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Abstract: 

The goal of this paper is to understand the topological meaning of Jacobi diagrams in relation to 

knot theory and finite type knot invariants, otherwise known as Vassiliev invariants. To do so, 

we will first set up the notions of: the Vassiliev invariant and its respective space, the space of 

chord diagrams, a weight system on chord diagrams, and Jacobi diagrams and their respective 

space. During this process we will prove some of the more significant results from the topics and 

briefly justify their motivation. Once we have done this, we will then consider how Jacobi 

diagrams relate to singular knots and introduce Habiro’s clasper to provide a mapping between 

these two spaces. 

 

 

 

 

 

 

 



1. The Vassiliev Knot Invariant and Classical Knot Polynomials: 

Definition of Vassiliev Invariants: 

Let 𝒦 be the vector space over  freely spanned by oriented knots in 𝑆3. Then a singular knot is 

an immersion of  𝑆1 into  𝑆3 whose singularities are transversal double points. Furthermore, we 

can think of a singular knot as an element in 𝒦 by removing the singularity with the following 

relation: 

 

Example: 

 

Next, let 𝒦𝑚 denote the subspace of 𝒦 spanned by singular knots with 𝑚 double points. We then 

call a linear map  𝑣 ∶ 𝒦 → 𝐅  a Vassiliev invariant (or finite type invariant) of degree m if  𝑣  

vanished on 𝒦𝑚+1. Furthermore, the space 𝒱 of all Vassiliev invariants is filtered with 𝒱𝑚 

defined as the set of all degree 𝑚 Vassiliev invariants. 

The Polynomial Knots: Vassiliev invariants are important in understanding the structure of the 

polynomial invariants. To this note, we will show that the coefficients of some of the more 

famous polynomial invariants, including the Jones polynomial, are derived from finite type 

Vassiliev invariants. 

Let 𝐿1, 𝐿+, 𝐿−,  and 𝐿0 be local portions of a knot diagram as shown below, and let 𝑂 be any 

diagram of the unknot. In doing so, we can now consider the polynomial knot invariants which 

we will define by their respective skein relations. 



 

𝐿1 𝐿+   𝐿−   𝐿0 

 

Conway Polynomial: The Alexander-Conway polynomial is a knot invariant which 

satisfies the two skein relations:  

i) 𝐶(𝑂) = 1 

ii) 𝐶(𝐿+) − 𝐶(𝐿−) = 𝑧𝐶(𝐿0) 

HOMFLY Polynomial: The HOMFLY polynomial is a polynomial invariant of two 

variables satisfying the skein relations: 

i) 𝑃(𝑂) = 1 

ii) 𝛼𝑃(𝐿+) + 𝛼−1𝑃(𝐿−) + 𝑧𝑃(𝐿0) = 0 

Jones Polynomial: The Jones polynomial is another polynomial knot invariant which is a 

Laurent polynomial with integer coefficients in the variable 𝑡 1 2⁄−
+

. Typically it is defined 

using the writhe and the Kauffman Bracket, but is characterized by the skein relations: 

i) 𝑉(𝑂) = 1 

ii) (𝑡
1

2 − 𝑡−
1

2) 𝑉(𝐿0) = 𝑡−1𝑉(𝐿+) − 𝑡𝑉𝐿−) 

We note that both the Conway and Jones polynomials can be obtained from the HOMFLY 

polynomial after change of variables. Furthermore, the HOMFLY polynomial can be 

parameterized additional ways, and we will use one of these parameterizations when proving the 

below theorem. 



Theorem 1: Each coefficient of the Conway polynomial is an invariant of finite type. 

Furthermore, after a suitable change of variables, each coefficient in the Taylor expansion of the 

Jones and HOMFLY is an invariant of finite type. 

Proof: First we will show that the coefficients of the Conway polynomial are finite type 

invariants. Let 𝐾 be a knot, and let 𝐶(𝐾)(𝑧)  be its corresponding Conway polynomial. 

Further, let 𝐶 also denote the natural extension of the Conway polynomial to singular 

knots. Then, by definition of the Conway polynomial we have 

𝐶(𝐿1) = 𝐶(𝐿+) − 𝐶(𝐿−) = 𝑧𝐶(𝐿0). 

