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Introduction

The purpose of this thesis is to discuss the construction of discretizations of
classical field theories, i.e. a finite dimensional reduction of the infinite dimen-
sional field dvnamics. Finite element exterior calculus will serve as the main tool
to reduce the problem to a finite dimensional computation. To accurately reflect
the physical svstem, a discretization should preserve the structures inherent in
the infinite dimensional svstem. We will develop two discretization frameworks,
a discrete Lagrangian approach and a discrete Hamiltonian approach. which
preserve different structures of the full theory and serve different applications.

After providing a background on geometry and field theory in the first chap-
ter., the second chapter discusses how to discretize these theories and the third
chapter considers applications and examples.



1 Differential Geometry and Lagrangian
Field Theory

The purpose of this chapter is to review concepts in differential geometry and
Lagrangian field theory which provide an introduction to the later contents of
the paper. In particular, in this chapter we formulate Lagrangian field theories
in the language of exterior calculus, and in the subsequent chapters we will see
how to discretize such theories.

1.1 Differentiable Manifolds

Manifolds will be the physical space where our theories occur. An n-dimensional
manifold M is a topological space with an atlas, {U,,m,},. consisting of open
subsets U,, C M and homeomorphisms 7, mapping U, to open subsets of R"
such that the atlas covers M,

M =U,U,.

Furthermore, the charts in the atlas are connected via transition maps, which
are the maps
Ty O wgl cme(Ue NUy) = my(Ue N U).

This allows us to describe points on open subsets of M using coordinates on
R™ and the transition functions provide the coordinate transformations between
two different charts. If the transitions maps are all differentiable, we sav M is a
differentiable manifold. Throughout the paper. when we refer to "manifold",
we assume that it has a differentiable structure. unless otherwise stated.

The tangent space at x € M, denoted T, M. is the union of all possible
tangent vectors at x, which can be constructed as differential operators along
the flows of smooth curves on M at z. In some coordinate chart on M. we
can parametrize a curve y(t) = (z*(¢),...,2"(t)) with v(0) = x. Considering a
smooth function f on M in a neighborhood of . we can compute the rate of
change of f along v at x,

= 5(0) 5 7]

_dx”

da®) Of
t=0  dt

t=0 Ox™

& (Fort)

x x

We associate the differential operator a.fa with the tangent vector to the

curve v at x. Of course, since £ can be chosen arbitrarilv by appropriately
choosing the curve v, the tangent space

T.M = span{axia z}a.

1.2 Vector Bundles

The dvnamics of field theories evolve over vector bundles, defined over some
configuration manifold. Informallv, a vector bundle is a manifold which decom-
poses (locally) as the product of a manifold with a vector space. More precisely,

o
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Definition 1.2.1 A differentiable vector bundle consists of differentiable
manifolds E (the total space) and M (the base space) with o differentioble pro-
jection m © E — M such that for cach x € M, the fiber 771(2) is a real k-
dimensional vector space and there cxists a neighborhood U of © and a diffeo-
morphism

o :m Y U) = U xR

such that for cach ' € U, @[ -1y is o vector space isomorphism between
7 1(2') and R¥. The bundle is denoted (E, 7, M) and has rank k.

Thus, for a neighboorhood U at each point, a bundle admits the local trivi-
alization 7=!1(U) ~ U x R*. Note, we often denote the bundle simply by E.

In a field theorv occurring on a vector bundle, a field is a differentiable
assignment of a vector v € 7~ (x) to each z € M. This is formalized by the
notion of a section. A geetion of a vector bundle (E, 7, M) is a differentiable
map 7y : M — E such that 7 oy = 1),. We denote the space of sections I'(E).

Definition 1.2.2 A bundle metric on a bundle (E, 7, M) is a smooth assign-
ment of a scalar product to cach fiber 771 (x) for all x € M.

Example 1.2.1 The tangent bundle of a differentiable manifold M. (T M, 7, M),
is a vector bundle where for z € M, w‘l(m) =T, M. the tangent space of M at
x. In a neighborhood U of M, we have the trivialization 7= (U) ~ U x R4#m(M),
For this bundle, T'(T'M) is the space of smooth vector fields on M. If TM has
a bundle metric, we sayv that M is a Riemannian manifold.

Furthermore, given two vector bundles (Ey, 7, M), (Es, 7, M), we con-
struct the product bundle denoted (E; x Es, 7w, M) where for x € M, the fiber
at z is defined 7! (z) := 7y ' (z) 75, ! (). In a similar manner, we can construct
the tensor product of two bundles, denoted (Eq ® Eq,m, M).

Of particular importance for our purposes is the bundle of differential forms,
which we discuss next.

1.3 Exterior Calculus
Let V be a vector space; we denote Alt*(V) as the space of alternating
k-linear maps from V* to R. The wedge product is a bilinear associative map

Az AR (V) x AltH (V) — AltETH(V),
where for 8 € Alth(V), a € Alt'(V), v; € V, the wedge product is defined by

1

6/\0[ (’Ul, ...,’Uk;+[) = m Z Sign(a)ﬂ(vg(l), ceey ’Uo.(k))a(’l}a.(k+1), "'7U0'(k+l))'

0ESk41

In order to determine a basis for Alt*(V), consider a basis {e;}j=1,.n for V.
A natural basis on V* = Alt}(V) is defined by o!(e;) = 5;. Then, AltF(V) is
spanned by a basis {a/* A ... Aalk )y <. <, where [y, ...l € {1,...,n}.
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Proposition 1.3.1 The wedge product is graded commautative, i.c.,
aAB=(-DMBAa, Ya e Alth(V), 5 € Alt? (V).

Proof. Tt suffices to prove this on a basis for Altk(V), Alt7(V) since the wedge
product is bilinear. Let o/t A ... Aol € AltF(V), a™ A ... Aa™i € AltI(V)
where each o' € Alt'(V). Clearly, by the definition of the wedge product, for
ool € AltY(V), o' Aol = —a Ao, Thus,

AP AL AN (@M AL AQ™) = (1)t AL A (@™ A A Q™) AalE

= (=DM(@™ A AQ™) A A LA QN
That is, moving j 1-forms through k 1-forms produces kj sign changes. O

Furthermore. assume that V' has an inner product, which naturally induces
an inner product on the dual space V*. We define the inner product in Alt*(V)
by its action on the basis: For a = o A ... Aal* and = ™ A ... A7,

)

(a,8) = det ({a", 871) )

On a manifold, we take V = T, M for each x € M. This gives the bundle
of differential k-forms (A*M, 7, M) where m~'(z) = Alt*(T,M). Analogous
to a tensor product bundle, this space can be constructed as the k-fold wedge
product of the cotangent bundle, A¥M = T*M A...AT*M. A k-form is defined
as a section of this bundle, i.e. an element of I'(A*M) =: QF M.

A coordinate basis on TM. {0;};. provides a canonical choice of dual basis
on T*M, {dz’};. satisfving d2?(9;) = 6. This accordingly determines a basis
for AkM._ {dl‘jl A ... A dadx }j1<«~-<jk'

Definition 1.3.1 The exierior derivatlive is a map
d* QF M — QF M,

where for a function f € Q°M, df = (0;f)dx’, and for w € QFM with compo-
nents {wi, ..., } With respect to the coordinate basis,

,,,,,

.....

i1 <...<ig
where we omit the superseript k when clear. The exterior derivative satisfies
(i) d(ac + bB) = ada +bdB ¥ o, B € QXM a,b e R;
(i) d(a A B) =daA B+ (—1) andB,V ac QFM;
(iii) d*1 o d® = 0.

-1
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In particular, the following sequence forms a cochain complex,
0= QM4 o'MS 4 amm—o0. (1.3.1)
We now state a fundamental theorem regarding the integration of forms.

Theorem 1.3.1 (Stokes® Theorem) Let M be e compact, oriented differen-
tiable manifold of dimension n, then for all w € Q" 1M,

/M dw = /aM w. (1.3.2)

Now, assume M is a compact oriented Riemannian manifold of dimension n.
Naturally, the metric on the tangent bundle induces a bundle metric on A* M,
denoted (, ).

Definition 1.3.2 Define the Hodge star operator  : QFM — Q" FM such
that, on a k-form g € QFM,

Metric Structure

aAxB = {a, B)vol, ¥ a € QFM,

where vol is the volume n-form corresponding to the orientation of M.
This defines an L? inner product on k-forms: For o, 3 € QF M,

(o, B) p2qr = /Moz/\*ﬁ = [ {«, B)vol.

M

Proposition 1.3.2 The Hodge star satisfics sx = (—1)F"=F) and is an isometry
from the L*QF to L2Qn—F.

Proof. Consider dz' A ... Adx™ € QFM. Then, x(dz' A ... Adx'*) = dzdt A... A
dzIn=* where dz" A ... Adx'™ A dzx? A ... ANdxI"—* = vol. Applving the Hodge
star again, we have

*ok (dz™ A Ada™) = x(da? A A dainR) = dat AL A dat

where the + is determined by whether dz/! A... Adxin—+ Adz™ A... Adx* = Fvol.
However, by graded commutativity, vol = dz™ A ... Adz™ Adx/t A ... Adzin—+ =
(=) =R gzt A A dxin-k Ada™ A ... Adae™ and thus sx = (—1)F k),

To show that the Hodge star is an isometry, for a, § € L2QF,

a 20k = a A8 = (—1)kn—Fk) cxa) Ax
(o, B) 20 /M AxB =(-1) /M( ) A8
= (_1)]“(”*]“)(_1)16(7171@)/

M
= (xB, %) p2qn—r = (*a, %) p2qn—#,

(*,8)/\**@:/ (xB) Ax*

M

where we used graded commutativity (x*a) Ax8 = (=1 R (xB) Axxa. O
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Definition 1.3.3 d"* : QM — QF~'M is the formal adjoint of d* with respect
to the L2QF product such that for B € QFM,

(da, B) L2qr = (o, d"B)L2qr-1,
for all compactly supported o € QF 1M,

Proposition 1.3.3
dk* — (71)k *71 dnfk*

dk—l* Odk* = 0.

)

Proof. By Stokes’ theorem 1.3.2 and property (i¢) in Definition 1.3.1, for § €
QOFM and « € QF~1M,

0:/8Ma/\*ﬁ:/Md(oz/\*ﬁ):/Mdoz/\*ﬁ—i—(—l)k_l/Moz/\d*B
= [ danxB— (—l)k/ aAx*xtdx B = (da,B)20r — (a, (=1)F x7Ldx B) p2r-1.
M M

This gives the first identity. Furthermore,
dk—l* Odk* — (_1>k,+1 %1 dTL—k+1*<_1)k %1 dn—k* — 41 dn—k+1dn—k* —0.
O

Definition 1.3.4 The Hodge Laplacian AF : Q*M — QFM is an operator
defined by
AF = gkt gh gk 1ghe, (1.3.3)

Furthermore, we sy that o € QFM is harmonic if Aa = 0.
Proposition 1.3.4 For a € QF M,

Aa=0<+<= d*a=0 and da = 0.
Proof.

(«<=) Clearly. d*a = 0 and do = 0 implies (d*d + dd*)a = 0.
(=) Using the L? inner product and the adjoint property,

0= (Aa,a) = ((d*"d + dd")a, o) = (d"da, @) + (dd* o, @)
= ("o, d"a) + (da, do) = [|d"a* + [|da]?,

which implies d*a = 0, da = 0. O
We define the Hilbert space HQ* and its dual:

HO"M = {w e L’Q*M | d*w e L*Q*' M},
H*QFM = {w € L2Q"M | d**w € L?Q" ' M},
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with inner products (o, 3 € HQ*M; 0,7 € H*QF M),
(o, B)uar = (a, B)p2qr + (do, dB) p2qr+1,
(o,T)g=ar = (0, 7)p2qr + (A" 0, d*T) 2q—1.

The spaces HQF form the Hilbert de Rham cochain complex under the map
d (and similarly a dual complex for d*):

0—s HQO 4 gt -4 4 HA" — 0,
0+— H*Q0 & gt ¢ Q.
As more notation, we define the space of L? harmonic k-forms, L? k-cocvles
(closed forms), and L? k-coboundaries (exact forms) in HQF. respectively:
9% = {we HO* N H*Q" | dw = 0, 6w = 0},
3% = {we HQ" | dw = 0},
BF .= d[HQF ).
To end this section, we make some final remarks regarding the structure of

the de Rham complex 1.3.1. The Hodge decomposition theorem states that the
space of k-forms admits the decomposition

QFM = QM) @ d*[QF M) @ HY (M), (1.3.4)

where H* (M) is the space of harmonic k-forms over M. Analogously, the Hilbert
de Rham complex can be decomposed

HOQFM = 8k ¢ B ¢ o*, (1.3.5)

where B** = d*[HQ**1]. Furthermore, the Hodge decomposition 1.3.4 implies
that the de Rham cohomology H%, := ker(d*)/d[QF~'] is isomorphic to the
space of harmonic forms H*(M). i.e. each cohomology class [a] € HE, corre-
sponds to a harmonic form. When discretizing the de Rham complex, it will
then be important to preserve the cochain complex structure to ensure that the
Hodge decomposition still applies in the discretized space.

Vector-Valued Differential Forms

Recall in the definition of differential forms. forms take values in M x R, i.e.
thev take values in R at each point in M. However, more generally, forms can
take values in an arbitrary vector bundle.

Definition 1.8.5 Let (E 7, M) be @ vector bundle. Then an E-valued differ-
ential k-form is a scction of the bundle E ® A*M. We denote the space of
E-valued k-forms

QF(M,E) :=T(E @ A*M).

In the case of a trivial vector bundle E = M x V, we use the notation

QX (M|V) := QF (M, M x V).

10
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Definition 1.3.6 Let [, -] be a smooth pointwise binary operation on the fibers
of (E,m, M), d.c. [-,]z : 7 Y a) xn Y (z) = 77 (z). Then, we extend the wedge
product to vector-valued forms [ A-] 1 Q¥ (M, E) x QY(M, E) — Q**Y(M, E) such
that for B € Q¥(M, E), a € QY(M, E), vy, ...,vp € D(TM),

1
(k+1)!

Z 5ign(0) [B(Va(1)s -+ Vo (k) )y X (Vo (k1) -+ Vo (k1) )] -

UGSk+l

[5 A 06](’01, ...,Uk_H) =

Definition 1.3.7 Let (| )g be e bundle metric on E and let (|, )arpr be @
bundle metric on ANM. Forn@w,n’ @ w' € T'(E ® A*M), define

m@w,n @uw) = (nn)elw W)k

In particular, this determines o metric on the basis of E @ A*M and by lincar
catension provides a bundle metric on E @ APM.

The above definitions will allow us to work with theories which involve forms
with values in vector spaces other than R (e.g. Yang-Mills theory, see section
1.5).

