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Abstract

Classical statistical theory offers validity under restricted assumptions. However, in
practice, it is a common approach to perform statistical analysis based on data-driven
model selection [1], which guarantees none of results of classical statistical theory. Those
results include hypothesis testings and confidence intervals which are useful tools of mea-
suring fitness of models. Considering that too much information about the true model
of the datasets is unknown,we are unable to perform any testing before model selection.
However, we are still interested in identifying how well the model we select fits the data,
which leads to the problems of testing after model selection.

In this paper, we discuss the robustness in testing after model selection of the lasso.
Lasso, as a relatively new estimation procedure, have not been thoroughly explored yet.
Especially when working in practice, one may intend to assure that the lasso model he
or she chooses is the appropriate one within the assigned significance level.In the last
decades, a few papers have been working on the testing problems of the lasso. Among
those papers, we choose [2] as a reference paper and prove some of the lemmas of [2] with
details. The lemmas help us to understand the properties of the test statistic derived in
the paper, named covariance test statistic, and its asymptotic distribution under the null
hypothesis. We also determine the exact stoping time for selecting the variables during
the second step of the LARS algorithm. The exact stopping time allows us to propose
a new LARS algorithm that is robust to the presence of outliers, by using Kendall’s τ
correlation coefficient. We mimic the successive feature of the famous LARS algorithm
and use the exact stopping time to select the second explanatory variables.

Additionally, we propose a new test statistic that tests whether the selected variables
are contained in the support of true model. The test statistics compares the covariance
between the model selected before the stopping time and the model that includes an
additional feature, in terms of Kendall’s τ correlation coefficient. Furthermore, we find
a connection of our new test statistic with the Wilcoxon ranked-sum test and use that
connection to study its distribution properties. The analysis is complicated by the intri-
cate dependencies present in the proposed test statistic. We conjecture that the new test
statistic has asymptotically rescaled normal distribution under the null. We also design
a simulation to illustrate the finite sample properties of our new test statistic. We ob-
serve that the finite sample behavior shows better stability in comparison to the existing
covariance test statistic.
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1 Introduction

We consider the usual setup of linear regression problem for an observed vector y and a
matrix of explanatory variables X.

y = Xβ∗ + ε, y ∈ Rn, X ∈ Rn×p, and β∗ ∈ Rp, (1)

where ε is a vector of n entries of standard normal distribution. β∗ is the vector of unknown
coefficients which we intend to estimate through model selection. Usually in linear regression
problems, we deal with the case that n > p. However, the case that n < p is possible in
practical problems. We mainly focused on the usual case in this paper and will discuss how
the inequality between n and p changes our result in the last section. The estimators of β∗

have distinct properties according to the distinct models we choose.
Considering that modern statistics deals with large and complex datasets, we are more

interested in high-dimensional statistical analysis and problems with sparse models. Sparse
models assume that the number of nonzero coefficients in the coefficient vector, β∗, is much
smaller than the sample size n. That is, if we denote the corresponding explanatory variables
to the nonzero coefficients as supp(β∗), we have n� supp(β∗) as the true model. We wonder
how well model selection can perform as a tool to solve such problems within high-dimensional
statistical setting and how well different methods can be applied.

Notice that the goal here is to estimate the unknown sparse vector β∗ using observed
dataset {y,X}. An usual approach is Ordinary Least Square(OLS) which minimizes the sum
of squares of errors ε. That is,

β̂ols = arg min
β

n∑
i=1

ε2
i = arg min

n∑
i=1

(yi −
p∑
j=1

β∗j xij)
2. (2)

While we intend to obtain sparsity in the estimated vector of coefficients, a lot of statistical
methods are chosen such as Ordinary Least Squares(OLS), lasso, and Least Angle Regression
(LARS). The first method, OLS, succeeds in low-dimensional setting with p ≤ n by providing
a consistent and unbiased estimators. However, it fails to offer a sparse vector β̂ in high
dimensional setting [3]. The later two methods, lasso [3] and LARS [4], shrink the value of
estimators and use certain thresholds, making sparsity more accessible. The lasso estimators
are defined as

β̂lasso = arg min
β

n∑
i=1

(yi −
p∑
j=1

β∗j xij)
2 + λ‖β∗‖. (3)

where λ is called the tuning parameter and controls the number of sparse elements to be
present in the estimator β̂lasso.

However, besides the sparsity in the true coefficient vector β∗, the unknown covariance of
the high-dimensional dataset makes direct OLS an impossible approach. Therefore, we focus
on the other two model selection methods, lasso [3] and LARS [4] which include penalties
during the minimization process and control the sparsity in estimators of β∗.

Though compared with OLS solutions, lasso controls better in sparsity of the solution, it
only works under appropriate conditions and limitations of the explanatory variables. When
proper assumptions are missing, lasso fails to offer consistent solutions [5].The appropriate
conditions are Irrepresentable Condition [6] and Restricted Eigenvalue Condition [7]. The
former is restricting the empirical column correlation in the design matrix X, and is not
verifiable in any given dataset because the empirical column correlation depends on the
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unknown sparsity of the true regression parameter β∗. The later is restricting the variation
in the sample covariance matrix. However, these two restricted conditions are highly unlikely
to be fulfilled in practical problems. We wonder how well lasso estimators performed in
practice and how to use lasso estimators to design tests for the purpose of studying the
existence of sparsity.

