 Ft.

• A submartingale is a stochastic process {Xt}t2[0,1)

on (⌦,F , P ) with:
� Xt 2 Ft. We say that {Xt} is adapted to {Ft}.
� Xt 2 L

1

, i.e. E|Xt| < 1. We say that Xt is integrable.

� E[Xt|Fs] � Xs for s  t. It follows that EXt � EXs.
A supermartingale is the same thing, but with the third bullet point
replaced with E[Xt|Fs]  Xs for s  t, and then EXt  EXs.

• A martingale is a submartingale that is also a supermartingale.
• A backwards (sub, super) martingale is the same as above, except the

filtrations satisfy Fs ◆ Ft for s < t. Equivalently, keep the filtrations
the usual way, but index t starting at 0 and going to �1. (We will

6The usual martingale convergence theorem is probably the more “major” theorem, but
backwards martingales are important enough to be considered in detail in introductory
texts like [11]
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only have use for the discrete case, where t can be identified with the
negative integers.)

• A stochastic process {Xt(!)}t�0

is right continuous if for all t, !,

lim

s#t
Xs(!) = Xt(!)

For some stochastic process {Xt}t�0

on (⌦,F , P ), we say the natural fil-

tration is defined by Ft = �
⇣

S

t0t �(Xt0)

⌘

; the filtration generated by all
random variables that occurred earlier than or at t.

The �-algebras of a natural filtration refer to information present at time
t, because �(Xt) contains all measurable events whose occurrence we can de-
termine by observing Xt, and conditioning on �(Xt) essentially produces a
random variable conditioned on all these events, weighted by their probabil-
ities. It will be also be advantageous in proofs to append information aside
from just the information contained in the process. Formally this means we
generate Ft not just based on Xt, but based on an auxiliary random variable
Yt, too—or we can let Yt = y and condition on that event.

Our goal in this section is to prove the optional stopping theorem (for
bounded stopping times) from continuous-time martingales for use in proofs
in sections 6 and 8, which will allow us to simplify several calculations. Also,
we use the discrete time analogue of this theorem in section 9, which is stated
the same way.

Our proof is modified from one given in [12], where a less general theorem
is proved.

Let B � 0; define SB the set of all stopping times ⌧ such that ⌧  B with
probability 1.

Theorem 3 (Bounded Optional Stopping Theorem). Let {Xt}t�0

be a right-

continuous nonnegative submartingale. Then A = {X⌧ : ⌧ 2 SB, B � 0}is
uniformly integrable

7
, and

E[X�|F⌧ ] � X⌧ and E[X�] � E[X
0

] (15)

for all ⌧,� 2 SB with �
a.s.� ⌧ .

Equations (15) show that the submartingale properties that E[Xt|Fs] �
Xs for s  t and EXt � EXs generalize to random stopping times given
right continuity and a.s. boundedness of the stopping times. Without these
kinds of conditions, this need not hold; consider the discrete martingale with
respect to its natural filtration, where X

0

= 0 and Xi = Xi�1

+ ⇠i for i � 1

and ⇠i are all iid, and equal to 1 or �1 with equal probability. Then {Xi}
is a simple random walk. However, if ⌫ is the first time X⌫ hits 1, then
EX⌫ = 1 6= EX

0

= 0, even though ⌫ can be shown to be a stopping time
7In martingale theory, when this is satisfied they say that {Xt}t�0

is class DL. We
won’t actually use class DL for anything, but it’s part of the statement of the theorem,
and is important to be able to say a submartingale has a Doob-Meyer decomposition.
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and almost surely finite. The problem here is that ⌫ is not almost surely
bounded by some B.

Proof. Let ⌧ 2 Sf
B ✓ SB, where Sf

B is the set of stopping times such that ⌧
takes only finitely many values, such as 0  t

1

< t
2

< ... < tn  B.
First we show E[XB|F⌧ ] � X⌧ for ⌧ 2 Sf

B and B our nonrandom bound,
in order to establish uniform integrability for Af

= {X⌧ : ⌧ 2 Sf
B}. This

holds because then X⌧ = |X⌧ |  E[XB|F⌧ ]. The conditional expectation
of the integrable random variable XB is integrable, so that the family Af

is dominated by an integrable function, which implies uniform integrability.
After we show this, we move to general ⌧ 2 SB.

Let A 2 Ft. By the definition of conditional expectation, if E[X⌧ A] 
E[XB A] for any such A then we do have E[XB|F⌧ ] � X⌧ , so we show this.
Since X⌧ =

Pn
k=1

X⌧ {⌧ = tk}, we get the first equality, and then simplify:

E[X⌧ A] =

n
X

k=1

E[X⌧ A {⌧ = tk}] =
n
X

k=1

E[Xtk A {⌧ = tk}]

Then, using that {Xt} is a submartingale, and applying once again the
definition of conditional expectation (because {⌧ = tk} is an event in Ftk):


n
X

k=1

E
h

E[XB A {⌧ = tk}|Ftk ]

i

=

n
X

k=1

E[XB A {⌧ = tk}]

which is E[XB A], as needed.
Now let ⌧ 2 SB. We define a sequence {⌧n} of stopping times by ⌧

1

= B
and for n > 1, ⌧n = max {2�nd2n⌧e, ⌧n�1

, B}. These are strictly larger than
⌧ and less than B and nonincreasing, and for each n only take finitely many
values, because the ceiling function only takes finitely many values until
⌧n = B. So ⌧n 2 Sf , and we have ⌧n # ⌧ . By right continuity, this implies
that X⌧n ! X⌧ (for any fixed !).

Fix ✏ > 0; writing out the definition of uniform integrability for Af , we
have K � 0 such that for every X⌧n

E
h

|X⌧n | · {|X| � K}
i

 ✏

Applying DCT and taking n ! 1 we see that appending X⌧ to Af doesn’t
break the uniform integrability. We can do this for all ⌧ and see that the set
A = {X⌧ : ⌧ 2 SB} is uniformly integrable.

Now we show the martingale properties (15) hold. Let’s redefine ⌧n =

max {2�nd2n⌧e, ⌧n�1

,�}, setting ⌧
1

= �. Since ⌧n is nonincreasing, {X⌧n}
and its corresponding filtration define a discrete backwards submartingale.
The statement of the backwards submartingale convergence theorem is that
a discrete backwards submartingale has a limit both in a.s. (which we know
is X⌧ ) and in L1, and that this is less than or equal to limn E[V |F⌧n ], where
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V is the first term of the backwards submartingale. X� is the first term, so
X⌧n ! X⌧  lim

n
E[X�|F⌧n ]

in both a.s. and L1.
To use these formulas, we take conditional expectations:

X⌧ = E[X⌧ |F⌧ ]  E
h

lim

n
E[X�|F⌧n ]

�

�

�

F⌧

i

= lim

n
E
h

E[X�|F⌧n ]

�

�

�

F⌧

i

= lim

n
E[X�|F⌧ ] = E[X�|F⌧ ]

where we can commute the limits because of L1 convergence and we use the
law of total expectation at the end. This proves E[X�|F⌧ ] � X⌧ .