1.4 Lagrangian Field Theory

A Lagrangian field theory characterizes the configuration of a field u € T'(E)
as the stationary point of an associated action S[u], where S : I'(E) — R is
defined as the integral of a Laprangian density. The condition for stationarity is
that the variation of S vanishes for all proper variations. To make this precise,
we define the following derivative:

Definition 1.4.1 (Gateaux Derivative) Let X and Y be locally convex topo-
logical vector spaces and suppose F @ X — Y. Then, F is said to be Gédteaus
differentiable at uw € X if there ezists a lincar operator 0F (u) : X — Y satisfying

1
hH(lJ*HF(’U,—I— ev) — F(u) —edF(u) -v|ly =0, Vv e X.
e—0 €
If it cxists, we call 0F (u) the Géleaux derivative (or variation) of F ot u
and it can be computed divectly vie the formaule
5P v = 2| Flu+eo)
u)-v=— u + ev).
de le=0
For a field theory defined over some vector bundle (E, 7, M), the action
S = [L where £ : J'Y(E) — Q"M is the Laprangian density (Lagrangian
for short), where n := dim(M). J*(E) is the first jet-bundle of E which in
coordinates involves the coordinates on M. the coordinates on E (the field),
and the first derivatives of the field.
For our purposes, we consider a specific class of Lagrangians. We take as
our configuration bundle A*M and the analog of the jet-bundle to be A*M x
AFFTIM x A*=1M over the base space M. Thus,

L:T(A*M x A¥IM x A¥1M) — QM.

11
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We construct the action
Slu] := / L(u, du, d*u), (1.4.1)
M
where the solution u satisfies the stationary condition 6.5 (u)-v = 0 for all proper
variations, i.e. v vanishing on the boundary.

Lemma 1.4.1 Let M be an oricnted Riemannien manifold and Z - Q°M —
Q"M be Géateaur differentiedle ot u, then there exists 072 : Q°M — Q°M such
thet 0Z(u) -v = 0Z(u) Axv for all v € Q°M.

Proof. By the definition of the Gateaux derivative, 0Z(u) is a linear operator
from QM to Q" M. Writing v € Q*M in components, v = Y v;, ;. dz™ A A
dx's, summing over iy < ... < i5. Since §Z(u) maps v linearly into an n-form,

0Z(u)-v= (Zail,...,isvil,‘..,is)UOl7

where the a-coeflicients depend on u. Then, taking

Qiy ..

we verify 0Z(u) A %v = 0Z(u) - v,

0Z (u) \*v = (Z o C/L\“/\zdxz zdxil A A dxis) /\*(Zvil,m,isdl’“ A A da:’)
=Y (||d?sllll/\lvj\l dxz S(da™ A Adate) Ax(dzt A LA dmis))
= Z || Dinyest Vi eoile Sllda™ A LA dat

2vol

dx®r AN\ dats
= Z (az‘l,.4.,¢SU¢1,..A,iS)U0l =0Z(u) - v,

where we used the definition of the Hodge star and the fact that (dz™ A ... A
dz's) AN x(dx?t A ... Adx?s) #£ 0 only if (i1, ...,is) = (J1, .-+, js) and thus, only the
terms in both sums with the same indices interact. O

Remark A similar result can be proven for differential forms with values in a
vector bundle. In this case, the metric Ax gets replaced with the metric on the
tensor product bundle ( , )ggaras- In particular, there exists 0Z such that
0Z(u)-v=1{(0Z(u),v)ggararr- The next theorem holds in this more general case
as well.

Theorem 1.4.1 (Euler-Lagrange Equation) The condition for the stationaerity
of the action 1.4.1 for all proper variations is given by

0
* — *u) = 1.4.2
8(du)£(u’du’d u) +d L(u,du,d*u) =0, ( )

gﬁ(u, du,d*u) + d* o)

ou

where the 0 notation is as in the previous lemma.

12
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Proof. From the action S[u] = [,, L(u,du,d*u),

d
dS[u] v = % €:OS[u—|—ev]

= / M L(u, du, d*u) - v+ 2L (u, du, d*u) - dv + d5L(u, du, d*u) - d*v,
M

where §; denotes the variation in the i*” argument. By Lemma 1.4.1 and the
adjoint property of d and d* (holds since v vanishes on the boundary),

dS[u] v = / O L(u, du, d*u) A xv + o L(u, du, d*u) A *xdv + I3L(u, du, d*u) A *xd*v
M

= / O L(u, du, d*u) A *v + d*02L(u, du, d*u) A *xv + dosL(u, du, d*u) A xv
M

= / (alﬁ(u, du,d*u) + d*02L(u, du, d*u) + dOs L(u, du, d*u)) A *v.
M

In order for this variation to vanish for arbitrary v,
M L(u, du, d*u) + d* 02 L(u, du, d*u) + dOsL(u, du, d*u) = 0.
O

Remark We can also include explicit coordinate dependence to the Lagrangian
L(z,u,du,d*u), x € M, which would have the same associated Euler-Lagrange
equation. Furthermore, we could consider a theorv governing multiple fields,
{uA}A:L__.7S. In this case, we would get an equation from each condition
5aS[ut,...,u®] - v = 0. Explicitly,

0 0 0

— d* d =0, A=1,..,s.
8uA£+ 8(du’4)£jL a(d*uA)L 0 e

Example 1.4.1 Consider the Lagrangian

1 1
L(u,du,d*u) = §du A *du + id*u AN*d*u+ f A xu,
where u, f € Q*M. Compute the variations

L(u+ ev,du,d"u) = f N *v,

e=0

d
nL(u,du,d*u) - v = o

d
02 L(u, du, d™u) - dv = e Oﬁi(u7 du + edv, d*u) = du A *dv,
€ le=
d
dsL(u,du,d"u) - d*v = o OE(u,du,d*u + ed*v) = d*u A *d*v.
€ le=

By lemma 1.4.1, 1 L(u, du, d*u) = f, 02L(u,du,d*u) = du, O5L(u,du, d*u) =
d*u. Thus, the corresponding Euler-Lagrange equation 1.4.2 is the Poisson
equation (for a k-form):

Au = (d*d+ dd*)u = —f.

Note, for a Lorentzian (spacetime) manifold, this equation instead has the in-
terpretation of a wave equation Cu = —f.

13
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Noether’s Theorem

When discretizing a physical theory, it is important to consider its conservation
laws, as they shape the behavior of the system. If our discretization in some
way respects the conserved structures of a syvstem,. the numerical simulation
will be more robust. In a Lagrangian theory, Noether's theorem states that the
svmmetries of an action correspond to a conservation law.

Let M be an n-dimensional differentiable manifold and X be a generator for
a transformation on M. Denote X as the lifted action of X on AM.

Definition 1.4.2 We say X is a continuous symmeilry of the action S :
OF = R if for all ¢ € QX M, the variation of S[¢] in the symmetry divection over
any submanifold U, dim(U) = dim(M), nenishes up to an cxterior derivative,

s%wﬂ@:Lwa (143)

for some K : QFM — Q" "'M, where 1.4.3 varies smoothly w.r.t. U.

Theorem 1.4.2 (Noether's Theorem) Let X be o continuous symmetry of S :
QFM — R. Then, for u € QM satisfying the Euler-Lagrange cquation 1.4.2,
there exists J: QFM — Q"M such that d3(u) = 0, given by

I(w) = (X(u) A %o L (w, du, d* ) — B5L(u, du, d*u) A *X(u)) ~K(u). (Ldd)

Proof. The basic idea is to obtain an expression for the variation in the svm-
metry direction in two different ways and subtract to obtain the conservation
law. Let U be a submanifold of M, dim(U) = dim(M). Since X is a symmetry
of the action, there exists K : QFM — Q"1 M such that

Sw«wa:Ang%v¢ele

We compute the variation S’[¢] - v for any perturbation v. Note that it is not
necessarily a proper variation and thus, d* and d are not necessarily adjoint.

S'u] v = / OLL(2) A %0 + DaL(2) A xdv + By L(2) A wd™v
U

_ /U (L) +d"0L(z) +dDaL(2) A s + /3 UAADL() = () Ao

- /aU v A%OuL(2) — BuL(2) A xv = /

g d(v AxOoL(2) — 03L(Z) A *v),

where we used that v satisfies 1.4.2 and denote z := (u, du, d*u). Thus,

0= 95"[u]-v

—S’[¢]~X(¢)] - /U d(X'(u)/\*agﬁ(z)—83£(Z)A*X(u)—K(u)>,

v=X (u) o=u

since U is arbitrarv and the integrand varies smoothly with U, the expression
1.4.4 satisfies dJ(u) = 0. One can also easily check by the definition of the
wedge product and Hodge star that J(u) € Q"~1 M. O
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Remark 1.4.1 We refer to J as a conserved current, since dJj(u) = 0 is a
conservation law. To see this in coordinates, since J(u) € Q" 1M, it can be
written as a linear combination of n basis forms.

J(u) = 310, swol™ + ... + 3", svol™,

where vol™ := dx' A ... Adz™. Thus, 0 = dJ(u) = 0aJ%o0l™. With x! as time ¢,

which is the classical form of a conservation law.

Remark 1.4.2 Note that since J(u) is a closed form, we could also add an exact
form da to the Noether current. Thus, Noether's theorem actually specifies an
equivalence class of closed forms,

[3(0)] = {w € ker(d™™) | 3(u) — w € 2" ?M]),
i.e. an element of the (n — 1) de Rham cohomology H)j, ' (M) := Z"~'/B"~1.

Example 1.4.2 (Energy Momentum Current of Scalar Field)

To illustrate Noether’s theorem, we consider a scalar field theorv. Let M
be an n 4+ 1 dimensional Lorentzian manifold with Minkowski metric n =
diag(—1 1 1 1). For a scalar field ¢ € QM. d*¢ = 0. Thus, the action
has the form S[¢] = [,, L(¢,d¢). Since L(¢,dp) € Q"1 M,

L(¢,d¢) = L(¢,dp)d" "z,

for some L : T(QFM x Q*1M) — M x R, where d""lz := dz® A ... A dz™.
Eor a translation in spacetime (generated by X, = 9,). the fields transform as

X, (¢) = 0,¢ and likewise the Lagrangian transforms as (9,L)d"*'z. Thus,

S0l %u0) = [ @10 do) e = [ a1 (6. d0)0, ),

i.e., translations are svmmetries of the action. which arises from the fact that
the Lapgrangian does not explicitly depend on the coordinates. By Noether’s the-
orem, for a solution u € Q°M of 1.4.2, for each symmetry X, v € {0,1,...,n},

T, (u) = Opu A %02 L(u, du) — L(u, du)d, .d" ™z

is a conserved current. Thinking of each current T, (u) as the components of a
single object, we have the energy momentum current T'(u). Clearly, T'(u) is a
Q"M valued 1-form, i.e. an element of T'(A"M x A'M): for anv vector Z =
Z¥0, € TM. T(u) - Z = T,(u)Z" € Q"M. Intuitively, the energy-momentum
current takes in a direction, specified by the vector Z, and returns the conserved
n-form current corresponding to the translational symmetry in that direction.
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With this energyv-momentum current, we can for example calculate the en-
ergy for a scalar wave with Lagrangian L(u,du) = —3du A *du — U(u)d" .
Computing the current corresponding to the time svmmetry,

To(u) = Oou A %02 L(u, du) — L(u, du)dyod" ™z = —0gu A xdu — L(u, du)dood™
= —dyu A *(dou dz® + dyu dx' + ... + Opu da™) — L(u, du)dosd™
= —0ou A (=0pu dx* A ... Ndaz™ - ...) — L(u, du)dz* A ... A da"™
= ((Gou)? — L(u,du))dz* A ... Adz" + ...
(omitting some terms since we are only calculating the energy T(?) As in re-
mark 1.4.1, since Ty(u) € Q" M. it can be written ac_: To(u) = T3 (u)9yod™ .

From the Minkowski metric, L(u,du) = $(dou)? — 2 37 1(8ku) - U( ). Con-
sequently, the energy is (as expected)

TO(u) = (Bou)? — L(u, du) = + S (@o)? %Z 0t)? + U (u),

and satisfies the conservation law 9oT{ (u) + > p_, Ok TH (u) = 0.

1.5 Connection and Curvature
In a vector bundle, there is no natural way to compare vectors with differ-
ent base points. Consequently, differentiation of a section of the bundle in a
direction is not necessarily well-defined. This leads to the idea of a connection.
For a vector bundle (E, 7, M), a connection provides the notion of differen-
tiation of a section of E in some direction Z € T M.

Definition 1.5.1 A connection on (E, 7, M) is o lincar map
D:T(E) - [(E®T*M),
such that for all f € C°M, Z, 7' € TM, a € T'(E),

(i) Do (fZ) = fDo- Z;
(i) Da-(Z+Z') = Da-Z + Da - Z';

(tit) D(fa) - Z = Z(f)a+ fDa - Z.
We say Do - Z =: Dy is the covariant derivative of o in the divection Z.

In the notation of vector-valued differential forms. D : Q°(M, E) — Q' (M, E).
To see this more explicitly. we determine an expression for the connection.

Proposition 1.5.1 The connection can be expressed D = d + A, where A is o
matriz-velued I-form

Proof. Using a basis {0,} on TM and a basis {e;} on F, define the Christoffel
symbols by fojei := Dg,ej. where ¢, j run from 1 to the rank of £ and o runs

16
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from 1 to dim(M). Then. for Z = Z°0, € TM. 3 = fle; € T(E).

DB -7 =DzB=Dz(Fe;) = Z(6")ei + B Dale;) = Z(B)ei + B Dgeoe;
© Z(Bi)e; + 298 Do, e; = Z(B)e: + Z*BIT ;.
To remove the Z dependence and obtain an expression f01j D, recall that for a
scalar function f. df - Z = Z(f). Furthermore. defining A} = I'{ ;dz®. we have
that A} - Z =T} da? - (2°0,) = Z°T;05 = Z°T},;. Thus,
DB-Z =Z(B")e; + Z* BT, ei
=d(B")-Z ei + A% - Zpe;
= (d(B"ei + AiBe;) - Z,
s DB = (dB" + AB7) e

With A = (A?) acting on 3 by matrix multiplication, we have D =d+ A. O

Note that in this definition the exterior derivative moves through the vector
structure and acts on the components. We refer to A as the connection one-
form or potential; it is a 1-form valued in the endomorphisms of the bundle.
Since A is a matrix-valued one-form, D : Q°(M, E) — QY(M, E) as expected.
The derivative can be uniquely extended to E-valued k-forms by

D:QFM,E) = Q" (M, E),
B dB+ANS,

or in components, D3 = (df* + A; A B7) e;. The A can be omitted for k = 0.

Definition 1.5.2 The curvature of the connection is given by
F=D?:Q%M,E) - Q*M,E).

Furthermore, if F =0, we say the connection is flat.

Proposition 1.5.2 The curveture is ginen by
1
F:dA+A/\A:dA+§[A/\A], (1.5.1)

where [+ ¢] is the commutator (in general, the Lic-bracket).
Proof. For g € I'(E).

