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Abstract
A well-studied topic in finance is fitting pricing models to available market infor-
mation; this is the inverse of the option pricing problem. The accuracy of least
squares calibration using option premiums and particle filtering of price data to
find model parameters is determined. Derivative models using exponential Lévy
processes are calibrated using regularized weighted least squares with respect to
the minimal entropy martingale measure. Sequential importance resampling is
used for the Bayesian inference problem of time series parameter estimation with
proposal distribution determined using extended Kalman filter and sample impov-
erishment is avoided with MCMC. The algorithms converge to their respective
global optimums using a statistical optimization approach. Each of these methods
follows a complementary path toward achieving the same goal: efficiently calibrate
the model of choice to available information. Thus, they should agree on optimal
parameters. We investigate this assertion.
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List of Notation

EX Expectation of random variable X
dP(ω) Integration with respect to probability measure P
F(f(x)) Fourier transform of function f(x)
F−1(f(x)) Fourier inverse of function f(x)
F(t) ≡ Ft Filtration at time t
ϕX(ν) Characteristic function of random variable X
pX(t) Probability density function of random variable X
X ∼ N(µ, σ2) X is normally distributed with mean µ and variance σ2

X ∼ Γ(k, θ) X is gamma distributed with shape k and scale θ
S(t) ≡ St Stochastic process at time t
ST Stochastic process at maturity time (of a derivative)
c(t, S(t)) Price of a European call option at time t with underlier S(t)
ε(P,Q) Relative entropy between P and Q
CGMY Carr-Geman-Madan-Yor
VG Variance Gamma
VGSA Variance Gamma with Stochastic Arrival
COS Fourier Cosine Transform
LSS Least Squares Solution
MEMMC Minimal Entropy Martingale Measure Calibration
RMELSC Regularized Minimal Entropy Least Squares Calibration
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1 Introduction

This paper presents the most common methods of fitting stock price observations to the mathematical
models which capture their stochastic behavior. We first give an introduction to quantitative finance and
the necessity of having a fast, accurate method of pricing derivatives. Multiple processes of Exponential Lévy
form are presented. These include both jumps and diffusion components and thus capture a wider range of
empirical asset behavior. These generalized processes are then used to price vanilla path-independent options
in sections 3 and 4. We show how to empirically fit these models to observed price data. The model fitting
methodologies discussed in sections 5 and 6 are backtested to determine their accuracy. These methods are
two sides of the same coin, they both retrieve the parameters for a given model which best describe current
market conditions, but through complementary means. As such, their predicted parameters should agree.
This notion is investigated in section 7.

Arguably the father of the quantitative theory of finance, Harry Markowitz, in his 1952 PhD thesis
Portfolio Selection described the basis of an entirely new scientific discipline. He developed the concept
of treating investment management as an optimization problem based on the mean and variance of each
constituent stock. He argued that investors, given their own personal aversion to risk, should hold only
those portfolios whose variance is minimized against a specified mean rate of return.

Stochastic calculus was introduced by Robert Merton in 1969 to accurately price financial securities. This
laid the groundwork for Fischer Black and Myron Scholes to develop their famous Black-Scholes-Merton
option pricing formula which won the 1997 Nobel prize in Economics. This formula provided a solution to
a widely recognized problem: finding the fair market price of a European call option. An option is the right
to buy one share of a given stock at a specified price and time.

1.1 Option pricing in the binomial model

Consider a stock XYZ whose price is given by a stochastic process S(t), where S0 denotes the price of S(t)
at time t = 0. Set the current price of S0 = $30 in a one-period binomial model such that the space of
all possible events is defined as Ω = {ωu, ωd}. In the binomial model, the stock price has two possible
trajectories, it may go up or down. Let St(ωu) denote the price of the stock at time t after going up, and
St(ωd) be the price after going down. Here we consider the factors u, d which denote the change in the stock
price given the events that took place. We let u = 2 and d = 1/2 so that the stock doubles during event ωu
and halves during event ωd. The binomial model of the stock price from time t = 0 to t = 1 follows

S0 = 30
S1(ωd) = S0 · d = 30/2 = 15.

S1(ωu) = S0 · u = 30 · 2 = 60

Consider a portfolio X(t) with ∆ shares of S(t) and a money market account M(t) = M0 · (1 + r)t. M(t)
grows at a constant interest rate r with initial capital M0. At time t = 1 the value of the portfolio X(t) is

X(0) = ∆S0 +M(0)
X1(ωd) = ∆S1(ωd) +M(1).

X1(ωu) = ∆S1(ωu) +M(1)

An option is a type of derivative, or contingent claim, which is a financial instrument that derives its price
from an underlying stock, referred to as the underlier. A European call is a type of option that gives the
buyer the right but not the obligation (i.e. the option) to buy the stock at an expiration time T and for a
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1.1 Option pricing in the binomial model 1 INTRODUCTION

given price K. We refer to K as the strike price. We will price a European call option based on the stock
described above. Our example uses expiration time T = 1 and strike price K = $40.

The terminal condition of the derivative is its value at expiration, where time t = T . If the stock price
S(t) is greater than strike price K, then the call option value c(t) is equal to c(T ) = (S(T )−K), where S(T )
is the value of the stock when the call expires. In our example it will be either S0 · u = $60 or S0 · d = $15.
If the stock price is below the strike price K, then buying the stock using the call option contract would
be more expensive than buying the stock on the market, so the option is worthless and we set c(T ) = 0.
Combing the two equations yields c(T ) = max{S(T ) − K, 0} := (S(T ) − K)+. Our goal is to price the
derivative c(t) at time 0. Our option at the time of expiration t = T = 1 follows the model

c0
(ST (ωd)−K)+ = (S1(ωd)−K)+ = (15− 40)+ = 0.

(ST (ωu)−K)+ = (S1(ωu)−K)+ = (60− 40)+ = 20

To determine the price of any derivative security, we replicate its payoff. We determine a specific number
of shares of S(t) and value of our money market account M(t) which perfectly replicates the value of the
derivative c(t) at any time. This is called the replicating portfolio and is exactly the portfolio X(t) we
developed earlier. Using the value at time t = 1 of X(t) presents the following system of equations:

c1(ωd) = ∆S1(ωd) +M(1) = ∆S0 · d+M0 · (1 + r)1

c1(ωu) = ∆S1(ωu) +M(1) = ∆S0 · u+M0 · (1 + r)1.

Solving for ∆ and M0 yields

∆ =
c1(ωu)− c1(ωd)

S0 · (u− d)
and M0 =

u · c1(ωu)− d · c1(ωd)

(1 + r)(u− d)
.

The constant ∆ is the delta hedge which is the number of shares of S(t) one must hold which, along with
M0, will hedge against the risk of holding the derivative. In conclusion, given the delta hedge at time t = 0,
we can determine the value of the replicating portfolio X(0) = ∆S0 +M0. This is equal to the value of the
derivative at time 0:

c0 = X(0) = ∆S0 +M0

=
c1(ωu)− c1(ωd)

S0 · (u− d)
S0 +

u · c1(ωu)− d · c1(ωd)

(1 + r)(u− d)

=
1

1 + r

[
1 + r − d
u− d

c1(ωu) +
u− 1− r
u− d

c1(ωd)

]
=

1

1 + r

[
p̃uc1(ωu) + p̃dc1(ωd)

]
.

The vectors p̃d =
u− 1− r
u− d

and p̃u =
1 + r − d
u− d

are risk neutral probabilities satisfying p̃d + p̃u = 1 and

p̃u, p̃d ∈ R≥. Here we see that the price of a derivative security at time t = 0 is a weighted combination of
replicating portfolios representing every possible state price at time t = 1. Taking the limit of this is exactly
the motivation behind the continuous time application of stochastic calculus for solving this problem, as we
will see later. Given our example with u = 2, d = 1/2 and R = 1 + r = 1, the risk neutral probabilities are

p̃u =
2− 1

2− 1/2
=

2

3
and p̃d =

1− 1/2

2− 1/2
=

1

3
= 1− p̃u.

We can solve for the initial price of the derivative,

c(0) =
1

1 + r

[
p̃uc1(ωu) + p̃dc1(ωd)

]
=

2

3
20 +

1

3
0 =

40

3
≈ $13.33.

$13.33 is thus the fair market price of the European call with strike price $40 on a stock with a current
price of $30 which we know for certain will, at the time of expiration, have a value of either $60 or $15. The
binomial model is the simplest way to conceptualize the process of option pricing and, as thus, it has serious
shortcomings. Our example relied on the following assumptions:
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2 FINANCIAL MODELLING

1. Shares of stock can always be subdivided
2. The interest rates for investing and borrowing are the same
3. There is zero bid-ask spread, i.e. the purchase price and selling price of a stock are the same
4. There are only two possibilities of a stock’s value in the subsequent period

The first three assumptions are required by the Black-Scholes-Merton formula, which we will describe later.
The fourth assumption is required by the binomial model. The application of stochastic calculus in describing
the stock price as a geometric Brownian motion will overcome this last assumption.

2 Financial Modelling

In many continuous-time models of finance, stocks are represented by geometric Brownian motion given
by the stochastic differential equation (SDE) dS(t) = αS(t)dt + σS(t)dW (t) where W (t) is a standard
Brownian motion, α and σ are the drift and volatility factors, respectively. Similarly to the discrete case
explored earlier, the replicating portfolio is defined as X(t) = S(t)∆(t) +M(t) with differential

dX(t) = ∆(t)dS(t) + (1 + r)(X(t)−∆(t)S(t))dt

= (1 + r)X(t)dt︸ ︷︷ ︸
1

+ ∆(t)(α− r)S(t)dt︸ ︷︷ ︸
2

+ ∆(t)σS(t)dW (t).︸ ︷︷ ︸
3

The numbered portions can be thought of as:
1) Portfolio rate of return
2) The risk premium associated with investing in S(t)
3) The volatility of S(t)

We use this basic concept of replication to describe how derivatives can be evaluated.

2.1 Evolution of Option Value

Given the assumption that the option can be represented in continuous time by some stochastic differential
equation, the evolution of its value can be calculated in continuous time quite simply. There are two major
principles behind the valuation of these derivatives. The first is the notion that any derivative can be hedged,
which is equivalent to replicating its payoff, or terminal condition. This results (and is inferred) from the
market model being complete. The second is the concept of risk-neutral pricing which asserts that, for some
risk-free rate r, discounting any derivative by r results in the process satisfying the martingale property.
The discounted stochastic process defining the behavior of the derivative can then be evaluated by referring
to the risk-neutral measure. These concepts are revisited in section 2.6.

Consider a function c(t, S(t)) that depends only on time t and the price of the underlying asset S(t) that
gives us the value of the option at time t. By Ito’s formula, its differential is:

dc(t, S(t)) =

[
ct(t, S(t)) + αS(t)cx(t, S(t)) +

1

2
σ2S(t)2cxx(t, S(t))dW (t)

]
.

Equating the discounted portfolio value differential d(e−rtX(t)) with the discounted option price differential
d(e−rtc(t, S(t))) yields the Black-Scholes-Merton partial differential equation (BSM pde)

ct(t, S(t)) + rxcx(t, S(t)) +
1

2
σ2x2cxx(t, S(t)) = rx.

Solving the BSM pde with the terminal condition c(T, S(t)) = (S(T )−K)+ and boundary conditions

c(t, 0) = 0 and lim
x→∞

[
c(t, x)− (x− e−r(T−t)K)

]
= 0, ∀t ∈ [0, T ]

yields the Black-Scholes-Merton pricing formula for a European call:

c(t, S(t)) = S(t)N(d+(τ, S(t)))−Ke−rτN(d−(τ, S(t)))
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2.2 Variance Gamma process (VG) 2 FINANCIAL MODELLING

where τ = T − t is the time to maturity, N(y) =
1√
2π

∫ y

−∞
e−

x2

2 dz =
1√
2π

∫ −∞
y

e−
x2

2 dz is the standard

normal distribution and

d±(τ, S(t)) =
1

σ
√
τ

[
log

S(t)

K
+

(
r ± σ2

2

)
τ

]
.

Intuitively, N(d+) is the risk-adjusted probability that the option will be exercised and N(d−) is the factor
by which the present value of the exercised option exceeds the current stock price.
The Black-Scholes formula is still widely used within the financial industry. The model’s constant volatility
assumption is inconsistent with observed market prices, however. The simplest addition to the Black-Scholes
model is to let volatility be a function of time and price of the underlier. This gives us the Local Volatility
Model by Derman and Kani [25]. Here we modify the standard geometric Brownian motion so that volatility
is a function of time and S(t) while the drift term is a function of time. This is given by

dS(t) = α(t)S(t)dt+ σ(t, S(t))dW (t).

This addition results in the generalized BSM pde which prices derivatives based on the local volatility model

ct(t, S(t)) + α(t)S(t)ct(t, S(t)) +
1

2
σ(t, S(t))2S(t)2cxx(t, S(t)) = r(t)c(t, S(t)).

While incorporating a volatility function that changes over time more closely approximates observed
prices, volatility in reality is often unpredictable in nature, and many models incorporate a stochastic element
to the calculation of volatility. One extension of the local volatility model incorporating stochastic volatility
results in the aptly named Stochastic Volatility Model. The evolution of the underlying asset price is given
by

dS(t) = αS(t)dt+ V (t)S(t)dW1(t),

dV (t) = αv(t, V (t))dt+ σ(t, V (t))dW2(t).

The two Brownian motions W1(t) and W2(t) are correlated by factor ρ. The terms αv and σ are the drift
and variance of the volatility itself.

The most popular is the Heston stochastic volatility model which is described by the following SDEs:

dS(t) = αS(t)dt+
√
V (t)S(t)dW1(t),

dV (t) = κ(θ − V (t))dt+ σV (t))dW2(t),

where κ represents the volatility’s speed of mean reversion, θ is the long term variance and σ is the volatility
of the variance [38].

What has been presented so far are known as pure diffusion models. They have attempted to capture the
mean-reverting behavior of stocks by adding a time-dependent drift component while modifying the volatility
function of the underlier to capture the dynamic volatility phenomena we observe empirically. The drawback
to these models is they assume a smooth transition between the changes of stock prices. What is actually
observed is that stock prices often jump instantaneously. It has been proposed by Geman, Madan, and Yor
(2001) that stochastic pricing processes need not have a diffusion component but must incorporate jumps.
The use of the Poisson process to capture jump characteristics while removing the element of diffusion results
in the Variance Gamma process.

2.2 Variance Gamma process (VG)

Developed by Madan, Carr, and Chang [51], the VG model was sought to ascertain consistency with the
observation that the local log-price movements of stock prices are long-tailed relative to the normal distribu-
tion, but approach normality over time [53,55,54,31,11]. Stock prices have been observed to ignore smooth
transitions through time and jump to different prices instantaneously. The importance of producing a process
capable of admitting Poisson-type jumps is necessary. The VG process is of Lévy type with finite moments
which accounts for high activity by allowing an infinite number of jumps in any interval of time. Since VG
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2.3 Analytical Formula for VG Option Price 2 FINANCIAL MODELLING

produces finite variation, it can be represented as the sum of two independent and increasing processes, one
representing price increases and the other price decreases. It generalizes Brownian motion and models the
dynamics of the log stock price. Lacking a diffusion component it is known as a pure jump process.

To construct the VG process X(t;σ, ν, θ) we take a Brownian motion with drift θ and variance σ repre-
sented by

b(t, σ, θ) = θt+ σW (t),

where W (t) is a standard Brownian motion, X(t;σ, ν, θ) can be defined in terms of b(t, σ, θ) as:

XV G(t;σ, ν, θ) = b(γ(t; 1, ν), σ, θ).

The time change is given by an independent random variable γ(t; 1, ν) with unit mean, positive variance,
and follows a gamma density. The characteristic function of the VG model is

E(eiuXt) =

(
1

1− iuθν + σ2u2ν/2

) t
ν

,

and the asset price is given by

lnS(t) = lnS(0) + (r − q + ω)t+X(t;σ, ν, θ) ≡ S(t) = S(0) exp{(r − q + ω)t+X(t;σ, ν, θ).}

The term ω = 1
ν ln(1− θν − σ2 ν

2 ) is the martingale correction which ensures risk-neutrality, ie.

ESt = S0e
(r−q)t.

2.3 Analytical Formula for VG Option Price

Unlike many models in finance there exists an analytical formula for a European option price following VG
law [53]. The price of a European option can be determined simply by evaluating the risk-neutral expectation
of the terminal condition,

Ct = EQ[e−r(T−t)(S(T )−K)+],

where Q is an equivalent measure under which e−rtS(t) is a martingale. We define the unit-time log char-
acteristic function of VG as

ϕ(u) =
1

ν
ln

(
1

1 + νu2/2

)
.

Defining the VG process N = {N(t) = b(G(t)), t ∈ [0, T ]} for Brownian motion b(t) and right-continuous
process of independent gamma increments G(t), the change of measure density process has the form

λ(t) = exp

(∑
s≤t

α(ω, s)∆Ns −
∫ t

0

ϕ

(
α(ω, s)

i

)
ds

)
.

The term α(ω, s) is chosen so that λ(t) is a Q-martingale. The authors of [53] show that e−rtλ(t)S(t) is a
martingale only if α(ω, s) satisfies

µ− r = ϕ(α/i) + ϕ(σ/i) + ϕ((α+ σ)/i).

The change of measure density is λ(t) = eαN(t)−ϕ(α/i)t. It is sufficient to determine the option price at time
t = 0 with maturity at t = T . The asset price under a VG process is defined as

S(t) = S(0) exp

(
σN(t) +

[
r +

(
1

ν
ln

1− ν(α+ σ)2/2

1− να2/2

)
t

])
,

so the option price can now be written as

C(t) = EP[e−rtλ(t)(S(t)−K)+].
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2.4 Variance Gamma with Stochastic Arrival (VGSA) 2 FINANCIAL MODELLING

Noting that for large t, the VG log characteristic function takes the form

ϕ(u) =
t

ν
ln

(
1

1 + νu2/2(t/ν)

)
.

Then, since N(t)/
√
t ∼ N (0, t) for large t/ν where N is the normal cumulative density function, we integrate

the following with respect to N (0, t):[
S(0) exp

(
σN(t) +

t

ν
ln

[
1− ν(α+ σ)2/2

1− να2/2

])
−Ke−rt

]+

eαN(t)+(t/ν) ln(1−να2/2)

which yields the price of a VG European call:

C(t) = S(0)e(α+σ)2t/2(1− ν(α+ σ)2/2)t/νN (d1)−Ke−rt+α
2t/2(1− να2/2)tνN (d2),

d1 =
ln(S0/K)

σ
√
t

+

[
r + (1/ν) ln

(
1−ν(α+σ)2/2

1−να2/2

)
σ

+ (α+ σ)

]
√
t,

d2 = d1 − σ
√
t.

