Topics in Number Theory:
Elliptic Curves

Yujo Chen

April 29, 2016



CONTENTS

0.1  Motivation| 3

0.2 Summary and Purpose| 3
T ALGEBRAIC VARIETIE 5

[1.1 Affine Varieties| 5

[1.2  Projective Varieties| 7

[1.3  Maps Between Varieties| 9
R—ALGEBRATC CURVESl 11

[2.1  Maps Between Curves| 11

[2.2  Ramitfication| 13

[2.3 Frobenius Map| 14

14

[2.5 Differentiall 15

2.6 The Riemann-Roch Theorem| 16
[3 BASICS OF ELLIPTIC CURVES| 18

[3.1  Weierstrass Equations| 18

[3.2  Group Law]| 18

[3.3 Isogenies| 19

[3.4 Torsion Subgroup| 20

[3.5 Invariant Ditferentials| 21

[3.6  Elliptic Curves over Local Fields| 21
I MORDELL-WEITL THEOREM| 23

l4.1  The Weak Mordell-Weil Theorem| 23

l4.2  Descent Step| 28




INTRODUCTION

0.1 MOTIVATION

Solving Diophantine equations is one of the main focuses in the field
of algebraic number theory. It gives rational or integer solutions to
polynomial equations. For example, Fermat’s equation,

Bap =20
has been proven by Fermat that it has no nontrivial solutions. More
generally,

xl/l + yi’l — Zl’l

for n > 2, has only solutions when at least one of x, y, or z is 0. For
example x = 0 and y = z works.
In particular, a class of polynomials called Weierstrass equation,

ay? +bxy +cy = x> +dx* fex + f

gives an explicit formula for the points on the curve. We will be dis-
cussing the Weierstrass equation which helps us study the behavior
of elliptic curves over arbitrary algebraic fields.

The study of Diophantine equation uses techniques from algebraic
number theory and algebraic geometry. Finding the integer and ra-
tional solutions to the equation requires tools of algebraic number
theory such as properties and behaviors of rings and fields. In this
paper, we will conclude a strong result of elliptic curves over an arbi-
trary number field, the Mordell-Weil Theorem. In terms of algebraic
geometry, the equation describes an algebraic variety that can be ex-
pressed as a geometric object.

0.2 SUMMARY AND PURPOSE

The purpose of this paper is to understand and approach integer and
rational solutions of elliptic curves. Moreover, the discussion and
complete proof of the Mordell-Weil Theorem applying to the field of
rational numbers will give us a greater understanding of curves over
a global (number) field.

In Chapter 1, we will discuss the generalities of algebraic geome-
try, including the definitions and maps between varieties. In Chapter
2, we look into the properties of one specific case of projective vari-
eties, algebraic curves, and some special maps between curves and
their motivations and applications to the proof of the Mordell-Weil
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Theorem. In Chapter 3, we will talk about the basics of elliptic curves
such as their algebraic properties and geometric interpretation. The
fact that the rational points on the elliptic curves form a group and
its group structure are also discussed. Moreover, we will discuss the
elliptic curves over local fields on the different types of reduction.
Lastly, in Chapter 4, we will apply the results we get from the pre-
vious chapters to prove the Mordell-Weil Theorem, which states that
the group of rational points on the elliptic curve is finitely generated,
the major result of this paper.



ALGEBRAIC VARIETIES

1.1 AFFINE VARIETIES

An algebraic variety is an n-dimensional algebraic curve. In other
words, a variety is a set of points to a system of polynomial equa-
tions. As we are examining the set of points of an elliptic curve, it is
important to know that these points form an algebraic variety.

In order to understand affine varieties, we need to understand the
general concepts and definitions in algebraic geometry in terms of
affine space and projective space. We define affine n-space (over the
tield K) as the set of n-tuples,

A" :={(x1,...,xn): x; € K}.
Similarly, we define
A"(K) :=={(x1, ..., xn): x; € K}

as the set of K-rational points of A".

Then, a subset of A" can be defined as the set of zeros of polyno-
mials over K. Moreover, if I is an ideal of K[xy, ..., x,], let V] be the
subset of A" consisting of zeros of polynomials in I.

To study the solutions to polynomial equations, or to solve systems
of equations, we can look at an algebraic set which consists of solu-
tions to a polynomial equation.

Definition 1.1.1. An (affine) algebraic set is a set of the form
Vi={PeA":fi(P)=0Vfel}.

The ideal of V, or I(V), is defined as a set of functions in K[X] such
that the functions vanish for all points in V, i.e,,

I(V) = {f €K[X]: f(P) =0V P e V).

If I(V) can be generated by polynomials in K[X], then V is defined
over K.

Definition 1.1.2. If V /K is defined, then the set of K-rational points of V
is the set V(1 A"™(K).



1.1 AFFINE VARIETIES

We then can look at the ideal of this set. For the purpose of this
paper, we will look at ideals and varieties over K because as we will be
discussing the proof of the Mordell-Weil Theorem later in the paper,
we will only care about the case when K = Q rather than the case of
its algebraic closure, K = RR.

Definition 1.1.3. I(V/K) = {f € K[X]: lP) =0V P € V } is the ideal
of V generated by polynomials in K[X].

Note that all ideals in K[X] and K[X] are finitely generated by
Hilbert Basis Theorem.

Definition 1.1.4. An affine algebraic set V is an (affine) variety if (V) is a
prime ideal in K[X]; e.g. if fg € I, thenf € Torg € L.

Definition 1.1.5. Let V /K be a variety. The affine coordinate ring of V/K
is defined by

Here, K[V] is an integral domain. Its quotient field, or field of fractions, is
denoted by K(V'), the function field of V /K. Similarly with K.

Intuitively, dimension is fairly easy to understand conceptually -
at least up to three dimensions. However, in terms of concreteness,
dimensions of more than 3 consist of concept more than curve or sur-
face. It is not easy to visualize. Therefore, we define dimension of a
variety V, dim(V), as the transcendence degree of K(V). The transcen-
dence degree is the maximum number of algebraically independent
polynomials, similar to linearly independent vectors in R".