Since only under restricted conditions we can obtain sparsity in the lasso estimators,
it is even more necessary for us to test if the set of variables selected fits our expectation
of the sparse model, which leads to the problem of testing after model selection. Testing
after model selection or with model selection in mind, is a new frontier in high dimensional
statistics which allows us to understand more about the methods and how well the methods
are performing. [7]

Several obstacles for testing after model selection are difficult to overcome. One is how
to precisely measure the difference between our ideal selection and the resulted selection.
Second is how to correctly design the test statistic and provide results based on asymptotic
distribution of the test statistic. Third is, even we succeed in setting the difference and in
comparing the results, how we can improve the selection process of the sparse model to make
our method works better. These are all open questions that worth working on.

Traditional statistical tests, like simple linear regression slope test and Durbin-Watson
test, do not apply easily considering the shrinkage property of the lasso and LARS unless
the selected model is the correct model. However, in high dimensional problems, existence
of one true sparse model is questionable and not sustainable often. So it is undeniable that,
before testing if the sparse model is true, we are also interested in testing whether there is a
sparse model to begin with. When n � p, this question if a sparse model exists cannot be
answered easily.

In this thesis, we first aim to understand the proposed method of [2] and its connections
with the famous LARS algorithm. Moreover, we introduce a new LARS algorithm and a
new test statistic. The new algorithm is designed to detect non-linear correlations between
observed vector y and matrix X. It is also believed to improve the existing state of the
art. The new test statistic is related to Wilcoxon ranked-sum test of nonparametric samples,
seeming to perform powerfully in detecting deviations from sparsity.

The thesis is organized as follows. Section 2 defines the lasso and LARS estimators and
introduces the famous LARS algorithm. Section 3 proves two lemmas in [2] with details and
introduces the new conditional inference idea of [2]. Section 4 and 5 propose the new LARS
algorithm using Kendall τ correlation coefficient and study the distribution properties of τ
defined in Section 5. In Section 6, we implement the proposed test statistic and perform
simulations to show its good empirical properties. Lastly, Section 7 summarizes the paper
and discusses about more open questions and possible forms of test statistic.

2 LARS Algorithm

Given the linear model with the error term ε, we assume that each entry of ε is normally
distributed with mean zero and standard deviation one such that

y = Xβ + ε. (4)

In practical problems, we intend to figure out how a small change in X would affect the
change in y, which leads to the problem of solving the estimated value of β∗. By minimizing
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the sum of squares of error, we obtain the OLS estimators β̃OLS.

β̃ols = (XTX)−1XT y.

Additionally, we can obtain the lasso estimator β̂lasso.

β̂lasso = arg min
β

n∑
i=1

(yi −
p∑
j=1

β∗j xij)
2 + λ‖β∗‖. (5)

for a tuning parameter λ.
Motivated by OLS and properties of the lasso, Efron and Tibshirani [4] derived a new

estimation process and named the method as Least Angle Regression(LARS). In order to
improve properties of OLS, LARS is built on an iterative evaluation of the correlation between
y and residuals at each step. However, LARS performs poorly when the explanatory variables
are correlated. We will provide simulation results of LARS estimators for β∗ using correlated
explanatory variables in this section. The simulation results motivate us to understand the
flaws of the LARS algorithm and to propose modification of the algorithm in the next section.

We denote x j to be the jth column of the explanatory matrix. That is, for j = 1, 2, ..., p,
x j is a column vector of n entries. We first standardize all observed data.

n∑
i=1

xij = 0,
n∑
i=1

x2
ij = 1 for j = 1, 2, ..., p;

n∑
i=1

yi = 0,
n∑
i=1

y2
i = 1.

(6)

Before we start with the LARS algorithm, we assume that the OLS solution for the linear
model, β̃, is known. We use β̂ to denote the LARS estimator of β∗.

The idea of LARS is to only enter “as much” of a predictor in successive steps. That is,
in each step, LARS will add one explanatory variable to the active set A, which is a subset
of X. After s steps, |A| is equal to s and only s entries of the β̂ are nonzero.

In the first step, LARS identifies the explanatory variable that is most correlated with
the response y.

Consider a predictor vector: µ̂ = Xβ̂. Let r̂ = y − µ̂ be the residual of the linear model
where µ̂ and r̂ will be updated after every step is finished. We denote the Pearson correlation
between x j and y for each j as cor(x j ,y) for each column vector x j .

We know that the LARS algorithm works successively and selects a single variable at each
step. In the first step, we start from µ̂ = 0. That is,

µ̂ = 0,

r̂ = y− µ̂ = y;

cor(x j ,y) =
〈xj ,y〉

〈x j ,x j〉〈y,y〉
= 〈x j ,y〉 = x ᵀ

jy

(7)

After comparing values of cor(x j ,y) for each j, we choose the explanatory variable with
the biggest value of cor(x j ,y) and label it as x s1 . Notice that up to this point, though we are

unable to identify the exact value of β̂s1 , we continue the algorithm to step two and denote
the unknown coefficient for x s1 as γ̂1.
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Observe that the values of µ̂ and r̂ have been updated at this point:

µ̂ = 0 + γ̂1x s1 ,

r̂ = y− µ̂ = y− γ̂1x s1 .
(8)