To show E[X
0

]  E[X�], just set ⌧ = 0 so that E[X�|F0

] � X
0

, and take
expectations of both sides:

E
h

E[X�|F0

]

i

= EX� � EX
0

.

⇤
Some final remarks. This is not the most general form of the optional

stopping theorem, either in discrete and continuous time; even if we revoke
boundedness of the stopping times, there are other conditions we could im-
pose so that equations (15) still hold. Lastly, we note that nonnegativity
was not required for equations (15) to hold.8

6. The Benjamini-Hochberg procedure
With the needed results from martingale theory in place, we are all ready

to set up to state and prove the Bejamini-Hochberg procedure for FDR
control [13], abbreviated the BH procedure, or BH(q).

Benjamini and Hochberg’s landmark 1995 paper, currently with around
45000 citations on Google Scholar, first defined the FDR and the BH method
to control it. FDR has since become the mainstream criterion for multiple
testing due to advances in data collection technology, and the BH procedure
in particular has become a standard topic in applied statistics because of its
simplicity and practicality. In this section we define the procedure and prove
it controls FDR, using essentially the martingale proof due to Storey et al.
[14], which greatly simplified the original authors’. The martingale idea is
to exploit the optional stopping theorem, and this idea crops up again and
again in the extensions and relatives of the BH procedure we give in sections
8 and 9.

The setting for BH is N unordered null hypotheses H
1

, H
2

, ...HN , each of
which is associated with independent p-values p

1

, p
2

, ..., pN . Some unknown
number N

0

= ⇡
0

N of these hypotheses are truly null hypotheses, and their
8Actually, if {Xt} is a martingale, you don’t even need nonnegativity to show it’s of

class DL (see previous footnote.) At the step in the proof where we show X⌧ is dominated,
we can instead show it’s equal to a conditional expectation over a sub �-algebra of F , a
set which is always uniformly integrable.
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corresponding p-values are therefore distributed as p0i
iid⇠ Unif[0, 1], where

the 0 superscript denotes a null p-value and ⇡
0

2 [0, 1] is called the null
proportion. The approach of BH is to specify an FDR controlling threshold
t such that we reject all p-values pi satisfying pi  t.

Specifically let our total number of rejections be R(t) = #{pi  t}. Let
V (t) = #{pi  t : pi is null} be the number of false rejections. The threshold
t is chosen to bound FDR(t) = E

h

V (t)/max(R(t), 1)
i

, which is our analogue
of type I error, by some q 2 [0, 1].

For p
1

, ..., pN , define

[
FDR(t) =

Nt

max(R(t), 1)

Then BH(q) prescribes
ˆtBH
q := sup{0  t  1 :

[
FDR(t)  q} (16)

In particular we have
[
FDR(

ˆtBH
q )  q. (17)

Theorem 4 (BH(q)). For the N hypotheses H
1

, ..., HN , with independent p-

values p
1

, ..., pN , we reorder the p-values to form the order statistics p
(1)

, ..., p
(N)

,

and order the N hypotheses the same way, labelling H
(1)

, ..., H(k).

Fix q 2 [0, 1], and reject H
(k) for p

(k)  tBH
q . This rule controls FDR at

level q.

Before we give the proof let’s make some remarks.
First, the usual formulation of BH(q) is more simply stated; it just says

that for ordered p-values p
(1)

 ...  p
(N)

, we define

ˆkBH
q = max

⇢

k : p
(k) 

k

N
q

�

(18)

and we reject all H
(k) with k  ˆkBH

q . The random integer ˆkBH
q is called a

stopping rule.
The two formulations are equivalent because R(p

(k)) = k, so that [
FDR(p

(k)) =

Np
(k)/k, and then

p
(

ˆkBH
q )

= max

⇢

p
(k) : p(k) 

k

N
q

�

= max

n

p
(k) :

[
FDR(p

(k))  q
o

Comparing the form of p
(

ˆkBH
q )

to ˆtBH
q , we conclude p

(k)  p
(

ˆkBH
)

(i.e. is
rejected) if and only if p

(k)  ˆtBH
q , since p

(

ˆkBH
)

 ˆtBH
q < p

(

ˆkBH
+1)

.

Secondly, why have I chosen the name [
FDR (where the hat suggests an

estimate)? Actually, it really is kind of a heuristic estimate of the true FDR
as follows:

E


V (t)

max(R(t), 1)

�

⇡ EV (t)

Emax(R(t), 1)
⇡ EV (t)

max(R(t), 1)
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Since the denominator is an observed random variable, we can just estimate
its expectation by its observed value. But what is the numerator? The
null p values are uniform, so they lie within the rejection region [0, t] with
probability t; if there were just one null p-value pi, then EV (t) = P (pi  t) =
t. Since there are ⇡

0

N of them, EV (t) = ⇡
0

Nt.
Still ⇡

0

is unknown. We may “estimate” ⇡
0

= 1

9 , and find that
⇡
0

Nt

max(R(t), 1)
⇡ Nt

max(R(t), 1)
=

[
FDR(t)

So [
FDR(t) is intuitively a kind of upward biased estimate of the true FDR,

so that we would expect the true FDR to be “probably” less than [
FDR, and

bounding the latter should bound the former. This is precisely what BH(q)
does.

The idea of bounding an estimate for the FDR is also present in section
9; one can choose different kinds of estimates to derive different kinds of
methods, and that is just what we do there.

Proof. We ultimately want to show that at the threshold t = tBH
q , we have

FDR(tBH
q )  q, and we say FDR is controlled at level q.

Let M(t) = V (t)/t, and consider the stochastic process {M(t)}0t=1

. The
bounds mean we think of M(1) as the starting point, with t ! 0. Define
the �-algebra Ft = �(V (s), R(s) : 1 � s � t). Then M(t) is adapted to the
filtration {Ft}0t=1

, because if we know V (t) we also know M(t). (Alternately,
V (t) is Ft-measurable, so M(t) is as well.)

We show that M(t) is a martingale in backwards time10 (a calculation
omitted in Storey et al [14].). M(t) is integrable because E|M(t)| = ⇡

0

N . It
remains to show that E[M(t)|Fs] = M(s)11 for 1 � s � t.

First, we compute E[M(t)|M(s)] := E
⇥

M(t)|�(M(s))
⇤

:

E[M(t)|M(s)] = E[M(t)|V (s), s] =
1

t
E[V (t)|V (s), s]

where we explicitly note our knowledge of s. Let p0i denote a null p-value.
Conditional on V (s) and s, we have

V (t) = #{p0i : p0i  t  s} =

V (s)
X

i=1

⇠i (19)

9There exist corrections [14] which properly estimate ⇡
0

, rather than just setting it to
1. Such methods yield greater power, but are not my focus.

10Not to be confused with backwards martingale; the first term of a martingale’s fil-
tration is the smallest �-algebra of that filtration, and a backwards martingale’s is the
largest. F

1

is the smallest here.
11This is why it makes sense to go backward in time. Conditioning on Fs, which is to

say, V (s), for 1 � s � t excludes all the null p-values above s, which restricts the number
of p-values we have left to classify by time t. On the other hand, knowing V (t) doesn’t
give us useful information about V (s).
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where ⇠i is a random variable that’s 1 if p0i  t and 0 otherwise.
Unconditioned, p0i

iid⇠ Unif[0, 1]. Then conditioning on s, a routine calcu-
lation gives that each p0i |{p0i  s} iid⇠ Unif[0, s]. Additionally conditioning
on V (s), which is to say the state of null p-values besides the ith, gives no
additional information because the pi are independent.