A variety V is nonsingular (or smooth) at P € V if the point is
defined in the tangent space. Conversely, a variety is singular if the
point is not regularly defined in the tangent space. Geometrically, a
smooth point does not have an intersection point or “double” point.
Moreover, if the Jacobian matrix at P has rank n = dim(V), V is
smooth.

Definition 1.1.6. If V is nonsingular at every point, then V is smooth, or
nonsingular.

Proposition 1.1.7 shows another way to show whether or not a
point P € V is nonsingular.

Proposition 1.1.7. V is nonsingular at a point P iff
dimgM,/Mj, = dim(V),
where M), is the local ring associated to the maximal ideal at point P.

M, ={feKIVI:f(P)=0}
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1.2 PROJECTIVE VARIETIES

In the affine space, parallel lines, which are represented by a system
of equations that does not have a solution, do not intersect. However,
we would like these lines to have an intersection point. This is where
projective space is useful because in projective space, parallel lines do
intersect at “points at infinity”. Therefore, in projective spaces, there
is one dimension higher than the dimension in affine space to account
for these ”points at infinity”.

Definition 1.2.1. Projective n-space is defined as
P" = {(xo, ..., xn) € A"}
where not all x; are zero. Also,
(X0, s Xn) ~ (Yo, - Yn) iff 3 A such that x; = A y; V i.

Definition 1.2.2. {(Axo, ..., Ax;): A € K}, or [xo, ..., Xp], is an equivalence
class, where the x; are called homogeneous coordinates.

Note. We can look at A? inside of IP? by setting one of the coordinates
in IP? equal to 1 as follows:

[x:y:1] €P+— (x,y) € A?

Since scalar multiples are the same point in projective space, we
would like for polynomials when evaluated at these points to carry
the same value or to be scalar multiples themselves, so that when
viewed in projective space, they are really just the same point. This
special type of polynomial is defined as a homogeneous polynomial.

Definition 1.2.3. A polynomial f is homogeneous of degree d if
f(Ap) =Af(p)VAEK,VpeV.

For example, if we want a polynomial with degree 2 to satisfy the
above property, it is easy to see that each term must be of degree 2
itself. This way, when we multiply a point by a scalar A, we can just
pull out A? for each term.

f=x*+xy+2?
is homogeneous polynomial of degree 2.

Remark. An ideal I C K[X] is homogeneous if it is generated by ho-
mogeneous polynomials.

Definition 1.2.4. A projective algebraic set is any set of the form,
Vi ={P eP": f(P) = 0 for all homogeneous f € 1}

Example 1.2.5. aX +bY +cZ = 0, where a, b, cc K and not all zero, is a
line in P? is a projective algebraic set given by a linear equation.
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In a more general case of Example 1.2.5, the equation,
apXo+m X1 +...+a, X, =0
with a; € K not all zero, is called a hyperplane in P".

Example 1.2.6. If V is the projective algebraic set in P? given by the equa-
tion,
X2 + Y2 = ZZ,

then for any field K with char(K) # 2, the set V(K) is isomorphic to P! via
the map,

PY(K) — V(K), [s,t] —> [s* — t?,2st,8% + t2].

This is similar to an affine variety, except we look at homogeneous
polynomials in projective space.

Definition 1.2.7. A projective algebraic set V is a (projective) variety if its
homogeneous ideal I(V) is a prime ideal in K[X].

The following definition of projective closure will help us under-
stand Proposition 1.2.9.

Definition 1.2.8. If V is an affine algebraic set, then V is the projective
closure of V as follows,

1. VC A" CP".

2. I is the ideal generated by homogeneous ploynomials vanishing on V.

3. V= V[.

Proposition 1.2.9. 1. Let V be an affine variety. Then V is a projective
variety, and V.=V N A".

2. Let V be a projective variety. Then VN A" = Qor V =V N A"

3. If V is defined over K, V is also defined over K.

Recall. 1f I(V) can be generated by polynomials in K[X], then V is
defined over K.

Remark. To get a homogeneous equation from some inhomogeneous
equation in A", “attach” the (1 + 1) projective variable to each term
to make the equation homogeneous. To find a point at infinity, for
example, take the equation in AZ?,

X+Y*=1,
and set
X=X/Z,Y=Y/Z.
This then becomes

X/Z+Y?/7? =1
XZ+Y* =72

Set Z = 0 to find the point at infinity.
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1.3 MAPS BETWEEN VARIETIES

Because we are focusing on rational/integer solutions to polynomial
equations, it makes sense to look at rational functions, which are
functions that can be expressed as

s

where P and Q are polynomials with Q not equal to 0. Moreover, to
define them on projective space, P(X) and Q(X) must be homoge-
neous of the same degree.

Definition 1.3.1. Let Vi and Vo, C IP" be projective varieties. A rational
map from Vi to V3 is a map of the form

(P: V1 — V2, (I) = [fO/---/fn]/

where the functions fy, ..., fn € K(V4) have the property that for every P €
Vi at which fy, ..., fu are all defined,

¢(P) = [fo(P), ..., fu(P)] € V2.
Note. If V1 and V; are defined over K, an element of the Galois group,
0 € Gg,k acts on ¢ as usual.

Remark. A rational map, ¢, from V; to V3, is not always well-defined
on Vj. There might be some points P € V; such that f;(P) has a pole,
for some i. However, Example 1.3.2 shows that it may be possible to
find some ¢ € K(V) such that ¢f; is defined at P for all i.

Example 1.3.2. Let ¢: P! — P! be a rational map. Take fo = % and

fi = X such that ¢ = [%: X]. Let g = X. Then, if we multiply by g to f;’s,
we get

gfo=1
gfl = XZ.

The equivalent map, [1: X?] is defined at any point P € P! except at X = co.
So, for P = oo, we can use § = %, and get

gh=x
gfi=1,

which are both defined at P = oo except at O. Thus, for each point P € P!,
we can find a gp € K(IPY) so that rescaling makes it defined at P.