FB=D?3=(d+AN)(d+ A)B=(d+ A N)(dB+ AB)
=d*B+d(AB) + ANdB+ AN AP
=0+ (dA)B+ (-1)ANdB+ ANdB+ANAB
= (dA+ AN A)B.
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Thus, F = dA+ A A A, and the second equality holds since
1 1
ANA = Ay Agda® A daP = 5 (AaAs — AgAq)dz® N dzP = AN AL

Note that in general A A A # 0 since matrix multiplication is non-commutative.
O

Remark 1.5.1 The curvature satisfies the Bianchi identity DF = 0, which can
be shown by treating F as an element of Q°(M, E)* ® Q?(M, E) and using the
induced connection on this space (I omit the details of the proof here; for the
proof, see [10]). Note that on the space Q°(M, E)* @ QF(M, E), D acts via the
adjoint action, Dn = dn + [A A 7).

Yang-Mills Theory

Yang-Mills theory governs the dvnamics of the connection of a bundle and is
used in the Standard Model to describe the electromagnetic, weak, and strong
interactions.

(This section assumes some background with Lie groups, algebras. and their
representation; see the appendix for details) To provide a rough sketch of
the Yang-Mills theorv. consider matter fields, defined as sections of a bundle
(E,m, M) which carries a fiber-wise representation of a Lie group G. Gauge
transformations are maps from M to G which form a group under pointwise
multiplication in G and induces a transformation in the matter fields. The
Yang-Mills theory describes the dynamics of a connection (gauge potential) in a
manner consistent with the gauge transformations and allows for the dvnamics
of the matter fields to be coupled with the gauge potential.

Let G be a compact semi-simple Lie Group (these assumptions allow for the
Killing form to be a negative definite bilinear form on the Lie algebra). Then,
in Yang-Mills theorv, we take the connection one-form to be a g-valued 1-form,
ie. AcT(gT*M) = Q'(M|g). The pure Yang-Mills action is

SYM[A} = —/ t’/‘/(FA A *FA), (1.5.2)
M

where tr’ is the Killing-form on g and the Hodge star operates on the differential

form part of the curvature 2-form F := dA + 3[A A A] (here. [-,] is the Lie-

bracket on g).

We further suppose that the connection respects a metric structure on F, in
the sense that d{«, 8)g = (D, 8) g + (@, D) g. With this assumption, a simple
calculation shows that for any Z € TM, A - Z is skew syvmmetric. Using this
skew symmetry and a similar calculation of the adjoint d* to d. the adjoint to
D with respect to — [, tr'( Ax ) is

D* :=d*+ A..

To determine the equation governing the dvnamics of the connection, we
compute a proper variation of the action.

18
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Theorem 1.5.1 (Yang-Mills Equation) The Euler-Lagrenge cquetion corre-
sponding to the action 1.5.2 is given by

D*F4 =0. (1.5.3)
Proof. The stationaryv condition for the action is given by
0=10Sym[A]-B = N L(A,dA) - B+ 62L(A,dA) -dB
M

for all proper variations, where

L(A,dA) = —tr' (Fa A%F4) = —tr' (dA + %[A A A]) A x(dA + %[A A A])

= —tr'(dA N *dA + dA ANx[A N A] + i[A A A} A[A N A)).

Thus.
§1L(A,dA) - B = % LA+ eB,dA)
_ 4 tr'(dAA*xdA+ dAN*[(A+eB)A(A+eB
d 0
€ le=

+ i[(A FeB)A(A+ eB) AX[(A+eB) A (A+ eB)})
- ftr’<dA/\*([B/\A]+[A/\B])+3[A/\A] AX(2B A A + 2[4\ B)))
- ftr’((dAJr%[A/\A])/\*([B/\A]Jr[A/\B}))
=2t (FA A*[A A B]),

where we used the svmmetry of the inner product and the fact that [A A B] =
[B A A] (we get commutativity from the anticommutativity of the Lie bracket
with the anticommutativity of the wedge product on one-forms). Similarly,

d

BL(A,dA) - dB =

_L(AdA+edB)

1
j Otr’ ((dA +edB) Ax(dA + edB) 4 (dA + edB) ANx[AN A] + Z[A N A} AX[A A A])
€le=

S (2 dA A *dB + [A A A] A *dB) — 2 tr’((dA + %[A A A]) A *dB) = —2 t'(Fa A%dB).

Thus, recalling that D acts on B in the adjoint action,
0= / S1L(A,dA) - B + 6,L(A,dA) - dB = _2/ ' (FA A*(dB + [A A B]))
M M
= —2/ tr'(Fa A«DB) = —2/ tr'(D*Fu A %B).
M M

In order for this to vanish for arbitrary proper variations B, D*F4 = 0. O
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We could make several possible modifications. (ne such modification is the
incorporation of a source term J € Q!(M]|g).

1
Sy m[A] = / —tr'(§FA A*xFq— AN *J),
M

which pgives the equation D*Fy = J. Another possible modification is the
inclusion of a matter field, for example

S[A, V] :/ —k tr' (Fa AxFy) + (DU)T Ax(DW) — m?UT A+,
M

where k is a coupling constant. Variation in A gives a modified form of the
Yang-Mills equation and variation in ¥ governs the dvnamics of the matter
field D*DV — m?2¥ = 0.

One important aspect of the Yang-Mills theory is that it is a gauge theory.
iiven a solution A of the equation 1.5.1 and a gauge transformation ®, A’ = ®-A
is also a solution (where the action of ® is in the appropriate representation).
Furthermore. if the action for a matter field ¢ is invariant under global G actions,
coupling to the gauge fields makes the action for the matter field invariant under
local G actions (and hence (® - A, ® - v) is a solution if (A, ) is).

In the next chapter. we will review the finite element method and introduce a
method for modeling Lagrangian field theories using the finite element exterior
calculus framework. In chapter 3, we will return to Yang-Mills theory as an
application of this method.
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2 Structure Preserving Discretizations
of Field Theories

In this chapter, we brieflv review the finite element method and then dis-
cuss the Finite Element Exterior Calculus (FEEC) framework introduced in
[1] as a finite element method which preserves the structure of the de Rham
complex. We then apply this framework to Lagrangian field theories by intro-
ducing a discrete Euler-Lagrange equation, which admits a weak form of a local
conservation law. For time dvnamic fields, we will instead use a semi-discrete
Euler-Lagrange equation and then show that this semi-discrete equation has a
Hamiltonian structure. Consequently, we can fully discretize the problem by
svmplectic integration of the time dvnamics. Furthermore, we will see that the
discrete time evolution admits globally conserved charges. Lastlyv, we will con-
sider additional extensions to both frameworks which allow for handling more
general field theories (e.g. coupled theories or theories over vector bundles).

The main motivation for this chapter is to discretize a field theory to make
it computationally solvable, while preserving the structures inherent in the full
infinite dimensional problem.

2.1 Review: Finite Element Method

Consider a variational problem: find v € V such that §J(u)-v=0VYv e V,
where V' is some function space and J is a functional on V. Generally, the
function space is infinite dimensional and hence the solution cannot always be
determined analvtically. We approximate this problem by the Galerkin method:
restrict the domain to a finite dimensional subspace V;, C V and find up € V,
such that §J(up) -v = 0 Yo € Vj,. The finite dimensional subspace should
satisfy the completeness condition limy,_,o Vj, = V. Of course, in computation,
we cannot let h — 0 since this recovers the original infinite-dimensional problem.
However. we can choose h sufficiently small to resolve the scale of the system that
we are interested in. Since the new problem is defined on a finite dimensional
space, it is computationally tractable.

The finite element method is an example of the above method where the
variational problem is defined on a domain M: find v € V(M) such that
A(u,v) = L(v) Yv € V(M), where V(M) is a function space defined over M. To
produce a finite dimensional subspace. we triangulate the domain f: M — M,
and define a finite set of basis functions over M}, resulting in a finite subspace
Vi(My) € V(M). To illustrate this method. we consider a classical example.

Example 2.1.1 (Poisson’s Equation)

Consider Poisson’s equation, find v € HZ(M) such that V?u = —f for some
f € L*(M). To obtain a variational formulation of the problem. multiply the
equation by a test function v € H}(M) and integrate over M. Applyving in-
tegration by parts (Green's identity), the solution of the variational problem
requires one lower degree of differentiability. Thus, the variational problem is
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to find u € H}(M) such that
A(u,v) == / Vu - Vv vol = / fv wol =: L(v) Yv € HY(M).
M M

To approximate this problem, triangulate the domain and define a finite set of
basic functions {¢;}. Writing our approximate solution in terms of the basis
up = Zj cj¢; and taking v = ¢. our new problem becomes

zJ:Cj /Mh Vs Vo vol = fowr vol.

My,

Defining K = ([ Vé; - Vér vol)jr. @ = (¢;)j. f = (] for vol)g. we have in

matrix form

Ke=f.
Thus, assuming K is invertible, we can solve for the vector of coeflicients ¢ =
S : : : — h .
K~ f which determines our solution uj, =3, ¢;¢;.

The preceding discussion provides a rough sketch of the finite element method
and how it is used to solve variational problems. For brevity, we omit many kev
issues such as well-posedness and error estimates; for a more detailed discussion,
see for example [18].

2.2 Finite Element Exterior Calculus

In the framework of FEEC, we take the function space to be the de Rham
complex V(M) = HQ(M). Thus, in some sense, FEEC is just a specific finite
element method. However, it is worth noting that FEEC unifies many differ-
ent finite element families (e.g. Lapgrange. curl, and divergence elements) and
hence can be applied to many problems. When determining a finite subspace
Qn(My) € HQ(M), it is important to preserve the algebraic and topological
structure of the de Rham complex.

A proper discrete de Rham complex must satisfv compatibility conditions
which preserve the structure of the original de Rham complex. The discrete
complex must be a subcomplex of the de Rham complex, i.e. that Qfl Cc HOF
and dQﬁ C QZH. Furthermore, there must exist a bounded cochain projection
I, : HQ — Q. i.e. a bounded projection map which commutes with the
exterior derivative d* o I} = HZH o dF. This is summarized by the following
commuting diagram:

0— HQO -4 HO -4y Ly HOm — 0 (2.2.1)
lnh lnh J/Hh
d d d T
0— Q0 Ql Qr 0

The subcomplex condition ensures that the discrete sequence is a cochain com-
plex and hence, admits a Hodge decomposition, in analogy to 1.3.5,

QF =By @Bk @ Hi.
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Furthermore. the existence of a cochain projection ensures that the cohomolo-
pies of the discrete complex are isomorphic to the cohomologies of the original
complex. To accurately discretize a physical svstem on domains with nontrivial
cohomology, it is important to preserve the cohomology of the original space,
since each cohomology class in the k' cohomology corresponds to a harmonic
k-form. This has importance in physical applications as harmonic forms affect
how a svstem behaves (for example, many electromagnetic devices have nontriv-
ial cohomologies and the resulting harmonic forms govern their operation). If
the cohomology of the discrete complex is not isomorphic to the cohomology of
the original complex, then our discretization has a differing number of harmonic
forms than the original problem. which may drastically alter how the svstem
evolves.

One example of a discrete de Rham complex is based on the space of polyno-
mial k-forms of degree at most r, P.A¥. Furthermore, define the reduced space
P-A* = {w € P.A* | kw € P.AF71} (k is the Koszul differential). The space
of polvnomial forms over the triangulation of a manifold f : M — K} gives
rise to finite element spaces QF (M) = P, A*(K},) or P, A*(K},) by taking shape
functions to be the polvynomial forms over simplices 0 € K. Explicitly,

PAY(Ky) = {we HQY | w|r € P.AF Vo € K1},
PrAYKy) = {w e HQY | wlr € PTAY Vo € K3}

Many of these discrete de Rham complexes can be shown to be equivalent to
classical finite element spaces. such as the Lagrange and curl elements. Since
the discrete complex of polvnomial forms is finite dimensional, the infinite di-
mensional problem gets reduced to a computationally tractable problem. For a
detailed discussion of these finite element spaces. see [2].

2.3 Lagrangian Framework: Discrete Euler-Lagrange

With the FEEC framework established, we apply it to modeling Lagrangian
field theories discussed in the first chapter.

To discretize a theoery governed by an action S : V — R, there are two
broad approaches within the Lagrangian framework. One approach would be to
discretize the Euler-Lapgrange equation arising from the action, e.g. by apply-
ing the finite difference method to the Euler-Lagrange equation. However. this
approach is not compatible with the variational structure of the problem. The
other approach is to discretize the variational structure directly, by working with
the variational problem §S[u]-v =0V v € V. This approach is compatible with
the variational structure in the sense that variation and discretization commute.

renerally, having a discretization which preserves the variational structure pro-

duces a more robust numerical method. For example, to discretize Lagrangian
mechanics. there are a class of integrators which respect the variational struc-
ture of the problem, producing numerical methods which are symplectic maps
that also have near-exact energy conservation (for further discussion of varia-
tional integrators. see [3]). Keeping this in mind. we will discretize our field
theories by working with their variational structure.
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The first step in applving FEEC to Lagrangian field theories is putting the
Euler-Lagrange equations in weak (variational) form. Recall that the action
governing a field theory has the form S[u] = [,, £(u,du,d*u). To obtain the
weak form of the Euler-Lagrange equation, operate equation 1.4.2 with A * v,
integrate over M, and apply the adjoint property of d and d*. Thus, the weak
formulation of the Euler-Lagrange equation is to find u € HQF N H*QF such
that for all v € HQF N H*QF,

0= [ O1L(0Q) A*v + Do L(1) A xdv + O3 L(T) A *d*v (2.3.1)
M

= (81[:('&)7 U)LZQk + (82£(ﬁ), dU)LQQkJrl + (ag,c(’ll), d*’l))L2Qk—1,

where for brevity 4 := (u,du,d*u). Note that the above equation was already
obtained in chapter 1 by computing the variation §S[u] - v = 0.

However, in general, this formulation of the problem is not well-posed (e.g.
in Yang-Mills theory, gauge freedom creates uniqueness issues. or for Poisson’s
equation, the corresponding functional is unbounded due to the space of har-
monic forms $*). To avoid these issues, as noted in [1], we instead use a mixed
formulation of the problem. We introduce a Lagrange multiplier ¢ € % ¢ H*Q
to enforce orthogonality of the solution to ®F (which we will call the pauge
space, since this process is analogous to gauge fixing used in gauge field the-
ories). Also. we introduce a multiplier p € HQ*~! to enforce o to be weakly
equivalent to d*u. This gives the modified action

Slu, o, p, G :/ L(u,du,c) — o Axp+uA*dp +u A *q. (2.3.2)
M

Varving S with respect to each argument and requiring them to vanish inde-
pendently provides a mixed formulation of the weak Euler-Lagrange equation:

Definition 2.3.1 (Mixed Formulation of the Euler-Lagrange Equation)
Find (u,0,p,q) € HQF x HQF1 x HQF1 x D% such that

=0, Voec HQ*  (2.3.3)

(01 L(a7),v) + (0:L(a7), dv) + (dp,v) + (4, v)
(D3L(0°),7) — (p,7) =0, ¥V 7 € HQF L,
(0,p) — (u,dp) =0, ¥V pe HQ* ',
(u,q) =0, Vgq e Dk,

where 4 := (u, du, o).

Comparing the mixed formulation 2.3.3 to the weak form 2.3.1, the mixed
formulation has the benefit of working with H() and ©, rather than an inter-
section space HQF N H*QF. Consequently, along with resolving existence and
uniqueness issues arising in the weak formulation, the mixed formulation can be
discretized much more simply.