We continue with step two. In this step, we intend to identify the second selected variable
x s2 and to find the value of β̂s1 . We first make the value of γ̂1 bigger continuously from 0
to the corresponding OLS solution β̃s1 . As the value of γ̂1 is increasing, we select x s2 which
is the first appearing variable to have the same amount of correlation with the residual as
x s1 .That is, we intend to compare cor(x j , r̂) and cor(x s1 , r̂) where

cor(x j , r̂) = 〈x j , r̂〉 = x ᵀ
j r̂ = x ᵀ

j (y− γ̂1x s1),

cor(x s1 , r̂) = 〈x s1 , r̂〉 = x ᵀ
s1 r̂ = x ᵀ

s1(y− γ̂1x s1)
(9)

The reason that we are comparing cor(x j , r̂) and cor(x s1 , r̂) is to locate the second
selected variable. Intuitively, we tend to select a new explanatory variable that equally
greatly correlated with the response. However, before we jump to the conclusion of how to
practically choose the second variable x s2 , we claim that, by comparing Pearson correlation,
LARS algorithm fails to choose the best subset of explanatory variable if each explanatory
variables are correlated.

For that end, we have designed following simulation under the usual linear regression
setting as introduced earlier in this section with each x j highly correlated to each other.

Lemma 2.1. After LARS selects xs1 in the first step, the LARS algorithms, in the second
step, will return the variable xs2 where cor(xs2, y) is the second largest element among all
cor(xj, y) for j = 1, 2, ..., p when X is orthogonal. However, the algorithm will return the
variable that has most correlation with xs1 in the second step if X is correlated.

Proof of Lemma 2.1. Assume X is orthogonal. Suppose in the first step, we have identified
x s1 such that cor(x s1 , y) provides the largest value among all cor(x j , y) for j = 1, 2, ..., p.
That is,

cor(x j ,y) ≤ cor(x s1 ,y),

〈x j ,y〉 ≤ 〈x s1 ,y〉, xTj y ≤ xTs1y, ∀j = 1, 2, .., p. (10)

Also, suppose we have updated µ̂ and r̂. We are looking for x s2 which has the largest
value of cor(x j , r̂) among all x j such that

cor(x j , r̂) ≥ cor(x s1 , r̂). (11)

We expand both sides of (11) and obtain

〈x s2 , r̂〉 = xTs2 r̂

= xTs2(y− γ̂1x s1)

= xTs2y− γ̂1x
T
s2x s1

= xTs2y− γ̂1I

〈x s1 , r̂〉 = xTs1 r̂

= xTs1y− γ̂1I.

(12)
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By (11), we get

xTs2y− γ̂1I ≥ x s1y− γ̂1I

xTs2y ≥ xTs1y.
(13)

Notice that from (10), we have the xTs2y ≤ xTs1y. From (10) and (11), we are able to
conclude that xTs2y = xTs1y.

Now we have two situations. First, there exists such x s2 that xTs2y = xTs1y holds. Second,
no such x s2 exists, and we are not able to find any x j satisfying xTj y ≥ xTs1y for all j.

If we are at the first situation, we are done with the proof. If we encounter the second
situation , we can rewrite the problem to a new question. That is, we have a strictly descend-
ing sequence of cor(x j ,y), and we intend to find the closest value cor(x s2 ,y) of cor(x s1 ,y)
such that x s2 provides largest correlation with y among all columns x j except x s1 . We are
able to claim that the x s2 we are looking for provides the second largest correlation with the
response among all x j ’s.

By reasoning of the previous lemma, we believe that LARS algorithm will fail for corre-
lated designs, as it will choose the variable that is most correlated with previously selected
x s1 , rather than with the response y.

We illustrate the idea in a simulation study. Consider the following setup of a correlated
X:

X = (x 1,x 2,x 3,x 4,x 5)

= (x 1,x 2,x 1x 2,x
2
1,x

3
1,x

4
1)

where each column of X is independent. Let y = Xβ∗ + ε.
We simulate two independent random variables x 1 and x 2 from normal distribution with

mean zero and standard deviation one. Assume the true value of β∗ is equal to (0,0,1,1,0,-1).
That is, we have six explanatory variables and they are highly correlated to one another.
We also assume that each entry of the error term ε is normally distributed with mean zero
and standard deviation one. Theoretically, LARS will return the coefficients of x 1, x 2, and
x 5 with zeros. We use current LARS algorithm to locate the optimal λ which provides the
smallest Cross-Validation error. Next, we use the optimal value of λ to obtain the estimated
value of the coefficients. We repeat this simulation for 100 times and count the number of
times that each variable has a nonzero coefficient. The bar plot of the counts is given by
Figure 1.

Notice in Figure 1 , x 1 and x 2 have the tendency to provide less nonzero coefficients
in 100 times of repeated simulation as we expected. However, the proportion of nonzero
coefficients of x 5 is much bigger than the proportion of x 4. The true value of β∗4 is equal to
1. However, as we notice in the bar plot, the frequency of nonzero β̂4’s is smaller than the
frequency of nonzero β̂5 which has the true value 0. The simulation results demonstrate that,
under our linear model setup, the LARS algorithm does not to choose explanatory variables
with positive true β∗ values but the variables that are highly correlated with x 1 even the
true β∗6 is zero.