Now just compute:12

1

t
E[V (t)|V (s), s] =

1

t

V (s)
X

i=1

E⇠i =
1

t

V (s)
X

i=1

P (p0i  t) =
1

t
V (s)P (p0i  t) (20)

=

1

t
V (s)

t

s
=

V (s)

s
= M(s)

where t/s is the CDF of Unif[0, s].
So we have E[M(t)|M(s)] = M(s). In addition, E[M(t)|M(s0), s  s0] =

M(s), because the knowledge of every V (s0) means we know which p0i > t
as long as s < p0i  s0 (because we know the s0 such that V (s0) has jumps),
and therefore we know V (t) does not count them. However, whether or not
V (s) counts the p0i  s, of which there are V (s), is still random; this is the
content of equation (19). Lastly, knowing R(s) when we know V (s) means
we know which were the non-null p-values as well, but that’s irrelevant to
M(t). So we have shown E[M(t)|Fs] = M(s).

tBH
q is clearly bounded, and it is a stopping time because if we know R(s)

for all s � t, then we know [
FDR(s) (in particular we know whether or not

it’s less than q). This is enough to know if tBH
q  t.

However, M(t) is not right continuous (taking “going right” to mean from
1 to 0). No matter; because the p0i come from a continuous distribution,
we can redefine V (t) = #{p0i : p0i < t} using strict inequality13 and define
M(t) using this, and they will be equal almost surely, so that we have a right
continuous version of M(t).

Applying optional stopping for martingales,

EM(tBH
q ) = EM(1)

1

tBH
q

EV (tBH
q ) = EV (1) = N

0

where recall N
0

is the true number of nulls. From the definition of [
FDR, we

also have

max(R(tBH
q ), 1) =

NtBH
q

[
FDR(tBH

q )

� NtBH
q

q

12Saying that we condition on a random variable is shorthard for saying we condition
on the �-algebra it generates. However, one can show that it corresponds correctly with
our intuition, so we can use it to do calculations without fear, as I’m doing here.

13If the original problem involved discrete distributions, the p-values may not have
continuous distributions. Indeed, we are implicitly assuming they are all continuous.
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where the inequality is implied by (17).
Putting these two together, and noting N

0

 N we finally have

FDR(tBH
q ) = E

"

V (tBH
q )

max(R(tBH
q ), 1)

#

 q

N
E
"

V (tBH
q )

tBH
q

#

= q
N

0

N
 q (21)

⇤

7. Sequential Hypothesis Testing
So much for unordered hypothesis testing. We have now defined FDR

and proved a procedure that controls it, called the BH procedure. However,
we will actually have no use for BH directly. We include it because it is
archetypal; its proof is the simplest example of an optional stopping based
proof we have, not to mention it would be remiss to omit such a landmark
result.

However, our real interest is in sequential hypothesis testing: we impose
the condition that we can only reject hypotheses in a certain order, and
the reordering of the p-values as done in BH are impossible in this case.
Regardless, one can think of the forthcoming procedures as variations on the
BH theme.

To motivate the problem, note that in section 3, the null hypothesis was
H

0

: supp(�⇤
) ✓ Ak, where Ak was the active set just before the kth knot.

If there are N knots (in fact, recall N = p for orthogonal X), then we may
index the null hypotheses:

H
1

: supp(�⇤
) ✓ A

1

H
2

: supp(�⇤
) ✓ A

2

...
HN : supp(�⇤

) ✓ AN

(22)

and in the setting of the lasso with orthogonal X, we have A
1

✓ A
2

... ✓ AN

because variables only enter and never leave.
Rejecting a hypothesis means that we believe the model Ak selected at

that stage is wrong, so we increase �, reach another knot, and therefore add
another variable and consider Ak+1

. Since the falsehood of Ak implies the
falsehood of Ak0 for all k0 < k, the rejection of Ak implies rejection of all
Ak0 . So when we reject hypotheses, we can only reject sequentially; that is,
we cannot reject A

1

and A
3

without rejecting A
2

as well. Subject to this
condition, we would like to derive FDR controlling procedures.

Let’s formalize the main idea. We have H
1

, ..., HN hypotheses in a spe-
cific order and associated p-values, where rejection of hypotheses is not si-
multaneous but rather goes from the first to the last. Any rejection rule is
constrained by the following requirement: if we reject, we may only reject a
set of hypotheses of the form {H

1

, ..., Hk} for some k  N .
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This restriction of rejecting hypotheses in order is called sequential hy-
pothesis testing, because of the enforced sequence {Hk}Nk=1

. Each hypothesis
is associated with a p-value, whose generation was the topic of section 3. We
now consider them as generated from some distribution, and focus on the
problem of combining them for testing in this more restricted setting, which
is the natural one for the null hypotheses of equations (22).

Each FDR-controlling method we consider will define a stopping rule ˆk,
which is a function of the p values, and tell us to reject all H

1

, ..., H
ˆk. We

had one for BH(q) as well, but now let’s make it a formal definition.

Definition. A stopping rule for a sequential hypothesis testing problem
H

1

, ..., HN with associated p-values p
1

, ..., pN is any function ˆk of the N p-
values which takes values in {0, 1, ..., N}, and rejects all hypotheses Hk with
k  ˆk.

So in sequential testing, we only reject an initial block of hypotheses
H

1

, ...H
ˆk, up to the index returned by the stopping rule.

To illustrate the concept, we define probably the simplest stopping rule
that works. It simply rejects until the first time a p-value exceeds q.

Proposition. Suppose either that for some unknown 1  k
0

 N , every

Hk
0

, ..., HN is null, or that none of our hypotheses are null. Then define the

stopping rule

ˆk = min{k : pk > q}� 1

for some q 2 [0, 1]. This controls FDR at level q. In fact, it controls

P (V � 1) at level q.

Proof. Recall V is false rejections and R is all rejections. The quantity
P (V (q) � 1) was mentioned in section 3 as an alternative to the FDR as a
type-I-esque criterion. In fact P (V (q) � 1) � FDR, because R(q) � V (q),
so

{V (q) � 1} � V (q)

max(R(q), 1)

and taking expectations on both sides shows that P (V (q) � 1) � FDR(q).
The given stopping rule controls P (V (q) � 1) because

P (V (q) � 1)  P (pk
0

 q) = q

where k
0

is the first null hypothesis, and null p-values are uniform.
⇤

The quantity P (V � 1) is known as the FWER, the family-wise error
rate. Before Benjamini and Hochberg proposed the FDR as an alternative
criterion, researchers used the FWER, and had a hard time because (as dis-
cussed in section 4) such a criterion is too stringent and sucks away power as
the number of hypotheses increases. Since this simple stopping rule controls
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FWER, it can’t be any good. What’s more, it requires all the non-nulls to
precede the nulls, which may not occur in practice. How can we do better?
Such methods are the focus of the next two sections 8, 9.