With this, we notice that if 𝐾 has more than 𝑚 double points, 𝐶(𝐾) is divisible by 𝑧𝑚+1 

and so the coefficient of 𝑧𝑚 in 𝐶(𝐾) vanishes. Thus it follows that the 𝑚th coefficient of 

the Conway polynomial is a Vassiliev invariant of degree 𝑚. 

Now we consider the HOMFLY polynomial. As above, for the HOMFLY 

invariant 𝑃(𝐾), let 𝑃 also denote the natural extension of the HOMFLY polynomial to 

singular knots. Next, we note that the HOMFLY polynomial has a standard 

parameterization in two parameters 𝑞 and  𝑁 satisfying the identity 

𝑞𝑁/2𝑃(𝐿+) − 𝑞−𝑁/2𝑃(𝐿−) = (𝑞1/2 − 𝑞−1/2)𝑃(𝐿0). 

Next we notice that with the change of variables 𝑞 = 𝑒𝑥 and expanding in powers 

of 𝑥 we can rewrite the above identity as 

𝑃(𝐿+) − 𝑃(𝐿−) = 𝑥 ∙ (𝑠𝑜𝑚𝑒 𝑚𝑒𝑠𝑠). 

In doing so, by the same argument as above, we have that the 𝑚th  coefficient of 

HOMFLY polynomial is a degree 𝑚 Vassiliev invariant. Furthermore, for the HOMFLY 

polynomial, when 𝑁 ≡ 2 we yield the Jones polynomial and hence the 𝑚th coefficient of 

Jones polynomial is also a finite type invariant of degree 𝑚.     

           ∎ 

 

 



2. Chord Diagrams and a Weight System: 

Definition: A chord diagram is an oriented circle with finitely many chords marked on it, 

regarded up to orientation preserving diffeomorphisms of the circle. We will denote the 

collection of all chord diagrams by 𝐷𝑐. Note that this collection is naturally graded by the 

number of chords in such a diagram. Let 𝐺𝑚𝐷𝑐 denote the part of 𝐷𝑐 which is the collection of 

all chord diagrams with precisely 𝑚 chords. 

Remark: By convention we will always orient the circle in a chord diagram 

counterclockwise and will always use dashed lines for the chords. 

Definition: An F-valued weight system of degree 𝑚 is a function 𝑊 ∶  𝐺𝑚𝐷𝑐 → F with the 

following properties: 

(1) If 𝐷 𝜖 𝐺𝑚𝐷𝑐 has an isolated chord (a chord that does not intersect any other chord 

in 𝐷), then 𝑊(𝐷) = 0. This property is called framing independence.  

(2) Whenever the four diagrams 𝑆, 𝐸, 𝑊, and 𝑁 differ only as shown below, their weights 

satisfy  

𝑊(𝑆) − 𝑊(𝐸) = −𝑊(𝑊) + 𝑊(𝑁) 

 

This property is called the 4𝑇 relation. 

S E W N 

Let 𝓦 denote the graded vector space of all weight systems.  

Constructing a Weight System: Let 𝑣 be a degree 𝑚 knot invariant, and let 𝐷 𝜖 𝐺𝑚𝐷𝑐 a degree 

𝑚 chord diagram. Now an embedding of 𝐷 in 𝑹3 will be an immersion 𝐾𝐷 ∶  𝑆1 →  𝑹3of the 

circle into 𝑹3 whose only singularities are self-intersections obtained by collapsing each chord 

of 𝐷. That is, for 𝜃 and  𝜃̃ the two ends of a chord in 𝐷, we have 𝐾𝐷(𝜃) = 𝐾𝐷(𝜃̃). 



Next we notice that if 𝐾𝐷 and  𝐾̅𝐷 are different embeddings of 𝐷, we can obtain one from the 

other by a sequence of crossing changes. Furthermore, since the value of 𝑣 is constant under a 

change of crossing, we can simply write  

𝑊(𝐷) = 𝑊𝑚(𝑣)(𝐷) = 𝑣(𝐾𝐷). 

Theorem 2: The above construction is in fact a mapping from 𝑣 to 𝑊𝑚(𝑣). That is, for any given 

F-valued, degree 𝑚 Vassiliev knot invariant 𝑣 we have a degree 𝑚, F-valued weight 

system 𝑊𝑚(𝑣). 