3 A Significance Test for the Lasso

In [2], a covariance test statistic is proposed for testing the significance of the predictor
variable that enters the current lasso model, in the sequence of models visited along the lasso
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Figure 1: Barplot of Nonzero Coefficients’ Counts

solution path. The paper succeeded in proving that, when the true model is linear, this
covariance test statistic has exponential distribution with parameter 1 asymptotically under
the null hypothesis. The null states that all truly active variables are contained in the current
lasso model. The significance of covariance test is that it introduces a new practical way of
testing random active set A during the process of lasso.

Explicitly, consider the following linear regression set-up:

y = Xβ∗ + ε. (14)

The lasso estimator is defined as

β̂ = arg min
β

1

2
‖y−Xβ∗‖2 + λ|β∗|. (15)

where λ is the tuning parameter, controlling the level of sparsity in β̂.
Suppose set A is the active set just before λ taking value as λk and that explanatory

variable x j enters into the active set at λk. Notice that here x j with a column vector with
n-entires.

We use the following notations in this section. Define two estimators of β∗ as follows

β̂(λk+1) = arg min
β

1

2
‖Y−Xβ∗‖2 + λk+1|β∗|,

β̃A(λk+1) = arg min
βA

1

2
‖Y−XAβ

∗
A‖2 + λk+1|β∗A|.

(16)

where β̂(λk+1) is the solution of the lasso at the next knot in the path λk+1, using explanatory
variables in A ∪ x j which is denoted in short as A ∪ {j} and β̃A(λk+1) is the solution of the
Lasso problem using only active set A at λ = λk+1. That is, β̂(λk+1) is the lasso estimator
of β∗ at the (k+ 1)st step. After extracting the value of the tuning parameter λk+1 and the
selected variables from β̂(λk+1), we compute the lasso estimator β̃(λk+1) which using the
tuning parameter λk+1 and the selected variables.

Therefore we can write the covariance test as
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H0 : supp(β∗) ⊆ A, H1 : supp(β∗) 6⊆ A

The test statistic of covariance test is defined as

Tk =
〈y,Xβ̂(λk+1)〉 − 〈y,XAβ̃A(λk+1)〉

σ2
. (17)

The above test statistics measures the difference between Pearson correlations of the observed
data y and the predicted data Xβ̂(λk+1) and XAβ̃A(λk+1).

Lemma 3.1. The test statistics Tk defined in (17) satisfies the representation

Tk = C(A, sA, j, s)λk(λk − λk+1)/σ2,

where
C(A, sA, j, s) = ‖(XT

A∪{j})
+sA∪{j} − (XT

A)+sA‖2,

and X+ denotes the pseudo-inverse of a matrix X.

Proof of Lemma 3.1. From the first order (KKT) condition, we get

β̂A(λ) = (XT
AXA)−1XT

Ay− λ(XT
AXA)−1sA,where sA = sgn(β̂A(λ)). (18)

Let PA and (XT
A)+ be the projection onto the column space of XA and pseudoinverse of

XA respectively. Therefore, we have

PA = XA(XT
AXA)−1XT

A,

(XT
A)+ = XA(XT

AXA)−1.
(19)

Then we obtain
Xβ̂k+1 = PA∪{j}y− λk+1(XT

A∪{j})
+sA∪{j},

XAβ̃(λk+1) = PAy− λk+1(XT
A)+sA.

(20)

Plug in (20) into (17) and expand the inner product, we can transform (17) into the
following

Tk = yT (PA∪{j} −PA)y/σ2 − λk+1y
T ((XT

A∪{j})
+sA∪{j} − (XT

A)+sA)/σ2. (21)

Recall that by the continuity of the lasso solution path at λk, we have

XX∪{j}β̂A∪{j}(λk) = XAβ̂A + xj β̂j

= XAβ̂A
(22)

We rewrite (20),

XAβ̂A(λk) = PAy− λk(XT
A)+sA

= PA∪{j}y− λk(XT
A∪{j})

+sA∪{j}

= XX∪{j}β̂A∪{j}(λk).

(23)

and obatin:
(PA∪{j} −PA)y = λk((X

T
A∪{j})

+sA∪{j} − (XT
A)+sA). (24)
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We first square both sides of (24),

yT (PA∪{j} −PA)T (PA∪{j} −PA)y = λ2
k‖(XT

A∪{j})
+sA∪{j} − (XT

A)+sA‖2 (25)

Notice that PA∪{j}−PA is a projection onto the column space of XA, therefore (PA∪{j}−
PA)T (PA∪{j} −PA) = PA∪{j} −PA and we obtain (25) in the following form

yT (PA∪{j} −PA)y = λ2
k‖(XT

A∪{j})
+sA∪{j} − (XT

A)+sA‖2 (26)

Next we take the inner product of both sides of (24) with y and plug the new equation
into (26).

yT (PA∪{j} −PA)y = yTλk((X
T
A∪{j})

+sA∪{j} − (XT
A)+sA),

λ2
k‖(XT

A∪{j})
+sA∪{j} − (XT

A)+sA‖2 = yTλk((X
T
A∪{j})

+sA∪{j} − (XT
A)+sA).