8. ForwardStop
It would be nice if we could use BH(q) in the sequential hypothesis setting

of section 6. In fact, the BH procedure does perform sequential rejections—
but only after the p-values are placed in ascending order, and the hypotheses
reordered in the same fashion, producing H

(1)

, ..., H
(N)

. In the remarks after
Theorem (4), we phrased BH(q) using a stopping rule k  ˆkBH

q , which, as
in sequential hypothesis testing, rejects an initial block H

(1)

, .., H
(k) with

k  ˆkBH
q .

If we want to reject an initial block in the original order of H
1

, ..., HN , we
clearly can’t reorder by ascending p-values and reject an initial block in the
new order, as BH(q) says to do.

G’Sell et al. [15] were the first to recognize the sequential hypothesis test-
ing setting, and to derive an FDR controlling procedure for it, called For-
wardStop. Their idea was to, rather than reorder the p-values, first transform
the p-values using the following theorem due to Alfred Renyi. It says that,
through a linear transformation, one can transform iid exponential samples
into exponential order statistics.

Theorem 5 (Renyi representation). Let Exp(↵) denote the exponential dis-

tribution whose mean is 1/↵. Let X
1

, ..., Xn
iid⇠ Exp(1). Then the random

vector

 

X
1

n
,
X

1

n
+

X
2

n� 1

, ...,

n
X

i=1

Xi

n� i+ 1

!

is jointly distributed like

(E
1,n, E2,n, ..., En,n)

where Ej,n denotes the jth order statistic of n Exp(1) variables.

Proof. Note the memoryless property of exponentials, which says that if
Y ⇠ Exp(↵) and T is any nonnegative random variable (with a pdf p) such
that T is independent of Y ,

P (Y � y + T | Y � T ) =

Z

R
P (Y � y + t | Y � t, T = t)p(t)dt

Z

R
P (Y � y | T = t)p(t)dt =

Z

R
P (Y � y)p(t)dt = P (Y � y)

Also note that E
1,n ⇠ Exp(n), which you get by taking the exponential CDF

to the nth power.
Let Y

(1)

, ..., Y
(n) be standard exponential order statistics. Consider the

spacings Si = Y
(i+1)

� Y
(i) for 1  i  n� 1. Y

(i) is characterized by having
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above it n � i order statistics Y
(i+1)

, ..., Y
(n), so Y

(i+1)

can be thought of as
distributed as E

1,n�i independently from Y
(i), conditioned on E

1,n�i � Y
(i).

Then

P (Si > s) = P (E
1,n�i � Y

(i) > s | E
1,n�i � Y

(i))

= P (E
1,n�i > s+ Y

(i) | E1,n�i � Y
(i))

= P (E
1,n�i > s)

where we have used that E
1,n�i is exponential. So Si ⇠ Exp (n� i).

Now (n�i)Si = (n�i)(Y
(i+1)

�Y
(i)) := X 0

i ⇠ Exp(1). Then Y
(i+1)

�Y
(i) =

X 0
i/(n� i). Using the algebraic identity

j�1

X

i=0

Y
(i+1)

� Y
(i) = Y

(j) ⇠ Ej,n

where we may define Y
(0)

= 0 and X 0
0

= nY
(1)

, substituting in X 0
i/(n � i)

yields the result.
⇤

If we can convert exponential random variables to exponential order sta-
tistics, we can convert uniform p-values pk to uniform order statistics p0k
by converting to exponential (through inverse transform sampling), apply-
ing Renyi representation, and then converting back (through the probability
integral transform). The uniform order statistics act like ordered p-values,
which allows us to apply BH(q). This idea translates more or less immedi-
ately to a proof if all the non-null hypotheses are assumed to precede the
nulls, which may not be the case in practice. Regardless, the main idea is
still present in the proof of FDR control for the ForwardStop procedure pro-
posed by G’Sell et al., named so because it scans the p-values in a forward
direction.

Theorem 6 (ForwardStop). Suppose we have N ordered hypotheses with

associated independent p-values, H
1

, ..., HN and p
1

, ..., pN and a subset H
0

✓
{1, ..., N} which indexes the null hypotheses (so that pi

iid⇠ Unif[0, 1] for all

i 2 H
0

). Let 0 < q < 1.

Define the stopping rule

ˆkFq = max

(

k 2 {1, ..., N} :

1

k

k
X

i=1

� log(1� pi)  q

)

(23)

Then this controls FDR at level q.

Proof. Define Yi = � log(1 � pi), which is standard exponential random
variables if pi is null. Then define

Zk =

l
X

i=1

Yi
⌫(i)



24 DREW T. NGUYEN

where ⌫(i) = #{j 2 {i, ..., N} : j 2 H
0

}, the number of nulls from i to N .
If all the hypotheses had been truly null, then ⌫(i) = N � i + 1, and Zk

would be an exponential order statistic by Renyi representation. That is not
the necessarily the case under our assumptions, but we can still break the
sum into two terms and apply Renyi representation to one of them.

Let N
0

= #{H
0

}, the number of null hypotheses. Starting from k = 1

and going to k = N , take the p-value pk and give it a label: A(i) if it’s the
ith non-null from {p

1

, ..., pk} you’ve seen, and N (i) if it’s the ith null. There
are N

0

nulls and N �N
0

non-nulls; we can re-express Zk as

Zk =

k�(N
0

�⌫(k+1))

X

i=1

YA(i)

⌫(A(i)
)

+

N
0

�⌫(k+1)

X

i=1

YN (i)

N
0

� i+ 1

where N
0

�⌫(k+1) is the number of nulls from 1 to k (defining ⌫(N+1) = 0)
and where we’ve simplified ⌫(N (i)

) = N
0

� i+ 1 when pi is null.
Define Y 0

i = YN (i) , which is standard exponential and independent from
the other Y ’s. By Renyi representation, the second summation is distributed
as some EN

0

�⌫(k+1),N
0

variable.
Again consider the ideal situation with all the hypotheses truly null and Zk

a exponential order statistic. Then defining p0k = 1�e�Zk would turn p0k into
a uniform order statistic (and 1� p0k = e�Zk are the uniform order statistics
in the opposite order). We’re not in the ideal situation, but regardless, we
define p0k as such anyway. Then we have 1� p0k equal to e�Zk , and

1� p0k
d
= exp

8

<

:

�
k�(N

0

�⌫(k+1))

X

i=1

YA(i)

⌫(A(i)
)

9

=

;

· U⌫(k+1),N
0

where U⌫(k+1),N
0

is the ⌫(k+1)th standard uniform order statistic out of N
0

.
Defining r(k) = exp

n

�Pk�(N
0

�⌫(k+1))

i=1

YA(i)

⌫(A(i)
)

o

and noting that subtracting
uniform order statistics from 1 gives uniform order statistics in the opposite
order, we re-express

1� p0k
d
= r(k)(1� UN

0

�⌫(k+1),N
0

)

So the p0k may not be uniform order statistics, but at least for the null p’s,
we can read off that they are closer to 1 than uniform order statistics. Why?
Letting p00k := p0N (k) , we have

1� p00k
d
= r(N (k)

)(1� Uk,N
0

)

because N
0

� ⌫(k + 1) is the number of nulls from 1 to k, and the number
of nulls N

0

� ⌫(N (k)
+ 1) from 1 to N (k) is k. Now since 0  r(k)  1, we

imagine shrinking the difference between 1 and Uk,N
0

. In other words, the
p00k are stochastically larger than uniform.
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With this knowledge we attempt to apply BH(q) to the p0k, as in equation
(16), defining R(t) = #{p0i  t} and V (t) = #{p0i  t : i 2 SN}. Then FDR
and [

FDR are also defined analogously as in section 6.
Now set

tFq := sup{0  t  1 :

[
FDR(t)  q}

using these definitions for R and V . We wish to reject all Hk with p0k  tFq .
Analogously to the proof of BH(q), for the same filtration, we use a mar-

tingale idea, but this time we actually show that M(t) = V (t)/t is a sub-
martingale.