Remark 2.3.1 Another possible modification is to introduce a multiplier to
enforce weak equivalence to du. Thus, all of the derivatives of the field are
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replaced by weak equivalents, resulting in a generalized Hamilton-Pontryagin
principle. Explicitly, this is produced by the modified action

Slu, 04, 0ax, Pd, Pa~, q] = / L(u, 04,04+ )+(du—0g) ANxpg—0 gx ANxDax +uAxdpg-+u*q.
M

With the mixed formulation 2.3.3, we can now apply the finite element
method: restrict HQ to Qp, (e.g. take Qp to be the space of polvnomial dif-
ferential forms defined over a triangulation of M) and D" to ©f := II¥D*. This
then gives a Discrete-Euler Lagrange equation within the FEEC framework:

Definition 2.3.2 (Discrete Euler-Lagrange Equation)

Find (up,on, P, Gn) € U x Q571 x Q71 x DF such that
(01L(a7),v) + (92L(a7), dv) + (dpn,v) + (qn, v)
(0sL(ap),7) — (Pn,T)

(on,p) — (un, dp) =

(unsq)

0, VoeQr  (234)
f—

=0, V7e !
0
0

k—1
7VPEQh ,
, ¥V qedf,

where 4f = (up, dun, o).

Thus. given an action S[u] = [, £(u,du,d*u), equation 2.3.4 provides a
set of equations which can be solved for an approximate solution wuy of the
variational problem 6S[u] - v = 0. Note that since this mixed formulation arises
from the action 2.3.2. it respects the variational structure of Lagrangian field
theories.

The discrete equations introduced in this section allow for discretization of
Lagrangian field theories within the framework of FEEC, where the fields are
sections of the bundle of differential forms AM. Since exterior calculus gen-
eralizes vector calculus, these equations can be applied to many problems of
physical interest. One can also use the above equations in theories which in-
volve coupled fields S[uq, ..., u,]. producing a set of discrete equations for each
variation. In section 2.7 below. we will consider coupled theories explicitly and
also theories which involve vector bundle valued differential forms. Before re-
turning to these ideas, we next consider how conservation properties are affected
by discretization.

2.4 Lagrangian Framework: Conservation Laws under Discretiza-
tion
Having developed a discrete equation for the Euler-Lagrange. we would like
to understand how this discretization affects the conservation laws arising from
Noether’s theorem. The two main points we consider in this section are:

e Determining a bound for the error in the conservation law from the ap-
proximate solution

e An exact discrete conservation law admitted by the approximate solution
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It is clear why one would one the first point to hold; it would ensure that the
actual conserved current is approximately conserved by the discrete solution.
The second point, however, requires slightly more elaboration. If the approxi-
mate solution satisfies an exact discrete conservation law, it would ensure that
the svstem behaves similarly to the original svstem. in that symmetries of the
theorv generate conserved currents both in the smooth and discretized cases.
Furthermore, if the exact discrete conservation law is quantifiably close to the
smooth conservation law, this would reinforce the first point (as an example of
this, although variational integrators do not exactly conserve the true energy,
they do admit an exact discrete conserved energy which ensures that the energy
of the approximate solution remains exceptionally close to the actual energy for
sufficiently long times).

Bound for Conservation of Noether Current

From Noether’s theorem 1.4.2, for a continuous svmmetry of the action, there
exists a conserved current J(u), where u is the solution of the associated Euler-
Lagrange equation. Conservation of J(u) is the statement dJ(u) = 0. Conse-
quently, for an approximation u, of the solution, we would like to determine to
what extent dJ(uy) =~ 0.
To determine a bound on dJ(uy,). define the negative Sobolev norm || - || -~ .
for a k-form w,
(w,v) L2
W]l g—-qr = sup - -
veH*QF\{0} V][ £ 0
Theorem 2.4.1 (Bound for Conservation of Noether Current)
Let v € QF be a solution of the Fuler-Lagrange cquation over a compact ori-
ented manifold M and let X be a continuous symmetry of the associoted ace-
tion. Furthermore, suppose ||02L(u, du, d*u)||p2qr+1, ||0sL(u, du,d*u)||p2qr-1,
and ||)~((u)||L29k arc bounded. Then, for an epproximation uy of u,

43 ) - < C[I1K (un) = K (w) [ 2qmi-1 + X (un) = X ()] 200
+ (141X () = X@lgzn ) (196 £un]) = BsL((u]) 2001 + [102L([un]) = BL(2D |2 )]
(2.4.1)

for some constant C' independent of up,, where K and J are as defined in theorem
1.4.2, |M| :==dim(M), [u] :== (u,du,d*u), end [up] == (un, dup, d*up,).

Proof. Since v is a solution of 1.4.2, by Noether's theorem. for the symmetry
X. there exists a current J(u) such that dJ(u) = 0. Thus,

d3(un) |- = 1d3(un) — d3 (W) || g-qumr = |d(F(un) = I(w)) | g-=qun-
For v € H*QIMI,

(d(I(un) = 3(w)),v) p2qin :/

OM
< 13(un) = I p2qimn-1 ([l p2ginr + [[d* || p2qiari-1) < 2[|3(un) — J(w) || p2qiaei—1 (||| gegin-

(@) = 3() Axv] + @un) = I(w), ") pagisoi -+
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Thus, by definition of the H ™ norm,

A3 (un) | r-+im = [|dI (un) — dI (W) || g-+qianr < 2[|F(un) — J(w)| L2qirri-1.

Using the formula for J and the triangle inequality,

%Hdﬁ(uh)ﬂm*mw <K (un) = K ()| + |X (un) A*02L([un])) — X (1) A %02L([u])]
+ 105L([un]) A*X (un) — OsL([u]) A *X (u)]|
<K (un) = K ()| + 1(X (un) = X () A0 L([u)) || + | X (wn) A *(02L([un]) — 02L([u]))
105 L([u]) A *(X (un) — X (u)|| + 1(DsL([un]) — DsL([u])) A*X (up)]l,

where the norms are taken in the appropriate L? spaces. By the definition of the
wedpe product, we have a Cauchy-Schwarz-like estimate on the wedge product,
lu A *v|| < C'||ul|||*v| for some constant C’. Furthermore, using the fact that
the Hodge star is an isometry and the assumptions on boundedness,

%Hdﬁ(%)llmmww < K (un) = K(u)| + G (HX(Uh) ~ X (u)|

+ X (un) 1 (1195.£([un)) — DsL([u]) | + ||32/3([Uh]) - 32£([U])H))

< 1K (un) = K@) + G (11X (un) = X (w)]
(IR )]+ 1% un) = X (u >||>(||33 ([u D—agcuunn+Han([uh])—azﬁ([u]MD)
< 1K (un) = K(w)| +C ( Kw)

+ (14 1K (un) )(Has = BsL([u]) | + 02£(un]) = L)) ).

Taking C' = 2max{1,Cy} gives the desired result.
O

This result states that the conservation law approximately holds for the
approximate solution: the extent to which the conservation law is not exact is
bounded by the difference of quantities involving the approximate solution from
the actual solution. In other words. as up — w, dJ(up) — 0. Also, as can be
seen from the above derivation, a similar bound holds for ||J(up) —J(w)|| gaimi—1.
considering the solution u fixed.

Corollary 2.4.1 Assuming the conditions of the theorem, suppose furthermore
that 0oL and 03L have a Lipschitz bound in their sccond and third arguments
{independent of the first ergument), then

13 (un) |l -+ i SC[IIK(Uh) — K (u)]| + [|1X (un) = X (w)]]
+ (L4 1 X (un) = X ()])(ldun — dull + [|d*un — d*ul) |-

In particular, this applies for Lagrangians purely quadratic in du and d*u
(which is the case for many Lagrangians).
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Exact Discrete Noether’s Theorem

Recall that in discretizing the Euler-Lagrange equation. we first considered the
weak formulation of the problem: rather than looking for strong solutions of
equation 1.4.2, we look for solutions which satisfy 2.3.1 for all test functions v.
Consequently, in order to determine an exact discrete conservation law, we first
consider a weak analog of Noether's theorem.

Definition 2.4.1 Let X be a generator of a transformation on M. We say X
is a weak symmetry of the an action S : QFM — R if there exists K : QFM —
QIMIZIN such that

'8 X (@) = /M dK (¢).

The difference between this definition and a continuous svmmetry is that
that the weak symmetry is only required to hold when integrated over all of M.

Theorem 2.4.2 (Weak Noether's Theorem) Given o weaek symmeiry X of an
action S : QFM — R, for a week solution v € V := HQF N H*QF of 2.5.1,
0= / O1L(0) A *X (1) + DaL(0) A %dX (u) + Bs L(i1) A #d” X (1) — dK (),
M
d

Qan

0= / AL () Ax(I— Py ) X (w)+05 L)) Axd(I— Py ) X () +85 £ (i) Axd* (I~ Py) X (u) —d K (u),
M

where Py denotes orthogonel projection into V. oand 4 = (u, du, d*u). Further-
more, if u is a strong solution to the Fuler-Logrange cquation 1.4.2,

0= /M d[f((u) A %D L(1) — B3L(0) A xX (u) — K(u)] .

Proof. The proof is similar to the proof for Noether’s theorem 1.4.2. For the
first equation. obtain two expressions for S’[u]- X (u) (one by directly computing
the variation and one by the definition of the weak svmmetry) and subtract

S'u] - v - S'lgl- X(¢)| =0

v=X (u) d=u

For the second equation, since u is a weak solution, equation 2.3.1 holds for
all v € V so in particular it holds for v = Py X (u). Subtracting this to the first
equation gives the second.

Lastly, for the third equation, since we assume u is a strong solution, we
can proceed as in the case of the original Noether’s theorem. However, since
the weak svmmetry only holds over all M. we do not have the local current J
satisfving dJ(u) = 0 everywhere. O

We now extend this weak theorem to the discrete mixed formulation 2.3.4.
Of course. since defining the mixed formulation .
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Theorem 2.4.3 (Discrete Noether Theorem for 2.3.4) Suppose that X is @ weak
symmetry for the modified action 2.3.2 up to terms involving the gauge space
qgeDF, ic.

S'¢, 7, q)- X (6, 7,p,q) = /M dK (¢, 7,p)+ X (¢) Axq+AxX(q), ¥ (¢, 7, D, q).

Then, for a solution (up, o, Ph, qn) of 2.3.4, the following ezact discrete con-
sernation low holds

0= /M | K (un, 00, 5) + D1 L05) A+(1 = PE)X (un) + pL(07) A=d(T = PF)X (un)

— G A*PEX (up) + 03L(05) Ax(I — PE"YYX (04) — fn A*(I — PF1) X (04,)
+up Axd(I — Py~ X (pn) — on A*(I — Pf_l)X(ﬁh)}y

where 45 = (up, dup, op) and PF = Py

Proof. As in the other cases, compute S’(up,, o1, Pn, Gn) ~)Z'(uh7 Oh,Dh, qn) In two
ways and subtract. Furthermore, we can additionally subtract the first three
equations of 2.3.4 with v = PFX (uy). 7 = P ' X (0). p = PF ' X (). O

Remark 2.4.1 Suppose instead that X is a total weak symmetry for the mod-
ified action, including the gauge terms,

S'¢, 7.0, q) - X (6, 7,0, q) = /M dK(¢,7,p,q), ¥V (¢,7.0,9),

then the term —gj, /\*P}’ff( (up,) in the above conservation law would be replaced
by @n A x(I — Py) X (un) +up A x(I — Por) X (qn)-

The discrete Noether theorem is similar to the original theorem 1.4.2. For
the original theorem, we "project" out the part of the variation S’[u] - v which
vanishes (the part which satisfies the Euler-Lagrange equation). The entire
variation in general does not vanish since v = X (u) is not necessarily zero on
the boundary. Likewise, in the discrete theorem. we project out the part of
the variation which vanishes but the entire variation does not since in general
X(uh,ah,ﬁh,zjh) o4 Q]fl X QZ_l X Qﬁ_l X @ﬁ

2.5 Hamiltonian Framework: Discrete Field Dynamics

In the previous sections, we have considered how FEEC could be used to
construct discretizations of the Euler-Lagrange variational problem and its re-
lated conservation properties. These considerations involved no dyvnamics, i.e.
the evolution of a svstem over time. Although the FEEC framework is capable
of solving problems on spacetime meshes, often we want to evolve the svstem
in time separatelv (e.g. for a non-relativistic theory or for interpretation of
the dvnamics). To simulate the time dvnamics of field theories, we will utilize
the Hamiltonian structure of the dynamics to evolve the svstem by symplectic

29



Brian Tran UCSD Mathematics

integration. Along with preserving the svmplectc structure of the field theory,
utilizing the Hamiltonian formulation has the practical advantage of being first
order as opposed to second order in time differentiation (so we only need to
specify initial conditions at a single time). Furthermore, as discussed in [13].
whereas the Lagrangian formulation is ill-posed due to gauge freedom (we can
solve this by manually fixing the gauge). the Hamiltonian formulation introduces
an additional constraint which automatically produces a well-posed formulation
of the dvnamics.

For a dynamical field theory, we describe the evolution of a time-dependent
field u(t) € Q*R by the action

Slu] = /dt/Rﬁ(u,iL,du,d*u), (2.5.1)

where the geometric operators act in the spatial domain R. The corresponding
Euler-Lagrange equation is given by varving the action, §5 = 0,
oL doL oL oL

ouaton " ataw T Yataey (252)

To see the Hamiltonian structure in the dvnamics of this system. introduce the
conjugate momentum field,

oL
Furthermore, assume the above expression is invertible for 7 so we can determine
w(u, 7, du, d*u). Then, the Hamiltonian density H(u,7) € Q¥R is given by
the Legendre transform of the Lagrangian:

H(u,m) =7 A*u(u, 7, du, d*u) — L(u, u(u, 7, du, d*u), du, d*u), (2.5.3)
with v and 7 considered as independent.
Proposition 2.5.1 The dynamics of the action 2.5.1 carry o Hamiltonian struc-

ture, given by

R

. oH 5.
=g U= (2.5.4)
where, using the 0 notation of lemma 1.4.1,
1 0 0 0
— = = * . 2.5.5
o0z 0z d d(dz) + da(d*z) (25.5)

Proof. Since the Hamiltonian 2.5.3 does not depend on the derivatives of ,

oW o ocon_ . ow  oi_,
ot or " Tor ouor " Tor om

Furthermore,

oH ou OLOu oL oL oL ., oL oL @ doL

Cr R L (g g P S

du du  Oudu du du du d(du)  I(d*u) dt 0u
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where, at (7). we used the Euler-Lagrange equation 2.5.2.
Clearly, upon substitution, the dvnamical equations are equivalent to the
Euler-Lagrange equation 2.5.2,

= T T Y waa T

I d it
ou T 9w T o(@a) ~ @t ou

I oL doL <8£ oL oL d 8[,).

O

Thus, the time dynamics of the system carry a Hamiltonian structure which
evolve over the phase space T*(Q*R), the cotangent bundle of the manifold of
k-forms. Unlike particle dynamics, this is an infinite dimensional phase space.