(27)

Notice that,

‖(XT
A∪{j})

+sA∪{j} − (XT
A)+sA‖2 = ‖(XT

{j})
+s{j}‖2 = 1 (28)

Then we plug in (26) and (27) into (21),

Tk = yPA∪{j} −PA)y/σ2 − λk+1y((XT
A∪{j})

+sA∪{j} − (XT
A)+sA)/σ2

=
1

σ2
λ2
k‖(XT

A∪{j})
+sA∪{j} − (XA)T )+sA‖2 −

1

σ2
λk+1λk‖(XT

A∪{j})
+sA∪{j} − (XT

A)+sA‖2

=
1

σ2
(λ2
k − λk+1λk)‖(XT

A∪{j})
+sA∪{j} − (XT

A)+sA‖2

=
1

σ2
(λ2
k − λk+1k),

where the last line follows from (28).

Consider a special case of an orthogonal predictor matrix X. We are interested in finding
the test statistic Tk for the first predictor to enter the active set A, i.e., T1.

Lemma 3.2. Suppose the predictor matrix X is orthogonal. We denote Uj = 〈xj ,y〉 = xTj y
for j = 1, 2, ..., p, then the knots in the lasso paths(values of λ at which the coefficients become
nonzero) are: λ1 = |U(1)|, λ2 = |U(2)|, ..., λp = |U(p)| where |U(1)| ≥ |U(2)| ≥ ... ≥ |U(p)| are
the order statistics of |U(1)|, |U(2)|, ..., |U(p)|.

Lemma 3.3. Under the null, U1, ..., Up are identically independent distributed from normal
distribution with mean zero and variance σ2, so |U1|/σ, ...|Up|/σ follow a χ1 distribution.

Therefore T1 = |U(1)|(|U(1)| − |U(2)|)/σ2 d−→ Exp(1).

Proof of Lemma 3.3. Let F (x) be the Cumulative Distribution Function of χ1 distribution:

F (x) = (2Φ(x)− 1)1(x > 0),

where Φ(x) is the standard normal CDF. In order to make sure that F (x) is in the domain
of attraction of Gγ according to Theorem1.1.8 in [8]. We first compute the value of γ by
evaluating
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lim
t→∞

(1− F (t))F ′′(t)

(F ′(t))2
= lim

t→∞

F ′′(t)

F ′(t)

1− F (t)

F ′(t)

= lim
t→∞

−2tφ(t)

2φ(t)

1− 2Φ(t) + 1

2φ(t)

= lim
t→∞
− t(1− Φ(x))

φ(x)

= lim
t→∞
− t

λ(t)

= lim
t→∞
−t×m(t)

= −1 = −λ− 1

(29)

where φ(x) is the standard normal PDF. According to Mill’s ratio, the hazard function

λ(t) = φ(x)
1−Φ(x) . When X follows standard normal distribution, Mill’s Ratio m(x) = 1

λ(x) ∼ 1
x .

Therefore we have determined that λ = 0 which implies that F (x) is in the domain of
attraction of G0.

Theorem 2.2.1 in [8] implies, for real constants ap = H(p) = F−1(1 − 1
p), where H(p)

is the left-continuos inverse of 1
1−F (x) , and non-negative constants bp = 1

pH′(p) = pF ′(ap),

random variables W1 = bp(U(1)− ap) and W2 = bp(U(2)− ap) converge to standard normal in
distribution when p → ∞. Our next goal is to find joint converging distribution of W1 and
W2. First look at U(1) and U(2). U(1) is the maximum of the order statistics, then

lim
n→∞

Fn(
1

bp
x+ ap) = exp(−e−x), (30)

and U(2) is the second maximum element,

lim
n→∞

nFn−1(
1

bp
x+ ap)(1− F (

1

bp
x+ ap)) + Fn(

1

bp
x+ ap)

= − logG0(x)G0(x) +G0(x)

= (1 + e−x)exp(−e−x).

(31)

By extreme value distributions [8], we conclude that

(W1,W2)
d−→ (−logE1,−log(E1 + E2)),

where E1 and E2 are two independent standard exponential distributions.
We rewrite U(1)(U(1) − U(2)) in terms of W1 and W2.

U(1)(U(1) − U(2)) = (ap +
W1

bp
)(
W1 −W2

bp
) =

ap
bp

(W1 −W2) +
W1(W1 −W2)

bp
. (32)

Notice that ap = F−1(1− 1
p) and bp = pF ′(p). In this proof we are dealing with standard

normal distributions. Therefore, we can rewrite ap and bp in terms of φ(x) and Φ(x), the
standard normal density and probability functions. That is,

1− 1

p
= 2Φ(ap)− 1 i.e.,1− Φ(ap) =

1

2p
,

bp = 2pφ(ap).

(33)
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By (33), we know that when bp approaches infinity, the term W1(W1−W2)
bp

converges to
zero. Next we want to find the limit of apbp. Using Mill’s inequalities, we obtain

φ(ap)

ap

1

1 + 1
a2p

≤ 1− Φ(ap) ≤
φ(ap)

ap
. (34)

We multiply (34) by 2p and make ap approaches infinity. Notice that bp = 2pφ(ap) and
1
2p = 1− Φ(ap). We get

bp
ap

1

1 + 1
a2p

≤ 1 ≤ bp
ap
. (35)

Therefore by squeezing theorem, we conclude that
bp
ap

converges to 1, which leads to the result

that
ap
bp

converges to 1.

We know that W1 −W2 converges in distribution to log(E2 + E1) − log(E1), which is
also a standard exponential distribution. Therefore by (32), we are able to conclude that the
limiting distribution of U(1)(U(1) − U(2)) is standard exponential distribution.