The following Matlab implementation of the VG approximation will be used to determine the accuracy
of subsequent numerical techniques:

1 function c = VGCall ( S0 , K, r , T, theta , sigma , nu)
2 alpha = (− theta / sigma ) ;
3 a = ( alpha + sigma ) ˆ 2 ;
4 num = 1 − nu∗a /2 ;
5 den = 1 − nu∗ alpha ˆ2/2 ;
6 d1 = log ( S0/K)/( sigma∗sqrt (T) ) + ( ( r + 1/nu∗ log (num/den ) )/ sigma . . .
7 + alpha+sigma )∗ sqrt (T) ;
8 d2 = d1 − sigma∗sqrt (T) ;
9 c = S0 ∗ exp( a∗T/2) ∗ (1 − nu∗a /2)ˆ(T/nu)∗ normcdf ( d1 ) . . .

10 − K ∗ exp(−r ∗T + alpha ˆ2∗T/2) ∗ (1−nu∗ alpha ˆ2/2)ˆ(T/nu)∗ normcdf ( d2 ) ;
11 end

2.4 Variance Gamma with Stochastic Arrival (VGSA)

Developed by Carr, Geman, Madan and Yor [16], the VGSA model is a modified VG process which allows
for volatility clustering through a mean-reverting time change. Volatility clustering has been shown to be
present in many markets and so a generalized process capable of accounting for this feature is favorable. The
clustering phenomena is achieved through persistent random time changes, which must be mean-reverting.
The typical example of a mean-reverting process is the square root model by Cox-Ingersoll-Ross (CIR) [22].
In order to implement VGSA, we evaluate VG at a continuous stochastic time change given by the integral
of the CIR process representing the instantaneous stochastic clock. The mean reversion introduced by the
CIR process accounts for clustering, also known as volatility persistence, and because of this we are able to
calibrate across both strike and maturity simultaneously, unlike VG [39].

The CIR process y(t) is defined as the solution to the SDE:

dy(t) = κ(η − y(t))dt+ λ
√
y(t)dW (t),

where η is the rate of time change, κ is the rate of mean reversion, λ is the time change volatility. Since y(t)
represents the instantaneous rate of time change, we integrate to get the actual time change for all t:

Y (t) =

∫ t

0

y(u)du.

9
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The characteristic function of the time change Y (t) is

EeiuY (t) = ϕ(u, t, y(0), κ, η, λ) = A(u, t, κ, η, λ)eB(u,t,κ,λ)y(0),

with

A(u, t, κ, η, λ) =
exp

(
κ2ηt
λ2

)
(

cosh(γt/2) + κ
γ sinh(γt/2)

) 2κη

λ2

,

B(u, t, κ, λ) =
2iu

κ+ γ coth(γt/2)
,

γ =
√
κ2 − 2λ2iu.

The VGSA process is defined as:

ZV GSA(t) = XV G(Y (t);σ, ν, θ) = b(γ(Y (t); 1, ν), σ, θ).

where κ, λ, σ, ν, θ, η are the six parameters defining the model. The characteristic function is given by

EeiuZVGSA(t) = ϕ(−iΨV G(u), t, ν−1, κ, η, λ),

where ΨV G(u) is the log characteristic function of VG at unit time defined as

ΨV G(u) = −1

ν
log(1− iuνθ + σ2νu2/2).

We may now define the asset pricing process at time t as

S(t) = S(0)
e(r−q)t+ZVGSA(t)

EeZVGSA(t).

Since EeZVGSA(t) = ϕ(−iΨV G(−i), t, ν−1, κ, η, λ), the characteristic function of the log of the asset price is
given by

Eeiu logSt = eiu(logS0+(r−q)t) ·
ϕ(−iΨV G(u), t, 1

ν , κ, η, λ)

ϕ(−iΨV G(−i), t, 1
ν , κ, η, λ)iu

.

2.5 CGMY process

Developed by Carr, Geman, Madan and Yor, the CGMY model accommodates behaviors represented by
pure jumps and pure diffusions by allowing its arrival rates and variations to be either finite or infinite.
Adjusting the parameters can model a variety of different behaviors. For instance, Y < 0 allows for finite
activity, 0 ≤ Y ≤ 1 allows for infinite activity with finite variation, while 1 ≤ Y < 2 allows infinite activity
with infinite variation. The parameter C can be thought of as the measure of overall activity, while G and
M are measures of skewness. The CGMY model is defined by its Lévy measure

ν(x) = C

[
e−Gx

x1+Y
Ix>0 +

e−M |x|

|x|1+Y
Ix<0

]
.

While the model cannot be represented by a single SDE, its characteristic function is

E[eiuXt ] = exp{CtΓ(−Y )((M − iu)Y −MY + (G+ iu)Y −GY )}.

The CGMY model is a special case of the tempered stable process, defined as

ν(x) =
c+e
−λ+x

x1+α
Ix>0 +

c−e
−λ−|x|

|x|1+α
Ix<0.

The CGMY model is an interesting alternative to VG and VGSA since, while being a pure jump process, it
allows very fine control over the intensity of the jumps, and can approximate a diffusion process by allowing
an infinite number of jumps within any interval.

10
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2.6 Risk-Neutral Pricing

In order to illustrate the concept of risk-neutral pricing, we first define Girsanov’s theorem and the Martingale
representation theorem on a multidimensional Brownian motion [67]. Letting W (t) be a vector of Brownian
motions

W (t) =
(
W1(t), . . . ,Wd(t)

)
,

Girsanov’s theorem in multiple dimensions states, for a fixed positive time T with adapted stochastic process
Θ(t) =

(
Θ1(t), . . . ,Θd(t)

)
and defining

Z(t) = exp

{
−
∫ Θ

0

(u)dW (u)− 1

2

∫ t

0

‖Θ(u)‖2du

}
,

W̃ (t) = W (t) +

∫ t

0

Θ(u)du,

then EZ(T ) = 1 and W̃ (t) is a d−dimensional Brownian motion under probability measure P̃ defined by

P̃(A) =

∫
A

Z(ω)dP(ω), ∀A ∈ F(t),

where F(t) is the filtration associated with W (t). The multidimensional Girsanov theorem shows that, given
the adapted stochastic process Θ(t) which is path-dependent (adapted) on the Brownian motions W (t),

where the components of W (t) are independent of each other, the Brownian motion W̃ (t) defined using the

dependent stochastic process Θ(t) is certainly dependent itself. However, under the probability measure P̃,

W̃ (t) is independent.
Finally, the Martingale representation theorem states that for a positive time T and a filtration F(t)

associated with a d−dimensional Brownian motion W (t), for a martingale process M(t) defined on this
filtration under the measure P of the Brownian motions, there exists an adapted, d−dimensional process
Γ(u) such that

M(t) = M(0) +

∫ t

0

Γ(u) · dW (u), for 0 ≤ t ≤ T.

Concomitantly, by the results of the multidimensional Girsanov theorem explained previously, for a P̃-
martingale process M̃(t), there is an adapted d−dimensional process Γ̃(u) satisfying

M̃(t) = M̃(0) +

∫ t

0

Γ̃(u) · dW (u), for 0 ≤ t ≤ T.

The impact of the previous theorems show that we can construct a multidimensional market model of m
stocks, each with their own respective stochastic differential, based on a vector of Brownian motions W (t),
each component of which is correlated by some matrix ρij which represents the instantaneous correlations
between the Brownian motions, which are continuous martingales. Defining each stock to be some stochastic
process labeled Si(t), i = 1 : m, we may describe them in terms of their relative differentials, which combines
the notion of the instantaneous correlation matrix along with the instantaneous standard deviations (or
volatility processes) σi, i = 1 : m as

dSi(t)

Si(t)
· dSj(t)
Sj(t)

= ρij(t)σi(t)σj(t).

Then we may define a discount process

D(t) = e−
∫ t
0
R(u)du,

under which the instantaneous correlations and volatility processes remain unchanged, but the mean rates of
return are discounted. The motivation behind the risk-neutral measure P̃ is that, a stochastic process under
P̃ is a martingale, which permits us the use of Ito-calculus. Given some interest rate r, the discount process
converts a probability measure P into the risk-neutral measure P̃ so that, should a mean rate of return of

11
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Figure 1: Change to Risk-Neutral Measure
Left: Random option price trajectories (blue) along with rate of risk-free asset (red) under the statistical measure

Right: Same asset price paths and risk-free rate transformed under the risk-neutral measure. The price paths become

martingales.

some stock be equal to r, under the risk neutral measure its mean becomes 0, which validates the notion
of it achieving the martingale property of constant expectation. Before we proceed, we define the precise
definition or arbitrage (something for nothing). Given some portfolio process X(t) with X(0) = 0 and for
some positive time T satisfying

P(X(T ) ≥ 0) = 1 ≡ P(X(T ) < 0) = 0 and P(X(T ) > 0) > 0,

then X(t) is an arbitrage. Clearly, X(t) represents some trading strategy that can start with zero capital
and at some positive time T we are guaranteed to have not lost money while also having some positive
probability of making money. Arbitrage is the notion around which our risk-neutral models fail.

This brings us to the first fundamental theorem of asset pricing. If a market model admits a risk-
neutral measure, then it does not admit arbitrage. The proof of which is remarkably simple yet intuitively
powerful. If a market model has a risk neutral measure P̃ then every discounted portfolio process D(T )X(T )

is a P̃-martingale =⇒ Ẽ[D(T )X(T )] = 0. Suppose we have some portfolio (hedging) process X(t) with
X(0) = 0 which is martingale and satisfies the characteristic of an arbitrage (P(X(T ) < 0) = 0), since

P̃ ≡ P, we have P̃(X(T ) < 0) = 0 also. Since Ẽ[D(T )X(T )] = 0 by the martingale property, this implies

that P̃(X(T ) > 0) = 0 by their equivalence. This also means that P(X(T ) > 0) = 0 which is a contradiction,
therefore X(t) is not an arbitrage. Moreover, since every portfolio process satisfies X(0) = 0, there can never
be an arbitrage.

The second part of the fundamental theorem of asset pricing shows that a market is complete if and only
if the risk-neutral probability measure is unique. Completeness in this sense refers to the concept that every
possible derivative can be hedged.

3 Transform Methods

Efficient methods of numerically evaluating complex financial contracts are required. The Feynman-Kac
theorem relates the expectation of a stochastic differential equation governing the behavior of the underlying
price process with a analytically calculable PDE. Various methods of evaluating these complex derivative
payoff functions fall into three major categories, partial integro-differential equation methods, Monte Carlo
simulation methods, and numerical transform techniques. The numerical approximation techniques presented

12



3.1 Laplace transform 3 TRANSFORM METHODS

in this chapter are among the many methods in the literature that require a transformation to the Fourier
domain. The methods presented in this text are applied specifically to path-independent options but, as
numerical integration techniques are a heavily studied topic in finance, there exists methods devoted toward
their path-dependent counterparts. Efficient techniques for valuating options with early exercise, such as
American options, have been developed [14,4,3,49,60]. The convolution (CONV) method can be used with
the fast Fourier transform to achieve almost linear complexity on American and Bermudan options and
uses the assumption that the probability density of a process can be seen as a transition density which is
then written as a convolution integral [49]. The mechanics involve using the fact that the characteristic
function of a convolution is the product of the constituting characteristic functions. Amongst others, the
saddlepoint method of Carr and Madan is an alternative designed to price deep out-of-the-money options
using a modified Lugannani-Rice saddlepoint approximation [15].

In this section we describe the foundation of deriving the Fourier-Cosine method for pricing path-
independent derivatives for which the characteristic function is known. The first major development in
this arena was by Carr and Madan [14] where they develop the Fast Fourier Transform (FFT) to valuate
options efficiently. Given the characteristic function of the risk neutral density, a simple analytic expression
of the Fourier transform of the option value can be developed. In every model used in this paper, the
characteristic function is known. Since we focus on models with an explicit Lévy-Khintchine representation,
the characteristic function arises naturally. Besides the VG, VGSA, and CGMY processes described earlier,
the class of processes for which the characteristic function is known includes: the process of independent
increments (McCulloch 1978); the inverse Gaussian (Barndorff-Nielson 1997); pure diffusion with stochastic
volatility (Heston 1993); jump processes with stochastic volatility (Bates 1996); and jump processes with
stochastic volatility and stochastic interest rates (Scott 1997). While the FFT method presented a con-
siderable breakthrough in terms of computational speed and a complexity of O(N log2N) (with N2 the
integration grid size), it has a few shortcomings. It can only be applied to path-independent derivatives with
a European-style payoff with an explicit characteristic function. We first describe the concept of transform-
ing the characteristic function of a derivative to determine the discounted expected value of its risk-neutral
density.

3.1 Laplace transform

The use of the Laplace transform in option pricing is to transform a complex PDE into an ODE that is
usually easier to solve. We illustrate the Laplace method as a precursor to the Fourier method for evaluating
the characteristic function later. The Laplace transform F (γ) of a function F (τ) is defined as

F (γ) = L(f(τ))) =

∫ ∞
0

eγτf(τ)dτ (3.1.1)

where γ ∈ C and f(τ) is any function making the integral finite. Any function not satisfying the previous
constraint does not have a Laplace transform. Convergence of the integral is satisfied if R(γ) > γ0 where γ0

is the abscissa of convergence. The transform also satisfies linearity:

L(af1(τ) + bf2(τ)) = aL(tf (τ)) + bL(f(τ)).

Noting that the Laplace transform of a derivative is given by

L(f ′(τ)) = γL(t(τ)))− f(0−),

when the Laplace transform for a function f(τ) is known, f(τ) can be recovered using the Bromwich inversion
formula:

f(τ) = L−1(F (τ)) = lim
R→∞

1

2πi

∫ a+iR

a−iR
F (γ)eτγdγ.

The Laplace inversion is highly sensitive to round-off error, and so it is an ill-conditioned problem (Kwok
and Barthez 1989). The standard inversion formula is a contour integral which is not a calculable expression.
This can be avoided when the Laplace transform is known in closed form as a complex function. Instead
of discretizing the forward Laplace integral, we operate the inversion using the Bromwich contour integral
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while using the transform’s values on the complex plane. Letting the contour be the vertical line γ = a then
the original function f(τ) is given by

f(τ) =
1

2πi

∫ a+i∞

a−i∞
eγτF (γ)dγ, τ > 0.

Letting γ = a+ iu we obtain,

f(τ) =
2eaτ

π

∫ ∞
0

R(F (a+ iu)) cos(uτ)du = −2eaτ

π

∫ ∞
0

I(F (a+ iu)) sin(uτ)du. (3.1.2)

While there are many numerical integration methods which exploit the structure of the inversion formula
(3.1.2), the commonality and recent attention of the Fourier method in finance is the most relevant.

3.2 Fourier Method

The Fourier series algorithm is a discretization method of solving (3.1.2) proposed by [26] and relies on the
following trapezoidal approximation. With step size ∆,

f∆(τ) =
∆eaτ

π
R (F (a)) +

2∆eaτ

π

∞∑
k=1

R (F (a+ ik∆)) cos(k∆τ).

Letting ∆ = π
2τ and a = A

2τ gives the alternating series

f∆(τ) =
e
A
2

2τ
R
(
F

(
A

2τ

))
+
e
A
2

τ

∞∑
k=1

(−1)kR
(
F

(
A+ 2kiπ

2τ

))
which eliminates the cosine term. The choice of A must be made so that a falls to the left of the real part
of the singularities of the function F (γ). This method is surprisingly effective in the context of which the
integrands are periodically oscillating, as the errors tend to cancel. The bound of the discretization error,
shown by [1], is

|f(τ)− f∆(τ)| < M
e−A

1− e−A
'Me−A,

for f(τ) < M . If the real term has a constant sign for all k, the Euler accelerating algorithm can be
convenient [1]. This consists of summing the first n terms of the series and then taking the weighted average
of an additional m terms, ie.

f∆(τ) ≈ E(τ ;n,m) =

m∑
j=0

(
m

j

)
2−msn+k(τ),

where sn(τ) is the partial sum

sn(τ) =
e
A
2

2τ
R
(
F

(
A

2τ

))
+
e
A
2

τ

n+j∑
k=1

(−1)kR
(
F

(
A+ 2kiπ

2τ

))
.

Pricing a European Call via the Fast Fourier Transform

Following the work of Carr and Madan [14], we illustrate the most basic case of the method of Fourier
inversion to price a European call option. We first represent the option pricing problem in terms of the log
price density, which allows us to use the Fourier method to obtain the premium. For some security St with
probability density function f(St), log price density of the underlier q(st) where st = ln(St) and k = lnK is
the log strike. We obtain the log characteristic function:

ϕ(ν) = E[eiνst ] =

∫ ∞
−∞

eiνstp(st)dSt.
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The value of a European call CT (k) with strike K = ek can be expressed in terms of its risk neutral density

CE
[
(ST −K)+

]
= C

∫ ∞
k

e−rt(es − ek)q(s)ds = CT (k),

where the subscript T for the underlier process has been dropped for simplicity. The constant C is the
discount value through which we convert to the equivalent martingale measure under which we take expec-
tations. In general, to convert to the risk-neutral measure we would let C = e−r(T−t). We must modify this
function as it is not square-integrable. We define the square-integrable call price by

cT (k) = eαKCT (k), α > 0

where α is the damping parameter ensuring convergence of the integral which results in the analytical
tractability of the Fourier transform. We redefine the characteristic function of the modified option price
cT (k) as

ΨT (ν) =

∫ ∞
−∞

eiνkcT (K)dk = e−rT
∫ ∞
−∞

q(s)

(∫ s

−∞
e(α+iν)k(es − ek)dk

)
ds,

for α > 0. We can express the modified characteristic function of the option premium ΨT in terms of the
log characteristic function of the asset price ϕ(ν). We develop this expression

ΨT (ν) =
e−rTϕ(ν − (α+ 1)i)

(α+ iν)(α+ iν + 1)
,

then we can use Fourier inversion to retrieve the actual option premium. Since Ct(k) ∈ R, its Fourier
transform ΨT (ν) has even real part and odd imaginary part, so we can write the call option premium as:

Ct(K) =
e−αk

2π

∫ ∞
−∞

e−iνkΨT (ν)dν =
e−αk

π

∫ ∞
0

e−iνkΨT (ν)dν.