Proof: First, we will show that 𝑊 is framing independent. Let 𝐷 be a chord diagram with 

an isolated chord; further, when embedding 𝐷 into 𝑹3, let the ends of this isolated chord 

intersect at the point 𝑝. Then 𝐾𝐷 can be chosen to have a double isthmus at 𝑝. Next, we 

can remove this singularity by applying the definition of a Vassiliev invariant which 

yields: 

𝑊(𝐷) = 𝑣(𝐾𝐷) = 𝑣(𝐾𝐷
+) − 𝑣(𝐾𝐷

−) 

Where 𝐾𝐷
+ and 𝐾𝐷

− denotes the positive and negative crossings respectively. Now we 

notice that 𝐾𝐷
+ and 𝐾𝐷

− are ambient isotopic and so 𝑣(𝐾𝐷
+) − 𝑣(𝐾𝐷

−) = 0, hence 𝑊(𝐷) =

0 as desired. 

Now we will show that 𝑊 also satisfies the 4𝑇 relation. Consider the four chord diagrams 

𝑆, 𝐸, 𝑊, and 𝑁 from the 4𝑇 relation. Each of these chord diagrams locally corresponds to 

two singular points in their respective knot diagrams, shown below. 

 

Now we can consider removing the vertical singularity using the definition of the 

Vassiliev invariant 𝑣 . In doing so, we see that: 
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𝑊∗ = 𝑣 (
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𝑆∗ = 𝑣 (
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𝐸∗ = 𝑣 (

 
 
 

                                 

) = 𝑣 (

 
 
 

                               

  ) − 𝑣 (

 
 
 

                               

) 

 

Now, we want to show that the Vassiliev invariant 𝑣 on the corresponding singular knots 

in 𝑹3 satisfy the 4𝑇 relation. But this follows from the equation 

𝑁∗ − 𝑊∗ + 𝑆∗ − 𝐸∗ = 0. 

Hence we have that 𝑊 is in fact a weight system.     

 ∎ 

Remark: In this proof we showed that an isolated chord of a chord diagram does not 

results in the weight being 0, and we call this property the framing invariant property, or 

FI relation for short. So we have that this weight system satisfies the 4T and the FI 

relations. 

 



The 4T and FI relations: 

 

(1) The 4T relation:  

 

(2) The Framing Independence relation:  

 

 

3. Jacobi Diagrams and Lie Algebras: 

Definition: Let 𝑋 be a compact oriented 1-manifold with boundary. A Jacobi diagram on 𝑋 is 

the manifold 𝑋 together with a uni-trivalent graph such that the univalent vertices of the graph 

are distinct points on 𝑋 and the trivalent vertices are vertex-oriented.  

When drawing a Jacobi diagram, we draw 𝑋 with solid lines and the uni-trivalent graphs with 

dashed lines. Furthermore, we will draw each trivalent vertex such that it is vertex-oriented in the 

counterclockwise direction. We define the degree of a Jacobi diagram to be half the number of 

vertices of the uni-trivalent graph of the Jacobi diagram.  

Now, let 𝒜(𝑋) denote the quotient space spanned by Jacobi diagrams on 𝑋 subject to the three 

relations: AS, IHX and STU, shown below. We then call 𝒜(𝑋) the space of a Jacobi diagrams 

on 𝑋. Furthermore, we denote the vector subspace of 𝒜(𝑋) spanned by the Jacobi diagrams of 

degree 𝑑 as 𝒜(𝑋)𝑑. 

The AS, IHX and STU relations: 

 

(1) The AS relation:  

 

 



(2) The STU relation:  

 

 

(3) The IHX relation:  

 

Remark: We note that when 𝑋 is 𝑆1, a Jacobi diagram whose uni-trivalent graph has no 

trivalent vertices is in fact also a chord diagram. Furthermore, by the STU relation, we see 

that the 4T relation holds in the space of Jacobi diagrams on 𝑆1. We call a Jacobi diagram on 

𝑆1 with connected uni-trivalent graph primitive. 