4 τ-LARS algorithm

As motivated by the counterexample we provided in Section 2, we introduce a new LARS
algorithm using the Kendall’s τ correlation coefficient instead of Pearson correlation. The
new algorithm mimics the iterative feature of the LARS algorithm and selects one explanatory
variable at each step.

Given two vectors a and b of n entries, Kendall’s τ correlation coefficient is defined as

τ(a,b) =
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

sgn(ai − ak)sgn(bi − bk). (36)

where the sgn function is defined by

sgn(s− t) =


1 if s− t > 0
0 if s− t = 0 for real numbers s and t.
−1 if s− t < 0

Croux and Dehon [9] have proved that, if X and Y have bivariate distribution, Kendall’s τ
has infinitesimal robustness as a positive feature. That is, the influence function is bounded.

Like the regular LARS algorithm, we suppose the prediction vector to be µ̂ = Xβ̂ and
residual to be r̂ = y - µ̂ for each step. Notice that in the first step, we consider,

µ̂ = 0,

r̂ = y− µ̂ = y.
(37)

In step one we need to identify the explanatory variable that has the most correlation
with the response. Thus we compare τ(x j , r̂) for each column vector x j . Notice that each
x j and r̂ are column vectors with n entries.

13



The Kendall’s τ correlation coefficient for each x and r̂ is:

τ(x j , r̂) =
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

sgn(xij − xkj)sgn(r̂i − r̂k)

=
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

sgn(xij − xkj)sgn(yi − yk).
(38)

After comparing values of τ(x j , r̂) for j = 1, 2,...,p, we choose the explanatory variable
which gives the biggest correlation and label it as x s1 .

Therefore we continue with the algorithm and move to step two. We first update our
prediction vector and residual. After choosing x s1 , we have:

µ̂ = µ̂+ γ̂1x s1 ,

r̂ = y− µ̂ = y− γ̂1x s1
(39)

where γ̂1 is the LARS coefficient for explanatory variable xs1 based on the new algorithm.
Notice that after selecting the first variable, we are unable to identify the value of γ̂1. However,
we will solve the problem in step two while we select the second variable by comparing how
the rest of the explanatory variables are correlated with residual r̂ and the current residual of
x s1 . That is, we will select both the second variable and the value of γ̂1. We first calculate:

τ(x j , r̂) =
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

sgn(xij − xkj)sgn(r̂i − r̂k)

=
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

sgn(xij − xkj)sgn((y − γ̂1xs1)i − (y − γ̂1xs1)k)

=
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

sgn(xij − xkj)sgn((yi − γ̂1xis1)− (yk − γ̂1xks1))

=
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

sgn(xij − xkj)sgn((yi − yk)− γ̂1(xis1 − xks1)),

(40)

and

τ(x s1 , r̂) =
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

sgn(xis1 − xks1)sgn((yi − yk)− γ̂1(xis1 − xks1)). (41)

While making γ̂1 bigger from 0, we select the first appearing x j such that (40) have the
same value as (41). That is, we want x s2 to be the first appearing explanatory variable while
the value of γ̂1 changes from 0 to β̃s1 such that:

τ(x s2 , r̂) = τ(x s1 , r̂) (42)

We repeat the algorithm successively. That is, at step s,we only select s variables and
identify (s-1) LARS coefficient.
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5 Distribution Properties of τ

In this section, we define τ to be the correlation between observed data and predicted data.
Meanwhile we explore the distribution properties of τ under the linear regressions setting
of previous sections. The analysis is non-trivial as the coefficient τ is a sum of dependent
random variables. We first establish dependency patterns and then discuss further distribu-
tion properties of τ . Notice that in this section we denote xi to be the transpose vector of
the ith row vector of the matrix X. Observe that conditionally on X, the response vector
y = Xβ∗ + ε.

We define τ as

τ = τ(y,Xβ̂) =
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

sgn(yi − yk)sgn(xi
T β̂ − xk

T β̂)

=
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

sgn((yi − yk)(xiT β̂ − xk
T β̂)).

(43)

By the definition of sign function, we have sgn(x)sgn(y) = sgn(xy) for any real numbers
x and y.

We treat Zik = (yi − yk)(xiT β̂ − xk
T β̂) as a random variable since the estimator β̂ is a

random variable.
We know that each εi has standard normal distribution. Then yi = xi

Tβ∗ + εi for
i = 1, ..., n, where β∗ is the true value of β. Each yi follows a normal distribution with mean
xi
Tβ∗ and variance xi

Tβ∗β∗Txi. Notice that Zik is defined as the product of two continuous
random variables. Therefore, Zik follows a continuous distribution.

We denote the Cumulative Distribution Function for Zik as Fik.
Define function f(Zik) = sgn(Zik) for each pair (i, k). Then we have

f(Zik) =


1 if Zik > 0
0 if Zik = 0
−1 if Zik < 0

(44)

Since Zik is a random variable, we can consider f(Zik) as a random variable transformed
by function f . Consider its probability mass function:

P(f(Zik) = 1) = P(Zik > 0) = 1− P(Zik < 0) = 1− Fik(0);

P(f(Zik) = 0) = P(Zik = 0) = 0 since Zik is continuously distributed;

P(f(Zik) = −1) = P(Zik < 0) = Fik(0).

Lemma 5.1. For any two Zik and Zpq where k > i and q > p, if i 6= p and k 6= q then Zik
and Zpq are independent. If i = p or k = q, then Zik and Zpq are dependent.