Numerical integration of the above formula can be computed quite easily. First we define an upper bound
B for the integration then numerically evaluate it using a quadrature method. Letting N be the number of
grid intervals, ∆ν = B

N = η be the spacing between those intervals and νj = (j − 1)η be the endpoints for
the integration intervals for j = 1 : N + 1, we can use the trapezoidal approximation method to obtain:

CT (k) ≈ e−αk

π

∫ B

0

e−iνkΨT (ν)dν

≈ e−αk

π

[
e−iν1kΨT (ν1) + 2e−iν2kΨT (ν2) + · · ·+ 2e−iνNkΨT (νN )

+ e−iνN+1kΨT (νN+1)
]η

2
.

The terms are exponentially decaying so the elimination of the final term to satisfy FFT form does not
significantly affect the accuracy of the approximation. This yields:

CT (k) ≈ e−αk

π

N∑
j=1

e−iνjkΨT (νj)
η

2
(2− δj−1).

For a more accurate approach we illustrate the application of Simpson’s rule which incorporates different
weights into the summation. This will allow us to increase the accuracy of integration with larger values of
η:

CT (k) ≈ e−αk

π

N∑
j=1

e−iνjkΨT (νj)
η

3
(3 + (−1)j − δj−1).

The term δj−1 is the Kronecker delta function defined as

δi =

{
0, if i 6= 0

1, if i = 0.
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While the above direct integration method provides accurate results, it is far from efficient. The Fast Fourier
Transform (FFT) originally developed by (Cooley and Tukey 1965) can efficiently compute the sum:

w(m) =

N∑
j=1

e−i
2π
N (j−1)(m−1)x(j), for m = 1 : N.

This can be reduced to O(N lnN) multiplications using a divide and conquer algorithm to break down
discrete Fourier transforms which greatly accelerates the speed at which we can evaluate option premiums.
Converting the option pricing problem to FFT form requires us to create a range of strikes around the
strike we are particularly interested in. For example, an at-the-money call with log strike k necessitates the
definition of the range of log strikes

k = β + (m− 1)∆k = β + (m− 1)λ for m = 1 : N

where β = lnX0 − λN
2 . Thus our log strike of interest falls directly center. We will write the integral of

CT (K) as an application of the above summation. The call premium can be written as

CT (k) ≈ e−αk

π

N∑
j=1

e−iνjkΨT (νj)wj

=
e−αk

π

N∑
j=1

e−iλη(j−1)(m−1)e−iβνjΨT (νj)wj .

Having the log characteristic function of the asset Xt we choose η and define the grid size as a power of 2,
ie. let N = 2n, λ = 2π

Nη , νj = (j − 1)η and determine α. Then vector x is constructed as

x =


x1

x2

...
xN

 =


η
2

e−r(T−t)

(α+iν1)(α+iν1+1)e
−i(lnX0−λN2 )ν1ϕ(ν1 − (α+ 1)i)

η e−r(T−t)

(α+iν2)(α+iν2+1)e
−i(lnX0−λN2 )ν2ϕ(ν2 − (α+ 1)i)

...

η e−r(T−t)

(α+iνN )(α+iνN+1)e
−i(lnX0−λN2 )νNϕ(νN − (α+ 1)i)

 ,

where the discount factor e−r(T−t) is the constant C explained earlier which facilitates a measure change,
and could be any constant. We input this vector x into the FFT routine which returns the vector y = fft(x)
then the m call prices across the range of strikes km, m = 1 : N is

y =


CT (k1)
CT (k2)

...
CT (kN )

 =



1
π e
−α(lnX0−N2 λ)R(y1)

1
π e
−α(lnX0−

(
N
2 −1

)
λ)R(y2)

...

1
π e
−α(lnX0−

(
N
2 −(N−1)

)
λ)R(yN )

 .

Before describing the FFT algorithm in detail we explain the necessity of the optimal damping parameter.

Optimal α

Our approximation using FFT relied on the calculation of damping parameter α which we now determine
optimally. The damping parameter ensures that the call price is L1 integrable which is sufficient for the
Fourier transform to exist. The characteristic functions of the Black-Scholes and Variance Gamma mod-
els have a convenient analytical structure which enables the optimal payoff-independent α to be computed
exactly. For Black-Scholes, the authors of [50] show that the optimal α satisfies

α∗ = min
α∈R

[
− αk + ln(ϕ(−(α+ 1)i)2)

]
= − d+

η
√
τ
,
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where d+ =
1

σ
√
τ

[
log(

S0

K
) + (r +

σ2

√
2

)τ

]
.

For the Variance Gamma model, the optimal α satisfies

α∗ = min
α∈R

[
− αk + ln(ϕ(−(α+ 1)i)2)

]
= − θ

σ2
− 1 +

τ

νm̃
− sgn(m̃)

√
θ2

σ2
+

2

νσ2
+

τ2

ν2m̃2

where m̃ = f − k − ωτ is a quantity related to the log-moneyness of the option.

The code for implementing Fast Fourier Transform on the Black-Scholes model is as follows.

1 S0 = 100 ; %Spot
2 K = 100 ; %S t r i k e
3 r = 0 . 0 5 ; %Risk−f r e e ra t e
4 q = 0 . 0 ; %Dividend ra t e
5 T = 5 ;
6 sigma = 0 . 3 ;
7 N = 2ˆ9 ; %Grid s i z e : power o f two
8 uplim = 50 ; %upper l i m i t f o r i n t e g r a t i o n
9 eta = uplim/N; %spac ing o f p s i integrand

10
11 K = linspace (5 ,150 ,N) ;
12 lnS = log ( S0 ) ;
13 lnK = log (K) ;
14
15 %Optimal damping
16 alpha = (−1/( sigma∗T∗ eta ) )∗ ( log ( S0 . /K) + ( r+sigma ˆ2/ sqrt ( 2 ) )∗T) ;
17
18 lambda = (2 ∗ pi ) / (N ∗ eta ) ; %spac ing f o r l og s t r i k e s
19
20 %log s t r i k e s ranging from [ lnS−b , lnS+b ] ( near the money)
21 b = (N ∗ lambda ) / 2 ;
22 ku = − b + lambda ∗ (u − 1 ) ;
23
24 u = 1 :N;
25 j = 1 :N;
26 v j = ( j−1) ∗ eta ;
27 %Four ie r trans form o f the modi f i ed c a l l p r i c e
28 phi = cf BS ( vj−(alpha +1).∗1 i , S0 , r , sigma ,T ) . / . . .
29 ( alpha .ˆ2 + alpha − vj . ˆ2 + 1 i ∗ (2 ∗ alpha + 1) .∗ vj ) ;
30
31 p s i = exp(−r ∗T) ∗ phi .∗ exp(1 i ∗ vj ∗ (b ) ) ∗ eta ;
32 p s i = ( p s i /3) .∗(3+(−1) .ˆ j −(( j −1)==0)); %Simpson ’ s r u l e
33 f f t p s i = ones (1 ,N)∗exp(−1 i ∗2∗pi/N)∗ ( j −1) .∗( ps i −1); %D i s c r e t e FFT
34 cp = real (exp(−alpha .∗ ku ) . ∗ f f t p s i ) )/ pi ; %c a l l p r i c e vec to r
35
36 %Determine s t r i k e s near the money
37 s t r i k e I d x = f loor ( ( lnK + b)/ lambda + 1 ) ;
38 i s e t = max( s t r i k e I d x )+1:−1:min( s t r i k e I d x )−1;
39 xp = ku ( i s e t ) ;
40 yp = cp ( i s e t ) ;
41 c a l l p r i c e f f t = real ( interp1 (xp , yp , lnK ) ) ; %Linear i n t e r p o l a t i o n
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3.3 Fourier Cosine method

The FFT method of the previous section introduced significant advantages toward the problem of evaluating
the price of a model with only a known characteristic function. Most notably is its ability to generate a series
of option prices across a range of strikes in just a single iteration. Introduced by Fang and Oosterlee [32], the
Fourier-Cosine (COS) method provides considerable improvements of FFT. While the amortized complexity
O(n log n) of FFT is certainly less than the COS method, the superiority of the cosine expansion arises when
integrating non oscillating functions since the number of terms can be reduced significantly while maintaining
the same level of accuracy. Consequently, empirically, the COS method is faster. Another significant
advantage is that the derivation of the cosine expansion is disassociated from the terms dependent on the
terminal condition, so that complex payoffs and path-dependent options can be priced. The FFT method
described explicitly the Fourier transform of the option premium in terms of the log characteristic function
of the asset price, whereas the COS method first represents the log density in terms of the Fourier cosine
expansion whose coefficients can then be expressed in terms of the log characteristic of the asset. This can be
reduced to an analytically calculable integral. The COS method suffers from similar drawbacks as FFT such
as the inability to price highly out-of-the-money options. An interval bound must be explicitly determined
to truncate the infinite integral to ensure the expansion has a finite number of terms. Consequently, the
accuracy of the premium is highly sensitive to the choice of bounds.

We follow the notation of [32]. The Fourier cosine series expansion of a function f(θ) : R→ [0, π] is

f(θ) =
1

2
A0 +

∞∑
k=1

Ak cos(kθ) =
∑∞

k=0
Ak cos(kθ),

with Fourier cosine coefficient

Ak =
2

π

∫ π

0

f(θ) cos(kθ)dθ.

The notation
∑

indicates that the first term is weighted by one-half. The Fourier cosine series expansion
can be obtained for functions defined on any finite interval [a, b] with change of variables mapping a to 0
and b to π, ie.

θ =
x− a
b− a

π so that x =
b− a
π

θ + a.

The expansion then becomes

f(x) =
∑∞

k=0
Ak cos

(
k
x− a
b− a

π

)
with Ak =

2

b− a

∫ b

a

f(x) cos

(
k
x− a
b− a

π

)
dx.

3.4 Cosine Coefficients in Terms of the Characteristic Function

We know that for any probability density function p(x), the relevant characteristic function is obtained via
the Fourier transform

Eeiνx = ϕ(ν) =

∫ ∞
−∞

eiνxp(x)dx.

By evaluating the characteristic function at ν = kπ
b−a we define the truncated integral

ϕ̂

(
kπ

b− a

)
=

∫ b

a

exp

{
ix

kπ

b− a

}
f(x)dx (3.4.1)

Multiplying (3.4.1) by ei
kπa
b−a yields

ϕ̂

(
kπ

b− a

)
ei
kπa
b−a = ei

kπa
b−a

∫ b

a

exp

{
ix

kπ

b− a

}
f(x)dx

=

∫ b

a

exp

{
ikπ

(
x− a
b− a

)}
f(x)dx

=

∫ b

a

(
cos

(
kπ

[
x− a
b− a

])
+ i sin

(
kπ

[
x− a
b− a

]))
.
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Therefore,

R
[
ϕ̂

(
kπ

b− a

)
ei
kπa
b−a

]
=

∫ b

a

cos

(
kπ

[
x− a
b− a

])
f(x)dx.

Choosing limits of integration so that ϕ̂(ν) ≈ ϕ(ν) gives the cosine coefficient defined as

Ak =
2

b− a
R
{
ϕ̂(ν)

(
kπ

b− a
e−i

kaπ
b−a

)}
so that

Ak ≈ Fk =
2

b− a
R
{
ϕ(ν)

(
kπ

b− a
e−i

kaπ
b−a

)}
. (3.4.2)

We can now replace Ak with Fk in the series expansion of f(x) within [a, b] to get

f1(x) =
∑∞

k=0
Fk cos

(
kπ
x− a
b− a

)
,

which is further truncated to obtain

f2(x) =
∑N−1

k=0
Fk cos

(
kπ
x− a
b− a

)
. (3.4.3)

Keeping in mind that the error in f2(x) results from the error of approximating Ak with Fk and the truncation
error of replacing the upper limit of summation by N − 1. We are now able to use the derived COS formula
to price a European call option. The option value at time t can be written as

v1(x, t) = e−r∆t
∫ b

a

v(y, T )f(y|x)dy.

We then replace the density function f(y|x) by its cosine expansion in y

f(y|x) =
∑∞

k=0
Ak cos

(
k
x− a
b− a

π

)
,

so that the price of the option is now

v1(x, t) = e−r∆t
∫ b

a

v(y, T )
∑∞

k=0
Ak cos

(
k
x− a
b− a

π

)
dy.

Interchanging the summation and integration and inserting the definition

Vk =
2

b− a

∫ b

a

v(y, T ) cos

(
k
x− a
b− a

π

)
dy

yields

v1(x, t) =
b− a

2
e−r∆t

∑∞

k=0
AkVk.

We continue with the following approximations. The coefficients rapidly decay as k →∞ so,

v1(x, t) ≈ v2(x, t) =
b− a

2
e−r∆t

∑N−1

k=0
AkVk.

The coefficients can be further approximated by Fk as defined earlier to obtain

v(x, t) ≈ v3(x, t) = e−r∆t
∑N−1

k=0
R
{
ϕ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
Vk. (3.4.4)
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3.5 Numerical solution to a vanilla European option

We first define the following:

(i) St is the price of the underlying security at time t
(ii) K is the strike price

(iii) x = ln
(
St
K

)
is the log price of the underlier

(iv) y = ln
(
ST
K

)
is the log price at expiration

The log-asset price payoff for a European option follows

v(y, T ) = [αK(ey − 1)]+,

where α = 1 for a call and α = −1 for a put. We first define the cosine series coefficients for g(y) = ey on
[c, d] ⊂ [a, b],

χk(c, d) =

∫ d

c

ey cos

(
kπ
y − a
b− a

)
dy (3.5.1)

and the cosine series coefficients of g(y) = 1 on the same interval:

ψk(c, d) =

∫ d

c

cos

(
kπ
y − a
b− a

)
dy. (3.5.2)

The proof of which can be found in [32]. This gives us the analytical expression for a vanilla European call
option

V callk =
2

b− a

∫ b

a

K(ey − 1)+ cos

(
kπ
y − a
b− a

)
dy =

2

b− a
K(χk(0, b)− ψk(0, b)) (3.5.3)

and a vanilla European put can be written as

V putk =
2

b− a

∫ b

a

K(1− ey)+ cos

(
kπ
y − a
b− a

)
dy =

2

b− a
K(−χk(0, b) + ψk(0, b)). (3.5.4)

The authors of [32] propose the following calculation for the range of integration [a, b] of the COS method:

[a, b] =

[
c1 ± L

√
c2 +

√
c4

]
with L = 10, elusively. (3.5.5)

The notation cn denotes the n-th cumulant of the log asset price at expiration X = ln
(
ST /K

)
defined by

the cumulant generating function
G(w) = lnEewX = ln(ϕ(−iw)),

with characteristic function ϕ. The n-th cumulant is the n-th derivative of the cumulant generating function
evaluated at zero, ie.

cn = G(n)(0) =
−iϕ(n)(0)

ϕ(0)

The following table describes all cumulants which will be used in this paper, where w is the martingale
correction term satisfying e−wt = ϕ(−i, t).
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3.6 Fourier-Cosine Algorithm 3 TRANSFORM METHODS

BS c1 = (r − q)T

c2 = σ2T

c4 = 0

w = 0

VG c1 = (µ+ θ)T

c2 = (σ2 + νθ2)T

c4 = 3(σ4ν + 2θ4ν3 + 4σ2θ2ν2)T

w = 1
ν ln(1− θν − σ2ν/2)

CGMY c1 = µT + CTΓ(1− Y )(MY−1 −GY−1)

c2 = σ2T + CTΓ(2− Y )(MY−2 +GY−2)

c4 = CTΓ(4− Y )(MY−4 +GY−4)

w = −CΓ(−Y )[(M − 1)Y −MY + (G+ 1)Y −GY ]

VGSA Compute using finite differences

3.6 Fourier-Cosine Algorithm

Here we implement the Fourier Cosine transform to price a call following the Variance Gamma model

1 S0 = 100 ; K = 90 ; T = 5 ; r = . 1 ; sigma = 0 . 3 ; nu = 0 . 2 ; theta = − .14;
2
3 K = linspace ( 10 , 150 , 500 ) ;
4
5 ch i = @(k , a , b , c , d ) (1 ./(1+( k∗pi /(b−a ) ) . ˆ 2 ) . ∗ ( cos ( k∗pi ∗(d−a )/ ( b−a ) ) . . .
6 .∗exp(d)−cos ( k∗pi ∗( c−a )/ ( b−a ) )∗exp( c)+k∗pi /(b−a ) . ∗ sin ( k∗pi ∗(d−a ) . . .
7 /(b−a ) )∗exp(d)−k∗pi /(b−a ) . ∗ sin ( k∗pi ∗( c−a )/ ( b−a ) )∗exp( c ) ) ) ;
8
9 p s i = @(k , a , b , c , d ) ( [ d−c ; ( sin ( k ( 2 : end)∗pi ∗(d−a )/ ( b−a ) ) . . .

10 −sin ( k ( 2 : end)∗pi ∗( c−a )/ ( b−a ) ) ) . ∗ ( b−a ) . / ( k ( 2 : end)∗pi ) ] ) ;
11
12 %Variance Gamma c h a r a c t e r i s t i c func t i on
13 cf VG = @(u , S ,K, t , r , sigma , nu , theta ) ( (exp(u∗( r+log(1− theta ∗nu−sigma ˆ 2 . . .
14 ∗nu/2)/nu)∗ t ∗1 i ) ) .∗ ( (1 −1 i ∗ theta ∗nu∗u +sigma ˆ2∗nu∗u .ˆ2/ 2).ˆ(− t /nu ) ) ) ;
15
16 N = 2ˆ8 ; %Grid s i z e
17
18 %Variance Gamma cumulants
19 c1 = ( r+theta )∗T;
20 c2 = ( sigmaˆ2+nu∗ theta ˆ2)∗T;
21 c4 = 3∗( sigma ˆ4∗nu+2∗ theta ˆ4∗nuˆ3+4∗ sigma ˆ2∗ theta ˆ2∗nuˆ2)∗T;
22
23 %Truncation range

21



3.7 VGSA Cumulants 3 TRANSFORM METHODS

24 L = 10 ;
25 a = c1−L∗sqrt ( c2+sqrt ( c4 ) ) ;
26 b = c1+L∗sqrt ( c2+sqrt ( c4 ) ) ;
27
28 %Compute Four i e r Cosine trans form
29 x = log ( S0 . /K) ;
30 k = ( 0 :N−1) ’ ;
31 Vk = 2/(b−a )∗ ( ch i (k , a , b , 0 , b ) − p s i (k , a , b , 0 , b ) ) ; %Cosine c o e f f i c i e n t s
32 w = [ . 5 ones (1 ,N−1) ] ; %weights
33 r e t = w∗( cf VG ( k∗pi /(b−a ) , S0 , K, T, r , sigma , nu , theta ) . . .
34 ∗ ones (1 , length (K) ) . ∗ exp(1 i ∗k∗pi ∗(x−a )/ ( b−a ) ) . ∗ ( Vk∗ ones (1 , length (K) ) ) ) ;
35 %Cal l p r i c e vec to r
36 cp =K∗exp(−r ∗T) . ∗ real ( r e t ) ;

3.7 VGSA Cumulants

Since we do not have the cumulants for VGSA in closed form, we must compute them using some discretiza-
tion technique. We showed earlier that the characteristic function of the VGSA model is defined as a specific
parameterization of the characteristic function of the CIR time-change:

EeiuY (t) = ϕV GSA(u, t, y(0), κ, η, λ) = A(u, t, κ, η, λ)eB(u,t,κ,λ)y(0),

where

A(u, t, κ, η, λ) =
exp

(
κ2ηt
λ2

)
(

cosh(γt/2) + κ
γ sinh(γt/2)

) 2κη

λ2

,

B(u, t, κ, λ) =
2iu

κ+ γ coth(γt/2)
,

and γ =
√
κ2 − 2λ2iu. The VGSA characteristic function is given by

EeiuZVGSA(t) = ϕV GSA(−iΨV G(u), t, ν−1, κ, η, λ),

where ΨV G(u) is the log characteristic function of VG at unit time

ΨV G(u) = −1

ν
log(1− iuνθ + σ2νu2/2).