Lie Algebraic Connection: 

Definition: A Lie algebra 𝔤 is a vector space over a field 𝑭 with a binary operation, the Lie 

bracket, [∙ ,∙] ∶ 𝖌 × 𝖌 → 𝖌 satisfying the following axioms for all 𝑥, 𝑦, 𝑧 ∈ 𝖌 and 𝑎, 𝑏 ∈  𝑭: 

i. Bilinearity: 

[𝑎𝑥 + 𝑏𝑦, 𝑧] = 𝑎[𝑥, 𝑧] + 𝑏[𝑦, 𝑧], [𝑧, 𝑎𝑥 + 𝑏𝑦] = 𝑎[𝑧, 𝑥] + 𝑏[𝑧, 𝑦] 

ii. Alternating on 𝔤: 

[𝑥, 𝑥] = 0 

iii. The Jacobi Identity: 

[𝑥, [𝑦, 𝑧]] + [𝑧, [𝑥, 𝑦]] + [𝑦, [𝑧, 𝑥]] = 0 

Remark: We notice that the bilinearity and alternating properties of the Lie bracket imply 

that it is antisymmetric. That is, [𝑥, 𝑦] = −[𝑦, 𝑥]. Furthermore, the dimension of a Lie 

algebra 𝔤 is its dimension as a vector space over 𝑭. 

Now let 𝔤 be a finite dimensional Lie algebra over 𝑭 let 𝑡 be a metric on 𝔤, and let 𝑅 be a finite 

dimensional representation of 𝔤. We can now consider the tensors (𝖌, 𝑡, 𝑅).  

The Lie Algebra: First we note that the bilinear form 𝑡 induces an isomorphism between 𝔤 

and 𝖌∗. Furthermore, letting 𝑓 of 𝖌∗ ⨂ 𝖌∗  ⨂ 𝖌 represent the Lie bracket tensor, we have that 𝑓 



corresponds to some tensor 𝑓 ∈ 𝖌∗ ⨂ 𝖌∗  ⨂ 𝖌∗ by the induced isomorphism from 𝑡. Now we 

notice that 𝑓 is antisymmetric and will denote it by the anticlockwise oriented graph: 

 

        ↔         𝑓 ∈ 𝖌∗ ⨂ 𝖌∗⨂ 𝖌∗  

 

The Bilinear Form: The bilinear form 𝑡 is a tensor in 𝖌∗ ⨂ 𝖌∗ with its inverse 𝑡−1 ∈ 𝖌 ⨂ 𝖌, and 

we will represent these tensors with the graphs: 

         ↔    𝑡 ∈ 𝖌∗ ⨂ 𝖌∗        ;                           ↔        𝑡−1 ∈ 𝖌 ⨂ 𝖌 

The Representation: A representation 𝑅 is a vector space together with a distinguished tensor 

𝑟 ∈ 𝖌∗ ⨂ 𝑅 ⨂ 𝑅∗ which we will represent with the graph: 

 

    ↔         𝑟 ∈ 𝖌∗ ⨂ 𝑅 ⨂ 𝑅∗ 

 

Now let 𝐷 be a diagram composed from the above parts. For such a diagram we can construct a 

tensor 𝒯(𝐷) defined below. We note that the tensor product is taken over univalent vertices 𝑣 of 

𝐷. 

𝒯(𝐷) =  𝒯𝖌,R(𝐷) ∈ ⨂ (
𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑝𝑎𝑐𝑒 

𝑚𝑎𝑟𝑘𝑒𝑑 𝑛𝑒𝑎𝑟 𝑣
)   

By separating 𝐷 into a union of its components and consider what you have as a tensor in some 

higher tensor product of the spaces involved, and contract the obvious pairs of spaces with their 

duals. 

4. The Space of Chord Diagrams and Jacobi Diagrams: 

Theorem: We have that 𝒜(𝑆1) ≅ 𝑆𝑝𝑎𝑛{𝐷𝑐}/𝑡ℎ𝑒 4𝑇 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛.  



Proof: By the STU relation we have that the 4T relation holds in 𝒜(𝑆1) as seen below. 