Conditional on V (s), for s � t, express V (t) as in equation (19):

V (t) = #{p00i : p0i  t  s} =

V (s)
X

i=1

⇠i

with ⇠i a random variable that’s 1 if p00i  t and 0 otherwise. We know the
p00i are stochastically larger than uniform order statistics, but V (t) has the
same value even if we permute the order of the p00i randomly, and if we do so,
the shuffled p00i will each be stochastically larger than the standard uniform.
This is because one can imagine they were they initially sampled iid from
a uniform, made into order statistics, and then increased by some function
of r(N (k)

) that depends only on the nonnulls. Then shuffling them again
will break any effect ordering has on their distribution, but the effect of r
remains.

Suppose we have done this. Now compute E[M(t)|M(s)] as in (20):

1

t
E[V (t)|V (s), s] =

1

t

V (s)
X

i=1

E⇠i =
1

t

V (s)
X

i=1

P (p00i  t) =
1

t
V (s)P (p00i  t)

and then using that each p00i is stochastically larger than uniform, which
means that their CDF is smaller,

1

t
V (s)P (p00i  t)  1

t
V (s)

t

s
=

V (s)

s
= M(s)

so that E[M(t)|M(s)]  M(s). Then, following exactly similar reasoning to
the proof of BH(q) in section 6, conditioning on Fs we see that M(t) is a
submartingale. Because tFq is bounded and can be verified, as in section 6, to
be a stopping time, (and because, assuming continuity of the transformed p-
values p0, we can redefine V (t) with strict inequality to get right continuity,
as in section 6), we can essentially rewrite equation (21) all over, so that
rejecting all Hk such that p0k  tFq will control FDR.

However the theorem presented ForwardStop using an integer stopping
rule, not a stopping time. Because we are applying BH(q) to the p0 values,
we can use equation (18) to see that rejecting based on p0k  tFq is equivalent
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to rejecting based on all k  ˆkq, where

ˆkq = max

⇢

k : p0k  k

N
q

�

= max

(

k : 1� exp

"

�
k
X

i=1

Yi
⌫(i)

#

 k

N
q

)

(24)

However, not only is ˆkq not equivalent to the rule proposed by the theorem, it
is not even computable because it depends on knowledge of ⌫(k). To rectify
this, we can append to the original untransformed list p

1

, ..., pN additional
null p-values (i.e. standard uniform) pN+1

, ..., pN 0 . The procedure outlined
so far still applies for any N 0 � N ; that is, letting tFq,N 0 be the resulting
stopping time, FDR(tFq,N 0)  q. Therefore, by DCT,

lim

N 0!1
FDR(tFq,N 0) = lim

N 0!1
E

V (tFq,N 0)

max(R(tFq,N 0), 1)

= E
"

lim

N 0!1
V (tFq,N 0)

max(R(tFq,N 0), 1)

#

 q

so the rule obtained by taking N 0 ! 1 controls FDR if indeed we obtain
some rule. We can compute this rule through ˆkq. Letting ⌫N 0

(i) denote ⌫ in
this setting, we note it behaves like N 0 for large N 0. Likewise N +N 0 ⇡ N 0
for large N 0. So taking limits in (24),

lim

N 0!1
ˆkq = lim

N 0!1
(N +N 0

)max

⇢

k : p0k  k

N
q

�

= max

(

k : N

 

1� exp

"

�
k
X

i=1

Yi
N

#!

 kq

)

= max

(

k :

k
X

i=1

Yi  kq

)

=

ˆkFq

a rule to which corresponds the random variable

lim

N 0!1
V (tFq,N 0)/max(R(tFq,N 0), 1)

so that we were justified in applying DCT, and which matches the rule
specified in the theorem.

⇤

In this section we presented a method called ForwardStop which uses
p-values to control FDR in a sequential hypothesis testing setting. At this
point, the reader could take the statistics from section 3 on a model selection
problem, turn them into p-values, and apply them with ForwardStop. But
ForwardStop is not the only way to control FDR for sequential hypotheses,
as we see in the next section.
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9. Accumulation test procedures, SeqStep, and HingeExp

Consider the ForwardStop stopping rule ˆkFq . Specifically, forget about the
Renyi and order statistic justification and consider the form ultimately ar-
rived at in equation (23). Why should we believe, intuitively, that a function
like � log(1� pi) would work—as opposed to its cube, say? In this section,
we show that ForwardStop is part of a class of FDR controlling methods
called accumulation tests (though what we actually prove is that accumula-
tion tests control something similar, to but slightly larger than, the FDR,
and ForwardStop is special because it controls FDR exactly).

Let FDP = V/max(R, 1), so that FDR = E(FDP). The idea of For-
wardStop is to reject as much as possible—hence the max—while control-
ling a certain quantity, namely 1

k

P

log

⇣

1

1�pi

⌘

. It’s reasonable to control
this quantity because its expectation actually acts an upper bound of FDP
(thereby kind of an overestimate of the FDR), so if it’s bounded above, then
so might FDP/FDR.

It’s an upper bound of FDP because null p-values pi have the pdf f(x) = 1

on [0, 1], so under the null

E log

✓

1

1� pi

◆

=

Z

1

0

log

✓

1

1� pi

◆

= 1

and we have

1

k
· E
"

k
X

i=1

log

✓

1

1� pi

◆

#

� 1

k
· E
2

4

X

null ik

log

✓

1

1� pi

◆

3

5

=

V (k)

k

where k represents the value taken by our stopping rule, and stopping rules
say to reject all Hi with i  k. So R(k) = k.

This intuition isn’t unique to ForwardStop; indeed, any function h :

[0, 1] ! [0,1) such that p ⇠ Unif[0, 1], and

E[h(p)] =
Z

1

0

h(p)dp = 1

will have a corresponding rule

ˆkhq = max

(

k :

1

k

k
X

i=1

h(pi)  q

)

where (1/k)
Pk

i=1

h(pi) is an overestimate of the FDP, and ˆkhq = 0 if it’s
otherwise undefined.