The cumulant generating function satisfies:

G(w) = lnEewX = ln(ϕV GSA(−iw))

Its n-th cumulant is the n-th derivative of the cumulant generating function with respect to u evaluated at
zero:

cn = G(n)(0)

The first four cumulants are the first four finite differences of G(w):

c1 ≈
G(h)−G(−h)

2h

c2 ≈
G(h)− 2G(0) +G(−h)

h2

c3 ≈
G(2h)− 2G(h) + 2G(−h)−G(−2h)

2h3

c4 ≈
G(3h)− 2G(2h) + 4G(0)−G(h)−G(−h)− 2G(−2h) +G(−3h)

4h4

For some small value h = 10−6.
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3.8 Numerical Results of Cosine Method

Relative error of FFT using the Black-Scholes model with parameters S0 = 100, r = 0.1, q = 0, σ = 0.2, N =
27, and varying strikes and times to maturity.

Figure 2: Top: T=1, Bottom, T=0.1

Reference option premium c = 13.2697 priced analytically with Black Scholes using parameters S0 =
100,K = 100, r = 0.1, q = 0, σ = 0.2, T = 1

COS Method Black-Scholes
T=1 T=0.1

K N Relative error CPU time Relative error CPU time

80 25 -0.0028 0.002692 -1.02e-0.5 0.000292
100 25 -1.115e-05 0.002148 -2.88e-6 0.000255
120 25 -2.801e-07 0.001623 -2.20e-8 0.000275

Reference option premium priced analytically with Variance Gamma using parameters S0 = 100,K =
100, r = 0.1, q = 0, θ = 0.15σ = 0.2, ν = 0.1, T = 1.
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COS Method Variance Gamma
T=1 T=0.1

K N premium* Relative error CPU time premium* Relative error CPU time

25 0.8730 0.001167 0.1920 0.000635
80 26 28.1547 0.1781 0.000548 20.8165 0.2375 0.000564

27 0.1762 0.000593 0.2429 0.000586

25 0.00908 0.001223 0.0109 0.000675
100 26 13.4251 0.0897 0.000576 3.0543 0.0166 0.000573

27 0.0897 0.000586 0.0165 0.000578

25 0.2677 0.001294 0.0950 0.001272
120 26 4.7984 0.2650 0.000592 0.0068 0.1012 0.000569

27 0.2650 0.000593 0.1003 0.000580

*reference premiums determined analytically.

4 Monte Carlo Simulation Methods

Using Monte Carlo to evaluate the price of an option is conceptually the simplest yet the most computa-
tionally intensive method. It does not suffer from the mispricing phenomena of the Fourier Cosine method
in pricing out of the money options, yet to get an accurate evaluation one must generally run Monte Carlo
over a high number of asset pricing paths.

4.1 Antithetic Variates

When using Gaussian variables to drive a Monte Carlo simulation, we can take advantage of the fact that
a standard normal random variable Z has an identical distribution to its reflection −Z. The central limit
theorem allowing the standard error of Monte Carlo sampling to be determined required independent draws.
If we view two random variates v = Z and v̂ = −Z as individual samples then we can take the pairwise
average of the two v̄ = 1

2 (v + v̂) and consider it as an individual sample.

4.2 Variance Gamma process

As explained earlier, the VG process can be obtained from evaluating a Brownian motion at a random time
given by the gamma process γ(t; 1, ν) (called the subordinator) and follows

X(t;σ, ν, θ) = θγ(t; 1, ν) + σW (γ(t; 1, ν)),

with characteristic function

ϕ(u) = EeiuXt =
(
1− iuθν + σ2u2ν/2

)−t/ν
.

Then the log asset price at time t is given by

lnSt = lnS0 + (r − q + ω)t+X(t;σ, ν, θ),

where ω = −1

t
log(ϕ(−i)) =

1

ν
ln(1 − θν − σ2ν/2) is the martingale correction. We assume N equidistant

intervals of length h = T/N , then sample from a gamma distribution with mean k and variance νk. Recall
a gamma density function with shape a and scale b follows

pΓ(x) =
xk−1e−

x
θ

θkΓ(k)
.
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Thus, its mean and variance are

µ = ab = h,

σ2 = ab2 = νh,

which implies the scale and shape are b = ν, a = h
ν respectively. So, given random variables Z ∼ N(0, 1) and

G ∼ Γ(hν , ν), we obtain a sample for the VG process

XV G(h;σ, ν, θ) = θG+ σ
√
GZ.

The following is our Matlab implementation of the Monte Carlo pricing of VG using subordinated Brownian
motion.

1 S = 100 ; T = 5 ; r = . 1 ; q = 0 ; sigma = 0 . 3 ; nu = 0 . 2 ; theta = − .14;
2
3 K = linspace ( 1 0 , 1 5 0 , 5 0 ) ;
4 numPaths = 10000;
5 N = 100 ; %Number o f time s t ep s per path
6
7 %Mart ingale c o r r e c t i o n
8 omega = 1/nu∗ log(1− theta ∗nu−sigma ˆ2∗nu / 2 ) ;
9 h = T/N; %Time step

10 lnS = 0 ;
11 payo f f = 0 ;
12 %Gamma time changed Brownian motion
13 for j = 1 : numPaths
14 lnS = log (S ) ;
15 for i = 1 :N
16 Z = normrnd ( 0 , 1 ) ;
17 G = gamrnd (h/nu , nu ) ;
18 %Cumulative l og a s s e t p r i c e
19 lnS = lnS + ( r−q+omega )∗h + theta ∗G + sigma∗sqrt (G)∗Z ;
20 end
21 %Terminal cond i t i on
22 payo f f = payo f f + max(exp( lnS)−K, 0 ) ;
23 end
24 %Discounted average i s the p r i c e o f a European c a l l
25 payo f f = exp(−r ∗T)∗ payo f f /numPaths ;

4.3 CGMY tempered stable process

Madan and Yor [52] show that the CGMY process can be represented as a time-changed Brownian motion.
The CGMY subordinator is absolutely continuous with respect to a one sided stable subordinator achieved by
the truncation method proposed by Rosinski. Suppose the CGMY process X(t) is obtained by a subordinated
Brownian motion with measure ν(dy), then by Sato [64] the CGMY Lévy measure is given by

µ(dx) = dx

∫ ∞
0

ν(dy)
1√
2πy

e−
(x−θy)2

2y ,

where Y (t) is the independent subordinator. The CGMY process can be written as

X(t) = θY (t) +W (Y (t)).
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In particular, the authors of [52] show that the subordinator Y (t) is absolutely continuous with the one sided
stable Y

2 subordinator with the following Lévy measure

ν(dy) =
K

y1+Y
2

f(y)dy,

f(y) = e−
(B2−A2)y

2 E
[
e
−B

2y
2

γY/2
γ1/2

]
,

B =
G+M

2
, A =

G−M
2

,

K =

[
CΓ(Y2 )Γ(1− Y

4 )

2Γ(1 + Y
2 )

]
,

with the independent gamma variates γY/2 ∼ Γ(Y/2, 1) and γ1/2 ∼ Γ(1/2, 1). We write the CGMY subor-
dinator Lévy measure as

ν1(dy) = ν0(dy)E
[
e−yZ

]
,

ν0(dy) =
K

y1+Y
2

,

Z =
B2

2

γY/2

γ1/2
.

While the expression Ee−yZ can be simulated, it incurs unnecessary randomness, and can be avoided by
evaluating explicitly the Laplace transform of Z:

E
[
e−yZ

]
=

Γ(Y+1
2 )

Γ(Y )
√
π

2Y
(
B2y

2

)Y
2

I(Y,B2y,B2y/2),

I(Y, a, λ) = (2λ)
Y
2 Γ(Y )e

a2

8λD−Y

(
a√
2λ

)
,

where D is the parabolic cylinder function

Dp(z) = 2
p
2 e−

z2

4

[
Γ( 1

2 )

Γ( 1−p
2 )

U
(
− p

2
,

1

2
;
z2

2
)−
√

2πz

Γ(−p2 )
U
(1− p

2
,

3

2
;
z2

2
)

]
,

and U is the confluent hypergeometric function of the first kind [35]. Since we have identified two Lévy
measures satisfying

dν1

dν0
= Ee−yZ < 1,

it is shown in Rosinski [63] that we may simulate the paths of the CGMY subordinator ν1 from the paths of
ν0 by rejecting all jumps smaller than a predetermined truncation level ε. Letting

A =
G−M

2
and B =

G+M

2
,

we simulate from a one sided stable subordinator with measure:

1

y
Y
2 +1

and arrival rate λ =

∫ ∞
ε

1

y
Y
2 +1

dy =
2

Y ε
Y
2

.

In our implementation, we truncate the jumps below ε = 10−4 then replace them with their expected drift

d =

∫ ε

0

y
1

y
Y
2 +1

dy =
ε1−

Y
2

1− Y
2

.
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The jump times are simulated by the exponential random variable

ti = − 1

λ
log(1− U1i).

For uniform sequence of random variables Ui which gives cumulative jump times of

Γj =

j∑
i=1

tj , and magnitude yj =
ε

(1− U2j)
2
Y

,

the stable subordinator is given by the process

S(t) = dt+

∞∑
j=1

yjIΓj<t,

and the CGMY subordinator is given by

H(t) = dt+

∞∑
j=1

yjIΓj<tIh(y)>U3
.

For independent uniform sequence U3, with:

h(y) = exp

(
− B2y

2

)
Γ(Y+1

2 )

Γ(y)
√
π

2Y
(
B2y

2

)Y
2

I(Y,B2y,B2y/2),

I(Y, a, λ) = (2λ)
Y
2 Γ(Y )e

a2

8λD−Y

(
a√
2λ

)
.

Then, the CGMY random variable is

X = AH(t) +
√
H(t)z, z ∼ N (0, 1).

Our algorithm for Monte Carlo simulation of CGMY using subordinated Brownian motion and Rosinski
rejection is:

1 %Returns the l a p l a c e trans form o f the CGMY subord inator
2 function [ r e t ] = CGMYSubLaplace(y ,Y,B)
3 r e t = (exp((−Bˆ2.∗ y ) / 2 ) .∗gamma( (Y+1)/2)∗2.ˆY . . .
4 . ∗ (Bˆ2 .∗ y . / 2 ) . ˆ (Y/ 2 ) .∗ I (Y,Bˆ2 .∗y ,Bˆ2 .∗ y . / 2 ) ) / (gamma(Y)∗ sqrt ( pi ) ) ;
5 %Parabo l i c c y l i n d e r func t i on ( Laplace change o f v a r i a b l e s )
6 function [ r e t ] = ParCyl (p , z )
7 S=1;
8 c =1;
9 g=gamma(−p /2+0.5) ;

10 H=gamma(−p / 2 ) ;
11 i f z<40
12 u = Hypergeometric(−p /2 , 0 . 5 , z .∗ z . / 2 ) ;
13 v = Hypergeometric (0.5−p /2 , 1 . 5 , z .∗ z . / 2 ) ;
14 D = 2ˆ(p / 2 ) .∗exp(−z .∗ z . / 4 ) . ∗ ( ( sqrt ( pi ) . ∗ u . / g)−sqrt (2∗pi ) . ∗ z .∗ v . /H) ;
15 else
16 for i =1:20
17 c = c ∗ −(p−i +1)∗(p−i ) . / ( 2∗ i .∗ z . ˆ ( 2∗ i ) ) ;
18 S = S+c ;
19 end
20 D = exp(−z . ˆ 2 . / 4 ) . ∗ z . ˆ p .∗S ;
21 end
22 r e t = D;

27



4.3 CGMY tempered stable process 4 MONTE CARLO SIMULATION METHODS

23 end
24 %Conf luent hypergeometr ic func t i on o f the f i r s t kind
25 function [ r e t ] = Hypergeometric ( a , b , z )
26 r e t =1;
27 term=ones ( s ize ( z ) ) ;
28 n=1;
29 while max( term)>1E−4 && n<100
30 term=term . ∗ ( ( a+n−1)∗z /(n∗(b+n−1) ) ) ;
31 r e t=r e t+term ;
32 n=n+1;
33 end
34 end
35
36 function [ r e t ] = I (Y, a , lambda )
37 r e t = ( 2 .∗ lambda ).ˆ(−Y/ 2 ) .∗gamma(Y) . ∗ exp( a . ˆ 2 . / ( 8 . ∗ lambda ) ) . . .
38 .∗ ParCyl(−Y, ( a . / sqrt ( 2 .∗ lambda ) ) ) ;
39 end
40 end
41
42 %Monte Carlo s imu la t i on
43 C=10; G=10; M=10;
44 %Y < 2 h igher va lue s means smal l jumps have g r e a t e r i n f l u e n c e
45 Y=0.75;
46 numPaths=100;
47 T=1;
48 S0 = 100 ; s t r i k e = 100 ;
49 St = zeros (1 , numPaths ) ;
50 r = 0 . 0 8 ;
51 payo f f = 0 ;
52 A=(G−M) / 2 ;
53 B=(G+M) / 2 ;
54 e p s i l o n=1E−10; %Jump truncat i on l e v e l
55 d=e p s i l o n ˆ(1−Y/2)/(1−Y/ 2 ) ; %Expected d r i f t o f t runcated jumps
56 lambda=2/( e p s i l o n ˆ(Y/2)∗Y) ; %Arr i va l r a t e o f jumps
57 pathSize = ce i l ( lambda ∗(T)+1); %Expected number o f jumps be f o r e maturity
58 warning ( ’ o f f ’ , ’ a l l ’ ) ;
59 t ic
60 for i =1:numPaths
61 %Vector o f jump times
62 t j =0;
63 while t j (end)<T
64 U2=rand (1 , pathSize ) ;
65 t i=−log(1−U2)/ lambda ;
66 t j =[ t j t j (end)+cumsum( t i ) ] ;
67 end
68 t j=t j ( t j<T) ; %Reject jumps occur ing a f t e r maturity
69
70 U1=rand (1 , length ( t j )−1);
71 %Vector o f jump magnitudes
72 y j =[0 , e p s i l o n ./(1−U1) . ˆ ( 2 /Y ) ] ;
73
74 U3=rand ( s ize ( y j ) ) ;
75 %CGMY subordinator , Ros insk i r e j e c t i o n
76 Ht = d∗ t j + cumsum( y j . ∗ ( CGMYSubLaplace( yj ,Y,B)>U3 ) ) ;
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77 %CGMY random v a r i a b l e
78 X=A∗Ht+sqrt (Ht ) . ∗ randn( s ize (Ht ) ) ;
79 St ( i ) = S0∗exp( r ∗T+X(end ) ) ;
80 payo f f = payo f f + max( St ( i )− s t r i k e , 0 ) ;
81 end
82 toc
83 premium = exp(−r ∗T)∗ payo f f /numPaths

4.4 Variance Gamma with Stochastic Arrival

Recall the CIR process y(t) is the solution to the SDE:

dy(t) = κ(η − y(t))dt+ λ
√
y(t)dWt.

The time change is given by its integral,

Y (t) =

∫ t

0

y(s)ds,

which has characteristic function

EeiuY (t) = ϕ(u, t, y(0), κ, η, λ) = A(t, u)eB(t,u)y(0),

where

A(t, u) =
exp κ2ηt

λ2(
cosh(γt/2) + κ

γ sinh(γt/2)
)2κη/λ2 ,

B(t, u) =
2iu

κ+ γ coth(γt/2)
,

γ =
√
κ2 − 2λ2iu.

The VGSA process is defined by the modified VG process

Z(t) = XV GSA(Y (t);σ, ν, θ) = θγ(Y (t); 1, ν) + σW (γ(Y (t); 1, ν)).

Its characteristic function is that of the time change Y (t) with the following parameters:

EeiuZ(t) = ϕ(−iψV G(u), t,
1

ν
, κ, η, λ),

where ψV G(u) = −1

ν
log(1− iuθν + σ2νu2/2) is the log of the characteristic function of the VG process.

The characteristic function of the log of the stock price is:

Eeiu logSt = eiu(logS0+(r−q)t) ·
ϕ(−iψV G(u), t, 1

ν , κ, η, λ)

ϕ(−iψV G(−i), t, 1
ν , κ, η, λ)iu

To simulate the VGSA process we again assume N equidistant time intervals of length h = T/N . Discretizing
its differential gives:

∆Z(t) = Z(t)− Z(t− h)

= θγ(Y (t); 1, ν) + σW (γ(Y (t); 1ν))− (θγ(Y (t− h); 1, ν) + σW (γ(Y (t− h); 1ν))

= θ(γ(Y (t); 1, ν)− γ(Y (t− h); 1, ν)) + σ
√
γ(Y (t); 1, ν)− γ(Y (t− h); 1ν)z,
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where z ∼ N(0, 1) and γ(Y (t); 1, ν) ∼ Γ(hν , ν). Therefore,

γ(Y (t); 1, ν)− γ(Y (t− h); 1, ν) = Γ

(
Y (t)

ν
, ν

)
− Γ

(
Y (t− h)

ν
, ν

)
= Γ

(
Y (t)− Y (t− h)

ν
, ν

)
.

So we can write the differential as

∆Z(t) = θΓ

(
Y (t)− Y (t− h)

ν
, ν

)
+ σ

√
Γ

(
Y (t)− Y (t− h)

ν
, ν

)
z.

Milstein discretization of the CIR time change results in:

yj = yj−1 + κ(η − yj−1)h+ λ
√
yj−1hz +

λ2

4
h(z2 − 1).

This transforms the stochastic clock as
∫ tj
tj−1

y(u)du and by the trapezoidal approximation we obtain∫ tj

tj−1

y(u)du =
h

2
(yj−1 − yj).