To obtain a semi-discrete equation for the action 2.5.1, perform a similar
discretization procedure as the previous discrete Euler-Lagrange equation in
the spatial domain,

Definition 2.5.1 (Semi-Discrete Euler-Lagrange Equation)
Find (up(t),on(t), pr(t)) € QF x QF 1 x QF 1 such thet for cach t,

(01L(aF (1)), v) — (%azﬁ(ﬁ‘ﬁ(t))»v) + (03L(a5, (1)), dv) + (dpn(t),v) =0, ¥ v € O,
(OuL(Ug (), 7) — (Pr(t),7) =0, ¥V 7 € Q1 (2.5.6)
(on(t),p) — (un(t),dp) =0, ¥V p e Q"

where 47 (t) == (un(t), wn(t), dup(t), on(t)).

This provides a spatial discretization of the evolution problem. Subsequently,
one can discretize in time to obtain a complete discretization of the evolution
problem. Of course, one could use a simple finite difference in time, such as a
forward difference, to completely discretize the problem. However, this ignores
the Hamiltonian structure of the field theory. As we will see explicitly in the
examples, the time evolution of the semi-discrete equation 2.5.6 has a Hamil-
tonian structure. This is a reflection of the fact that the time dvnamics of the
field carry a Hamiltonian structure in the smooth case. As a result, we can
svmplectically integrate the time dynamics of the syvstem.

To make the Hamiltonian form of the semi-discrete equation manifest, we
can eliminate the coefficients of o, and pp, in the mixed formulation to obtain
a svstem of ODE's for the coefficients of uy, (this is done, for example, in [9] to
rewrite the mixed semi-discrete form of the heat equation into a svstem of ODE’s
for the coeflicients of the solution). We can then define a natural derivative
operator which is similar to the derivative for the smooth Hamiltonian theory
and generates a Hamiltonian structure for the discrete counterpart.

Theorem 2.5.1 The semi-discrete Euler-Lagrange equation 2.5.6 carrics a Hamil-
tonian structure,

. SHh .5 A,Hh
Ty = ==, U = —% )
out om;

(2.5.7)
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where the field coefficients m;,ul, the derivative 5/5,2:z and the Hamiltonian Hy,
will be defined in the proof.

Furthermore, the Hamiltonian structure of the mized semi-discrete equation
is isomorphic (in the sense of weak equivelence) to the Hamiltonien structure
of the smooth dynamics after projection into the diserete space Qp; i.ce., the
semi-discrete Euler-Lagrange cquation preserves the Hamiltonian structure of
the field theory.

Proof. Consider a basis {¢} | }* for QF " and {p}}* for QF. Expand uy(t) =
ut(t)gl . on(t) = o (t)eh_1. Pr(t) = p*(t)¢)_,. Substituting into the semi-
discrete equation 2.5.6 with v = ¢, 7 = cpffl,p = ] _, vields the system,

« d (e} (e} — (e}
(01L, %) — (%82/; o) + (3L, dey) + p' (dyj,_y, ¢5) = 0,
(6457 90571) - ﬁu(splljfla ‘P£71) =0,
(@1, h1) — u' (¢, dpy 1) =0,

where £ is evaluated at (up,Up,dup,op). Introducing the matrices M :=
(64 _1von )l Z = (deh_,,¢%)) and the vectors Fy := (0L, %)%, Fy =
(0sL,dpf ). Fy = (04L, @f_l)ﬁ._ this system can be written

N d _ -
Fl—(aagﬁ,(pg)a‘FFS"'Zﬁ:O,
ﬁ4_Mﬁ:07
Mé—-ZTi=0.

Since M is clearly positive definite (hence, invertible), the second equation al-
lows us to eliminate p from the first equation and the third equation determines
the coefficients of o}, in terms of the coefficients of uy,. & = M ~1Z7T#. Thus. we
can completely eliminate oy and py, from the system to give

. d . .
Fy - (£02£,¢2‘)“+F3+ZM*1F4 =0, (2.5.8)

which is evaluated at (up, @n, dup, op(up)) with op(uy) = (M1 Z70)0% .

As before, define the conjugate momentum field 7, := 9>£ which we can
expand 7, = m;p},. To see the Hamiltonian structure, introduce the field pa-
rameters II; := (m,, ¢},) = (0L, ¢},). U := (un, ¢},). and the Hamiltonian

Hy, = (u(u, ) A s — L(u, a(u, 7), du, Uh(u))) . (2.5.9)
Ur>Up, ,T—>TTh,
Note that functions of u;, and m;, are characterized as functions of the field
parameters U © and II;. Also, define a weak analog of the derivative 2.5.5, for
W= (w,¢},) and F = F(w,w,dw, d*w).,

OF . 3£ i oF i _1, OF B \B ’

d*w—op (w)
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Then., since H;, does not depend on the derivatives of 7.

f?'lf[f: (%,%) = (tn, ) + (m%,wi) - (%%,%)
= (i, }) + (%%%) - (”h%’@@ = (i, ) = %(uh’%) =v
_ (m%,wi)) - <%§%’%) - <%§’w§;> - (%’d%) - ZMl((a(?zfu)’¢fl)ﬁ)i d* s ()

———, dp},) — ZM‘I((a(wawfl)B)i

= —(1L,0t) — (0L, dp}) — ZM T ((0uL, 6] _)")

d*u—op (up)

L. S d . d . )
=—(Fi+Fs+ZM'Fy)' = —(%82574%) = —%(Wm‘ﬁ%) = —1L,

where we used the fact that the bases are time-independent, the chain rule,

™ = OL/0i. and equation 2.5.8. Note since TI; = (Th, L) = 7Tj.(<p§€4, <p,‘€) (and

similar for U*). we have Il = M'7 and U = M@ where M’ = (¢;, ¢} )}. Thus,

the Hamiltonian structure can be expressed in terms of the coefficients of the

fields,

i OH _ OM
]5Hj . 57‘(}‘7
. . OH oH
ph= (MY = — (MY e =
= );1L; ( )]wj S,

ui — (M/_l);U] — (M/—l)

Lastly, to see that the Hamiltonian structure is equivalent to the Hamiltonian
structure of the smooth theory after projection, project the smooth Hamilton's
equations 2.5.4 into Qj,:

o) = oH N oH ‘) :S'Hh
,on Q, 577' ,on Q, 37r a@k Q, SHZ )
(7, ¢5) 0 (Tu »Pk) 0 —((&VC,%) + (d*0au L, ©},) + (dﬁd*uﬁ,wk))(

h

= —(O1£,60) + (DL, digh) + (9L, d"6})) |

= (B + (B) + (0L, d"¢})

h

L. N b
o —(F1 + B+ ZM*1F4) - :H’f,
ou’t
where, by_construction_'of the mixed formulation, we have the weak equivalence
(OuL, d*ph) =2 ZM~ Fy. O
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Thus, in order to evolve the semi-discrete Euler Lagrange equation in time,
we introduce the conjugate field (and its associated components / parameters)
to rewrite the time evolution in Hamiltonian form. Subsequently, we use a
svmplectic integrator to evolve the svstem in time, which preserves the sym-
plectic structure of the dvnamics over T' *(Q’,?LR) This time-symplectic discrete
Euler-Lagrange method completely discretizes the evolution problem 2.5.1 while
simultaneously preserving the de Rham structure of the spatial manifold and
the Hamiltonian structure of the time dvnamics. We will use this method for
the applications in Chapter 3. Note that although in general the Hamiltonian
structure is non-canonical, it is shown in [14] that a svmplectic integrator ap-
plied to a non-canonical Hamiltonian system results in a conjugate symplectic
method. which shares similar structure preserving properties.

Furthermore, there is an interesting phyvsical connection between Hamilto-
nian field theory and the discrete Hamiltonian structure. When developing
Hamiltonian field theory, one considers a collection of particles governed by a
Hamiltonian and takes the continuum limit as the number of particles go to
infinity to recover the infinite dimensional field theory formulation. Conversely,
our discretization begins with the Hamiltonian for the field theory over 7% (Q* R)
and restricts to a finite dimensional subspace, which results in a finite dimen-
sional Hamiltonian system of "particles" evolving in real phase space R?V (here,
the “particles" represent the coeflicients of the solution in the basis expansion).
In particular, the theory of Hamiltonian mechanics for particles applies to the
evolution of our coefficient "particles".

2.6 Hamiltonian Framework: Discrete Charge Conservation

Recall that in the Lagrangian framework we derived a discrete Noether’s
theorem which said there exists a conserved current J which weakly satisfied
dJ = 0. In spacetime, this has the interpretation of a local conservation law
Otp+ V- J = 0. In the time dvnamic Hamiltonian framework, we can derive
a different tvpe of conservation law. Instead of a local conservation law for a
conserved current. we get a discrete analog of global charge conservation Q(t) =
0. for each time ¢,,.

Qn+1 _ Qn.

For example, in electromagnetism @ could be the total energy of the system
(obtained by integrating the energy density over the spatial domain) or for
Schrédinger’s equation @) could be the total probability. The difference between
these tvpes of conservation laws provides a distinction between the Lagrangian
and Hamiltonian framework, depending on which structures one wishes to pre-
serve under discretization (see the summary at the end of the chapter for a more
thorough discussion of how the two approaches compare).

In order to understand Noether's theorem for Hamiltonian mechanics, we
must further develop the theorv of symplectic structures and its symmetries
to express the theorem concisely. After developing this theory, we discuss how
Noether's theorem holds for our semi-discrete formulation of the field dvnamics.
For the full discrete problem where we applyv an integrator for the time evolution,
one can utilize integrators discussed in the literature which admit exact discrete
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Noether’s theorems, e.g. see [12].

Symplectic Geometry, Symmetries, and Conservation

Recall that the phase space dynamics of the fields occur on 7%(QFR). This
space (and more generally the cotangent bundle of a manifold) is an example of
a symplectic manifold.

Definition 2.6.1 A symplectic manifold (S,w) is a maenifold S with a closed,
non-degenerate two form w € Q28.

We refer to w as the svmplectic form. Since w is a two form, it can be viewed
as an antisvmmetric bilinear functional on T'S,

w:TS xTS — QVS.

Definition 2.6.2 A Hamiltonian system (S,w, H) is a symplectic manifold
(S,w) with a smooth function H, the Hamiltonian, which specifies the Hamilto-
nien vector field Xy, satisfiing

Xpw = —dH,
or, equivelently w(Xp, ) = —dH ().

In local coordinates, wU(XH)I = —dH; which can be inverted to give
(Xp)! = wl'dH; = wIV/H =: (w* - VH)! The dynamics of the system in
phase space are trajectories along the flow of Xp: in coordinates £ € S,

£=Xpg=uw VeH.

Define the Poisson bracket acting on the space of smooth functions in phase
space,
{-,}:0%9 x Q%S — Q°s,
{F,G} = w(Xp, Xg).

The time evolution of a function over phase space along the trajectories £ of the
svstem is given by

d .
%F = XH[F] = <V§F7€> = <V5F',o.)Ti . VgH) = w(XF,XH) = {F,H},

where X [F] denotes differentiation of F along the flow of Xp.

Definition 2.6.3 A symmetry of a Hamiltonian system (S, w, H) is vector field
Xr satisfying: there exists F € QS such that Xpow = —dF and Xp[H] = 0.

By the definition of a symmetry,

d

0=Xp[H]={H,F}=—{F,H} = —XylF] :_$F7
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which is a simple statement of Noether’s theorem in the Hamiltonian formulation
(i.e. that a symmetry of the Hamiltonian generates a conserved charge). Fur-
thermore, the converse holds: for a conserved quantity . by the non-degeneracy
of the symplectic form, there exists a corresponding Hamiltonian vector field X¢
which is a symmetry.

In our semi-discrete formulation of field theories. the time continuous dy-
namics evolve over the finite dimensional phase space T*(QF R) which carries a
Hamiltonian structure, parametrized by the field parameters (U?,11;). Clearly,
by the definition of the discrete Hamiltonian #; in 2.5.9, a svmmetry of the
smooth Hamiltonian by transforming the fields (uj, 7,) induces a symmetry of
the discrete Hamiltonian as a transformation on the parameters (U*, I1;). Thus,
bv Noether's theorem, this symmetry gives rise to a conserved charpge over the
evolution of the syvstem. Another way to see this explicitly is to show that the
semi-discrete svstem has a canonical Hamiltonian structure given by a symplec-
tic form w. To do this, introduce the particle Lagrangian

Lo(U'T1,) ::/Rz(uh(zﬂ),uh(zﬂ,ni),duh(U’?),dahwi)),

and the corresponding particle Hamiltonian, by the Legendre transform,
Hy(U'1L;) = U'LL; — Ly (U, 1),
Here. the equations of motion are simply

i< Ot gy O
oIl oU;
which possesses a canonical Hamiltonian structure with w = dII; A dU? over the
manifold 7*(R?Y), where N is the dimension of QF. Using the chain rule, the
equations of motion generated by this canonical structure are weakly equivalent
to the equations of motion generated by the non-canonical structure 2.5.7.

For a discrete Noether's theorem in the fully discretized problem, apply a
Hamiltonian integrator which admits a discrete Noether's theorem, which can
be found in the literature (or, at least, integrators which admit excellent error
bounds on the conservation and long time stability). For a specific reference,
see [12], where the authors show that for a svmmetry, the discrete flow of a
Hamiltonian variational integrator preserves the momentum map J"+! = J”.

2.7 Extensions

So far, we have considered field theories which govern the dvnamics of a field,
described as the section of the bundle A* M/, and the corresponding discretization
of such theories. To provide more flexibility and handle more general problems,
we can consider several extensions:

e How to form a basis for differential forms over manifolds which can be
decomposed as a cross product M = My x Mas;
e Discretizing an action which governs multiple coupled fields S[u®, ..., u];
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e More generally, consider fields which are vector-valued differential forms,
i.e. sections of AKM ® (E, 7, M).

Tensor Product Elements

In some problems. the domain of interest can be decomposed as a Cartesian
product, M = My x M. For example, a foliation of spacetime is the product of
spatial hvpersurfaces with a time axis, M = Q x R (the cost of such a foliation
is logsing Lorentz invariance). The ability to construct finite elements on such
product spaces is permitted by the following lemma.

Lemma 2.7.1 Let My be a ky-dimensional manifold and M be a ko -dimensional
manifold. Then, the comples

0 — (QM;®QM)° 5 (M @QM) 5 .. S (M QM) 5 0 (2.7.1)

is @ subcomplex of the de Rham Complex on My X Mo,
0— QO(Ml X Mg) i Ql(Ml X Mg) i i Qk1+k2(M1 X Mg) — 0,

where (QMRQM,)k = @szk Ti QUM ATE My (1 and T2 are the canonical
projections on My x Ms).

Proof. To show that the complex 2.7.1 is a subcomplex of the de Rham complex
on M; x My, we must show that (QM; ® QM>)F is a subset of QF(M; x My),
do d‘(QN[1®QM2)k =0, and d(QMl ® QMg)k - (QMl ® QMg)k’—"_l.