Proof of Lemma 5.1. Consider Zik and Zpq where k > i and q > p.
If p 6= i and q 6= k, then Zik is independent of Zpq because each yi is independent and

identically distributed..
If i = p or k = q, it suffices to show the case when i = p.
From the definition of Z, Zik and Ziq carry information about yk and yq which is related

to Zkq if q > k. Therefore, Zik and Ziq are dependent of each other.
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In classical literature the distribution of τ , when represented as a sum of independent
components, is known to be asymptotically normal with asymptotic variance of 4/9n. Based
on the result of Lemma 5.1 above, we know that independence assumption is no longer true
in our setting.

Let Giq,ik(z) be the joint CDF of Ziq and Zik. We first compute mean and variance of
f(Zik)’s.

E(f(Zik)) = 1× (1− Fik(0) + 0× 0 + (−1)× (Fik(0))

= 1− 2Fik(0)

Var(f(Zik)) = E(f(Zik)
2)− E(f(Zik))

2

= (1× (1− Fik(0)) + 1× Fik(0))− (1− 2Fik(0))2

= 1− (1− Fik(0))2

(45)

We observe f(Ziq)f(Zik) first:

f(Ziq)f(Zik) =

{
1 if f(Ziq) = 1 and f(Zik) = 1
−1 if f(Ziq) = −1, f(Zik) = 1 or f(Ziq) = 1, f(Zik) = −1

Consider the probabilities of f(Ziq)f(Zik):

P(f(Ziq)f(Zik) = 1) = P(f(Ziq) = 1, f(Zik) = 1)

= P(Ziq > 0, f(Zik) > 0)

= 1− P(Ziq < 0, Zik < 0) = 1−Giq,ik(0, 0);

P(f(Ziq)f(Zik) = −1) = P(f(Ziq) = 1, f(Zik) = −1) + P(f(Ziq) = −1, f(Zik) = 1)

= P(Ziq > 0, Zik < 0) + P(Ziq < 0, Zik > 0)

= (P(Zik < 0)− P(Ziq < 0, Zik) < 0)) + (P(Ziq < 0)− P(Ziq < 0, Zik < 0))

= (Fik(0)−Giq,ik(0, 0)) + (Fiq(0)−Giq,ik(0, 0))

= Fik(0) + Fiq(0)− 2Giq,ik(0, 0)

Therefore,

Covik,iq = Cov(f(Ziq), f(Zik))

= E(f(Ziq)f(Zik)))− E(f(Ziq))E(f(Zik))

= 1(1−Giq,ik(0, 0)) + (−1)(Fik(0) + Fiq(0)− 2Giq,ik(0, 0))

− (1− 2Fik(0))× (1− 2Fiq(0))

= Fik(0) + Fiq(0) +Giq,ik(0, 0)− 4Fik(0)Fiq(0)

(46)

Using the definition of expectation and variance, we obtained the mean and variance of
τ = τ(y,Xβ̂) using Eq (45).

E(τ) = E(
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

f(Zik))

=
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

E(f(Zik))

=
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

(1− 2Fik(0))

(47)
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By Eq (46)

Var(τ) = Var(
2

n(n− 1)

n∑
i=1

n∑
k=1,k>i

f(Zik))

=
( 2

n(n− 1)

)2
Var(

n∑
i=1

n∑
k=1,k>i

f(Zik))

=
( 2

n(n− 1)

)2( n∑
i=1

n∑
k=1,k>i

Var(f(Zik) +

n∑
i=1

n∑
k=1,q 6=k,k>i,q>i

Cov(f(Zik), f(Ziq))

)

=
( 2

n(n− 1)

)2( n∑
i=1

n∑
k=1,k>i

(1− (1− Fik(0))2 +
n∑
i=1

n∑
k=1,q 6=k,k>i,q>i

Covik,iq

)
(48)

By Lemma 5.1, we notice that τ is composed of two groups of sums of f(Zik). Define two
index set B and D as the following

B = {(i, k) : 1 ≤ i, p ≤ n, 1 ≤ k, q ≤ n, k > i, q > p, and i 6= p, k 6= q, ie.Tik is indenpendent of Tpq.}
D = {(i, k) : 1 ≤ i, p ≤ n, 1 ≤ k, q ≤ n, k > i, q > p, and i = p or k = q, ie.Tik is dependent of Tpq.}

Then we can rewrite τ and manipulate with constant such that

n(n− 1)

2
τ =

n∑
i=1

n∑
k=1,k>i

f(Zik)

=
∑

(i,k)∈B

Hik +
∑

(i,k)∈D

Hik

= R+ S

(49)

where R is the sum of all independent pairs of f(Zik) which take values in {1,−1} and S is
the sum of all dependent pairs. Remember that

Hik = f(Zik) = sgn
(

(yi − yk)(xiT β̂ − xk
T β̂)

)
.

For example, if we have n = 4, the possible pairs of (i, k) are {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4),
and (3, 4)}. According to the definition of set B and D, we have R = H12 +H34 since H12 and
H34 are independent of each other. Therefore, S will equal to the sum of rest of the Hik’s.