The change in the log asset price can be computed as follows. Given

logSt = logS0 + (r − q)t+ Z(t)− logEeZ(t),

logSt−h = logS0 + (r − q)(t− h) + Z(t− h)− logEeZ(t−h),

subtracting yields the log stock price,

logSt = logSt−h + (r − q)h+ ∆Z(t) + ∆ωt.

where ω = log(ϕV GSA(−iψV G(−i), (j − 1)h, 1/ν, κ, η, λ)) − log(ϕV GSA(−iψV G(−i), jh, 1/ν, κ, η, λ)) is the
martingale correction. Our algorithm for simulating the modified VG to include mean reverting time change
is:

1 S = 100 ; T = 5 ; r = . 1 ; q = 0 ;
2 %VG parameters
3 sigma = 0 . 3 ; nu = 0 . 2 ; theta = − .14;
4 %CIR parameters
5 kappa = 0 . 0 1 ; %Rate o f mean r e v e r s i o n
6 lambda = 0 . 0 2 ; %V o l a t i l i t y o f time change
7 eta = 0 . 3 ; %Long term ra t e o f change
8
9 K =linspace ( 1 0 , 1 5 0 , 5 0 ) ;

10 numPaths = 1000 ;
11 N = 100 ; %number o f time s t ep s per path
12 %VGSA C h a r a c t e r i s t i c func t i on
13 phi VGSA = @(u , t , y0 , kappa , eta , lambda ) (exp( kappaˆ2∗ eta ∗ t /lambda ˆ 2 ) . . .
14 /(cosh ( sqrt ( kappaˆ2−2∗ lambdaˆ2∗1 i ∗u)∗ t /2)+kappa/sqrt ( kappa ˆ 2 . . .
15 −2∗lambdaˆ2∗1 i ∗u)∗ sinh ( sqrt ( kappaˆ2−2∗ lambdaˆ2∗1 i ∗u)∗ t / 2 ) ) . . .
16 ˆ(2∗ kappa∗ eta /( lambda ˆ2))∗exp(2∗1 i ∗u/( kappa + sqrt ( kappa ˆ2 −2 . . .
17 ∗ lambdaˆ2∗1 i ∗u)∗coth ( sqrt ( kappaˆ2−2∗ lambdaˆ2∗1 i ∗u)∗ t /2 ) ) )∗ y0 ) ;
18 %Log VG c h a r a c t e r i s t i c func t i on
19 psi VG = @(u) (−1/nu∗ log (1−1 i ∗u∗ theta ∗nu−sigma ˆ2∗nu∗u ˆ 2 / 2 ) ) ;
20 h = T/N;
21 payo f f = 0 ;
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22 for i = 1 : numPaths
23 X = 0 ;
24 y = ones (1 ,N) ;
25 lnS = log (S ) ;
26 for j = 2 :N
27 Z = normrnd ( 0 , 1 ) ;
28 %D i s c r e t i z e the CIR time change
29 y ( j ) = y ( j−1) + kappa ∗( eta−y ( j −1))∗h+lambda . . .
30 ∗sqrt ( y ( j −1)∗h)∗Z+lambdaˆ2/4∗h∗(Zˆ2−1);
31 t j = h∗( y ( j )+y ( j −1))/2;
32 G = gamrnd ( t j /nu , nu ) ; Z = normrnd ( 0 , 1 ) ;
33 %CIR time changed VG proce s s
34 X = theta ∗G+sigma∗sqrt (G)∗Z ;
35 %Mart ingale c o r r e c t i o n
36 omega = log (phi VGSA(−1 i ∗psi VG(−1 i ) , ( j −1)∗h , 1/nu , kappa , . . .
37 eta , lambda))− log (phi VGSA(−1 i ∗psi VG(−1 i ) , j ∗h , . . .
38 1/nu , kappa , eta , lambda ) ) ;
39 lnS = lnS + ( r−q )∗h+omega+X;
40 end
41 payo f f = payo f f + max(exp( lnS)−K, 0 ) ;
42 end
43 payo f f = exp(−r ∗T)∗ payo f f /numPaths ;

4.5 Numerical Results of Monte-Carlo Simulation

Figure 3 shows the relative error between the individual Monte Carlo routines and the corresponding Fourier-
cosine algorithms for VG, CGMY, and VGSA respectively. Each test involves 10,000 paths, uses a spot price
of 100, strikes ranging from 50 to 150 and parameters T = 1, r = 0.08, q = 0. The Variance Gamma
parameters are σ = 0.41, ν = 0.1, θ = −0.1. CGMY uses C = G = M = 10, Y = 1.5. VGSA uses the same
parameters for VG, with κ = η = λ = 0.001 which brings VGSA very close to a VG process, as we can see
by the similar errors.
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Figure 3: Error of Monte Carlo vs Fourier Cosine

5 Least-Squares Calibration

In this section we analyze the first (of two) major methods of fitting option pricing models to market

information. Given a series of prices Ĉi and strikes Ki, i = 1 : n, we search for the characteristic triplet of
a risk-neutral exponential Lévy model Q describing the model parameters under which the discounted asset
price e−rtS(t) is a martingale. The measure Q is chosen so that it minimizes the error with respect to the
market prices. The calibration problem is the inverse of the option pricing problem. We construct Lévy
process Q so that the call option prices are given by their risk-neutral expectations

Ĉi ≈ CQ = e−rTEQ
[
(S(Ti)−Ki)

+
]

for each i,

and the discounted process is a martingale.
The typical least squares problem is best explained by example. Given a series of market data (option

prices and strikes) with the same maturity, risk-free rate, and dividend rate, we minimize the error between
the observed prices and the ones predicted by our model Q. While there are many choices of error functional,
throughout the subsequent examples we use the root mean square error, given by

RMSE(Q) =
1√
N

√√√√ N∑
i=1

(Ĉ(i)− CQ(i))2.

In this section, we assume the underlier follows a VGSA process, and we construct an optimization problem
to find the parameters which best fit the data. Recall the VGSA process and corresponding asset price is
defined as follows:

ZV GSA(t) = XV G(Y (t);σ, ν, θ) = b(γ(Y (t); 1, ν), σ, θ),

where κ, λ, σ, ν, θ, η are the six parameters defining the model. The characteristic function is given by

EeiuZVGSA(t) = ϕ(−iΨV G(u), t, ν−1, κ, η, λ),
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where ΨV G(u) is the log characteristic function of VG at unit time:

ΨV G(u) = −1

ν
log(1− iuνθ + σ2νu2/2).

We may now define the asset pricing process at time t as

S(t) = S(0)
e(r−q)t+ZVGSA(t)

EeZVGSA(t)
,

where T, r, q are obtained from market information, we must therefore determine the optimal σ, ν, θ, κ, η, λ.
Any derivative-free nonlinear optimization method will suffice in determining a local minima. The images at
the end of this section show the highly nonconvex error landscape for the VGSA naive least squares problem.

The typical least-squares optimization problem is ill-posed. We show a particularly interesting way to
encourage convexity within the minimization functional and thus guarantee the existence of a solution. While
the Black-Scholes model has to be replaced with models with finer structure such as those with jumps [27],
the inverse problem is still ill-posed [65]. Various methods have been proposed which enforce some degree of
stability, but restrict their domain to diffusion models [65,61,42]. Given the calibration problem’s ill-posed
nature, we must define extra criteria to ensure the models market price compatibility. Relative entropy as a
criteria has solid foundations [24]. First we describe the notion of relative entropy.

5.1 Relative Entropy for Lévy Processes

As explained earlier, choosing an arbitrage free pricing model is equivalent to determining some measure
Q satisfying the laws of the measure P under the constraint of being a martingale. There a many ways to
determine the “distance” between these two measures. We will focus on relative entropy, or Kullback Liebler
divergence, which is defined by choosing the distance function f(x) = x lnx so that

ε(Q,P) = EQ
[
dQ
dP

]
= EP

[
dQ
dP

ln
dQ
dP

]
.

Including the above requirement within our optimization problem results in the minimal entropy martingale
measure. The intuition behind this measure Q, or MEMM, is that it satisfies the martingale requirement
while adding the least amount of information to the prior model P. In the case of exponential Lévy models,
the MEMM does not always exist, but we can determine analytically the criterion for its tractability. The
MEMM can also be related to the Escher transform [20]. Further reading on the concept of MEMM can be
found in [33, 56, 23, 30].

The relative entropy between two Lévy processes can be thought of as the disparity of information
contained within them and is thus an effective measure of their distance [17]. Relative Entropy for Lévy
Processes is defined as follows [20]. First, let {Xt}t≥0 be a real-valued Lévy process defined on spaces
(Ω,F ,P), (Ω,F ,Q) with respective characteristic triplets (AP , νP , γP ), (AQ, νQ, γQ). Suppose that Q � P
(PIIS Thm [43]) which implies that AQ = AP , νQ � νP and define A ≡ AQ = AP , then for every time
horizon T ≤ T∞, the relative entropy of Q|FT with respect to P|FT is computed as

ε(Q,P) = ε(Q|FT ,P|FT )

=
T

2A

[
γQ − γP −

∫ 1

−1

x(νQ − νP )dx

]2

IA 6=0 + T

∫ ∞
−∞

(
dνQ
dνP

log
dνQ
dνP

+ 1− dνQ
dνP

)
νP dx. (1)

The relative entropy criterion satisfies the following properties: [59]

1. Convexity: with two probability measures Q1,Q2 both equivalent to P then

ε(αQ1 + (1− α)Q2,P) = EP
[
f

(
d(αQ1 + (1− α)Q2)

dP

)]
= EP

[
f

(
α
dQ1

dP
+ (1− α)

dQ2

dP

)]
≤ αε(Q1,P) + (1− α)ε(Q2,P).
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2. Nonnegativity: ε(P,Q) ≥ 0.

3. ε(Q,P) = 0 ⇐⇒ dQ
dP = 1 a.s..

5.2 Modified Least-Squares Functional

The minimal relative entropy approach was extended to stochastic processes through the weighted Monte
Carlo method by Avellaneda [6] and while Goll and Rüschendorf[34] describe calibration of minimal relative
entropy, they do not propose an algorithm. We follow the method used by Cont and Tankov [20] which
overcomes the shortcomings of the above approaches by defining the calibration problem to include jump
processes and use relative entropy as a regularization criterion instead of a selection criterion. We identify
the Lévy measure ν and volatility σ from observation of liquid call prices. Given adequate information, their
determination is as follows:

1. Determine the risk-neutral density using the Breeden-Litzenberger formula [12]

pX(t) = er(T−t)
∂2

∂K2
C(t, S(t)).

2. Compute characteristic function by Fourier transform of the density pX .
3. σ, ν can be determined from the characteristic function through Fourier inversion

We first construct the norm

‖C‖2w =

∫
C

C(T,K)2w(dT × dK),

where the probability weighting measure w =
∑N
i=1 wiδ(Ti,Ki)(dT × dK) corresponds to the weight of each

individual constraint 1 : N and w is defined on the grid of strikes and maturities C = [0, T∞]× [0,∞). Thus
the quadratic pricing error for Q is

‖Ĉ − CQ‖2w =

N∑
i=1

wi(Ĉ(Ti,Ki)− CQ(Ti,Ki))
2.

The non-linear least-squares calibration problem can be formulated as

‖Ĉ − CQ
∗
‖2w = min

Q∈M∩L
‖Ĉ − CQ‖2w

where the model Q∗ is the least squares solution that minimizes the squared pricing errors between the
model and the market. Q∗ lies in the set of all Lévy martingale measures M∩L. This problem, however,
is ill-posed since we cannot guarantee the existence of a solution, the least-squares functional is non-convex
which prevents any gradient-based algorithm from finding the optimal solution, and it is highly sensitive to
initial conditions.

Since models involving jumps do not always admit a unique measure, integrating prior views into the
calibration procedure allows us to determine some martingale measure that expresses the observed option
prices while maintaining equivalence to the historical measure or the preconceived notions of the investment
manager. In this section we calibrate the problem with respect to a prior model which is the product of
historical prices. Since the calibration procedure is likely to be executed daily, a good choice of prior is the
optimal measure of the last time the calibration procedure was executed.

5.3 Regularization

We enforce uniqueness, existence, and stability into our calibration problem by introducing additional infor-
mation through a prior model P. We aim to find a solution to the least-squares calibration problem which
minimizes the relative entropy with respect to our prior model P. Given two probability measures P and Q
with respective Levy triplets (σ2, γP , νP ) and (σ2, γQ, νQ), we define our regularization term as the relative
entropy of Q with respect to P,

ε(Q,P) =
T

2σ2

[ ∫ ∞
−∞

(ex − 1)(νQ − νP )dx

]2

+ T

∫ ∞
−∞

[
dνQ
dνP

ln
dνQ
dνP

+ 1− dνQ
dνP

]
νP dx
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We follow the approach outlined in [28] for regularization of ill-posed problems and add the minimal relative
entropy ε(Q,P) as a penalization term so that our least squares problem takes the following form:

Jα(Q∗) = min
Q∈M∩L

‖Ĉ − CQ‖2w + αε(Q,P).

If the regularization parameter α is large, the functional becomes convex and approaches the prior which
enforces stability. If α is small, the functional is close to the least-squares problem which enforces precision.
An appropriate choice of regularization parameter is necessary to the accuracy of the solution, as we will see
later. The previous equation, through slight abuse of language, is the regularized minimal entropy martingale
calibration problem (RMEMC).

5.4 Numerical Implementation of RMEMC

As we have shown, the initial calibration problem can be reformulated as an optimization problem deter-
mining the Lévy measure Q∗ representing the minimum value of the regularization problem

Jα(Q∗) = min
Q∈M∩L

N∑
i=1

wi(Ĉ(Ti,Ki)− CQ(Ti,Ki))
2 + αε(Q,P),

which can be solved once we obtain the

1. constraint weights wi,
2. prior measure Q, and
3. regularization parameter α.

Minimization Constraint Weights

The weights within the optimization problem identify our “confidence” in individual market data points.
Options with higher trading volume (higher liquidity) will thus have a better estimation of their respective
prices. As shown in [18], a reasonable solution is to minimize the squared differences between prices with
respect to option vega, which is defined as the derivative of the Black Scholes option price with respect to
volatility:

vega = |Ke−rTN(d−)
√
T |.

After letting each weight be the square reciprocal of vega, our calibration problem becomes

Jα(Q∗) = min
Q∈M∩L

N∑
i=1

(Ĉ(Ti,Ki)− CQ(Ti,Ki))
2

(Kie−rTiN(d−)
√
Ti)2

+ αε(Q,P ).

Determination of Prior Measure

We aim to construct the prior measure automatically from option price data. As we will see, while the
initial prior model determines the speed of convergence, the solution will still converge to optimality regard-
less of our initial choice of prior. For this reason, we let the prior model P for the calibration problem of
determining Qn to be equal to the optimal measure generated previously, ie. P = Qn−1. This gives us the
recursive relation

Jα(Q∗n) = min
Q∈M∩L

N∑
i=1

(Ĉ(Ti,Ki)− CQ(Ti,Ki))
2

(Kie−rTiN(d−)
√
Ti)2

+ αε(Qn,Qn−1).

This is solved using a derivative free gradient based procedure such as Nelder-Mead [9].

Regularization Parameter

The authors of [20] suggest the optimal α be found using the Morozov discrepancy principle [28]. Briefly
described, any parameter choice rule δ 7→ α(δ), as the noise level δ → 0, must satisfy:
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1. α(δ)→ 0,

2. δ2

α(δ) → 0 given exactly attainable constraints,

3. or, δ
α(δ) → 0 if the model does not exactly replicate the data, as is often the case.

The discrepancy principle was developed by Morozov to use on least squares regularization in Banach spaces
[57,58] and it has been shown that such a method of choosing the regularization parameter yields the most
numerically favorable results [68]. Using the assumptions that:

1. The prior model Q∗ is arbitrage free satisfying minimal entropy martingale measure criteria,

2. There exists a solution Q+ to the non regularized problem (MEMC) with finite entropy satisfying fully

attainable constraints, ie ‖CQ+ − Ĉ‖w = 0, and

3. There exists maximum noise level δ0 such that the max error satisfies εmax := infδ≤δ0 ‖CQ
∗−Ĉδ‖2w > δ2

0

Where Cδ0 represents perturbed price data within some noise level δ of Ĉ. Because this noisy data will
not yield a very good solution from MEMC, we need to regularize the problem by defining a family of
regularization operators {Rα}α≥0 where α determines the intensity of the regularization [68]. If α is chosen
appropriately the regularized, noisy problem converges to the MEMC problem admitting an exact solution, ie.
RMEMCα(Ĉδ)→MEMC(Ĉ) as δ → 0. Denote Qδα to be the solution to the noisy problem RMEMCα(CδM )
with regularization parameter α. The RMEMC a priori multivalued discrepancy function is thus

εδ(α) := ‖CQ
δ
α − Ĉδ‖2w.

We place the following constraints on the discrepancy principle. Given two constants c1 and c2 satisfying

1 < c1 ≤ c2 <
εmax

δ2
0

,

the discrepancy principle can be stated as, for a given noise level δ, choose parameter α > 0 satisfying

δ2 < c1δ
2 ≤ εδ(α) ≤ c2δ2.

We aim to find a solution Q of MEMC(Ĉ) with noise level of order δ. We try to solve ‖CQδα − Ĉδ‖2w ≤ δ2.
By sacrificing some precision we gain stability so we pick some constant c ≈ 1+ (e.g. c = 1.1) and search for
the solution Qδα in the level set defined by

‖CQ
δ
α − Ĉδ‖2w ≤ c · δ2,

where the highest stability is achieved when εδ(α) := ‖CQδα−Ĉδ‖2w = c ·δ2 The noise level δ can be computed
directly if the bid and ask prices are known, ie. given:

Ĉδ(Ti,Ki) =
Ĉbid(Ti,Ki) + Ĉask(Ti,Ki)

2
, ∀i = 1 : N,

the noise level is thus:

δ :=
‖Ĉbid + Ĉask‖2

2
.

While the theoretical foundations of using the discrepancy principle are solid, in practice it is unrealistic to
determine the bid-ask spread of the options since liquidity may not offer reliable estimates. Instead, during
the construction of our RMEMC algorithm, we opt for a similar approach of picking the regularization
parameter based upon the size of vega, which as explained earlier is another method of estimating volatility
of the markets. In fact, defining the regularization term as

α = A · |Ke−rTN(d−)
√
T |, for some A > 0

has the advantage of speeding up convergence when the volatility is high and restricting the incorporation
of new market information (noise) when volatility is low. The term A represents the investors preconceived
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notions about the direction or fluidity of the market, and could just be set to 1. For instance, high volatility
suggests that the market is responding to new information, and thus new price movements will likely have
greater impact on the optimal pricing measure than historical price movements. When volatility is low, it
is difficult to distinguish new information from noise, and so the regularization term acts as a dampening
parameter which restricts change in the optimal measure.