Definition 1.3.3. A rational map
¢ = [fo,...,fn] Vi — W

that is regqular (defined) at each point P € V; is called a morphism if for each
P e vy 3¢ € K(Vy) such that

1. each gf; is reqular at P;
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2. there is some i for which (gf;) # 0.
Definition 1.3.4. A rational map
¢ = [fo,...,fn] Vi — W

is an isomorphism if there are morphisms = Vo — Vj such that ¢ o ¢
and o ¢ are identity maps on Vy and V,, respectively.

Note. If ¢ and 1 are defined over a field K, then we say V;/K and
V> /K are isomorphic over K.
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ALGEBRAIC CURVES

For the purpose of this paper, we need to study elliptic curves in de-
tail, which is an important case to consider while looking at algebraic
curves. In this chapter, we will focus generally on algebraic curves
and their many properties. Algebraic curves are projective varieties
with dimension one; one example of such curves is the elliptic curve.

2.1 MAPS BETWEEN CURVES

A curve is a projective variety with dimension one. We will be look-
ing at mostly smooth curves in this paper which are just projective
varieties with continuous derivatives up to a certain order.

Proposition 2.1.1. Let C be a curve and P € C a smooth point. Then K[C],,
is a discrete valuation ring (DVR).

Recall that a discrete valuation ring is a principal ideal domain with
a non-trivial maximal ideal. By being a discrete valuation ring, each
point in the ring will have non-negative integer-values up to infinity
corresponding to its valuation.

Note. K[C], is defined as the local ring of C at P. K[C], is a subring
of K(C) which contains all rational functions such that the point P is
defined for all of those functions.

Definition 2.1.2. Let C be a curve and P € C a smooth point. The (nor-
malized) valuation on K[C], is given by

ordy: K[C], — {0,1,2,...} U {0},
ordy(f) = sup{d € Z: f € M%}.

The valuation can also be defined as a function on a field that pro-
vides a measure of the size of multiplicity of elements of the field.

Definition 2.1.3. A uniformizer for C at P is an element t € {t € K(C) :
ord,(t) = 1}, or in other words, t is a generator for My, the maximal ideal
of K[C],.

Definition 2.1.4. Let C be a curve and P € C. Let f € K(C). The order of f
at P is ordp(f).

11
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Ifordp(f) >0, = f(P) =0.
If ordp(f) < 0, = f(P) = oo (has a pole at P).
Ifordp(f) > 0, = fis regqular at P.

Proposition 2.1.5. Let C be a curve, let V.C PN be a variety, let P € C be

a smooth point, and let ¢: C — V be a rational map. Then ¢ is reqular at
P. In particular, if C is smooth, then ¢ is a morphism.

Proof. Let ¢ = [fo, ..., fn] with functions f; € K(C). Pick a uniformizer
t € K(C) for C at point P. Define

n= Og}glN ordp(f;)

Then since t is the generator of the maximal ideal, multiplying t% to
fi will get rid of function in the denominator that causes problem.

ordp(t7"f;) > 0Vi
ordp(t~"f;) = 0 for some j

Therefore every t~" f; is defined at P, or no pole at P. Thus ¢ is regular
at P and is a morphism. O

Note. For every ¢, we get a map on function fields ¢* defined by,
¢*: K(Cy) — K(Cy), where ¢*f = f o ¢, reads pullback of ¢. For
instance, if ¢ is a function of f, then the pullback of ¢ by the function
fis ¢(f(x))-

The following result from Theorem 2.1.6 will give a relationship be-
tween smooth curves and their function fields. In particular, a curve
C defined over K is equivalent to the function field of C over K.

Theorem 2.1.6. Let C1/K and C, /K be curves.

1. Let ¢: C; — Cy be a nonconstant map defined over K. Then K(Cy) is
a finite extension of ¢*(K(Cy)).

2. Let T: K(Cp) — K(Cy) be an injection of function fields fixing K.
Then there exists a unique nonconstant map ¢: C; — Cp (defined
over K) such that ¢* = T.

3. Let K C K(Cy) be a subfield of finite index containing K. Then there
exist a smooth curve C' /K, unique up to K-isomorphism, and a non-
constant map ¢: C; — C' defined over K such that p*K(C') = K.

Definition 2.1.7. Let ¢: C; — Cy be a map of curves defined over K. If ¢
is constant, we define the degree of ¢ to be 0. Otherwise we say that ¢ is a
finite map and we define its degree to be

deg ¢ = [K(C1): ¢"K(C2)]-
Definition 2.1.8. Let ¢: C; — Cy be a nonconstant map of curves defined
over K. The norm map relative to ¢* is defined in the other direction,

¢.: K(C1) = K(C2), ¢ = (¢%) 1 o Ni(cy) /97K (Co)-
¢« reads pushforward of ¢.

12
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2.2 RAMIFICATION

Factoring prime elements of a ring in an algebraic field K into prime
ideals is one way of understanding ramification of map between smooth
curves. For example, the prime integer 2 is ramified in the algebraic
field Z[i] because it can be expressed as follows:

2=(1+1i)>

The properties of ramification over smooth curves will help us
prove the finiteness of a specific field in our proof of Mordell-Weil
Theorem.

Definition 2.2.1. Let ¢: C; — C; be a nonconstant map of smooth curves,
and let P € Cy. The ramification index of ¢ at P, denoted by ey(P), is the
quantity

eg(P) = Ordp((P*t¢(p)),
where typ) € K(Cy) is a uniformizer at ¢(P).

In our analogy of number fields, the prime 2 ramifies with index
2. Primes congruent to 1 mod 4 reduce to two distinct factors in Z[i],
therefore, they have index 2 as well. And primes congruent to 3 mod
4 are unramified since they remain primes in Z[i].

Note. ey(P) > 1. If e4(P) = 1, ¢ is unramified at P.

Proposition 2.2.2. Let ¢: C; — C, be a separable nonconstant map of
smooth curuves.