The projection maps m; and 7o are the canonical projections m; : My x My —
My and mo 1 My x My — My, 77 denotes the pullback of forms on M; to M7 x Mo
(likewise, 73). Thus, 77Q'M; C QY (M; x Ms) and 750/ My C QF (M x Ms).
This of course implies that (QM; ® QMs,)* C QF(M; x My). In particular then,
d* restricted to (QM; ® QMo)* satisfies d**! o d* = 0.

To see that d(QM; @ QM,)* C (QM; @ QM,)k+1, consider an element 73 A
3B € (UM ® QM>)¥, where o € Q* My, B € QY Mo, i+ j = k,

dar, sy (i@ A5 8) = daryxan i A8+ (=1) T @ A dar, <, ™3 3
= midy,a AmyB+ (=1)'mia A Thdar, 5B,

where we used the fact that the exterior derivative commutes with pullback.
Thus, since mida A 738 € mi QLM A 1307 My and mia A mhdB € ni QM A
75 QI LM, their (graded) sum lies in (QM; ® QMy)*+1. O

By the lemma, given finite element subcomplexes Q;, M7 C QM; and Q, My C
Q My, the tensor product complex Qp M; ® Q) Mo gives a finite element approx-
imation of Q(M; x Ms). This discretization is summarized by the following
commuting diagram
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0 — QO(M; x Ms) —2— QUM x M) —% ... L Q12 (M x M) — 0

0 — (QM; ® QM>)° —2 (M} ® QM) % L (M @ QMy)*r+ke — 0

lnh lnh lnh

0 - (M @ Qp Ms)° 1 (Q My @ Q) M)t 4.4 (Q My @ Qp, My)Frtkn -0

Thus, with a basis {¢;}; for Q, My and a basis {¢}r for QM. we can
construct a basis for Qp(M; x Ms). {7{¢; A m5¢r}; k. Note. also, since the
mapping a ® § — wja A w35 is injective. we can equivalently work with the
basis {¢; ® 1x} ;1 where we define d(a ® 8) = da® 3 + (—1)%*9¥a ® dB.

This process allows us to create basis functions over complicated decompos-
able domains as the tensor product of basis functions over simpler domains. As
an example, one can create basis functions for the n-cube [0, 1]” by combining
the simpler basis functions on the unit interval [0, 1].

Coupling

Many interesting svstems involve multiple fields which interact, i.e., the dvnam-
ics of the fields are coupled. For examples, see chapter 3 below.

In the simplest case of coupling, consider two fields ¢ and . respectively
governed by actions S1[¢] = [ L1(¢,d¢,d*¢) and Sa[¢)] = [ Lo(v,dyp,d* ). To
couple these theories, we construct a new Lagrangian as a sum of the original
Lagrangians plus a Lagrangian which describes the interaction between the two

S[QS, d]] = / £1(¢7 d¢7 d*¢) + ‘CQ (1/% dwv d*w) + »Cint(QSv d¢7 d*¢7 1/1» dwv d*¢)

Of course. in the case that £;,; = 0. the variations in ¢ and v are independent
and the two systems decouple. To see this explicitly, by the Euler-Lagrange
equation 1.4.2, we get the following equations for ¢ and 1 respectively

9 .0 o N 0 ., 0 0 s
(36 + ¥ 3tay * 3@ ) 9 = (55 + 4 aag) * agay) Fe @D

0 . O 0 N 9 . 0 9 (D
(35 gy * a07) 29 =~ (55 + ¥ aagy * gy ) Fore @9

where (;AS = (¢,d¢,d*¢). In the uncoupled case. the right hand side of both
equations would be zero. Thus, the dvnamics of the coupled fields is governed
by their usual Euler-Lagrange equations but sourced by an interaction term.

For multiple fields v!, ..., u", respectively governed by the Lagrangians £, ..., L.
we get the following coupled action

N
Shut, ..., u™N] = /ch(ak) + Ling (@ ... a™).
k=1

38



Brian Tran UCSD Mathematics

Defining the total Lagrangian £(a',...,a%) := ZkN:1 Li(0%) + Line (@, ..., aN),
the fields u!, ...,u" are governed by the N-coupled equations
( 0 0 0

. . LN
o5 T 8(duk)+d8(d*uk)>£(UI"“’u )=0, k=1,..,N.

The results from the previous sections of this chapter generalize to this case
naturally (discretizations and their conservation laws). To do this, we use the
following notation. For the coupled action S[u!, ..., u"], we say each u* € Qo
ie. u!is an oy form, ete (since the coupled fields do not have to be the same
degree). Furthermore. denote 0y, = %, Ok = %, Ok3 = W.

Then. the discrete Euler-Lagrange equation is

Definition 2.7.1 (Coupled Discrete Euler-Lagrange Equation)
Find (uf,or,pr,qk) € Qp* x sz—l X sz—l XDy k=1,..,N, such that
(D1 L), 0) + (B2 L(67), dv) + (dpf, v) + (@, 0) = 0, Vv e O, (2.7.2)
(OraL(@”),7) = (P, 7) =0, ¥ 7 € Q"
(7 p) = (up,dp) =0, ¥ p € Q7
(uf,q)=0,vqe Duk

where 17 = (u}i, du,ll,a}ll, ey Uy ,duh , O} NY and L is the total Lagrangion.

Thus, the above svstem consists of 4V coupled equations which can be used
to discretize the coupled theory. The coupled semi-discrete case follows similarly.

In chapter 3 below, we will use these equations 2.7.2 to discretize the dyv-
namics of matter fields coupled to gauge fields.

Vector Bundles

Another possible extension which provides more flexibility is to consider more
general function spaces. For the svstems we consider (e.g. Yang-Mills), we will
need to extend our current theory to vector bundle valued forms. i.e. elements
of Q*(M,E) :=T(A*M ® E).

Let M be a n-dimensional manifold and F a vector bundle over M with
metric { , )p. The L? inner product on Q¥ (M, E) is given by

(avﬁ)LQQk(M,E) = / *(at, B) Ar MeE-
M
The Hilbert spaces HQ* (M, E) and H*Q*(M, E) are defined analogously, where
instead of the exterior derivative we use a general connection D.
Our poal is to discretize a generalized version of the de Rham sequence,
0— QO(M,E%) 2 o' (M, EY) 2 . By an(M, E") — 0,  (2.7.3)

where each E* is a vector bundle over M with a bundle metric. To be completely
peneral, we allow the connection to map between different vector-bundle valued
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forms. Recall that in the case where the connection mapped forms to forms
valued in the same vector bundle, the connection could be expressed D = d+A A
where the exterior derivative acts through the vector structure and A is a 1-form
valued in the endomorphisms of the vector bundle. For the connection in this
more general setting, the connection is instead expressed D* = (d¥, f¥) + AFA
where f* is a vector bundle homomorphism from E* to E**! and A* is a 1-form
valued in the homomorphisms from E* to EF 1.

The main issue in discretizing the sequence 2.7.3 is that in general, it is not
a complex, D**! o D¥ £ 0. This is problematic within our FEEC framework
since one of the compatibility conditions for a discretization is that there exists
a bounded cochain projection between the original sequence and the discrete
sequence, which is not well-defined if the sequence is not a complex. Conge-
quently, we will assume that the sequence is a cochain complex, i.e. that the
connection is flat D¥*1 o DF = 0.

Thus, a discretization of 2.7.3 is given by finding bounded projections Hﬁ to
finite dimensional spaces QF (M, E¥) such that D*QF (M, E¥) c QF (M, EF+1)
and the following diagram commutes

0— HQO(M, E°) 25 HOY (M, EY) 2 . B HQ"(M, E") — 0

i [ |1

0— QO(M, E%) 2l (M, EY) 2 .. 25 Qn(M, E") — 0

In general, the choice of discretization will depend on the connections and vector
bundles in consideration for the problem at hand. Assuming we can find a pro-
jection for real-valued forms II;, and a projection &, from sections of the vector
bundle I'(E*) to a finite subspace I',(E*) which commute with the connection,
the following provides a discretization of 2.7.3

0—— HQO(M, E®) —2— HOY (M, EY) 2 .. -2 HQ"(M, E™) —— 0

l(nhﬁh) l(nhxﬁh) l(nhfh)

0—QOMT,E) 2 MeT,(E) 2 . B arMeTh(E") —0

In particular, for trivial vector bundles E¥ = M x V* where each V¥ is finite
dimensional, a simple choice would be

0— HQO(M[V®) 25 QU (M|VY) 25 2 HQ"(M|V™) — 0
J{(th) l(th]l) l(nhyﬂ)

0—OM oV Lol evt 2 |  ZonM)e Vv —0

(we use this choice in the next chapter to discretize the Yanp-Mills equation,
since locally the gauge potential is a one form valued in a trivial bundle M X g).
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2.8 Summary

In this chapter, we presented two broad approaches for simulating classical
field theories, which both involve using FEEC (and extensions) to make the
problem finite dimensional.

In the Lagrangian framework. we discretized the variational problem 65 = 0
using the discrete Euler-Lagrange equation 2.3.4 which is naturally compatible
with the variational structure. One advantage of this framework is that, since
all of the operators were formulated via exterior calculus, it applies directly to
problems defined over domains in spacetime (Lorentzian manifolds) and hence.,
respects the structure of relativistic field theories. Furthermore, the discrete
Noether’s theorem in this framework was a weak equivalent of the local current
conservation law dJ = 0. However. in order to make the problem well-posed.
we had to manually introduce a gauge space © to fix the gauge for the solution
(the specific choice of ©® depends on the problem at hand).

On the other hand, in the Hamiltonian framework. we discretized the varia-
tional problem by singling out the time coordinate ¢ and considering the evolu-
tion of the field configuration as ¢ varies. By singling out the time coordinate,
this approach is not compatible with a relativistic structure. However, often
we want to simulate the dvnamics of a svstem and in particular, this approach
respects the symplectic structure of the dvnamics. In this framework, instead
of local current conservation, Noether’s theorem gives global charge conserva-
tion. Furthermore, the initial value problem of the Hamiltonian formulation is
well-posed without manually imposing any constraints.

While the two different approaches have some similarities (e.g. both utilize
FEEC). they preserve different structures inherent in classical field theories and
thus the choice of discretization should depend on which structures one wishes
to preserve. In the next chapter, we use the Lagrangian framework to spell
out a discretization of the Yang-Mills theory (due to its compatibility with the
spacetime structure). However, in the actual examples, we are interested in the
time dvnamics of the svstems and hence, use the Hamiltonian framework.

Some interesting directions to consider in the future would be to see how
these discretizations are related to quantization of field theories, and to see
if there is a generalization of the discrete Hamiltonian framework to a discrete
covariant Hamiltonian framework which preserves the multisymplectic structure
of a field theory.
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3 Applications

3.1 Yang-Mills Theory

In this section, we will apply the theory in chapter 2 to develop a FEEC
discretization for Yang-Mills theories. For physical applications, the choice of
the Lie group U (1) corresponds to the electromagnetic interaction, SU(2) corre-
sponds to the weak interaction, and SU (3) corresponds to the strong interaction.
We set all of the relevant physical constants to unity, e.g. h=c=¢y = 1.

Recall the Yang-Mills action for a gauge field A € Q'(M|g). with source
J € Q' (Mlg).

1
SYM[A] ::/ §<FA,FA> - <A, J>,
M
where ( , ) := —tr'( Ax ). The corresponding Euler-Lagrange equation is

D*Fy4 = J. In order to apply our discretization, write the variation in weak
form, for 3 € Q'(M]|g) proper.

0=0Synm[A]- 8= M<D*FA,B> —(J. 8)

= [ (@' (@A+ GLAN A )~ (A(dA+ 514N ADLB) — (.
= [ 144,48+ 54 1 A1, dB) ~ (A4, B) = 5(AA N ALB) = (1.5)

1 1
= (a4.a8) +5(1An4),d8) —((Asxda],8) -3 (IALANA]LB) —(1.58) .
where (, )r == (, )orm|g)- Thus. the weak formulation of the Yang-Mills
equation is to find A € HQ!(M|g) such that for all 3 € HQ(M|g).

(44,dB) + 5 (4 1 A4}, dB) — ([AdA) §) — S(ALA N AL B) = (4,),

Note that this equation is in general nonlinear in A (except when G is abelian).
Physically, these nonlinearities in nonabelian Yang-Mills theories correspond
to self-interactions of the gauge particles. As a result of the nonlinearity, the
discretization of this equation will result in a nonlinear system. Applving the
discrete Euler-Lagrange equation: Find (A, qs) € Q) (M|g) x D} (M|g) such
that for all (3,q) € Q},(M|g) x D}.(M|g).

(A4, dB) + 5 ([An A And, d8) — ([AndAn], B)— 5 ([AnlAn A Anl), 5) + (G B) = (7, ),
(Ap,q) = 0. (3.1.1)

In order to compute with this discrete equation, consider a finite element basis
for the Lie-algebra valued 1-forms. {¢" ®t%}, , for Q] (M|g) and a basis {e° ®
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t*}5,a for D} (M|g). Expand A, = A%t @ 1%, g, = q4e” © t*, and taking
B=pl'rett, g=-e’ ®t* we can write 3.1.1 in component form,

1
(hef @) = A5 (de" @t def @ t°) + S ATAL ([(0" @ 1) A (¢ @ 1), def @ )
- 454 (" @ %) (dg” & 1), ¢ @ 1)
1 a a v c
— AL AL (" @ (0" @ ) A (9 & 1)), o @ )
+ (e 0ttt o)
1
= A% (dcp“ @t dp* ® tc) + 5AZAI;((@” A @YY @ [t t°], de® ® tC)
— A () @ 1,8, o @ 1)
1 a v a (6]
- SALALAL (o A ) @ (10, [, 1)), o @ 1)
+qg<ea ®ta,<,0§ ®tc)’
0= A2 (@“ ® 1%, e ®tb).

Or, written as matrix-vector equations,

KA+ B(A)+Gi=J,
GT'A=0

(3.1.2)

where

(&,0)
(w,a)’

= (" ot o 2195,

1
B(7) := (570;370,’;((@” A ") @ [t 1], dpt © tc)
— et ((gp%dw”) ® [t ], ¢ ® tC)
1
— st (¢ ule” Ae?) @ [0 1)), o @ )€,

Note that due to the nonlinear operator B. the system 3.1.2 is nonlinear and
thus in peneral, we must apply a nonlinear method to compute the solution.
However, in the case that the gauge group is abelian (e.g. in electromagnetism),
the Lie bracket is trivial, so B = 0, making 3.1.2 a linear system.

With the above formulation, we have a procedure for computing a FEEC
solution to the Yang-Mills equation:
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Define the domain M for the problem of interest;

Triangulate M;

Define the basis functions {p} and {e} over the triangulation of M;
o Assemble J, K, G, and B;

e Solve the system 3.1.2 for A and q:

-,

e Express the solution Aj, = (A)(p" @1).

Coupling to matter

Naturally, the Yang-Mills gauge theory of the Lie group G can be coupled to
matter fields which transform under a representation of G. Coupling of the
matter fields to the gauge fields physically describes massive particles which
interact with force carriers (such as photons in electromagnetism, W and Z
bosons in the weak interaction, and gluons in the strong interaction).