Calibration Functional

We first discretize the calibration problem by taking Lévy process P with finite measure [68]:

νP =

M−1∑
k=0

pkδxk(dx),

which satisfies

νQ =

M−1∑
k=0

qkδxk(dx)� νP .

Substituting the above expressions into the RMEMC problem yields, with for simplicity, Q = Qn and
P = Qn−1:

Jα(Q∗) : = ‖Ĉ − CQ‖2w + αε(Q|P)

= ‖Ĉ − CQ‖2w + α

(
1

2A

[
γQ − γP −

∫ 1

−1

x(νQ − νP )dx

]2

IA 6=0 +

∫ ∞
−∞

[
dνQ
dνP

log
dνQ
dνP

+ 1− dνQ
dνP

]
νP dx

)

=

N∑
i=1

(Ĉ(Ti,Ki)− CQ(Ti,Ki))
2

(Kie−rTiN(d−)
√
Ti)2

+
α

2A

(
A

2
+ bP +

M−1∑
j=0

(exj − 1)qj

)2

+ α

M−1∑
j=0

[
qj log

(
qj
pj

)
+ 1− qj

]

Where bP = γP −
∫ 1

−1
xνP (dx) is the drift of the prior P.
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(a) VGSA Error Contour (b) VGSA Error Surface

Figure 4: Naive Least Squares Error Surface

(a) RMEMC Contour (b) RMEMC Surface

Figure 5: Regularized Minimal Entropy Functional

The above images show exactly how nonconvex the naive least squares error surface is. The act of
regularizing the error metric with respect to the minimal entropy martingale measure enforces convexity,
but does not guarantee convexity. That is what the regularization parameter α is for. For α = 0 we obtain
the naive least squares problem. For some α > 0 we obtain a function that is strictly convex, but our
new parameter estimates will become closer to that of the prior measure. Careful choice of α must be
made to ensure existence and stability while also reducing the error of the regularized pricing measure with
respect to that of the prior. Obtaining a new measure with error greater than that of the prior is clearly
undesirable, which will be avoided by limiting the size of α. Ensuring that the pricing error decreases with
use of RMEMC, we may have to settle with partial regions of nonconvexity in the RMEMC surface, but
this can be overcome. A statistical heuristic for determining multiple starting points lends the minimization
problem especially well to parallelization and, combined with the increased convergence rate of RMEMC,
will significantly increase the capacity of finding a global optimum.
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5.5 RMEMC Algorithm

1 data = x l s r e a d ( ’SPY Options ’ , ’ P r i c e s ’ , ’A2 : B69 ’ ) ;
2 K = data ( : , 1 ) ;
3 MPrice = data ( : , 2 ) ;
4 n = length (K) ;
5
6 S0 = 9 0 . 6 9 2 ;
7 T = 0 .194387 ;
8 r = 0 . 0 1 7 9 ;
9 q = 0 ;

10
11 %Determine p r i o r
12 s t a r t = [ 0 −1 −1];
13 opt ions = opt imset ( ’ MaxFunEvals ’ , 1e10 , ’ MaxIter ’ , 1e3 , ’TolX ’ , 1e−5);
14 [ pr io r , ˜ ] = fminsearch (@(b) cal RMSE (b , S0 , K, MPrice , r , q , T ) , . . .
15 s ta r t , opt i ons ) ;
16
17 theta = p r i o r ( 1 ) ;
18 sigma = p r i o r ( 2 ) ;
19 nu = p r i o r ( 3 ) ;
20 %Use v o l a t i l i t y d e r i v a t i v e as weights
21 vega = @(S , T, K, sigma ) (S∗normpdf (1/ sqrt (T)∗ ( log (S . /K ) . . .
22 +1/2∗ sigma ˆ2∗T))∗ sqrt (T) ) ;
23 w = 1./ vega ( S0 , T, K, sigma ) ;
24 alpha = 0 . 0 3 ;
25
26 charvec = [ −50 : 50 ] ;
27 b = zeros ( 1 , 3 ) ;
28 %RMEMC f u n c t i o n a l
29 J = @(b , S0 , K, MPrice , r , q , T) ( cal RMSE (b , S0 ,K, MPrice , r , q ,T, w) ) + . . .
30 alpha ∗Relat iveEntropy ( cf VG ( charvec ,T, r , b ( 1 ) , b ( 2 ) , b ( 3 ) ) , . . .
31 cf VG ( charvec ,T, r , sigma , nu , theta ) ) ;
32
33 [ reg , ˜ ] = fminsearch (@(b) J (b , S0 ,K, MPrice , r , q ,T) , s t a r t , opt ions ) ;
34 C = zeros (1 , n ) ;
35 D = zeros (1 , n ) ;
36 for i =1:n
37 C( i ) = cos VG ( S0 , K( i ) , r−q , T, theta , sigma , nu ) ;
38 D( i ) = cos VG ( S0 , K( i ) , r−q , T, reg ( 1 ) , reg ( 2 ) , reg ( 3 ) ) ;
39 end
40
41 plot (K, C, ’d ’ , K, MPrice , ’ . ’ , K, D, ’ ∗ ’ ) ;

6 Parameter Estimation

In the previous section we obtained deterministically the model which minimizes the error between estimated
and actual market prices. The calibration procedure utilizes cross-sectional instruments while disregarding
time series information. Parameter estimation develops the optimal pricing model in a supplemental fashion
by incorporating historical asset movements. Realistic applications often require sample path generation
of an unknown distribution inferred by some maximum likelihood or sequential Monte Carlo approach.
Maximum likelihood is consistent and guaranteed to converge to the true distribution over time [66]. In
cases of singular noise such as GARCH [29, 10, 21] the likelihood function is available in integrated form.
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For partially observed processes, this is not the case, and a filtering technique is required. Partially observed
processes do not have an explicit integrated density function and so we are forced to utilize the conditional
density by calculating the hidden state (variable) on that day to best describe the observation.

6.1 Filtering

We first give an overview of the concept of filtering. It is an iterative process enabling us to determine model
parameters using historical time-series data. The idea is to construct a transition equation connecting
consecutive hidden states and a measurement equation connecting the hidden state to the observable data.
We first estimate the hidden state at time t a priori using all prior information up to time t − 1. We then
construct a conditional a posteriori estimate using the prior measurement and the current time t observation.
The main concept behind filtering is summarized by the following two steps which are executed recursively.

1. Prediction (time) update: Given observations up to time tk−1, we apply the Chapman-Kolmogorov
equation to determine the best prediction for xk at time tk described by the prior density

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1.

2. Measurement update: Given observation zk we apply Bayes rule to determine the probability of xk
to determine the posterior density

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
.

A simple yet very effective example of filtering is the Kalman filter. First developed for use in control
engineering and signal processing, they have been vital toward the implementation of tracking systems,
navigation, guidance systems, and most notably the trajectory estimation system of the Apollo program.
The traditional Kalman filter is applicable only to linear systems. We will use the extended Kalman Filter
(EKF) which is based upon a first order linearization of the transition and measurement equations which
admits application to nonlinear systems.

6.2 Extended Kalman Filter

The extended Kalman filter is used in the special case where the proposal density p(xk|zk−1) and observation
density p(xk|zk) are nonlinear and Gaussian [44]. They are modeled by a Markov chain built on operators
perturbed by Gaussian noise. We assume a dynamic process xk follows the nonlinear transition equation

xk = f(xk−1, wk),

wk ∼ N(0, Qk).

Suppose a measurement zk follows the observation equation

zk = h(xk, uk),

uk ∼ N(0, Rk).

The terms wk, uk are two mutually independent sequences of uncorrelated normal random variables repre-
senting the process noise and observation noise with covariance matrices Qk, Rk respectively. Define the a
priori estimate of the system given all except the current observation as

x̂k|k−1 = E[xk|xk−1].

Define the a posteriori estimate given all current information as

x̂k|k = E[xk|xk].
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Then, we can define the a priori and a posteriori error covariance matrices as

Pk|k−1 = cov(xk − x̂k|k−1),

Pk|k = cov(xk − x̂k|k).

It is here where the EKF and traditional KF systems differ. We construct a linearization of the transition and
measurement equations; the EKF reduces to the KF when the equations actually are linear. The Jacobian
matrices of the transition equation with respect to the system process, Ak, and system noise, Wk, are defined
as

Aij =
∂fi
∂xj

(x̂k|k−1, 0) and Wij =
∂fi
∂wj

(x̂k|k−1, 0).

Similarly, the Jacobians of the observation equation with respect to system process Hk and measurement
noise Uk are

Hij =
∂hi
∂xj

(x̂k|k, 0) and Uij =
∂hi
∂wj

(x̂k|k, 0).

This gives us the following time update equations for the a priori state estimate and error covariance

x̂k|k−1 = f(x̂k−1|k−1, 0),

Pk|k−1 = AkPk−1A
T
k +WkQk−1W

T
k ,

and measurement update equations for the respective a posteriori variables

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k−1, 0)),

Pk|k = (I −KkHk)Pk|k−1.

The term Kk represents the optimal Kalman gain matrix found by minimizing the mean square error, or the
trace of Pk|k, over all linear estimators

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + UkRkU

T
k )−1.

The Kalman gain corresponds to the mean of the conditional distribution of xk given observation zk.
Because of the first order linearization required by the EKF algorithm, it is known to fail in substantially

nonlinear systems or if the state equations are highly non-Gaussian. An early example of an attempt to
correct this shortcoming was to approximate the posterior by expansion in a prespecified function basis
known as the Gaussian sum filter [2,47]. Several algorithms have been described which use a deterministic
set of points to represent the posterior distribution such as the unscented Kalman Filter (UKF) [45,69]
and Gaussian quadrature Kalman Filter (QKF) [40]. These methods have the advantage of not having
to compute the Jacobian matrix which is often the most computationally expensive step within the EKF
paradigm.

These methods all suffer if the posterior density can be represented by a Gaussian distribution, which
is often not the case. Many attempts at successfully overcoming these limitations require the use of Monte
Carlo methods to represent the posterior by a collection of random points. The uses of Monte Carlo for
filtering of nonlinear processes can be traced to (Gordon et al 1993) [40,36] and were based off sequential
importance sampling (SIS). This technique required simulating samples under some proposal distribution
and then approximating the target distributions by applying appropriately defined importance weights. The
sequential nature of SIS results from, in a nonlinear filtering context, defining the appropriate sequence
of state distributions such that regenerating the sample population upon each new observation becomes
unnecessary. SIS is a method described more generally as particle filtering.

6.3 Particle Filtering

Also known as sequential Monte Carlo (SMC), particle filtering is a recent alternative [5] for parameter
estimation of nonlinear processes by discretizing the continuous density function p(xt|yt). For N sample
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points we obtain a sequence {x(i)
t , w

(i)
t }Ni=1 where w

(i)
t is the weight associated to each particle x

(i)
t at time

t. The expectation with respect to the filter is

Ef(xt) =

∫
f(xt)p(xt|yt)dxt ≈

N∑
i=1

w
(i)
t f(x

(i)
t ).

The first step in filtering is determining the initial value. Our approach is to use the extended Kalman
filter to converge quickly to the prior state value. The optimal proposal distribution is given by the target
distribution

π(xk|x0:k−1, y0:k) = p(xk|xk−1, yk).

In practice, the transition prior is often used as the importance function which yields

π(xk|x0:k−1, y0:k) = p(xk|xk−1).

We associate the signal noise with Rv and the probability function becomes

p(yj,k|xk) =
1√

2πRv,j,j
e
−

(yj,k−Fj(xk))2

2Rv,j,j .

The Monte Carlo approximation of the likelihood at step k is:

lk =

N∑
i=1

p(yk|xi,k)p(xi,k|xi,k−1)

π(xi,k|xi,k−1, yk)
=

N∑
i=1

w
(i)
k .

Then, to estimate the parameters we minimize the negative log likelihood

−
N∑
i=1

log lk.

The SIS method suffers from a major drawback not properly identified until [34]. The importance weights
degenerate over time, known as weight degeneracy. The importance weights of most of the samples of the
target distribution decrease over time to the point where they do not significantly contribute to the process.
The bootstrap filter proposed by [34] solves this issue by regenerating the set of samples with importance
weights above a prespecified threshold and disregarding those below it. This was the first successful attempt
of applying SMC to nonlinear filtering [13]. Since then, various alternatives have been proposed such as the
conditional density propagation (condensation) filter [9], Monte Carlo filter [46] and sequential imputations
[48]. The bootstrap filter, or sequential importance resampling (SIR) samples N draws from the current
set of particles using the normalized weights as individual selection probabilities. Trajectories with small
weights are eliminated, and those with larger weights are replicated. The standard particle filtering algorithm
generally refers to the SIR method.

6.4 Sequential Importance Resampling

As mentioned earlier, to prevent weight degeneracy causing algorithmic divergence [5] we regenerate particles
with higher weight and eliminate those with lower weight. The SIR particle filtering algorithm is described
as follows.

1. Simulate the state from the prior by drawing N samples according to the model

x
(i)
k = f(x

(i)
k−1, u

(i)
k−1), i = 1 : N.

2. Associate the weights for each point by updating the importance function

w
(i)
k = w

(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
k−1, zk)

.
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Letting the proposal distribution π(x
(i)
k |x

(i)
k−1, zk) equal the transition probability p(x

(i)
k |x

(i)
k−1), the

expression simplifies to

w
(i)
k = w

(i)
k−1p(zk|x

(i)
k ).

3. Normalize the weights

ŵk(x
(i)
k ) =

w
(i)
k∑N

i=1 w
(i)
k

.

4. Resample the weights: compare the CDF of the normalized weights to a uniform CDF, if

1

N
(U(0, 1) + j − 1) ≥

i∑
l=1

ŵk(x
(l)
k ),

then increment and skip i, else set the weight ŵk(x
(i)
k ) = 1

N .

Therefore, the best estimate of xk is the conditional expectation

E[xk|z1:k] ≈
N∑
i=1

ŵk(x
(i)
k )x

(i)
k .

6.5 Integrated Densities

For a fully observed process, such as Variance Gamma, its probability density function is available in inte-
grated form. Recall the VG process is defined as

X(t;σ, ν, θ) = θγ(t; 1, ν) + σW (γ(t; 1, ν)),

with log asset price
lnSt = lnS0 + (r − q + ω)t+X(t;σ, ν, θ),

where ω = 1
ν ln(1− θν − σ2ν/2) is the VG martingale correction. Given the following definitions:

xh = zk − (r − q)h− h

ν
ln(1− θν − σ2ν/2),

zk = ln

(
Sk
Sk−1

)
,

h = tk − tk−1

we obtain the integrated VG density function

p(zk|z1:k−1) =
2eθxh/σ

2

ν
h
ν

√
2πσΓ(hν )

(
x2
h

2σ2/ν + θ2

) h
2ν−

1
4

Kh
ν−

1
2

(
1

σ2

√
x2
h(2σ2/ν + θ2)

)
where Kn is the modified Bessel function of the second kind [51].

A partially observed process, such as VGSA, has a density function that is not available in closed form,
therefore we condition on a hidden parameter to determine its conditional density function which is available
in integrated form.
Recall the log asset price following a VGSA process is defined as

d lnSt = (r − q + ω)dt+X(h(dt);σ, ν, θ),

X(h(dt);σ, ν, θ) = B(γ(h(dt), 1, ν); θ, σ)

where the gamma cumulative distribution function is

Fν(h, x) =
1

Γ(hν )ν
h
ν

∫ x

0

e−
t
ν t

h
ν−1dt.
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The gamma time change is modeled by an integrated CIR process so we set

h(dt) = ytdt,

dyt = κ(η − yt)dt+ λ
√
ytdWt.

By conditioning on arrival rate (the hidden parameter) we determine the conditional likelihood function for
VGSA

p(zk|h∗) =
2eθxh/σ

2

ν
h∗
ν

√
2πσΓ(h

∗

ν )

(
x2
h

2σ2/ν + θ2

)h∗
2ν −

1
4

Kh∗
ν −

1
2

(
1

σ2

√
x2
h(2σ2/ν + θ2)

)
for a given arrival rate dt∗ = ytdt and h∗ = yth [39]. In order to give an intuition behind filtering, we follow
the example outlined in [39]. We assume the hidden state (parameter set) evolves linearly, ie.

xt+1 = axt + wt+1,

wt+1 ∼ N(0, λ2), f.s. λ ∈ Θ,

where we assume xt (the prediction of the current state) is given along with the parameter set Θ. Given
observation zt+1 at time t+ 1 we want to estimate xt+1

x̂t+1 = E(xt+1|zt+1).

Assume the model price is given by h(xt+1,Θ) and assume the model price is related to the observation zt+1

by

zt+1 = h(xt+1,Θ) + ut+1,

ut+1 ∼ N(0, σ2), f.s. σ ∈ Θ.

Both λ, σ belong to set Θ so are already known. We now generate M samples for xt+1

x
(i)
t+1 = axt +N(0, λ2) i = 1 : M,

then generate M samples for ut+1

u
(i)
t+1 = yt+1 − h(x

(i)
t+1; Θ), i = 1 : M.

The conditional likelihood function is

L(i) := Likelihood
(
u

(i)
t+1

∣∣∣u(i)
t+1

)
=

exp
(
− (u

(i)
t+1)2

2σ2

)
√

2πσ
,

so the best estimate for xt+1 is

x̂t+1 = E(xt+1|zt+1) =

∑M
i=1 L(i) × x(i)

t+1∑M
i=1 L(i)

.

6.6 VGSA Parameter Estimation via Particle Filtering

Using the integrated density for the VGSA process, we outline the particle filtering algorithm.

1. Initialize the states x
(i)
0 and weights w

(i)
0 for i = 1 : N where N is the number of price points available

in the data.

2. Apply the extended Kalman filter to each state x
(i)
k to obtain the transition update. Define x̂(i) =

κ(η − x(i))∆t. The Gaussian approximation for the observation equation can be written as

zk = h(xk, Bk) = zk−1 + (µ+ ω + θxk)∆t+
√

(θ2ν + σ2)xk∆tBk.
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We then determine the Jacobians as follows:

Aij = (1− κ)∆t,

Wij = λ
√
x(i)∆t,

Hij = θ∆t,

Uij =
√
θ2ν + σ2,

The time update (prior estimate) is

x̂k|k−1 = x
(i)
k + κ(η + x

(i)
k ∆t).