1. Forevery Q € Cy,

Ypeg-1(Q) ep(P) = deg(¢).

2. For all but finitely many Q € C,

971(Q)| = deg(¢).

3. Let y: C; — Cs3 be another nonconstant map of smooth curves. Then
forall P € C,

epog(P) = e (P)ey(¢P).

Proposition 2.2.2 tells us that the preimage of P is finite and is equal
to the sum of the ramification indices over the preimage of P. This
shows us that the ramification index for an unramified point must be
1 because there is only one point in the preimage.
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Let K be a field, C be a curve, and char(K) = p > 0. g is r'" power
of p. C(7) /K contains the polynomial f(7) obtained from f by raising
each coefficient of f to the g'" power. There is a morphism from C to
C() called the Frobenius map defined as follows.

¢: C— C, ¢([x0, ., xu]) = [x{, ..., x1].

Proposition 2.3.1 describes some properties of the Frobenius map.

Proposition 2.3.1. Let K be a field, C be a curve, and char(K) = p > 0. g
is 1" power of p. ¢: C — C9) Frobenius morphism.

1. ¢*K(CW) = K(C)T = {f7: f € K(C)}.

2. ¢ is purely inseparable.
3. deg ¢ =q.
2.4 DIVISORS

Divisors are a way of expressing the locations along with their respec-
tive orders of zeros and poles of a curve. For example, if a curve C
has a zero of order 2 at P and a pole of order 4 at Q, then the divisor
of C can be written as the formal sum,

Div(C) = 2(P) — 4(Q).

Definition 2.4.1. The divisor group of curve C, denoted by Div(C), is the
free abelian group generated by the points of C. For instance, a divisor
D € Div(C) is

D =} pec ”P(P)/

where ny, € Z and n, = 0 for all but finitely many P € C.
Also, the degree of D is defined as

degD = Y pec 1.

In short, the elements of a divisor group are called formal sums,
the sums of the points on the curve. Moreover, the divisors of degree
0 form a subgroup of Div(C), denoted as

Div®(C) = {D € Div(C): degD = 0}.

Definition 2.4.2. Let C be a smooth curve and f € K(C)*. Then we can
relate f to the divisor as

div(f) = Lpec ordp(f)(P).

14
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By defining div(f), we then can look at the principal divisor as
follows:

Definition 2.4.3. A divisor D € Div(C) is principal if it has the form
D = div(f) for some f € K(C)*. Two divisors are linearly equivalent,
written Dy ~ Dy, if D1 — Dy is principal.

Some maps between divisor groups are as follow:
¢*: Div(Cp) — Div(Cy), a “composition function” from one point to
another.
¢«: Div(Cy) — Div(Cy), a “dual” relationship with ¢*.

These maps are associated to any non-constant morphism ¢: C; —
Co.

Definition 2.4.4. The quotient of Div(C) by subgroup of principal divisors
is the divisor class group, or Picard group, of C, denoted as Pic(C).

The Picard group is important because it allows us to show the as-
sociativity of the group law fairly easily by first noting that the Picard
group is indeed a group, and therefore, its operation is associative,
and then showing that the Picard group, Pic’(E), is isomorphic to
the curve.

Proposition 2.4.5. Let ¢: C; — Cy be a nonconstant map of smooth
curves.

1. deg(¢*D) = (degg)(degD) ¥ D € Div(Cy).

. ¢*(divf) = div(¢*f) ¥ f € K(Cy)".

. deg(¢.D) = degD ¥ D € Div(Cy).

. ¢, (divf) = div(p.f) Vf € K(C1)*.

. ¢, o * acts as multiplication by degep on Div(Cy).

N

W

-

o W\

. Afp: Co — Cs is another such map, then
(Yop)" =g oy and (Yo¢)s = ¢ 0 ¢
2.5 DIFFERENTIAL

Suppose a function f: R" — IR. For each differentiable function f,
we have a differential form df. One important thing to know is that
the gradient of f is different than a differential form of f. The differ-
ential form give a dual vector, or a linear function from R" to IR, this
function can be applied to a vector v with properties as follows:

Definition 2.5.1. Let C be a curve. The space of (meromorphic) differential
forms on C, denoted as Qc, is the K-vector space generated by symbols
modulo the relations:

15
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1. d(x +y) = dx +dy Vx,y € K(C).
2. d(xy) = xdy +ydx Vx,y € K(C).

3. da=0Va €K

2.6 THE RIEMANN-ROCH THEOREM

Definition 2.6.1. A divisor D = Y_np(P) is positive, or effective, denoted
by D > 0, if np > 0 for every P € C. Similarly, for any two divisors Dj,
D, € Div(C), if D1 — D; is positive, then D1 > D;.

Divisorial inequalities can also be used to describe the poles and/or
zeros of a function. If a function f is defined everywhere except at
P € C, and the pole at P is at most order n, then

div(f) > —n(P).
Definition 2.6.2. Let D € Div(C). Define the set L(D) as below,
£(D) = {f € K(C)": div(f) = ~D} U {0},
L(D) is a finite-dimensional K-vector space. Its dimension de denoted by
¢(D) = dimgL(D).

The following result helps us understand the proof of Proposition
2.6.4.

Proposition 2.6.3. Let C be a smooth curve and f € K(C)*.
1. div(f) =0iff f € K .
2. deg(div(f)) = 0.
Proposition 2.6.4. Let D € Div(C).
1. IfdegD < 0, then L(D) = {0} and ¢{(D) = 0.
2. L(D) is a finite-dimensional K-vector space.

3. If D' € Div(C) is linearly equivalent to D, then
L(D) = L(D') = {(D) = ¢(D'").

With Proposition 2.6.4, the following theorem proves the existence
of the group law on elliptic curves.

Theorem 2.6.5. (Riemann-Roch) Let C be a smooth curve and let K¢ be a
canonical divisor on C. The genus of C, g € Z >, such that for every divisor
D € Div(C),

(D) —¢(Kc — D) =degD — g+ 1.