Any h satisfying these properties is called an accumulation function; For-
wardStop just sets h(p) = log(

1

1�x). We formalize the definition, however
simple:

Definition. Let h : [0, 1] ! [0,1) be such that
R

1

0

h(p)dp = 1. Then we
call h an accumulation function.
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This generalization was first noticed by Li and Barber (2015) [16], who
stated and proved all the theorems in this section. Now before we state the
main theorem of this section, we first define the modified FDR.

Definition. For c � 0, E
h

V (k)
�

(c + R(k))
i

is the modified FDR with pa-
rameter c, denoted mFDRc. It is equal to the FDR when c = 0 and strictly
smaller than the FDR otherwise.

Of course, if k is a stopping rule, we can just write R(k) = k.
Note that if R(k) the number of rejections is moderately large with c quite

small, this is not too far from the FDR, but otherwise, controlling mFDR is
weaker than controlling FDR and has the potential to be much weaker. Now
here’s the main theorem. The setting is as in theorem 6. Suppose we have
N ordered hypotheses with associated independent p-values, H

1

, ..., HN and
p
1

, ..., pN and a subset H
0

✓ {1, ..., N} which indexes the null hypotheses
(so that pi

iid⇠ Unif[0, 1] for all i 2 H
0

).

Theorem 7 (Accumulation tests). Let h be an accumulation function and

let q 2 (0, 1) be a target FDR control level. Fix C > 0, and define the

stopping rule

ˆkhq = max

(

k 2 {1, ..., N} :

1

k

k
X

i=1

h(pi)  q

)

Then

mFDRC/q(
ˆkhq ) 

q
R

1

t=0

min(h(t), C)dt

This isn’t as straightforward as ForwardStop. Notice that h does not
depend on C; in fact, nothing depends on C except for the final control of
the mFDR. In [16] C is simply taken to be 2. Also, the denominator of the
right hand side is strictly less than 1, so we’ve lost exactly control at level q,
and the quantity on the left side depends on q, as

mFDRC/q = E


V
�

✓

C

q
+R

◆�

Taking q really, really small will tend to shrink the mFDR compared to
the FDR on the left hand side. As for the right-hand side, we can get control
at q if we pick h(t) to be bounded and C to be its supremum, because then
the denominator is 1. However, if the supremum is large, then the mFDR is
much smaller than the actual FDR again14. So we see we must be reasonable
when controlling mFDR, either picking h that is bounded by a small number
or applying accumulation tests in situations where we will reject a moderate
amount.

14Aside from this situation of bounded functions, where you can say something about
exact control, there’s no reason to “pick” different C; mFDR control holds true for all of
them and the inequalities for different C seem equally useful.
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I will defer the proof of this theorem to later, in favor of discussion now. It
takes several lemmas and the proofs are not so terribly interesting, though
I include them for completeness. The results, not the proofs, are the in-
teresting thing here (one distinction between mathematics and statistics, I
suppose).

Here are a few things to say about the accumulation test procedures.
• Is exact control of FDR important? In [16] Li and Barber also pro-

posed a modified version of this method that gives exact control of
the FDR, but I do not consider it here, because it saps away power.
In section 10 we find that control of the modified FDR seems to not
be so bad, and at least for that experiment we never exceeded the
nominal level.

• The choice of h. We already see it might be advantageous to choose
h to be bounded, for FDR control reasons. But what about power?
As we march along k, we add up the values h(pi) until we spill over
q, and we don’t want a correct rejection to help accumulate evidence
that we should stop rejecting. So h(pi) or Eh(pi) should be small on
the non-nulls. Knowing the non-null distributions is impossible in
principle, but today there are empiricial bayes methods that can do
it [17], though they are not my focus.

• Where does ForwardStop fit in? We’ll define two useful methods in
this section, called SeqStep and HingeExp, both of which have more
power than ForwardStop as seen in section 10. But they only control
a modified FDR. To me so far it has seemed to be a worthwhile
compromise because the power gains are large, but in a small signal
setting, or when there are many nulls and few rejections we may want
to use ForwardStop, or if we want to take q very small and reject
stringently, because it has good power and controls FDR exactly.

We continue deferring the proof of theorem 7 to define the SeqStep [18]
and HingeExp [16] stopping rules.
Definition (SeqStep). In Theorem 7, take

h(pi) = C ·
n

pi > 1� 1

C

o

So the definition of SeqStep depends on your choice of C; it is named for
being a step function for sequential testing. The good thing about SeqStep
is that in the class of bounded functions, it is in some sense the “best” choice,
given a reasonable condition on the non-nulls.
Proposition. Let hS be the accumulation function corresponding to SeqStep

where C > 0 is chosen. Consider any other accumulation function h bounded

above by C. Suppose the non-null p-values pi have a density fi : [0, 1] !
[0,1), where fi is nonincreasing.

Then on those non-null p-values,

Eh(pi) � EhS(pi)
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In the most recent bullet points we said that we should keep Eh(pi) small,
and by this proposition SeqStep does just that.15 We also note that the
condition that fi is nonincreasing is reasonable, because if a p-value is truly
not null, it should have probability weight towards the low end of [0, 1], not
the high end.

Proof of Proposition.

Eh(pi)� EhS(pi) =
Z

1

0

�

h(t)� hS(t)
� · fi(t) dt

=

Z

1�1/C

0

�

h(t)� 0

� · fi(t) dt+
Z

1

1�1/C

�

h(t)� C
� · fi(t) dt

=

Z

1�1/C

0

h(t) · fi(t) dt�
Z

1

1�1/C

�

C � h(t)
� · fi(t) dt

�
Z

1�1/C

0

h(t)fi(1�1/C) dt�
Z

1

1�1/C

�

C�h(t)
�

fi(1�1/C) dt (fi is non-increasing)

= fi(1� 1/C) ·
"

Z

1

0

h(t) dt�
Z

1

1�1/C
C dt

#

= fi(1� 1/C) · [1� 1] = 0.

⇤
One remark. It is true that in the case of Eh(pi) � EhS(pi) = 0, then

h = hS almost everywhere, but we leave the explanation to [16].
Now let’s define HingeExp. Its name comes from the fact that it looks

sort of like hinge loss from machine learning.

Definition (HingeExp). In Theorem 7, take

h(pi) = C log

✓

1

C · (1� pi)

◆

n

pi > 1� 1

C

o

So HingeExp also depends on your choice of C. This function, which
looks sort of like a fusion of ForwardStop and SeqStep, was proposed in
[16] to combine the BH(q) heritage of ForwardStop with the optimality of
SeqStep. There’s currently not much to prove about it in particular, but it
works really quite well.

Now we return to the proof of the main Theorem 7.
Unlike the proofs given in other sections, the proofs in this section 9 will

follow extremely closely the original presentation in [18] and [16], which
were very clear and left out very little (and which shared an author). In
fact, I will be the one to leave things out; I will ask the interested reader to

15Of course this is not a proof that SeqStep actually has better power. In fact there
is a proof in [18] which says that, given some somewhat technical conditions, that if
Eh

1

(pi) > Eh
2

(pi) on the non-nulls then asymptotically greater power is achieved. The
proof is also somewhat technical (and very long) so we have left it out. Empirically we
shall see the power gains.
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refer to those references for the some of the omitted calculuations, which are
presented with satisfying detail there.