The measurement update (posterior estimate) is

x̂k = x̂k|k−1 +Kk(zk − hk|k−1(x̂k|k−1)),

= x̂k|k−1 +Kk(zk − (zk−1 + (µ+ ω + θ)x̂k|k−1)),

which gives us the simulated state

x̃
(i)
k = x̂

(i)
k +

√
P

(i)
k Z, Z ∼ N(0, 1).

3. We can now calculate the weights

w
(i)
k = w

(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

p(x
(i)
k |x

(i)
k−1, zk)

,

where p(zk|x(i)
k ) is the integrated VGSA density defined earlier, p(x

(i)
k |x

(i)
k−1) = N(x

(i)
k−1 + κ(η −

x
(i)
k−1∆t, λ

√
x

(i)
k−1∆t) and q(x

(i)
k |x

(i)
k−1, zk) = N(x̂

(i)
k ,

√
P

(i)
k ).

4. We then proceed through the rest of the particle filtering algorithm as explained earlier.

The following VGSA particle filter algorithm will determine the log likelihood to be maximimized via some
gradient descent optimization method:

1 function [ l o g l , e s t imates , e r r o r s ] = VGSAPart ic leFi l ter ( l o g s t o c k p r i c e s , . . .
2 mu, N, kappa , eta , lambda , sigma , theta , nu )
3 Npr ices = N;
4 Nsims = 100 ; %Number o f p a r t i c l e s
5 x = zeros (1 , Nsims ) ;
6 xsim = zeros (1 , Nsims ) ;
7 w = zeros (1 , Nsims ) ;
8 u = zeros (1 , Nsims ) ;
9 c = zeros (1 , Nsims ) ;

10 dt = 1/252 ; %Trading days per year
11 eps = 1e−10;
12 Pkk1 = zeros (1 , Nsims ) ; %a p r i o r i e r r o r (Pk|k−1 )
13 Pkk = zeros (1 , Nsims ) ; %a p o s t e r i o r i e r r o r (Pk|k )
14 U = zeros (1 , Nsims ) ; %Gradient o f h WRT measurement no i s e
15 Kk = zeros (1 , Nsims ) ; %Kalman gain
16 W = zeros (1 , Nsims ) ;
17 xhat = zeros (1 , Nsims ) ;
18 xk = zeros (1 , Nsims ) ;
19 omega = log(1− theta ∗nu−sigma ˆ2∗nu/2)/nu ;
20 x0 = 1 ;
21 P0 = 0 .000001 ;
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22 x = x0 + sqrt (P0)∗randn (1 , Nsims ) ;
23 Pkk ( : ) = P0 ;
24 A = 1−kappa∗dt ; %Jacobian WRT system proce s s
25 H = theta ∗dt ; %Gradient o f h WRT measurement no i s e
26 l o g l = 0 ; %Log l i k e l i h o o d
27 e s t imate s = zeros (1 , Npr ices ) ;
28 e r r o r s = zeros (1 , Npr ices ) ;
29 wprev = ones (1 , Nsims ) ;
30 for k=1: Nprices−1
31 z = l o g s t o c k p r i c e s ( k+1)− l o g s t o c k p r i c e s ( k ) ;
32 xh = z−mu∗dt−dt/nu∗ log(1− theta ∗nu−sigma ˆ2∗nu / 2 ) ;
33 x1 sum = 0 ;
34
35 for i =2:Nsims
36 %Simulate the s t a t e v ia extended Kalman f i l t e r
37 %Time update
38 xhat ( i ) = max(eps , x ( i )+kappa ∗( eta−x ( i ) )∗ dt ) ; %p r i o r t r a n s i t i o n update
39 W( i ) = lambda∗sqrt ( x ( i )∗ dt ) ; %Jacobian WRT system no i s e
40 Pkk1 ( i ) = A∗Pkk( i )∗A + W( i ) ˆ 2 ; %p r i o r e r r o r e s t imate
41
42 U( i ) = sqrt ( theta ˆ2∗nu+sigma ˆ2)∗ sqrt ( xhat ( i )∗ dt ) ;
43 %Optimal ga in
44 Kk( i ) = Pkk1 ( i )∗H/( H∗Pkk1 ( i )∗H + U( i )∗U( i ) ) ;
45 %Measurement update
46 xk ( i ) = xhat ( i ) + Kk( i ) ∗ ( z − (mu+omega+theta ∗xhat ( i ) )∗ dt ) ;
47 Pkk( i ) = (1.0−Kk( i )∗H)∗Pkk1 ( i ) ; %P o s t e r i o r e r r o r covar iance matrix
48
49 x1 sum = x1 sum + xhat ( i ) ;
50
51 %Simulate the s t a t e
52 xsim ( i ) = max( xk ( i ) + sqrt (Pkk( i ) )∗randn ( 1 ) , eps ) ;
53 %Calcu la te weights
54 m = xk ( i ) ;
55 s = sqrt (Pkk( i ) ) ;
56 %Normal dens i ty with mean m and stddev s
57 q = 1/( s ∗sqrt (2∗pi ) )∗exp( −0.5∗( xsim ( i ) − m)ˆ2/( s ˆ 2 ) ) ;
58
59 m = x ( i −1) + kappa ∗( eta − x ( i −1))∗dt ;
60 s = lambda∗sqrt ( x ( i −1) ∗ dt ) ;
61 %Normal dens i ty
62 px = 1/( s ∗sqrt (2∗pi ) )∗exp( −0.5∗( xsim ( i ) − m)ˆ2/( s ˆ 2 ) ) ;
63
64 h = dt∗xsim ( i ) ;
65 %Arguments o f Be s s e l f unc t i on
66 Kx = max(eps , 1 . 0 / ( sigma ˆ2)∗ sqrt ( xh ˆ2∗(2∗ sigma ˆ2/nu+theta ˆ 2 ) ) ) ;
67 Knu = max(eps , (h/nu−0 . 5 ) ) ;
68
69 %gammaln/ b e s s e l k r e q u i r e s appropr ia te e r r o r hand le r s omitted here
70 %VGSA i n t e g r a t e d dens i ty
71 pz = 2.0∗exp( theta ∗xh /( sigma ˆ 2 ) ) . . .
72 /(nuˆ(h/nu)∗ sqrt (2∗pi )∗ sigma∗gammaln(h/nu ) ) . . .
73 ∗( xh ˆ2/(2∗ sigma ˆ2/nu+theta ˆ 2 ) ) ˆ ( 0 . 5∗h/nu− 0 . 2 5 ) . . .
74 ∗besselk (Kx, Knu ) ;
75 %weights
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76 w( i ) = wprev ( i ) ∗ pz ∗ px / max(q , eps ) ;
77 end
78 sumweights = sum(w) ;
79 l o g l = l o g l + log ( sumweights ) ;
80 % es t imate s [ i 1 +1] f o r z [ i 1 ] => e r r o r term
81 e s t imate s ( k+1) = l o g s t o c k p r i c e s ( k+1)−( l o g s t o c k p r i c e s ( k ) + . . .
82 (mu+omega+theta ∗x1 sum/Nsims )∗ dt ) ;
83 e r r o r s ( k ) = ( theta ∗ theta ∗nu + sigma∗ sigma )∗ x1 sum/Nsims∗dt ;
84
85 w = w. / sumweights ; %Normalize
86 wprev = w;
87
88 %Resample and r e s e t weights
89 c (1)=0;
90 for i =2:Nsims
91 c ( i ) = c ( i −1) + w( i ) ;
92 end
93 i = 1 ;
94 for j =1:Nsims
95 u( j ) = 1 .0/ Nsims ∗(rand+j −1);
96 while u( j ) > c ( i ) && i < numel ( c )
97 i = i +1;
98 end
99 xsim ( j ) = x ( i ) ;

100 w( j ) = 1 .0/ Nsims ;
101 end
102 end
103 l o g l = − l o g l ;
104 end

7 Optimal Parameter Set

Whether cross-sectional option prices are consistent with the time-series properties
of the underlying asset returns is probably the most fundamental of tests.

- D.S. Bates
The path shown in Fig. 6 will be used for backtesting the calibration and filtering procedures. It was
generated with variance gamma using the following parameters: σ = 0.28, ν = 0.41, θ = 0.1, T = 1, r =
0.1, q = 0 over N = 2520 corresponding to 10 price changes per trading day for one full year. We aim to fit
VGSA to a VG path, here we describe the affect of the extra parameters of VGSA to gain some intuition
behind path behavior.

1. CIR time change process: dyt = κ(η − yt)dt+ λ
√
ytdWt,

2. κ: rate of mean reversion,
3. η: long-term rate of change,
4. λ: volatility of the time change.

For all optimization configurations, we impose non-negativity constraints on the above variables.
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Figure 6: A typical path generated under VG law

7.1 Backtesting RMEMC

We backtest the calibration procedure of section 5 by determining the set of option premiums associated
with a stock following a VG process with arbitrary parameters then try to recover the original underlying
process. Given random initial conditions satisfying nonegativity constraints for σ, ν we begin by calculating
a series of option prices using the asset price at day 1. We use these estimated option prices and the actual
observed option prices to determine the Kullback Leibler divergence between the estimated and actual price
measures. Throughout the algorithm, at the end of each iteration the estimated pricing measure is used
as the regularization prior for the next iteration. Each successive iteration generates the optimal pricing
measure by adding the minimum amount of information to the optimal pricing measure for the previous day.
Figure 7 shows the sum of squares option pricing errors (SSE) of two estimated pricing measures, with either
high or low relative entropy (RE) with respect to the true distribution. The pricing errors are determined
across a range of 30 option premiums calculated each trading day, calculated via Monte Carlo with both the
true pricing measure and the estimated pricing measure.

Relative entropy is approximate since we used Monte Carlo simulation for VGSA. An advantage of using
Monte Carlo to compute option prices as opposed to a transform or PDE method is that way can safely
use out of the money options. While Monte Carlo does not suffer from out of the money price skewness, it
requires high computational power to obtain a satisfactory level of accuracy.

The minimal entropy martingale measure adds a degree of stability to the estimated pricing measure.
Setting the initial condition at time t equal to the optimal parameters of time t − 1 generates the source
of stability, but convergence to the true distribution will take longer depending on choice of regularization
parameter. A sound question is whether to calculate the inter-day pricing measure using information gleaned
from all time-series information of stock since time t = 0. This is similar to a maximum likelihood procedure.
Using only the optimal information from time t−1 we generate the next likely pricing measure as a sequence
of approximating measures to the movement of the asset price. This sequence of approximating measures is
Markovian.
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Figure 7: Performance of two predicted pricing measures where the relative entropy represents its
’distance’ from the true distribution

Beginning the calibration procedure with parallelized gradient descent algorithms iterating over a grid
of initial points yielded the best outcome, similar to that of other global optimization schemes such as
simulated annealing. How do we determine which initial condition has the lowest relative entropy with
respect to the true distribution? The ability of the calibration procedure to converge to the true distribution
is theoretically sound, but in practice it is very slow. In order to make substantial progress we need large stock
price observations, which often is not available. As a stock price changes, so may its underlying distribution,
and so we are effectively chasing the parameters of a dynamic distribution that’s changing faster than the
number of observations allow us to estimate.

Minimal entropy least squares calibration is very effective effective at resisting change in parameters
however. If we manage to obtain the parameters of the true distribution, then for an appropriate choice of
regularization parameter we can take new price movements into account while maintaining close proximity
to the measure which accurately predicted historical prices. The notion of minimizing relative entropy is
mathematically very similar to maximum likelihood. We see in the next section that non-Gaussian time
series information can be accurately characterized via particle filtering, and so a joint method of particle
filtering accounting for option pricing information will likely produce much better results.

7.2 Backtesting the Particle Filter

We backtest the time series parameter estimation approach by first simulating via Monte Carlo a typical
path of a stock following the VGSA process. We then try to recover the original parameters using our
model of section 6. Where the nonzero value of λ may account for the large swings of the estimate asset
path corresponding to smaller swings of the true asset. Recall λ is the volatility of the time change, the
subordination process is what controls the mean reverting behavior of VGSA, and thus larger shifts in the
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subordinator may result in more intense price jumps. The filtering procedure appears to be very sensitive
to volatility, as represented in Figure 8 which shows the true VG path along with the predicted paths.

Figure 8: Estimated and True Asset Paths

7.3 Which one is correct?

We have shown two different methods for extracting model parameters from market information. The cross
sectional approach of least squares estimation of available option premiums should indeed agree with the
parameters obtained from the time-series filtering approach. The filtering approach recovers the statistical
parameter set from time-series information. The least squares calibration procedure recovers risk-neutral
parameter set from cross-sectional information. Figure 9 shows two paths of the VGSA and VG variety using
the parameter sets obtained from times-series and cross sectional data. The estimated path recovered from
time-series information is discounted under the risk-neutral measure.

Figure 9: Cross-sectional (RMEMC) and Time series (particle filter) price paths
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Figure 10: Least Squares/Particle Filter Estimated Option Premiums and Actual Premiums

LS/PF Error: The absolute error between estimated and actual option premiums for a given strike. For each strike,
30 options were calculated, and so the error is absolute average.
LS/PS Abs. Err.: The average absolute error between least squares and particle filter estimated option premiums.
This is, on average, how much the RMEMC and PF algorithms agree.

While it is meaningless to directly compare the optimal parameters from particle filtering and least squares
calibration, we can measure the discrepancy between their estimated option premiums. Since RMEMC
estimated option premiums do not have to be discounted but PF estimated option prices do, a simple
modification to the Monte Carlo pricing algorithm can compare the estimated prices from both. We can
see in Figure 10, that these algorithms do in fact agree on their estimated option premiums. Interestingly,
the VG estimated prices from RMEMC and PF agree with each other more than they agree with the actual
option prices. Much of this error is due to Monte Carlo. It is difficult to determine the effect on Monte Carlo
pricing error on these estimates, it is however safe to assert that these methods do in fact agree with each
other.

7.4 Future Work

While both RMEMC and particle filtering yield parameter sets that agree with each other quite well, they
are both very sensitive to initial conditions, and are restricted to the behavioral capacity of the stochastic
process upon which we are modeling. This could be overcome if we can construct a filtering algorithm which
does not rely on an explicit density function. Bates [7] shows that direct filtration of latent affine processes
is feasible.

Direct Filtration using the Conditional Characteristic Function

Basic affine jump diffusion processes have the form

dZt = κ(θ − Zt)dt+ σ
√
ZtdBt + dJt,
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for t ≥ 0, Zt ≥ 0. Analysis of transform techniques for asset pricing using variations of this model have
been studied in Duffie, Pan, Singleton (2000). Processes for which the conditional characteristic function is
exponentially affine in yt are represented by

F (U, V |xt) = exp (C(U, V ) +D(U, V )xt) .

The time update equation then becomes in terms of the conditional characteristic function

F (U, V, z, x|t) = exp
(
C(U, V )Gt|t [D(U, V )]

)
,

where Gt|s is the moment generating function of xt conditional on the first s observations. The measurement
update equation can also be written in terms of F (U, V, z, x|t). The likelihood function becomes

L1|T =

T−1∏
t=0

1

π

∫ ∞
0

R
{

exp[C(iU, 0)− iUzt+1]Gt|t[D(iU, 0)]
}
dU.

We are able to provide direct filtration of any process which has an analytical conditional characteristic
function.

Subordination of Levy Processes

The following is due to Sato [64]. Let {Zt} be a subordinator (an increasing real-valued Lévy process)
with Lévy measure ρ, drift β0 and PZ1

= λ, for instance,

E[e−uZt ] =

∫
[0,∞)

e−usλt(ds) = etΨ(−u), u ≥ 0,

where for any complex w s.t. R(w) ≤ 0,

Ψ(w) = β0w +

∫
0,∞

(ews− 1)ρ(ds),

with

β0 ≥ 0 and

∫
(0,∞)

(1 ∧ s)ρ(ds) <∞.

Let {Xt} be a Lévy process on Rd independent of {Zt} with generating triplet (A, ν, γ) and let µ = PX1
.

Define
Yt(w) = XZt(w)(w), t ≥ 0.

Then, {Yt} is a Lévy process on Rd where

P [Yt ∈ B] =

∫
[0,∞)

µs(B)λt(ds), B ∈ B(Rd) (Banach space)

and
Eei(z,Yt) = etΨ(log µ̂(z)), z ∈ Rd.

The generating triplet (A#, ν#, γ#) of {Yt} is defined as

A# = β0A,

ν#(B) = β0ν(B) +

∫
(0,∞)

µs(B)ρ(ds), B ∈ B(Rd/{0}),

γ# = β0γ +

∫
−(0,∞)ρ(ds)

∫
|x|≤1

xµs(dx).

{Xt} is transformed to {Yt} by subordination using the subordinator (or directing process) {Zt}.
The question remains whether an implicit Lévy measure can be determined via direct particle filtering.

This would certainly increase the accuracy of the pricing model, while the affect on generalizability remains
uncertain. Another question is can we converge to the optimal density function using a sequence of subor-
dinators? This eliminates the need for an explicit Lévy measure, and however computationally expensive it
may be, the sequence can be truncated to obtain a desired level of accuracy.
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8 APPENDIX

8 Appendix

8.1 Stochastic calculus

Here we give a brief overview of stochastic calculus as it applies to finance. We define the notion of prob-
ability theory, Brownian motion, Ito calculus, and how they allow us to describe the stochastic processes
relevant to asset pricing.

Theory of Infinite Probability Spaces

Definition: Let Ω be a nonempty set, let F be a collection of subsets of Ω. F is a σ-algebra of Ω iff:

1. The empty set ∅ is in F ,
2. For any A ∈ F , its complement Ac ≡ Ω/A ∈ F also, and
3. A sequence of sets An ∈ F implies their union

⋃∞
n=1An ∈ F .

Definition: A probability measure P is a function which, to every set A in the σ-algebra F , assigns a value
from [0, 1], written as P(A) and is the combined probability of every event in set A of occurring. It satisfies:

1. P(Ω) = 1, and
2. Given a sequence An of disjoint sets in F ,

P
∞⋃
n=1

An =

∞∑
n=1

P(An).

The probability of a sequence of events is equal to the sum of the probabilities of each individual event,
provided they are disjoint. We refer to (Ω,F ,P) as a probability space.

Definition: Given probability space (Ω,P,F), a random variable is a function X : Ω → R such that
for every Borel subset B ∈ R, the set

{X ∈ B} = {ω ∈ Ω;X(ω) ∈ B}

is in the σ-algebra of F , where ω is a single event in Ω. The expectation of a random variable X can be
computed as follows:

EX =
∑
ω∈Ω

X(ω)P(ω) =

∞∑
n=1

X(ω)P(ω)︸ ︷︷ ︸
1

=

∫
Ω

X(ω)dP(ω)︸ ︷︷ ︸
2

,

where,

1. for all ω 6∈ Ω we assign probability 0,
2. is the Lebesgue integral over set Ω with respect to the probability measure P.