16
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The Riemann-Roch Theorem is significant because it tells us that for
a curve with genus 1, there is a surjection that takes the curve onto its
degree-o Picard group. This proves the existence of a group structure
on the curve because the Picard group has a group structure.

Note. The canonical divisor is a subgroup of the divisor class group.

K¢ C PZC(C)

17



BASICS OF ELLIPTIC CURVES

Elliptic curves are curves of genus 1 and each with one specified base
point. More specifically, an elliptic curve over field K is a pair (E, O)
where E is a smooth, genus 1 projective curve over field K and O € E
is a point defined over K, or the base point of E. To begin, we first
understand the geometry and basic properties of elliptic curves over
arbitrary algebraically closed fields. Since the points of an elliptic
curve form a group, we can look at the important relations between
the algebraic maps of these curves.

3.1 WEIERSTRASS EQUATIONS

As mentioned in the introduction of this paper, each curve has its
Weierstrass equation, which gives explicit formula for the points on
the curve. Precisely, every elliptic has a representation of a Weier-
strass equation as below.

ay? +bxy +cy = x> +dx® +ex+ f

Suppose ¢: E — P? and let x and y be non-trivial rational functions
with poles of order 2 and 3 at O, then the image of E under this map is
always the set of zeros of a Weierstrass equation. And, O = [0:1:0],
is also called the point at infinity.

Let K be a field. Char(K) # 2, 3. By performing an appropriate
change of variables, we may ensure that the coefficient 2 in the Weier-
strass equation is 1, such that the general Weierstrass equation for
genus 1 elliptic curve is as follows,

y? = x% — 27c4x — 54cy.

And we define the parameter A by, 1728A = ci — cg, which detects
whether the equation is singular.

3.2 GROUP LAW
In this section, let E be an elliptic curve given by a Weierstrass equa-

tion. Then, E C IP? includes the points P = (x,y) of the Weierstrass
equation, along with the “point at infinity,” O = [0,1,0]. L C IP?

18
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defined as a line. Because the degree of elliptic curve is 3, we know
that the line L at exactly three points with multiplicity. If L is tangent
to E, then these three points, labeled them as P, Q, and R, are not
necessarily distinct.

Composition Law 3.2.1. Let P, Q € E, let L be the line through P and Q
(if P = Q, let L be the tangent line to E at P), and let R be the third point of
intersection of L with E. Let L' intersects E at R, O, and a third point. We
denote that third point by P & Q.

The following proposition states the properties of the composition
law.

Proposition 3.2.2. 1. Ifa line L intersects E at the points P, Q, R, then
(P®Q)®R=0.
2. PpO=PVPEcE
3. PEQ=Q@®PVP QecE.
4. Let P € E. There is a point of E, denoted by P’, satisfying
Po (P =0.
5. Let P, Q, R € E. Then
(P®Q)®R=P® (Q®R).
6. Suppose that E is defined over K. Then

E(K) = {(x,y) € K®: y®> + ayxy + azy =
X3+ ax? + agx +ag} U {O}
is a subgroup of E.

Note. Items 1-5 show that the composition law makes E into an abelian
group with identity element O. Also, the group operation on an el-
liptic curve is denoted as follows:

[m]P=P&...& P, m times. [0]P = O.

3.3 ISOGENIES

Now we look at maps between elliptic curve. Recall that a map
¢: Vi — Vp is a morphism if for each point P € Vi, there exists
¢ € K(V) for each i such that ¢f; is regular at P.

Definition 3.3.1. Let E; and E; be elliptic curves. An isogeny from Eq to
E, is a morphism
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¢: E1 — Ej satisfying ¢(O) = O.

Remark. An isogeny between elliptic curves is a homomorphism if
their group laws.

Example 3.3.2. Let m € Z. Define the multiplication-by-m isogeny as
below. For m > 0,

[m|(P) = P+ P+ ...+ P. (m times)

For m < 0, set [m](P) = [—m](—P). Define [0](P) = 0. It is clearly
a morphism. This map sends O to O, thus, by the definition, this is an
isogeny.

3.4 TORSION SUBGROUP

On an elliptic curve, there are points with finite order and with infi-
nite order. To have a finite order means there exists an integer n such
that if a point P is added to itself n times, it gives 0. On the other
hand, to have an infinite order means no matter how many times P
is added to itself, it will never give O.

Definition 3.4.1. Let E be an elliptic curve. A point P € E is called a
torsion point of order n if P has order n.

Note. If the group of points on the elliptic curve is torsion-free, then
the group has infinite order. For example, R is torsion-free ring be-
cause for n € Z and a € R satisying na = 0, either n = 0 or & = 0.
For « # 0, no matter how many times « is added to itself, it will never
give 0.

Definition 3.4.2. Let E be an elliptic curve. Let m € Z with m > 1. The
m-torsion subgroup of E is the set of points of E of order m,

E[m] = {P € E: [m]P = O}.
The torsion subgroup of E is the set of points of finite order,
Etors = Uﬁ:l E[m]

If E elliptic curve is defined over K, prime p = Char(K) and m [p,
then the group of m-torsion points E[m] has the form

E[m| = Z/mZ x Z/mZ.

This congruence relation will be important as we discuss about the
proof of Mordell-Weil Theorem in the following chapter.
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3.5 INVARIANT DIFFERENTIALS

3.5 INVARIANT DIFFERENTIALS

In this section, we will look at the differential of the Weierstrass equa-
tion of an elliptic curve over K. Let the following be the Weierstrass
equation of E/K,

E: y? 4+ ajxy + asy = x3 + apx? + agx + ag.
The differential,

— _dx
w = 2y+a;x+az € QE

clearly has neither zeros nor poles at (xg,1o) or at O. We want to
justify that this differential is invariant under translation.

Proposition 3.5.1. Let E/K be an elliptic curve. Its Weierstrass equation
and differential are as above. Let Q € E and tq: E — E be the translation-
by-Q map. Then

ko0
TQCL)—CU.