We begin by proving a few lemmas.

Lemma 2. Fix c 2 (0, 1). Let N (0)

be the largest element of H
0

. For

0  k  ˆN , put V +

(k) = #{j 2 H
0

: 1  j  k, pj  c} and V �
(k) =

#{j 2 H
0

: 1  j  k, pj > c}. Let Fk be the filtration generated by all the

non-null p-values as well as V ±
(k0) for all k0 � k. Then the process

M(k) =
V +

(k)

1 + V �
(k)

is a supermartingale running in backwards k, adapted to Fk, and for any k
we have

E [M(k)]  c

1� c

Proof. We assume H
0

= {1, ..., bN} for some bN . The proof for the general
case is identical, but messier.

Because we know all the nonnulls whenever we condition on Fk, we know
whether or not k is null. If it is null then

M(k � 1) =

V +

(k)� I

1 + V �
(k)� (1� I)

=

V +

(k)� I

min(V �
(k) + I, 1)

where I = pkc. Otherwise if it is not null M(k) = M(k�1). Conditioning
on Fk tells us nothing more about I. What it does tell us however is for
k0 � which of the null pk0 was below c because then V (k0) goes up a notch
when it does. Excluding those from consideration, at k we have

P (I = 1) =

V +

(k)

V +

(k) + V �
(k)

where the denominator is just the total number of nulls left to consider by
step k and the numerator is how many of them are known to be less than c,
that is to say, how many we’re allowed to pick from.

We’d like to calculate E [M(k � 1)|Fk]. This is easily done by weight-
ing the null possibilities by P (I = 1) and P (I = 0); we then find that
E [M(k � 1)|Fk]  M(k), which establishes the supermarginale property. I
omit the actual calculation and leave it for the reference [18].

To show the bound EM(k) = E
h

V +

(k)
1+V �

(k)

i

 c
1�c , we let V (k) = V +

(k) +

V �
(k) be the number of nulls from 1 to k (which is to say, the number of

false rejections), and re-express

E


V +

(k)

1 + V �
(k)

�

= E


V +

(k)

V (k)� V +

(k) + 1

�

where V +

(k) ⇠ Binomial(V (k), c). Since the probability mass function is
known, computing this expectation is a routine exercise; nevertheless it can
be found in [18], though I omit it here.
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The calculation proves the bound. ⇤

Corrolary. Let B
1

, ..., BN 2 {0, 1} be independent, with Bi
iid⇠ Ber(⇢) for

i 2 H
0

. Let {Fk}1k=N be a filtration in reverse k such that

• Bi 2 Fk for all i /2 H
0

, and for all i > k with i 2 H
0

• Pik,i2H
0

Bi 2 Fk

• The null Bi are exchangeable conditioned on Fk

Then

M(k) =
1 + V (k)

1 +

P

ik,i2H
0

Bi

is a supermartingale adapted to Fk and EM(k)  1/⇢ for all k.

Proof. Set ⇢ = 1�c, where c is as in Lemma 2. Then identify
P

ik,i2H
0

Bi

with V �
(k) from Lemma 2. Let M 0

(k) be the supermartingale from Lemma
2. Since a supermartingale plus a constant is still a supermartingale,

1 +M 0
(k) = 1 +

V +

(k)

1 + V �
(k)

=

1 + V +

(k) + V �
(k)

1 + V �
(k)

=

1 + V (k)

1 + V �
(k)

= M(t)

is still a supermartingale. Also,

EM(k) = 1 + EM 0
(k)  1 +

c

1� c
=

1

1� c
=

1

⇢
.

⇤
Lemma 3. Pick C > 0. Let a

1

, ..., aN � 0 and let h be an accumulation

function. Define

ˆk = max

(

k 2 {1, ..., n} :

k
X

i=1

h(pi)  ak

)

setting

ˆk = 0 if it’s otherwise undefined. Then

E
"

1 + V (

ˆk)

C +

P

iˆk,i2H
0

h(pi)

#

 1

R

1

0

min(h(t), C)dt

Proof. Define additional variables Ui
iid⇠ Unif[0, 1] independently from the

pi’s, and
Bi = {Ui  h(pi)

�

C}
Then conditional on the p

1

, ..., pN , the Bi are independently

(Bi|p1, ..., pN )

indep⇠ Ber
✓

min

✓

h(pi)

C
, 1

◆◆

= Ber
✓

min(h(pi), C)

C

◆

(25)

Also, not conditioned on anything the null Bi are Bernoulli(⇢), where

⇢ = E


max(h(pi), C)

C

�

=

1

C

Z

1

0

max(h(pi), C)dt
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We’d like to use the corollary. The filtration that works is where Fk is
generated by knowing (pi, Ui) for i > k for i 2 H

0

and all the (pi, Ui)

when i /2 H
0

. One can verify that ˆk is a stopping time with respect to this
filtration. Then the corrolary, plus optional stopping16, says

EM(

ˆk) = E
"

1 + V (

ˆk)

1 +

P

iˆk,i2H
0

Bi

#

 1

⇢
=

1

1

C

R

1

0

min(h(pi), C)dt
(26)

Next, we show

C · E
"

1 + V (

ˆk)

C +

P

iˆk,i2H
0

h(pi)

#

 E
"

1 + V (

ˆk)

1 +

P

iˆk,i2H
0

Bi

#

which will prove the lemma when combined with (26).

E
"

1 + V (

ˆk)

1 +

P

iˆk,i2H
0

Bi

#

= E
"

E
"

1 + V (

ˆk)

1 +

P

iˆk,i2H
0

Bi

�

�

�

p
1

, ..., pN

##

= E
"

(1 + V (

ˆk)) · E
"

1

1 +

P

iˆk,i2H
0

Bi

�

�

�

p
1

, ..., pN

##

� E

2

4

(1 + V (

ˆk)) · 1

E
h

1 +

P

iˆk,i2H
0

Bi

�

�p
1

, ..., pN

i

3

5

where we’ve applied Jensen’s inequality to 1/x.
Then by (25)

= E

2

4

1 + V (

ˆk)

1 +

P

iˆk,i2H
0

max(h(pi),C)

C

3

5 � C · E
"

1 + V (

ˆk)

C +

P

iˆk,i2H
0

h(pi)

#

⇤
Finally we can prove the theorem.

Proof of Theorem 7.

E[mFDPC/q(
ˆkh)] = E

"

V (

ˆkhq )

C/q + ˆkhq

#

= E

2

4

V (

ˆkhq )

C +

P

ˆkhq
i=1

h(pi)
· C +

P

ˆkhq
i=1

h(pi)

C/q + ˆkhq

3

5

By definition of ˆkhq , and then simplifying,

 E

2

4

V (

ˆkhq )

C +

P

ˆkhq
i=1

h(pi)
· C + qˆkhq

C/q + ˆkhq

3

5

= q · E
2

4

V (

ˆkhq )

C +

P

ˆkhq
i=1

h(pi)

3

5

16We proved it for submartingales. It’s also true for supermartingales because you can
just multiply by negative signs to turn a supermartingale to a submartingale, apply the
theorem, and then multiply by another minus.
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(now we can think of the term as an estimate of mFDP.) Add 1 to the top
and remove terms from the bottom to get

 q · E
"

1 + V (

ˆkhq )

C +

P

iˆk,i2H
0

h(pi)

#

Now direct application of lemma 3 gives the result. We see that lemma 3
was indeed the crucial bound.