Let L,,(¢,dv,d*) be the Lagrangian for a matter field ¢ € QF(M, E),
where the fibers of E, 7 !(z), carrv a representation p, of G. Suppose that
L, is invariant under global G transformations, i.e. the transformation ¢ (z) —
pz(9)Y(z) is a symmetry of the Lagrangian for all ¢ € G. To promote this
global symmetry to a local symmetry, i.e. for £, to be invariant under gauge
transformations ¢ (z) — p.(g9(x))Y(z) for all ¢ : M — G. the matter La-
grangian must be modified by making the formal substitution £,, (¢, dy, d*) —
L (1, D, D%4)). known as the principle of minimal coupling. On the
matter fields QF(M, E), D4 acts via the representation p, weighted by the
"charge" of the matter field, q.

Datp = dip + qp(—iA)p,

where we use the modified notation D = d —iA. The total action of the coupled
theory is then

S:/éﬁy}v](A, dA) —‘rﬁm(w,DvaDj:lw)a

where ¢ is some coupling parameter. This can also be expanded in the form,

S = / ;cYM(A, AA) + Lon(dih, ) + Line (A, ).

Variation in A and ¢ give the coupled equations

D*Fy = J(A, ), (3.1.3)
(35 + 4 atany * oy ) om0 ) = FA0)
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where J := —g0aLint(A, ) and F := —0yLint(A, ). Thus, the gauge field A
is sourced by a current J which arises from its interaction with matter, and the
matter field evolves with a forcing term F' due to the gauge field.

Discretizing this svstem is similar to the pure Yang-Mills case. Analogous
to svstem 3.1.2, we get the equations for ff.,

- = -

KA+ B(A) +Gq=J(A,1),
GTA=o,

which are coupled to the equations for v, obtained by assembling the discrete
Euler-Lagrange equations for .

Example: Maxwell-Schridinger System

In this section, we consider an example of discretizing a svstem involving Yang-
Mills gauge fields coupled to matter. For our example, we will take the Yang-
Mills theory to be over U(1), an abelian group.

Consider the Schrédinger system for a particle with charge ¢ and mass m
coupled to electromagnetism, the U(1) Yang-Mills theory. Since u(1) ~ R, the
gauge potential A will be a real-valued one-form (up to a factor of ¢, depending
on convention). Furthermore, since U(1) is Abelian, the Lie bracket on u(1) is
trivial and hence, the adjoint action becomes

DB =dB —i[AA B] = dB,

and the curvature of the connection is simply F4 = dA.

Since the theory is nonrelativistic, we split the domain into spatial and
temporal components. Consider the respective actions for the Schrédinger and
Maxwell systems,

0 1
Ssloni] = [[dt [ it s S = st nudi” = Vil
Sai[A] = — /M %d’A N+ A
1 0 0
:5/dt/R(aA+d¢)/\*(aA+d¢)—dA/\*dA,

where the primed operators act on the spacetime manifold M. the unprimed
operators act on the spatial manifold R. the gauge potential is split into com-
ponents A := (—¢, A) = (—¢, A, A%, A3), and V is the external potential.

Variation of the first action in ¢* gives the Schrédinger equation (variation
in 7 gives the conjugate equation),

0

) 1,
laﬂ’ = %d dyp + V(x, [P|)p

_% *d*xdp+V(x, Y)Y,
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while variation in ¢ and A give two of Maxwell’s equation (without source),

0
*
d (at.A+d¢) =0,
" 0,0
d*dA + 875((%,4+d¢>) =0.
Or, defining the 1-form F := 7(%}1 + d¢) and the 2-form B := dA. these
equations are the familiar —d*F = 0,d*B — 0; F = 0. For electromagnetism, the
(trivial) Bianchi identity for the connection d’'d’ A = 0 gives the other Maxwell's
equations d*B = 0,dFE + 0; B = 0. The first pair of equations are the dvnamical
equations while the second pair are geometric constraints.

Why would we be motivated to couple these svstems together? Physically,
coupling these two systems would allow us to incorporate the electromagnetic
interaction into the Schrodinger equation (e.g. to describe nonrelativistic matter
laser interaction). Furthermore, note that the Schrédinger action is invariant
under the global U(1) transformation, 1) + €!®¢, Vo € R. If we try to promote
this symmetry to local gauge transformations, 1) — e'*(:%)4), one can check that
the action Sg[t,1*] is no longer invariant. In order for the action to remain
invariant under gauge transformations, one has to couple the U(1) gauge field
A to the Schrédinger action.

To couple these systems, we use the principle of minimal coupling, making
the formal subtitution £(¢, 0,4, dip) — L(1), Dytp, D o). For (1(t), ¢(t), A(t)) €
Q°(R|C) x Q°(R) x Q'(R), the total action is

St " o] = [t [ 07 2 (01 ia0)0 -+ 50— igAp A+l = ig A"
~V(a, [ " + %(%JH— dg) /\*(%A—F dg) — %dA/\*dA.
(3.1.4)

One can check that this action is invariant under U(1) gauge transformations
with the following representations for a generator «,

Dlt2) S Iy, ),
6(1,2) % 6(1,2) — 2alt,), (3.15)
Alt,z) & A(t, z) + da(t, ).

Variation in ¢¥*, ¢, A gives the following equations, respectively,

i%" - ‘% * (d —igAN) * (d — igA)y + (V (@, [¥]) + ¢9)¢,

d*(%Aerqﬁ) = qlv[?, (3.1.6)
) 9 9 R I *

d"dA+ 5 (5o A+ d) = =~ AW* + - Im(y*dy),
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which is an example of equation 3.1.3. Defining the momentum operator p 4 :=
—i*(d—1igA), the total potential U := V + ¢¢. the corresponding Hamiltonian
H := p%/2m + U. the charge density p(¢)) := ¢|¢|?. and the current one form
J(, A) = —q? A|Y|?/m + q Im(p*dip) /m. we can rewrite the above equations
in a more familiar form:

P = Hw, .6, AW,

*d*x E = p(v), (3.1.7)
*d * B — %E:J(%A).

That is, the matter field ¢ evolves under a Hamiltonian which is coupled to
the electromagnetic field, and the electromagnetic fields are sourced by a charge
density and current which are coupled to the matter field. These are the com-
plete dvnamical equations for the Maxwell-Schrodinger system (the other two
geometric constraints from Maxwell’s equations still hold).

To see that the potentials propagate as waves, we can use the Lorenz gauge
%gﬁ —d*A = 0 (the U(1) gauge symmetry 3.1.5 allows gauge freedom in the
problem). The system then becomes

z‘ﬁw — H(a, b, 6, AV,

O 6= ow) A%, (318)
P X

where AF is the Hodge-Laplacian on k-forms, d*d + dd* (note that the Hodge-
Laplacian differs from the usual vector calculus Laplacian V2 by a minus sign).
Discretization The discretization of this system is straight-forward; apply
the coupled form of the semi-discrete Euler-Lagrange equation 2.5.6 to the action
3.1.4. Then. with a basis {¢f}; for 0- forms and {¢V}; for 1-forms, expand

Vn = Ve(t) ok, on = on(t)ph. Ay = Ak (t)eh. This gives the following svstem

Wk

— PP A A (kS o, soé)) + (V(@)0, 08) + admibr (05 0k, 0h),

dAy,
dt

Ap(dgh, dp))+

(‘Plvd‘ﬁo)‘*‘%(d@o»d%) = qUibm (Phol 7%00)

Ak, doy, N
dr2 (8017801)‘1'%@ 07%01)

To discretize this svstem in time, we use the Hamiltonian framework discussed
in chapter 2. We will also assume the external potential V(¢) = 0. From
the Lagrangian of the action 3.1.4, we pet the following conjugate momenta
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£:=0L)0) = ip*, m = ILIOA = B, A+d¢. 0 := DL/Dp = 0. The Hamiltonian
is

h=EAK)+TARA— L,
Then, in terms of the components of the basis expansion of the fields and their
momenta ((7,[7, &), (A7), (4, 5)) we get a matrix system of the form

My d;ik = _ﬁ(_Kkﬂ/Jk — 1qBumij Am ¥k — ¢ Ziimi Vi AiAm + qUpkibmibe )
_iMkj% = _ﬁ(_Kkjfk + 1qBrmkj Amék — @ Ziimj&k A1 Am + QUi dmér),
M;,; d:;k My ;e — S ok,
—My; dzl;k = K} A+ 2Jmkl] S 1/’1 - *kag (gk VYim)s
M %~ o,
by, &k

0= Mk:jd = qUpm; 1/)m SkjTh,
t
where

May = (96, 90), Miy, = (#5,¢7),

Kap = (de, dg), Kpy, = (dgf, deh),
Jabed = (910005, #1), Jape = (95dep, #5),
Zabed = (0503207, 08), Sap = (1, do}h),
Babe = (¢§det, 05) — (910, d),

Uape = (8009007 ©5)-

Thus, given an initial configuration ((J,E), (A,7), (o, 5))(0) we have a well-
posed Hamiltonian system which we can apply a symplectic integration scheme
to fully discretize. Note that once we assemble the matrices M. M', K, K', J,
J'. Z,S. B, and U, the remaining computation of the problem becomes rela-
tivelv straight forward. Furthermore, the Hamiltonian framework automatically
imposes the gauge condition QS = 0. If we instead want to impose a different
pgauge, we would impose the gauge at the level of the Lagrangian and then
recompute the corresponding Hamiltonian equations.

The images from figure 3.1 were produced using this discretization of the
Maxwell-Schrédinger svstem on a cylinder. Assuming the cvlinder is infinite
along its axis, dimensional reduction reduces the problem from a 3-dimensional
domain to a 2-dimensional domain.

From Noether's theorem under the U(1) symmetry 3.1.5, we expect the
probability P = %f*(fz/}) = %Mabéawb satisfies P(t) = 0. The corresponding
plot for the total probability is shown in figure 3.2.
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Figure 3.1: Snapshots of evolution of coupled Maxwell-Schrodinger System
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Figure 3.2: Approximate Conservation of Total Probability P(t)
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3.2 Plasma Physics

In this section, we consider applications of our framework to modeling plas-
mas (charge particles are completely ionized resulting in free movement). In
particular, we will use particle-in-cell (PIC) method and will see how our FEEC
discretization fits into a larger svstem. First, we review some of the basic equa-
tions governing plasmas and then discuss the PIC method. followed by several
examples.

In this section, we will use the canonical isomorphism between 1-forms and
tangent vectors on a Riemannian manifold to interchange between 1-forms and
vectors. We use ( , ) to denote the metric on 1-forms and equivalently the
metric on tangent vectors.

Maxwell-Vlasov System

There are two broad approaches in describing the dvnamics of a plasma.

The approach of magnetohydrodynamics is to describe the plasma as a fluid,
subject to a mass, momentum, and energy equation which incorporates the
effect of electromagnetic fields (the Navier-Stokes system coupled to Maxwell's
equations). However, since we are treating the plasma as a continuum, we lose
some interesting effects of particle interactions with the fields.

We instead take the other approach. the kinetic description of a plasma,
where the plasma is described by a distribution function f(r,p,t) which gives
the density of particles at each point in phase space, (r,p) € T*M, at time ¢.
Here. p refers to the kinetic momentum of the particles. The starting point
for the kinetic theory is the Boltzmann equation, which states that the total
time derivative of the distribution function is equal to the collilsion rate in the

plasma,
of

d

% (T7p’ t) - ( ot )collision'
For example, for small but non-negligible collisions in a plasma, (0f/0t)con =
—0(f(Ap;))/0p; + 20*(f(ApiAp;))/Op;Op; which gives a Fokker-Planck equa-
tion to describe the plasma. However, for many plasmas. we can assume col-
lisions occur on a time-scale much shorter than the time-scale of the plasma
oscillations, (Ap;) ~ 0. and neglect second order effects O((Ap;Ap;)). Thus,
we will ignore the collision rate and the plasma is then governed by the Vlasov

equation,
d _of af . ﬂ

0= fnpt) =50+ 50 + 0 50 (3.2.1)

ot or

where we used the chain-rule to expand the total derivative. To complete this
equation, we use the velocity 7 = p/m (assuming non-relativistic motion) and
from the Lorentz force, p = q(FE 4+ p x B/m). Of course, the electromagnetic
field is coupled to the plasma; since the particles are charged. they generate an
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electromagnetic field. This coupling is given by Maxwell's source equations
V- E(r,t) = p(r,t),

V x B(r,t) — %E(T,t) = J(rt),

where the charge and current densities are given by
p(r,t):lI/ UOZP f('f',p,t),
TrM
p
J(r,t):q/ vol, — f(r,p,t),
T*M m

where ¢ is the charge of the particle and m is the mass of the particle. These
source equations can equivalently be characterized by an action, with scalar
potential ¢ and potential one form A,

1,0 0 1
S, Al = /dt/M [§(§A+d¢)m(a¢4+d¢)—§dAA*dA+AA*J—¢A*p},

(3.2.2)
where the subscript f denotes that the action depends on the distribution func-
tion but is not a functional of the distribution function. As mentioned before,
E = —d¢ — 0y A and B = dA. Thus, the dvnamical equations for the coupled
Maxwell-Vlasov system are

_of ,p of p of
_ 05¢[9, Al
0= =00 (3.2.3)
o - 951, Al
= A .

Particle-In-Cell Method

One can think of the evolution of the distribution function in kinetic theory
as the evolution of an infinite amount of particles, each occupving a single
point in phase-space. In this picture, the o'" particle at (r,,p.) contributes
O0(r — ra(t))d(p — pa(t)) to the distribution f(r,p,t). Each of these particles
follows the characteristics of the Vlasov equation 3.2.1.

The particle-in-cell method uses this insight to numerically simulate the sys-
tem 3.2.3. As opposed to tracking an infinite amount of particles each with zero
width (computationally impossible), the PIC method tracks a finite number of
computational particles which occupy some small but non-vanishing bandwidth
in phase space (see figure 3.3). It is interesting to note that our Hamiltonian
framework for discretizing a field theory worked on similar principles.

For every time step. we perform the following steps. First, use the fields from
the previous time step to update the position and momentum of each particle.
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Figure 3.3: Computational particle in 1 + 1 dimensional phase space

Then, use the updated computational particles to compute the distribution
function, by summing over the phase-space bandwidths of each computational
particle. This allows us to compute the charge density and current density. We
then use our FEEC field solver to calculate A, ¢ (and then E, B) from these
densities. Reiterate. Below, we elaborate on the steps of this process.

Initialization

To initialize the PIC process, the initial positions and momenta of the particles
and the initial field configurations must be determined. Assume that we have
chosen an initial distribution function f(r,p,0).

Since our evolution equations involve time derivatives of ¢ and A. we need
the initial field configurations. There are several choices for initial configura-
tions. One choice would be to impose external fields ¢(r,0) and A(r,0). for ex-
ample if the plasma was initially radiated by an electromagnetic wave. Another
option would be to use the field solver to determine ¢(r, 0) from the electrostatic
equation A% = po(r) and A(r,0) from the magnetostatic equation A'A =
Jo(r). where po(r) = qu:M voly f(r,p,0) and Jo(r) = qu:M vol, £ f(r,p,0).