Proof. One way to prove this proposition is through direction calcu-
lation. By writing x(P + Q) and y(P + Q) in terms of x(P), x(Q),
y(P), and y(Q) using addition group law. Then calculate dx(P + Q)
as rational function times dx(P) while treating x(Q) and y(Q) as con-
stants. Then,

dx(P+Q) _ dx(P)
2y(P4+Q)+a1x(P+Q)+as ~ 2y(P)+ayx(P)+az

is verified by a constant value Q. O

Based on the formula of w, the invariant differential on an elliptic
curve has neither zeros nor poles, it helps us linearize the tedious
addition law on the curve.

36 ELLIPTIC CURVES OVER LOCAL FIELDS

In this section, we will talk some types of reduction along with some
important results of group cohomology as we would be using them
in the proof of Mordell-Weil Theorem in the next chapter.

Let E be elliptic curve over field K. For a minimal Weierstrass
equation for E/K, we can reduce its coefficient modulo 7t to obtain a
possibly singular curve over K,

E: v? + aixy + asy = x> + arx? + agx + e,

which is called the reduction of E modulo 7. There are several differ-
ent reduction types based on the properties of the reduced curve.

Definition 3.6.1. Let E/K by an elliptic curve, and let E be the reduction
modulo M of a minimal Weierstrass equation for E.
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1. E has good reduction if E is nonsingular.
2. E has multiplicative reduction if E has a node.
3. E has additive reduction if E has a cusp.
If E has multiplicative or additive reduction, we call that bad reduction.

Understanding the notion of reduction, we can let look at the some
subsets of E(K) based on the types of reduction.

Definition 3.6.2. 1. Ey(K) is the set of points with nonsingular reduc-
tion.

Eo(K) = {P € E(K): P € E,;5(k)}

where Es(k) is the set of nonsingular points and k = R/ tR.

2. E1(K) is the kernel of reduction.

Ei(K) = {P € E(K): P = O}.

The following proposition will help us prove the Weak Mordell-
Weil Theorem on the unramification of an extension field, which will
be discussed later.

Proposition 3.6.3. There exists an exact sequence of abelian groups
0 — E1(K) — Eo(K) — Eus(k) — 0,

where the right-hand map is reduction modulo 7t.



MORDELL-WEIL THEOREM

Around 1092, Poincare introduced the conjecture of the group of ra-
tional points on an elliptic curve being finitely generated. However,
it was not until 1922, Louis Mordell proved this conjecture. Moreover,
in 1928, Andre Weil proved that this conjecture is actually extended
to abelian varieties over the number fields. For the purpose of this
paper, I will prove the Mordell part of this theorem.

We already know from the previous chapter that the rational points
on the elliptic curve form a group under the operation of group law.
Mordell-Weil Theorem tells us that this group is actually finitely gen-
erated. More generally, it states that for an abelian variety, A, over a
number field, E, the group A(K) of K-rational points of A is finitely
generated.

K is a finite extension of Q
E is an elliptic curve over K
E(K) is Mordell-Weil group (points on the curve)

Theorem 4.0.1. Mordell-Weil Theorem
The group E(K) is finitely generated.

The proof of the theorem consists of two parts: The Weak Mordell-
Weil Theorem and the Descent Theorem. By proving both of the the-
orems and understanding the relationship and correlation between
the two, one will be able to complete the proof for the Mordell-Weil
Theorem.

4.1 THE WEAK MORDELL-WEIL THEOREM

Theorem 4.1.1. The Weak Mordell-Weil Theorem
Let K be a finite extension of Q, let E/K be an elliptic curve, and m > 2 be
in Z. Then E(K)/mE(K) is a finite group.
Note. The Weak Mordell-Weil Theorem does not by itself imply that
E(K) is finite.

In Lemma 4.1.2, We want to look a finite Galois extension of K

because we will need to apply the Kummer pairing to the field and
show that it is finite.
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Lemma 4.1.2. Let L/K be a finite Galois extension. If E(L)/mE(L) is
finite, then E(K)/mE(K) is also finite.

Proof. We can start the proof with the exact sequence:
0 — E(L)[m] — E(L) & mE(L) — 0.
Then through Galois cohomology, we get the exact sequence:
0 — H — E(K)/mE(K) — E(L)/mE(L).

where H = %&E)(L) And since G and E(L)[m] are finite, H is also
finite. Therefore if E(L)/mE(L) is finite, then E(K)/mE(K) is also
finite.

O

Remark. Lemma is proven by using Galois cohomology to show that

E(K)/mE(K) lies between two finite groups, and thus it is also finite.

We will use the concept of Kummer pairing and its properties to
show that there exists an abelian group maps from the Galois group
injectively by perfect pairing.

Because of Lemma 4.1.2, we can make K larger in order to assume
that E[m]| is defined over K to define the Kummer pairing.

Definition 4.1.3. The Kummer pairing

x: E(K) x Gg, g — E[m]

is defined as follows. Let P € E(K) and choose any point Q € E(K)
satisfying [m|Q = P. Then

k(P,o0)=Q" — Q.

The following proposition helps us understand the properties of
the Kummer pairing. As you’ll see, Kummer pairing then induces a
perfect bilinear pairing maps E(K)/mE(K) x Gr,k to E[m].

Proposition 4.1.4. 1. The Kummer pairing is well-defined.
2. The Kummer pairing is bilinear.
3. The kernel of the Kummer pairing on the left is mE(K).

4. The kernel of the Kummer pairing on the right is G, , where
L = K([m]~'E(K))

is the compositum of all fields K(Q) as Q ranges over the points in
E(K) satisfying [m]Q € E(K).
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4.1 THE WEAK MORDELL-WEIL THEOREM

There’s a perfect pairing between Gy, and E(K)/mE(K) into the
m-torsion of E. Since L is a particular Galois extension, (Take K and
adjoin all the x and y coordinates, and as they are multiplied by m, it
will give the points in E.) A linear pairing resulting from the Kummer
pairing would be as follows.

E(K)/mE(K) x G,k — E[m]

Remark. The field L is called a Kummer extension by adjoining all m*"

roots of K. For each element in L, take K, and multiply by m to all

the points, it will give you points in E(K).