Observe that, according to the discussion above, R is the sum of independent Bernoulli
random variables with different probabilities of success. Therefore, it follows a Poisson Bino-
mial distribution with probability of each Bernoulli success (1− Fik(0)). The distribution of
R can be approximated with Poisson distribution [10] with parameter

λ =
∑

(i,k)∈B

(1− Fik(0)). (50)

The random variable S, on the other hand, is the sum of all dependent Bernoulli random
variables with different probabilities of success. The probability mass function of S follows
the following model for each binary random variable Hik [11].
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Let |D| = d and H(D) = {Hik : (i, k) ∈ D}. Assume that all Hik’s are sorted by the
increasing order of i and k. Define St to be the sum of the first t elements in H(D). That is,
if n = 4, then H(D) = {H13, H14, H23, H24} and S2 = H13 +H14 for t = 2. Then

P(S = s) =

(
d

s

) d−s∑
j=0

(−1)j
(
d− s
j

)
θs+j , (51)

where

θt = P(St = t) = P( first t elements of Hik’s are equal to 1 ) for t = 1, 2, ....

The analysis above, leads to the new result presented below.

Lemma 5.2. Random variable τ as defined in (43) is a sum of a Poisson random variable
with parameter λ (50) and another discrete random variable with probability mass function
as in (51).

6 Kendal’s Significance Test (KEST)

After exploring the new distribution properties of KEndal’s τ , we propose a new high dimen-
sional, robust covariance Significance Test statistic (KEST for short) which mimics the test
ideas stated in Section 3.

Remaining working on the null hypothesis that the active set A contains supp(β∗), we
treat the data as a triple (yi − yj , ŷi − ŷj , ỹi − ỹj) where yi’s are observed data and ŷi’s and
ỹi’s are predicted values of different estimators of β∗ such that

ŷi = xTi β̂(λk+1), ỹi = xTi β̃A(λk+1). (52)

where two estimators of β∗ are defined as the following

β̂(λk+1) = arg min
β

1

2
‖Y−Xβ‖2 + λk+1|β|,

β̃A(λk+1) = arg min
βA

1

2
‖Y−XAβA‖2 + λk+1|βA|.

(53)

Additionally, the null hypothesis and the alternative of our covariance test statistic are

H0 : supp(β∗) ⊆ A, H1 : supp(β∗) 6⊆ A.

Our new test statistic preserves the test idea in [2] to compare the correlation between
observed vector y and predicted vectors ŷ and ỹ. We define our τk as

τk =
τ(y,Xβ̂(λk+1))− τ(y,XAβ̃A(λk+1))

σ2
.

where some constant σ2.
Using the Wilcoxon ranked sum test as a reference, we rewrite our test statistic τk.

τk =
1

σ2

∑
Nr

sgn(yi − yj)Rij ,
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where Nr is the number of pairs of i, j that satisfy the requirement of indices of Kendall τ
correlation coefficient and

Rij = sgn(ŷi − ŷj)− sgn(ỹi − ỹj). (54)

We define Rij in our test statistic to be the “sign difference of the predicted y”, which is
similar to how Ri is defined in Wilcoxon ranked sum test.

Conjecture 6.1. The τ -test statistic τk converges to a rescaled normal distribution under
the null, when: 1) the errors have standard normal distribution; 2) n ≤ p;

We design a simulation according to the formula of τk. We draw X of size 1000 × 200
from multi-normal distribution with mean zero and variance σ2. We choose the true values
of beta to be 190 zeros and ones.

Figures 2 and 3 contain results of the simulation for different values of k according to the
claim. We perform the same simulation for the original covariance test statistic with Pearson
Correlation and compare two groups of graphs.
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Figure 2: covariance test statistic using Pearson correlation

In the figures, as we intentionally select the values of k’s, we noticed that, compared with
Pearson correlation, the normal pattern of τk is more obvious. For k = 5, T5 has less bins
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Figure 3: covariance test statistic using Kendall τ

compared to τ5 and has less bell-shaped pattern. Similarly, for k = 30 and k = 50, we notice
that the graphs of test statistic with Pearson correlation are less symmetric and right-skewed,
while graphs of test statistic with Kendall τ are more symmetric respect to zero.
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7 Discussion

In previous sections, we have shown how the LARS algorithm selects the set of active variables
and how it fails to function properly under correlated setting. We also proved two useful
lemmas stated in [2] with full details, which may help our readers to understand how the
exponential distribution is derived. By offering a new LARS type algorithm, we showed that
our new test statistic,τk, works better under limited simulation setting compared with the
covariance test statistic of [2]. Up to this point, we succeeded in understanding the reason
that the LARS algorithm fails and propose a solution to the problem. However, it is still
significant to explore the robust approaches to the significance testing with model selection
in mind. Additionally, the analysis of the newly proposed τ -LARS algorithm is still an open
question. In Section 6, we conjecture about the connection between our new test statistic
and the Wilcoxon ranked sum test. The connection could be used for proving the limiting
distribution of our new test statistic under the null. Although in this paper, we have discussed
the distribution properties of our proposed new test statistic, it is undeniably that there might
exist many other forms of test statistic which worth exploring. For instance, we may consider
the following comparison of the covariance test statistic

Tk =
1

2
log

1− τ(y,Xβ̂(λk+1))− τ(y,XAβ̃A(λk+1))

1− τ(y,Xβ̂(λk+1)) + τ(y,XAβ̃A(λk+1))
,

which is inspired by the early work of Fisher exact test of independence in contingency tables.
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