Furthermore. the distribution must be sampled in order to determine the
initial positions and momenta of N computational particles, i.e. the o sam-
ple of f(r,p,0) determines (r,(0),p4(0)). « € {1,..,N}. We use the rejection
method to sample the distribution: To sample an arbitrary distribution func-
tion f, instead sample from a distribution function g which we already know
how to sample from (e.g. a box function), satisfving supp(g) 2 supp(f) and
sup(f/g) < L. Upon sampling a point z from g, sample a random number from
r € [0,1] and if r < f(z)/Lg(x). accept the sampled value z; otherwise. reject
it and resample. An example is shown in figure 3.4.

Updating position and momentum

Recall that the particles follow the characteristics of the equation governing the
distribution function, the first equation of 3.2.3. By setting f = f(r,(t), pa(t),t)
and computing the characteristics the of corresponding equation, the o' parti-
cle obevs

7.1a :pa/ﬂ%
Pa = q(E + po X B/m).
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(L)

Figure 3.4: Example of the rejection method for f(r,p,0) = 52'712(7“)6_”2 on
[0, 7] x [=3,3] for N = 10,000 particles. (a) Histogram of sampled values with
f outlined in black. (b) Corresponding phase space plot

The updated positions and momenta are obtained by integrating these equa-
tions to get 7! and p"*! from the n'" step. There are of course many possible
wavs to integrate these equations of motion. In our case, we utilize the Hamil-
tonian structure of the dvnamics to svmplectically integrate the equations of
motion. One benefit of this approach is that the integration preserves the svm-
plectic form dz; A dr', where 2 is the momenta conjugate to r (not necessarily
the kinetic momentum p),

(d=")i A (dr™)F = (d="1); A (dr (3.2.4)

which can be visualized ag the conservation of phase space volume. Along with
preserving the svmplectic form, these integrators have the interesting property
that they conserve a modified Hamiltonian which is quantifiably close to the
exact Hamiltonian.

To utilize the Hamiltonian structure. introduce the canonical momentum
2z = p+ gA (kinetic momentum plus a contribution from the vector potential).
At each timestep., we will assume the fields obtained from the field solver are
fixed, as to eliminate the time dependency. The Hamiltonian for the system is

H(r,z) = %(2 — qA(1))* 4 qo(r), (3.2.5)

(we saw essentially the same Hamiltonian for the Maxwell-Schrédinger system in
the equation i0;¢ = Ht) and the equations of motion are given by Hamilton's
equations,

2=—-V,.H(r z),
7=V, H(r z2),
which are equivalent to the previous equations of motion upon substituting
z2=p+qA, E=—-V¢—0,A, B=V x A. To integrate, we will use a relatively
straight-forward method. a svmplectic Euler method.
2 =2 AV, H (" 2,
Pt =" ACV L H (5 2",
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which can be shown to satisfv the syvmplectic map condition 3.2.4. In pen-
eral, this svstem is implicit in the momentum 2"t However, for our spe-
cific Hamiltonian 3.2.5, V, H(r™, z"*!) is linear in z"™! and hence. the svs-
tem becomes linear in z"*!. Using p = z — ¢A, this system provides a map
(r,pR) + (rnt1 pitly to update the position and momentum for each parti-
cle.

Quantities involving the distribution function

Ag mentioned before, each computational particle contributes a small bandwidth
of phase space to the distribution function. For computation, we represent
particles by shape functions which have similar properties to a delta function
(has an area of 1, is maximum at the origin, and falls off to zero rapidly).
Choosing one such function S(r) for positions and S(p) for momenta.

N
flr,p,t Z r— 1ot S(p — pa(t)). (3.2.6)

Subsequently, the charge and current densities are given by
oty =a [ wolfrnty=q [ v, Z S(r = ra ()8 — pa(t)
TrM M
3 N
quS T — 1ot / volpS(p—pa(t)):qZS(Tfra(t))
e M a1
p ~
J(r,t :q/ vol —fr,p,tzq/ vol— S(r—ra(t)S(p — palt
) =af  wehliCpn=af Z (0 = pa(t))

p ~
_qZS T — 1ot /*MUOZPES(p_pa(t))'

It may be the case that we are only interested in the particles and not the
distribution function (after all, the distribution function is supposed to represent
the particles). In this case, we can take the momentum shape function to be a
delta function, S = §. and the formula for the current simplifies to
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where again we use S = §. The kinetic energy will allow us to measure how the
energy of the particles is transferred to or from the electromagnetic field energy,

U(t) = % /M vol, (EQ(T, t) + B(r, t)). (3.2.8)

Field Solver

The field solver for finding the potentials (and hence the electric and magnetic
fields) is analogous to the previous discussion of the Maxwell-Schrédinger svs-
tem. Applving the semi-discrete Euler-Lagrange equation 2.5.6 to the action
3.2.2 and expanding in terms of basis functions,

dA : - :
Tf(wf, de}) + or(def, dgd) = (p, 8}),

Adkdj dzAkkj d¢kdk VA J
k(depy, dpt) + a2 (@17@1)"‘%( v, 1) = (. 91).

As before, we use the Hamiltonian formulation of the semi-discrete equation.

dAy

dﬁk i
_Mllcjﬁ = Kl/chk —(J, 1),
doy,
g
dfy

0= —Mkjﬁ = (p, 80%) — SkjTks

where the matrices M. M’, K’. and S are defined in the previous example. Sub-
sequently, discretize in time via a svmplectic method. With all of the elements
of the PIC method in place, we can examine a few examples.

Example: 1D 1V System

In this example, we will explore a plasma in one spatial dimension and one
momentum dimension (two dimensional phase space). Although there are wavs
of defining magnetic fields in one dimension, we will assume there is no magnetic
field and as a result, only an electric field interacts with the plasma.

For one-dimensional plasmas (plasmas longitudinally oscillating along one
direction), an interesting damping mechanism occurs known as Landau damp-
ing. The oscillations of the particles in the plasma generate oscillations in the
electric field. As these field oscillations propagate, they resonate with particles
moving with the same velocity (since, in the comoving frame of the particles,
the electric field can do work on these particles). Of course, as with any real
resonance phenomena, there is some bandwidth to the velocities in which the
particles can resonate (see fizure 3.5). For particles moving slightly slower than
the electric field. the electric field will accelerate the particles and give energy

ot
ot
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Figure 3.5: Resonance in distribution function monotone in [p|

to these particles; likewise, for particles moving slightly faster, the electric field
will decelerate the particles and gain energy from the particles. If the initial
distribution function is monotone decreasing in |p| (the magnitude of the kinetic
momentum), more particles will be accelerated by the field and hence gain en-
ergy; as a result, we expect the electric field energy to dissipate. This damping
occurs until nonlinearities arise which keep the electric field from dissipating
completelyv. Hence, this process is usually referred to as linear Landau damping.
Of course, the initial distribution function may not be monotone decreasing
in |p| (see figure 3.6). In this case. if the electric field travels at a velocity
in which the distribution function is increasing. the electric field instead gains
enerpgy from the particles, producing an instability. If the function is mostly
decreasing, then as the dvnamics of the system progresses. the electric field
will mostly be damped with occasional instabilities. This is referred to as the
bump-on-tail instability due to the shape of the initial distribution function.

Figure 3.6: Resonance in non-monotone distribution function

For a more rigorous explanation of these damping phenomena and instabil-
ities in plasmas. see e.g. [17].

To test these damping and instability mechanisms, we employ the PIC
method outlined above for a one dimensional plasma. The following tests further
motivate the choice of a symplectic integrator, since we can attribute dissipation
or instability that we see in the system to the physical processes occuring. not
to numerical dissipation or instability in the integrator. Other than the initial
distribution f(z,p,0), the parameters relevant to both tests are the same (e.g.
number of particles, time-step, etc.). For both tests, the spatial domain is the
interval [0, 10] with periodic boundary conditions, or R/10Z.

Landau Damping To model a svstem under Landau damping, we initialize
the distribution function f(z, p,0) = (14 cos(2(x —2)))e™? which is monotone
decreasing in |p| and oscillatory in x. Snapshots of the evolution of this system
is shown in figure 3.7. As can be seen from the energyv plots in figure 3.8, the
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electric field is damped exponentially and the particles gain energy. Further-
more, figure 3.8(c) shows that the total energy F = U + T is approximately
constant (with the deviation occurring during the damping), which tells us the
energy is being transferred from the electric field to the particles.

Bump-on-tail Instability To model the bump-on-tail instability, we ini-
tialize f(z,p,0) = (1 + cos(2(z — 2)))e?" + 0.85¢5(P~1-3)° 4 85— 5(P+1:8)*,
which is the distribution function from the previous test with two additional
terms (two streams of energetic particles), making the function not monotone
in |p|. The evolution of the svstem is shown in 3.9. From the energy plots in
fipure 3.10, the electric field is no longer damped exponentially and there are
instabilities which occur throughout the resonance process.

<X

ot
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Figure 3.7: Landau Damping: (a) Evolution of Distribution Function, (b)
Corresponding evolution of particles in phase space
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Figure 3.8: Landau Damping: (a) Electric Field Energy U(t) (equation 3.2.8).
(b) Kinetic Energy T'(¢) (equation 3.2.7). (c) Fractional Energy Error
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Figure 3.9: Bump-on-tail Instability: (a) Evolution of Distribution Function,
(b) Corresponding evolution of particles in phase space
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Figure 3.10: Bump-on-tail Instability: (a) Electric Field Energy U(t) (equa-
tion 3.2.8). (b) Kinetic Energy T'(¢) (equation 3.2.7). (c) Fractional Energy
Error



Brian Tran UCSD Mathematics

Example: 2D 2V System

In this example, we consider a plasma in two spatial dimensions with coordinates
(z,y) and the corresponding momenta with coordinates (p,,p,). The spatial
domain is a rectangular interval [0, 5] x [0, 2] with periodic boundary conditions,
or R?/(5Z x 2Z). In this case, by dimensional reduction, a magnetic field can
exist normal to the spatial manifold (meaning the vector potential can only have
x and y components, not a normal component).

In particular, due to the introduction of a magnetic field, the interaction
between the particles and the fields is now fully electromagnetic and time de-
pendent. This leads to different instabilities than interaction with a pure electric
field. For example, if the initial distribution is anisotropic in momentum space
(more specifically, not Maxwellian of the form exp(—ap?) ), an instability arises:
a magnetic field is generated which restores the isotropyv of the momentum space
distribution. This magnetic field generation causes the electromagnetic field en-
ergy to become unstable (grow exponentially) until the isotropy of the system is
restored. This mechanism is known as the Weibel instability, which for example
is responsible for the generation of magnetic fields in astrophysical systems.

To test the Weibel instability. we take an initial distribution function f(z,y, ps,py,0) =
(1 4 cos(2x))exp(—p; — 0.9p7) which is slightly perturbed from an isotropic
momentum distribution. The evolution of this svstem is shown in 3.11. The
corresponding instability in the electromagnetic field energy is shown in figure
3.12.

Animations of the evolution of the 1D and 2D systems can be found at
Maxwell Vlasov GIFs.

60


https://drive.google.com/open?id=0Bxm9HPkABVd_b1I5SVBsMl9BX28

Brian Tran

UCSD Mathematics

Position Spacet= 0

Position Spacet =06

X Phase Space t=0

o

Phase Space, t =06

Y Phase Space 1 =0

Y Phase Space. t =06

Figure 3.11: Weibel Instability: (a) Evolution of particle positions. (b) Evo-
lution in (z, p,) phase space. (¢) Evolution in (y, p,) phase space. (d) Evolution
of momenta density; note the initial anisotropy versus the final isotropy
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Figure 3.12: Weibel Instability: Instability in Electromagnetic Field Energy

(equation 3.2.8)
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A Appendix: Lie Groups, Algebras

We brieflv review concepts from Lie groups, algebras, and their representa-
tions to supplement the material presented in the main paper.

Definition A.0.1 A Lie Group is a group G which has the structure of
a differentioble manifold with a differentioble group structure i.c.  the maps
(9,9") = g9’ and g — g~ are differentiable for all g, 9’ € G.

Let G be a Lie Group with identity e. Consider left translation on by g € G,
Ly(g") =99’V g' € G.

Clearly, by the differentiable group structure on G. L, is a differentiable map.
Furthermore, since (Ly)~" = L,-1 is also a differentiable map, L, is a diffeomor-
phism from G to itself. We say that a vector field Z € T'(T'G) is left-invariant if
Ly Zlg = Z|ng ¥ h,g € G. where Ly, denotes the tangent mapping induced by
L. Clearly, a linear combination of left-invariant vector fields is left-invariant.
Furthermore, the Lie bracket of left-invariant vector fields is left-invariant. where
we define the Lie bracket on its action for functions f € C*°M,

(X, Y]f = X(Y (/) - Y(X(f),

which is bilinear, anticommutative, and satisfies the Jacobi identiy (X, [V, Z]] +
[Z,[X,Y]] + [Y,[Z,X]] = 0. The space of left-invariant vector fields on G,
equipped with the Lie bracket, forms the Lie Algebra of G, denoted g. Since
the values of left-invariant vector fields are uniquely determined by their value
at the identity, Z|; = L. Z|.. the Lie algebra structure of g is isomorphic to
the Lie algebra structure of T,.G, equipped with the bracket

[Mle;Cle] = [0,¢le V0, ( € T(TG).

Thus, we can think of the Lie Algebra g as T.G equipped with the above Lie
bracket.

As needed in our discussion of Yang-Mills theoryv, we can equip the Lie
Algebra with an inner product. Consider the adjoint representation of X € g,
adx . defined by

adx<Y) = [X,Y]

Then, the Killing Form ¢r’ is a map g x g — R (or more generally a field K
which the Lie algebra is defined over), given by

tr'(X,Y) :=tr(adx o ady).
Since tr(AB) = tr(BA) and ad is linear. the Killing Form is symmetric and

bilinear. Furthermore, if g is the Lie algebra of a compact semisimple Lie group,
then ¢r’ is negative definite and thus —¢r’ defines an inner product on g.
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A.1 Representations

One application of the theory of Lie groups is their action on other spaces.
i.e. their representations.

Let G be a Lie group and M be a manifold. Then, we say that M carries a
representation of G if there is a differentiable map

p:GxM— M,
G — Diff(M, M),

which is a group homomorphism from G into the group of self-diffeomorphisms
of M. Of particular importance for our purposes is a linear representation of G
on a vector space V. where p is a group homomorphism from G into the general
linear group of V., GL(V). Similarly, a representation of the Lie algebra is a
group homomorphism 6 : g — gl(V'). Note that given a Lie group representation
p on a vector space V, there is an induced Lie algebra representation from the
tangent map 0 = p*.

Now consider a vector bundle (E, 7, M) where the fiber 77!(x) carries a
representation p, of G for each x € M. We define a gauge transformation
as a smooth map ¢ : M — G. Under a gauge transformation. a field ¥ € T'(FE)
transforms as

U(z) S p,(6(x)) U ().

The set of gauge transformations forms a group under pointwise multiplication,
which we call the gauge group of E. Often, as in the main chapters, we do not
explicitly write the representation and write the transformation as ¢(x)¥(z).
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