Proof. 1. To prove the Kummer pairing is well defined, take two
distinct points Q, Q" € E(K) such that mQ = mQ' = P, where
P € E(K). Since multiplication by m commutes with Galois
action, we get m(Q” — Q) = mQ” —mQ = P” — P = 0. Then,
Q- Q' € Efm] C E(K). Finally, (Q° -~ Q) — (Q" - Q) = (Q -
Q)7 — (Q— Q') = 0 This shows that Galois action is trivial
because P is defined over K.

2. To show that the Kummer pairing is bilinear, we look at two
parts. First, take P, P’ € E(K). We have «(P + P/,0), and since
mQ = P and mQ' = P/, it gives m(Q + Q') = P+ P’. Then, we
have (Q + Q)7 — (Q+ Q') = (Q° — Q) + (Q — Q). Secondly,
we look at k(P,ot) = Q" —Q = (Q"— Q") + (Q" — Q). Since
Galois action is trivial on E[m], (Q"T — Q") = (Q7 — Q)" =
k(P,0)" = k(P,0). This concludes that the Kummer pairing is
bilinear.

3. We want to show that kernel on the left is mE(K). Take P €
Ker(k) = Q=1P=Q"-Q=0Vo=Q =Q«& Q€ EK)
(because Q is Galois invariant).

4. To show that kernel on the right is Gg,; ,we need to show that
any element in the kernel fixes the field L. Take o € Ker(x) < V
Q such that mQ = P € E(K), Q° = Q. Since ¢ fixes [m| 'K(E) =
o fixes L. Now, assume ¢ fixes all Q € [m] 'E(K). Since L is an
algebraic extension of K, L = K(x1, Y1, ..., Xu, Yn, ...). O fixes L if
and only if ¢ fixes x;, y; V i. So, since ¢ fixes LV Q € [m]'E(K),

o also fixes L.
O

Then by Proposition 4.1.4, we have a non degenerate bilinear pair-
ing, we have the mapping:

The next step to prove the Weak Mordell-Weil Theorem is to show
that L/K is finite, or to show that Gy /k is finite. Then, it will give an
injection from E(K)/mE(K) — Hom(Gy /g, E[m]).
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4.1 THE WEAK MORDELL-WEIL THEOREM

To show that [L: K] is finite, we need to first define places as fol-
lows.

Definition 4.1.5. Places is a field K are the non-trivial norms up to equiv-
alence which has f: K — Rx>o that satisfies multiplicative and triangle
inequality properties.

The places of K are in natural bijection with the set, { P C Ok a prime ideal
p-adic norm} U {o: K — C (up to conjugation) |x|, = |o(x)|}

Note. {P C Ok a prime ideal p-adic norm}, while {c: K — C (up to
conjugation) |x|, = |o(x)|}.

Now we have the definition of places, by looking at the following
proposition, we can then study the abelian and m-torsion Galois field
L over K, given that there exists a places with bad reduction points of

E. To show that L finite, we first need to look at some properties of
the field L.

Proposition 4.1.6. Let
L = K([m]~E(K))

1. The extension L/K is abelian and has exponent m, i.e., the Galois
group Gy is abelian and every element of Gy sk has order dividing
m.

2. Let

S = {v € MY%: E has bad reduction at
viU{v e MY: v(m) # 0} U M.

The L/K is unramified outside S, i.e., if v € Mg and v € S, then
L/K is unramified at v.

Note. MY, is a set of finite places of K. MY is a set of infinite places of
K.

Remark. If a local field is unramified, its set valuation,

V(L) = {V(x): x € L}, is equivalent to the set valuation of K, V(L) =
V(K). In other words, the inertia group acts trivially on the field. If
we look over the complex plane, C, there is no notion of bad reduction.
If we look over the real plane, R, there are torsion points.

Proof. 1. First, we want to show that L is Galois. Take
P € [m]7'E(K), we want to know that all of their Galois con-
jugates are also in L. mP = Q € E(K); note that this is just
some polynomial relation in X(P) and Y(P). So if we look at
mP? = QY = Q (because Q is defined over E), we see that if we
take X, Y coordinate of P and apply o, Galois element, we get
P? which also has the same properties. This implies that L is
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Galois.

Once we know that L is Galois, we are then able to use the
fact of perfect pairing to prove that it is actually abelian and m-
torsion. By perfect pairing, we know that there is an injection
from Gp,x — Hom(E(K)/mE(K), E[m]). Since
Hom(E(K)/mE(K), E[m]) is an abelian group with m-torsion,
GL,k is also m-torsion abelian group.

2. Take v ¢ S, we want to show that the inertia group, I,, acts
trivially on L. So if we take P € [m] 'E(K) and ¢ € I,, then
we need to show that P = P. Consider this as mP = Q €
E(K,), in particular, because v ¢ S, v is in place with good
reduction. This means we have the following exact sequence by
Proposition 3.6.3:

0 — E1(Ky) — Eo(K,) = E(K) = 0

where Ey(K,) = E(K(v)), because of good reduction.
[m]~%(Q) = Py, Py, ..., P, € E(K,). Since v does not divide by
m, and E(L) has full m-torsion, P; € E(K) are distinct elements
of E(K). Because of definition, inertia group is subgroup of
Galois group that fixes elements modulo maximum ideal, we
know that I, acts trivially on E(K). And P{ # P, fori # 1.
Therefore, L is unramified outside of S.

O

Now, we want to show that by having the above properties, L is
finitely generated.

Proposition 4.1.7. K is a number field and p,, C K (u is m*" root of unity).
S is a finite set of places. L is an m-torsion abelian extension of K, unramified
outside of S. Then, [L: K] is finite.

In addition, by Proposition 4.1.7, we have explicit bounds of exten-
sion as conclusion. And along with Proposition 4.1.6, we can combine
with Kummer pairing and conclude that E(K)/mE(K) is finite.