⇤

10. Simulation results
For the following results, we referenced R code from the website accompa-

nying [16] as well as the R package implementing [19] and modified them to
implement the Lasso-G test (the covariance test was already done), obtain
p-values per section 3, and then pipe them into the methods in 8 and 9. We
relied on the default plotting features.

For n = 3000 and p = 1000, we defined a vector �⇤ 2 R1000 which had
the initial 200 entries nonzero. We looked at two settings; moderate signal
(nonzero entries were 9) and strong signal (nonzero entries were 20). We
generated orthogonal matrices X and data y based on the linear model (1),
computed the lasso path, and computed both covariance test p-values and
lasso-G p-values. Then each of ForwardStop, SeqStop with C = 2, and
HingeExp with C = 2 were performed on these p-values in the order of the
lasso path for varying FDR targets q. (Also pictured, in black, is SeqStep+,
which is the modification of SeqStep in [16] that controls FDR rather than
mFDR and which we mentioned back in section 9, but it has such low power
that we did not bother to prove anything about it.)

This was performed 1000 times. The empirical power, which is the number
of non-null hypotheses that were correctly rejected, was averaged over these
1000 times as q varied. Likewise the empirical FDR, which is the number of
false rejections over rejections, was averaged 1000 times for varying q. The
plots are shown in figures 2, 3, and 4.

The results are that FDR is successfully controlled in every situation (the
observed FDR lies under the dotted line), even though SeqStep and Hinge-
Exp only control a modified FDR. HingeExp is the best performing method,
and the covariance test did not obtain power greater than 0.7 on q 2 [0, 0.25]
in the moderate signal regime, but it did on the strong signal regime.

However, the Lasso-G test, based on the Gumbel, maxed out on observed
power almost immediately. The observed FDR was higher but still con-
trolled. Evidently Lasso-G is not as conservative as the covariance test. In
addition to the robustness reported by Cai and Yuan, it seems that Lasso-G
is superior in this problem.
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Figure 2. Covariance test with �⇤
= (9, 9, 9, ..., 0, 0, ...)

11. Discussion and Conclusion
In this work we have presented two alternative test statistics and three

alternative ways to combine them to control FDR. It appears that, for the
orthogonal problem, the recommendation is to use Lasso-G with HingeExp.
But we have analyzed a restricted set of methods under restricted assump-
tions and thereby only arrived at a partial answer. Good statistical practice
is almost as much philosophy as it is mathematics. I would like to use this
discussion to reflect on whether other methods might answer our question
of model selection better, or if even we are asking the right question. In
particular, the methods this work examines were all devised by 2016. How
much has the field changed since then?

Robustness to nonindependence. Orthogonal design is a very re-
strictive condition. It simplifies many proofs, intuitively because we have
stamped out the issue of multicollinearity and every OLS solution can be
considered without affecting the others. Additionally, the assumption is
necessary for independent p-values in the covariance test situation; the anal-
ogous result of Lockhart et. al for a general matrix X does not guarantee
independence of p-values, which is an assumption in all our sequential pro-
cedures.

Indeed, getting p-values is not a real problem. The spacing test [20] is
another way to get p-values and is even valid in finite samples for correlated
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Figure 3. Covariance test with �⇤
= (20, 20, 20, ..., 0, 0, ...)

matrices, and we have seen that the Lasso-G test is resistant to nonorthog-
onality. But there does not seem to be a way to get independent p-values.
The Benjamini-Yekutieli procedure [21] for unordered hypotheses controls
FDR under dependence, and BH(q) alone actually works under a kind of
positive dependence [22], but no sequential stopping rules seem to have been
devised that take advantage of these properties.

One thing that we do have is that under nonorthogonality, variables may
enter and leave the model in the lasso, so that the null hypotheses are not
nested, but all of our sequential hypothesis testing methods can handle some
nulls interspersed along the non-nulls.

Which hypotheses? My discussion here parallels a passage in [23].
Our null hypotheses (5), which say the true support is contained in the
current model, are conditional on the data as well as the whole sequence of
hypotheses, and are typical in the literature. One approach is to condition on
just the current null model, rather than the whole sequences of hypotheses;
this is the approach in [23], and the result is power, with the drawback of
computational difficulty.

Another hypothesis that is not conditional on the data is simply H
0k :

�k = 0. This is not a sequential testing problem anymore, and it has a
different interpretation, being variable selection rather than model selection.
If �k is well correlated with other variables, it becomes difficult to interpret
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Figure 4. Lasso-G test with �⇤
= (9, 9, 9, ..., 0, 0, ...)

a rejection in this case without knowing the nature of the correlation, and
if p is large it may be impossible. If the model has some special scientific
status and we know something about the other covariates then we may wish
to test H

0k : �k = 0; we may use debiased lasso methods [24] or desparsified
lasso methods [25]. As for FDR control, in this setting there is exactly one
method which achieves it, without even involving any null distributions or
p-values. It is called the knockoff filter.

The knockoff. The knockoff [18] is one of the most important results in
the FDR control literature and is many papers just by itself. It achieves FDR
control of the hypotheses H

0k : �k = 0 under completely general conditions
on X. The idea is to look at when variables enter the lasso path, denoted
Zj = sup{� :

ˆ�j 6= 0}, and reject all Hj for which Zj � T where T is some
data dependent threshold. How can T be calibrated to achieve FDR control?
The knockoff method constructs fake data fX which has (almost) the same
correlation structure as X is, but is (almost) independent from X. Then
the data fX are added to the model and the lasso path is computed. The
knockoff variables are all null, so we can calibrate T based on whether �j
enters the model much earlier compared to its knockoff ˜�j , which would be
good evidence that �j 6= 0.

It turns out, and is shown in [18], that if you modify SeqStep (see section
9) slightly then the knockoff can be derived as a special case of it, and
indeed the knockoff controls not FDR but some mFDR. Necessarily this
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modification is no longer a sequential stopping rule, because the knockoff
is not one. Personally, I wonder if some knockoff-esque method could be
derived by considering the more powerful stopping rule, HingeExp.

So, what’s the best method? For sequential stopping rules, the best
we’ve got seems to be HingeExp, which assumes independence of the p-values
(unless you really wanted to control FDR exactly, in which case you use For-
wardStop). But the question of what p-values to use, and which hypotheses,
is harder to decide, not least because of correlated design muddling the issue.
This goes away if you wished to test H

0k : �k = 0, where the knockoff is
hands down the best method because it works under correlation. But do
you want to? Ultimately I think it’s probably a matter of philosophy, but
my thoughts are not fully fleshed out. I suppose the point of this concluding
discussion, aside from a gentle curtain close to my honors thesis, was to try
to organize my thoughts in the hopes of learning an answer. Maybe I’ll have
a better one in a few years.
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