On a random variable X whose expectation is defined, its variance, average squared distance from the mean,
or second central moment is

Var(X) = E[(X − EX)2] = E[X2]− [EX]2.

Given another random variable Y , the covariance of X and Y is

Cov(X,Y ) = E[(X − EX)(Y − EY )] = E[XY ]− EX · EY.

If the variances of X and Y are both nonzero, their correlation coefficient is defined as

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
.

53



8.1 Stochastic calculus 8 APPENDIX

Let us consider an outcome of 3 coin tosses, where one unit of time represents one flip. We can model this
by the following tree

. time t=0 t=1 t=2 t=3

∅

T

TT
TTT

TTH

TH
THT

THH

H

HT
HTT

HTH

HH
HHT

HHH

Then the σ-algebras Ft at time t follow

t=0: F0 = {∅,Ω}
t=1: F1 = {∅,Ω, H, T}

t=2: F2 =

{
∅,Ω, H, T,HH, TT,HT, TH,HHc, TT c, HT c, THc,

HH ∪ TT,HH ∪ TH,HT ∪ TH,HT ∪ TT

}
Where HHc = HT ∪TH∪TT is the complement of HH. This sequence of σ-algebras is known as a filtration.
A filtration has the property that for any s ≤ t the sets in Fs are also in Ft. It can also be thought of as
the accumulation of information as time advances. Given what has already happened, a filtration will also
tell us what can and cannot happen. For instance, if at t = 1 our coin lands on heads, we know that at time
t = 2 the only feasible sets are {HH,HT}. In probability, information is measured in terms of σ-algebras.

Measurability

Given a σ-algebra H, a random variable X is H-measurable iff the set {X ∈ B} = {ω ∈ Ω;X(ω) ∈ B}
is in H for every Borel set B ∈ R. This means that the information in H is sufficient to determine the
value of X(ω). Conversely, if the information contained within H is irrelevant to the calculation of X, we
say X is independent of H. Often times we encounter a random variable only partially dependent on this
information, at which point we use the information in H to estimate the value of X, called the conditional
expectation and denoted E[X|H].

Definition: Let F(t), 0 ≤ t ≤ T be a filtration of sub-σ-algebras of F on probability space (Ω,F ,P). A se-
quence of random variables X(t) is an adapted stochastic process if for every t ∈ [0, T ], X(t) is Ft-measurable.

Consider a filtration as being the flow of public information and the value of a stock or portfolio as be-
ing an adapted stochastic process. We may estimate the value of the process based on the information we
have at the time. This brings us to two very important types of adapted stochastic processes: the martingale
and the Markov process.

Definition: Let F(t), 0 ≤ t ≤ T be a filtration of sub-σ-algebras of F on probability space (Ω,F ,P).
An adapted stochastic process M(t) is a martingale if it satisfies:

E[M(t)|F(s)] = M(s) ∀ 0 ≤ s ≤ t ≤ T,

where the expectation is constant over time. Given the information available at time s, the expected value
of a martingale M(t) at time t ≥ s is equal to the value of the martingale at time s. A martingale has no
tendency to rise or fall. Extending the definition of martingale yields
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1. A submartingale has no tendency to fall, may have tendency to rise, and ∀ 0 ≤ s ≤ t ≤ T satisfies

E[M(t)|F(s)] ≥M(s).

2. A supermartingale has no tendency to rise, may have tendency to fall, and ∀ 0 ≤ s ≤ t ≤ T satisfies

E[M(t)|F(s)] ≤M(s).

Definition: Let F(t), 0 ≤ t ≤ T be a filtration of sub-σ-algebras of F on probability space (Ω,F ,P). Given
an adapted stochastic process X(t), assume that for all 0 ≤ s ≤ t ≤ T and every Borel-measurable function
f ≥ 0, there exists another Borel-measurable function g such that

E[f(X(t))|F(s)] = g(X(s)),

then X(t) is a Markov process. A Markov process is often labeled as ‘memoryless’ in that having past in-
formation yields no greater benefit in predicting future values than having just the current value does. The
estimate of f(X(t)) at time s depends only on the value X(s) and is independent of path of the process
before s.

Brownian Motion as a Scaled Random Walk

We now define another stochastic process at the heart of many models of finance. We obtain the definition
of Brownian motion through the limit of scaled random walks. Consider a sequence of random variables Xj

representing successive flips of a fair coin and defined by

Xj =

{
1 if ωi = H

−1 if ωi = T,

where ωi is the result of the coin on the ith flip. Then a random walk Wj is defined as

Wj =

j∑
i=1

Xi, ∀j.

The value of Xj determined by an independent coin flip implies that Xi |= Xj , ∀i 6= j. The fair coin flip
implies the random walk is symmetric in that the probability of increasing or decreasing are equal. The
increments of a random walk are random variables defined by

Mj1 = (Mj1 −Mj0),

. . .

Mjn = (Mjn −Mjn−1),

and are independent of each other. It is clear that a symmetric random walk has increments satisfying
E[Mjn −Mjn−1

] = 0. Moreover, the variance of each increment satisfies

var[Mjn −Mjn−1
] = jn − jn−1.

This brings us to an important property.

Proposition: The symmetric random walk is a martingale.
Proof: For any positive integers s < t, the conditional expectation satisfies:

E[Mt|Fs] = E[(Mt −Ms) +Ms|Fs]
= E[Mt −Ms|Fs] + E[Ms|Fs]
= E[Mt −Ms] +Ms

= 0 +Ms = Ms �
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If we consider a random walk over n time steps, then as we let n→∞ while keeping the size of the interval
the same, its distribution converges to the normal distribution, which is exactly that of a Brownian motion.

Definition: Define probability space (Ω,F ,P). A continuous function W (t) satisfying W (0) = 0 with
independent, normally distributed increments is a Brownian motion if

E[Wjn −Wjn−1 ] = 0, and

var[Wjn −Wjn−1 ] = jn − jn−1.

Brownian motion satisfies the martingale property. This holds by the exact same logic as that of the sym-
metric random walk.

Proposition: A Brownian motion W (t) is a Markov process.
Proof: To show that there exists a Borel-measurable function g s.t. E[f(W (t))|Fs] = g(W (s)) we first write

E[f(W (t))|Fs] = E[f((W (t)−W (s)) +W (s))|Fs].

Then, noting that the increment W (t) −W (s) is independent of Fs and normally distributed with mean 0
and variance t− s, we replace W (s) with dummy variable x and define

g(x) = Ef(W (t)−W (s) + x)

=
1√

2π(t− s)

∫ ∞
−∞

f(w + x) exp

{
− w2

2(t− s)

}
dw.

Replacing x with W (s) we see that g(W (s)) holds. �
A remarkable property of Brownian motion is that it accumulates quadratic variation at a rate of one

per unit time, which we write as
dW (t)dW (t) = dt.

A consequence of this is that for any interval of time T , partitioning the interval into infinite steps such that
the length of each interval ‖Ti‖ → 0 we find that the quadratic variation of Brownian motion within the
interval is equal to the length of the interval itself. Moreover, Brownian motion satisfies:

dW (t) = dt, dtdt = 0.

8.2 Ito calculus

Named after Kyoshi Ito [41], Ito calculus is a generalization of calculus through which the integrands and
integrators become stochastic processes. Let W (t) be a Brownian motion with filtration Ft and let ∆(t) be
an adapted stochastic process. The Ito integral, defined by

I(t) =

∫ t

0

∆(u)dW (u),

has the following properties

1. Continuity: The paths of I(t) are continuous
2. Adaptivity: I(t) is Ft-measurable for each t
3. Martingale: I(t) is a martingale (constant expectation for all t)

4. Ito isometry: EI2(t) = E
∫ t

0
∆2(u)dW (u)

5. Quadtratic variation: [I, I](t) = E
∫ t

0
∆2(u)dW (u)

and is defined in differential notation as dI(t) = ∆(t)dW (t). The Ito integral is a stochastic adaptation of
the Reimann-Stieltjes integral. Since I(t) is a martingale and I(0) = 0 then EI(t) = 0 ∀ t. The variance of
the Ito integral is given by Ito’s isometry

EI2(t) = E
∫ t

0

∆2(u)du.
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Its quadratic variation up to time t is denoted by

[I, I](t) =

∫ t

0

∆2(u)du

and is captured in differential notation as

dI(t)dI(t) = ∆2(t)dW (t)dW (t) = ∆2(t)dt.

An Ito process is of the form [67]

X(t) = X(0) +

∫ t

0

∆(u)dW (u) +

∫ t

0

Θ(u)du ≡ dX(t) = ∆(t)dW (t) + Θ(t)dt

where ∆(u),Θ(u) are adapted stochastic processes as X(0) is nonrandom. The accumulated quadratic
variation over an interval [0, t] is

[X,X](t) =

∫ t

0

∆2(u)du,

equivalently,

dX(t)dX(t) = ∆2(t)dW (t)dW (t) + 2∆(t)Θ(t)dW (t)dt+ Θ2(t)dtdt = ∆2(t)dt.

Consider two Ito processes X,Y with differentials:

dX(t) = Θ1(t)dt+ σ11(t)dW1(t) + σ12dW2(t),

dX(t) = Θ2(t)dt+ σ21(t)dW1(t) + σ22dW2(t),

where W1(t),W2(t) are independent Brownian motions. Multiplying the above yields

dX(t)dX(t) = (σ2
11(t) + σ2

12(t))dt,

dX(t)dY (t) = (σ11(t)σ21(t) + σ12(t)σ22(t))dt,

dY (t)dY (t) = (σ2
21(t) + σ2

22(t))dt.

The multidimensional Ito formula shows that, given a function f(t, x, y) with time t and dummy variables
x, y, its differential satisfies

df(t,X(t), Y (t) = ft(t,X(t), Y (t))dt+ fx(t,X(t), Y (t))dX(t) + fy(t,X(t), Y (t))dY (t)

+
1

2
fxx(t,X(t), Y (t))dX(t)dX(t) + fxy(t,X(t), Y (t))dX(t)dY (t) +

1

2
fyy(t,X(t), Y (t))dY (t)dY (t),

which is just the Taylor expansion of f omitting the terms with differentials dX(t)dt, dY (t)dt as these are
0. If we eliminate Y (t) from the function we are left with the one-dimensional Ito formula

df(t,X(t)) = ft(t,X(t))dt+ fx(t,X(t))dX(t) +
1

2
fxx(t,X(t))dX(t)dX(t).

If we define f(t, x, y) = xy we obtain Ito’s product rule

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t).

Using Ito’s formula, we now derive the Black-Scholes PDE [67].

Black-Scholes PDE

Define the underlier S(t) by a geometric Brownian motion

dS(t) = αS(t)dt+ σS(t)dW (t).
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Define c(t, S(t)) to be the price of a European call with underlier S(t) and strike K paying (S(T )−K)+ at
expiration. If we sell this call at time t = 0 for X(0) = c(0, S(0)) to obtain initial capital X(0) we invest in
a money market account paying constant interest r and given ∆(t) shares of S(t) the portfolio differential
becomes

dX(t) = ∆dS(t) + r(X(t)−∆(t)S(t))dt.

Equating the differential of the discounted (risk-neutral) portfolio e−rtX(t) and the discounted call price
e−rtc(t, S(t)) we obtain the delta-hedging rule

∆(t) = cx(t, S(t)),

and the Black-Scholes PDE

ct(t, x) + rxcx(t, x) +
1

2
σ2x2cxx(t, x) = rc(t, x).

The solution to this PDE will be the call price of the option, c(t, S(t)). It must satisfy the boundary
conditions

c(T, x) = (x−K)+, c(t, 0) = 0, and lim
x→∞

[
c(t, x)− (x− e−r(T−t)K)

]
= 0.

The solution is the Black-Scholes price of a European call defined as

c(t, x) = xN(d+(T − t, x))−Ke−r(T−t)N(d−(T − t, x)),

with

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r ± σ2

2

)
τ

]
.

8.3 Infinitely Divisible Distributions

The most general type of process represented in this paper is the Lévy process. Named after French mathe-
matician Paul Lévy, a Lévy process is a stochastic process with independent, stationary increments; it can
be represented most simply as the continuous time version of the random walk [8].

Take the discrete random walk and construct a continuous time process whose unit interval is divided
into n equal lengths which at time t = 1 has distribution D. The increments of this process are independent
from the distribution D(n):

Y
(n)
t =

btnc∑
j=1

C
(n)
j , with C

(n)
j

i.i.d∼ D(n).

If we let n→∞ then this process converges to a Brownian motion, which satisfies our results in the previous
section. All distributions for which this construction holds are those for which D is infinitely divisible. These
are Lévy processes.

Definition: a cadlag stochastic process Y = {Yt}t≥0 with Y0 = 0 is a Lévy process iff it has indepen-
dent and strictly stationary increments.

The cadlag criteria literally means ‘continu á droite, limites á gauche’ and translates to right continuous
(lim
s↓t

Ys = Yt) with left limits (Yt− = lim
s↑t

Ys). The stationarity assumption ensures that the distribution

of any increment Yt+s − Yt may change with s but does not depend on t. Combined with the assumption
that all increments are independent from each other implies that the Lévy process is fully governed by the
cumulant function of Yt

CYt{θ} = log [E exp{iθYt}] = t log [E exp{iθY1}] = tCYt{θ}.

This shows that the distribution of Yt depends only on the value of the process at time t = 1.
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Lévy-Khintchine Representation

The Lévy-Khintchine representation for Lévy processes with increments on the entire real line required
the following developments. The Lévy measure must be allowed to have support on the real line but exclude
the possibility that the measure has an atom at zero. We imagine that an independent Brownian motion is
added to the process. With a ∈ R, σ ≥ 0 and the Levy measure ν satisfying:∫

R
min{1, y2}ν(dy) <∞, and ν has no atom at zero. (8.3.1)

Then, the Lévy-Khintchine representation for Lévy process Y in terms of its cumulant function is:

CY1{ζ} = aiζ − 1

2
σ2ζ2 +

∫
R

(
eiyζ − 1− iyζIy∈[−1,1]

)
ν(dy).

Lévy processes can be fully represented by a characteristic triplet (a, σ2, ν) with drift a, variance of the
diffusion component (Brownian motion) σ2 and Lévy measure ν satisfying (8.3.1). Processes such that ν = 0
do not have jumps and are instead a Brownian motion with drift. Processes such that σ = 0 are of pure
jump variety such as variance gamma. All Lévy processes can be decomposed into the sum of a drift a, a
Brownian motion Wt, and an independent pure jump process Lt:

Yt = at+ σWt + Lt

Lévy-Ito decomposition

Further more, any Lévy process can be decomposed into a Brownian motion with drift, a compensated
jump process with jump sizes less than ε, and a jump process with jump sizes greater than or equal to ε. 1

Definition: Levy-Ito representation. Let L be a Levy process with Levy measure ν then L has the following
representation:

Lt = at+ σWt +

∫ t

0

∫
R
y{N(dy, ds)− Iy∈[−1,1]}ν(dy)ds

where Wt is a Brownian motion and N is a Poisson basis on R> × R independent of Wt and with measure
ν(dy)dt. We may define the average number of jumps per unit time λ =

∫
ν(dx) < ∞ then Xt is of finite

activity and can be used to describe the distribution of jump sizes:

µ(dx) =
ν(dx)

λ
.

Then, Xt is a compound Poisson process. The truncation of small jumps can be omitted from the Lévy-
Khintchine representation which becomes

EeizXt = exp

{
t

[
− z2σ2

2
+ iγ0z +

∫ ∞
−∞

(eizx − 1)ν(dx)

]}
.

We turn our attention to exponential Lévy models which have the form:

St = ert+Xt

where there exists a measure Q under which St is a martingale. Here r denotes the interest rate and Xt has
characteristic triplet (σ, γ, ν) upon which the constraint

ϕ(1) = 0 ⇐⇒ γ = γ(σ, ν) = −σ
2

2
−
∫

(ey − 1− yI|y|≤1)ν(dy)

1 The alternate form for the Lévy-Ito decomposition is:

Lt = at+ σWt +

∫
{|y|<ε}

y (Nt(dy) − tν(dy)) +

∫
{|y|≥ε}

y (Nt(dy))

Where Nt(dy) =
∫ t
0 N(dy, ds)
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is imposed since the process e−rtSt = eXt is a martingale. A profound consequence is that the entire Lévy
process simply corresponds to different parameterizations of its Lévy measure. The Lévy measures for some
processes used in this paper are now shown. The measure for VGSA is not available in closed form.

Variance gamma:

dν(x) = k(x)dx,

k(x) =
e−λpx

νx
Ix>0 +

e−λn|x|

ν|x|
Ix<0,

λp =

(
θ2

σ2
+

2

σ2ν

) 1
2

− θ

σ2
,

λn =

(
θ2

σ2
+

2

σ2ν

) 1
2

+
θ

σ2
.

CGMY:

k(x) = C
e−Gx

x1+Y
Ix>0 +

e−M |x|

|x|1+Y
Ix<0,

where it is easy to see that CGMY can be reduced to variance gamma.

8.4 The Characteristic Function

The characteristic function of a random variable X is the Fourier transform of the probability density function
p(x) and defined as:

ϕ(ν) = EeiνX =

∫ ∞
−∞

eiνxp(x)dx

=

∫ ∞
−∞

p(x)dx+ iν

∫ ∞
−∞

xp(x)dx+
1

2
(iν)2

∫ ∞
−∞

x2p(x)dx

=

∞∑
k=0

(iν)k

k!
E[Xn]

where E[Xn] = i−n d
dνnϕ(ν)

∣∣∣
ν=0

is the n-th moment of random variable X. Fully identified by its character-

istic function, a random variable’s cumulative distribution can be written as

F (x) =
1

2
+

1

2π

∫ ∞
−∞

eiνxϕ(−ν)− e−iνxϕ(ν)

iν
dν

and its density function can be found by Fourier inversion

p(x) =
1

2π

∫ ∞
−∞

e−iνxϕ(ν)dν =
1

π

∫ ∞
0

e−iνxϕ(ν)dν.

For example, given the normal probability density function with mean µ and variance σ2,

pN (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,

its characteristic function can be determined:

ϕN (ν) =

∫ ∞
−∞

eiνxpN (x)dx = eiµνe−
1
2σ

2ν2

.

Similarly, given the gamma probability density function with shape k and scale θ,

pΓ(x) =
xk−1e−

x
θ

θkΓ(k)
,
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where Γ(k) is the gamma function, its characteristic function is

ϕΓ(ν) = (1− iνθ)−k.

Since the characteristic function completely determines all information about the probability distribution of
a stochastic process, we use it as an alternate analytical route for deriving numerical solutions.
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