Proof. To show that [L: K] is finite, we need to show an injection to
a finite group, Hom (G x, Z/mZ). In particular, by Galois Theory,
kernel of such a homomorphism defines a cyclic m-torsion extension
of K, unramified outside of S.

Remark. Kummer Theory

Since we have all m™ roots of unity, that any m-torsion extension of
K is K(xw) for some x € K*/(K*)™.

Now, we want to see that when is K (x%) /K unramified at finite
place v. We can look at extension Kv(x%) /K, and the valuation of
x. Because there cannot be any wild ramification, K, (x#) will be
ramified if and only if v(x) # 0 mod m. If v(x) = 1, then v(xn) = L.

m
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Since its valuation is not an integer, by definition, it is a ramified
extension. Then, we need to show that K, ;/(K*)™ is finite, where

Ky s ={x€K'Vv#Sandv,(x) =0mod m}.

because the x where K (x%) is unramified outside of S must have x in
Kyn,s. Now, we want to show that map below is finite:

K;’S/(K*)m — (Z/m)Sfooplaces
x — vp(x) mod m,

where v € S.
Even though the map,

K;’s/(K*)m — (Z/m)S—ooplaces,

is clearly finite, it suffices to consider the kernel. The kernel must
map into fractional ideals mod m, which are just m™ power.

K}, /(K*)™ — principle ideals mod m/(K*)",
x — (x).

So, there’s a bijection of the unit group:
O/ (K)™ = O/ ((O)K)™

is finite by the structure of unit group. Therefore, K}, ./ (K*)™ is finite.
O

Recall that the Weak Mordell-Weil Theorem states that E(K) /mE(K)
is a finite group.

Proof. Weak Mordell-Weil Theorem

Let L = K([m]'E(K)) be defined as Proposition 4.0.5. Since E[m]
is finite, by perfect pairing, E(K)/mE(K) x GL,x — E[m] shows that
Gp/k is finite if and only if E(K)/mE(K) is finite. By Proposition
4.0.7, if L/K is abelian and m-torsion Galois group, with S finite set
of places, and L is unramified outside of S. Then by Proposition 4.0.8,
if L is an m-torsion abelian extension of K with S finite set of places,
as stated as the result of Proposition 4.0.7, then [L: K] is finite. Thus
by perfect pairing, E(K)/mE(K) is finite. O

4.2 DESCENT STEP

In the second part of the proof, we use the height functions to show
the boundedness of the group. In other words, we want to show that
on an elliptic curve over a number field, there exists a height function
which bounds the number of elements that are divisible by m. By
definition, heights function is the measure of arithmetic complexity
of points.

Theorem 4.2.1. Descent Theorem
Let A be an abelian group. Supoose there exists a height function
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h: A—=R
with the following properties:

1. Let Q € A. There is a constant Cy, depending on A and Q, such that
h(P+ Q) <2h(P)+C; forall P € A

2. There are an integer m > 2 and a constant Cy, depending on A, such
that

h(mP) > m?>h(P) —C,VP e A

3. For every constant Cs, the set {P € A: h(P) < Cs} is finite.
If A/mA is finite for some m, then A is finitely generated.

Proof. Let Q1,...Q, € A be the finitely many cosets in A, and an ar-
bitrary P € A. We want to show that P and a linear combination of
Qi’s have difference of multiple of a point whose height is smaller
than a constant which is independent of P. Then we will show that
Qi’s and the finitely many points with heights less than that constant
are generators of A. First, we write P as follows,

P =mP; + Q;, forsome 1 <ij <r.
Then we do the same with P;, P, etc.

P=mP; + Qil
P1 = sz + Qiz

P, = mpn"‘Qin
By Theorem 4.2.1, part 2, for any index j,
h(P;) < L (h(mP;) + C2)
= L (h(Pi1 — Qi) + Cp)

m?

< #(Zh(ijl + Ci + Cz)

where C{ is the maximum of the constants from Theorem 4.2.1, part
1, for Q € {—Qy,..., —Qr}. Realize that C] and C, do not depend on
P. Then we use this inequality again and again, to work back to P.
W(Pa) < (B)"h(P) + (h+ Z+ 5+ . 220)(C + )
c'+C
< (Z)"h(P) + F73
< Ah(P)+ (0] + C2)
since m > 2.

Then if n is large enough, then
h(Py) <14 3(C1+ G)).

And clearly, since P is a linear combination of P, and Q;’s, every P in
A is a linear combination of points in the set
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{Q1, QI U{Q e A: h(Q) <1+ 3(C1 +Co)}
Therefore, by Theorem 4.2.1, part 3, A is finitely generated. O

The following definitions will help us understand the height func-
tion over the field Q. discussed in Theorem 4.2.1.

In general the height function of a rational number is simply the
maximum number between denominator and numerator.

Definition 4.2.2. Let t € Q, and t = g as a fraction in lowest terms. The
height of t is defined by,

H(t) = max{|p|,[q|}.
Definition 4.2.3 states the height function defined over E(Q).

Definition 4.2.3. The (logarithmic) height on E(Q), relative to the given
Weierstrass equation, is the function

hy: E(Q) — R,
ha(P) = {log H(x(P)) sz + 0,
0 if P =0.

Lastly, we will need the Descent Theorem applied to the field, E(Q)
to complete the proof.

Lemma 4.2.4. 1. Take Py € E(Q). There is a constant Cp, such that
h(P + Py) < 2h(P) +Cp, ¥ P € E(Q).
2. There is a constant Co such that
h(2P) > 4h(P) — CV P € E(Q).

3. Forany Cs3 € R, the set {P € E(Q)|h(P) < D} is finite.

Theorem 4.2.5. Mordell-Weil
E(Q) is finitely generated.

Proof. By the Weak Mordell-Weil Theorem and Lemma 4.2.4, E(Q)
and h, satisfy the hypothesis conditions of Theorem 4.2.1 (Descent
Theorem) at m = 2. Therefore, the result from Lemma 4.2.4 shows
that E(Q) is finitely generated. Thus completes the proof of Mordell-
Weil Theorem. ]
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