This then shows that the 𝑆𝑝𝑎𝑛{𝐷𝑐}/𝑡ℎ𝑒 4𝑇 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ⊆  𝒜(𝑆1), and thus implying the 

surjectivity of the linear mapping 𝜑: 𝒜(𝑆1) → 𝑆𝑝𝑎𝑛{𝐷𝑐}/𝑡ℎ𝑒 4𝑇 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛. We now use 

induction to prove that 𝜑 is also injective. To do so, we first notice that the STU relation 

expresses a Jacobi diagram with 𝑘 trivalent vertices as the difference of two diagrams 

with  𝑘 − 1 trivalent vertices. It is then follows that by repeating this process we can 

inductively construct a mapping from 𝒜(𝑆1) to 𝑆𝑝𝑎𝑛{𝐷𝑐}/𝑡ℎ𝑒 4𝑇 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛.  

 

 

                          −                           =                             =                            −        

 

 

For induction, consider the base case when there are no trivalent crossings in our 

Jacobi diagram on 𝑆1. Then our Jacobi diagram is also a chord diagram and thus 𝜑 is 

clearly injective. Now for our inductive hypothesis, suppose that 𝜑 is injective for all 

Jacobi diagrams on 𝑆1 with up to 𝑘 − 1 trivalent crossings. We then consider a Jacobi 

diagram on 𝑆1 with 𝑘 trivalent crossings, call it 𝐷. Choose any trivalent crossing of 𝐷 and 

write it as the difference of two diagrams with 𝑘 − 1 trivalent crossings using the STU 

relation. We then have, by or inductive hypothesis, that 𝜑 is also injective for 𝐷 assuming 

that this process is consistent. Thus we will now show the consistency of this mapping. 

If 𝐷 ∈ 𝒜(𝑆1) has only one trivalent vertex, then the consistency is clear, for it is 

in fact the 4T relation. So suppose that 𝜑 is consistent for Jacobi diagrams on 𝑆1 with 

𝑘 − 1 trivalent crossings and now consider 𝐷 ∈ 𝒜(𝑆1) where 𝐷 has exactly 𝑘 trivalent 

crossings. Next, suppose that the STU relation was used to express 𝐷 as the difference of 

two diagrams with 𝑘 − 1 trivalent crossings in two different ways. There are a few ways 

this could be done. 

First, suppose this is done by using it to remove two edges which connects the 

circle to a trivalent vertex, call them 𝑖 and 𝑗. If 𝑖 and 𝑗 are not connected to the same 

trivalent vertex, then the two figures agree as seen below. 

 



 

 

 

 

 

 

 

Next, suppose that 𝑖 and 𝑗 are in fact connected to the same trivalent vertex, and 

further suppose that there exists a third arc 𝑙 such that 𝑙 connects the circle to a different 

trivalent vertex. Then simply use transitivity to show the consistency of 𝜑. 

Finally, we have the case where the arc 𝑙 does not exist. That is the case where 𝑖 

and 𝑗 are connected to the same trivalent vertex and there are no other arcs connecting a 

trivalent vertex to 𝑆1. In this case, 𝐷 looks as below. 

 

In this case, regardless of how the STU relation is used to reduce 𝐷, the resulting 

chord diagrams are equivalent mod the 4T relation. Consider the below calculation. 

 

We have that the two diagrams on the left hand side are equivalent by the 4T 

relation. That is, we can obtain the first diagram from the second passing the end 𝑓 of the 

chord marked 𝑛 over the blob 𝐵′. This is possible by the 4T relation and thus 𝐷 = 0. 

∎ 



 

5. Claspers: 

We have now shown that the space of Jacobi diagrams on 𝑆1 is isomorphic to the space of chord 

diagrams mod the 4T relation. We also have that there is a clear mapping from chord diagrams of 

degree 𝑑 to the space of singular knots with 𝑑 double points modulo singular knots with 𝑑 + 1 

double points. That is, we obtain a knot with 𝑑 double points from a degree 𝑑 chord diagram 𝐷 

by collapsing each chord of 𝐷 to a point. In doing so, we in turn constructed a weight system of a 

Vassiliev invariant. However, we do not have an obvious mapping from 𝒜(𝑆1)(𝑑) to the space 

of singular knots with 𝑑 double points modulo singular knots with 𝑑 + 1 double points. To do 

this, we introduce the notion of the clasper as discovered by Habiro. 

Definition: Habiro’s clasper is defined as follows: 

 

where the band indicates part of a link or clasper, and the first picture denotes the other two 

pictures. That is, the middle picture is obtained from the right picture by blackboard framed 

surgery along the Hopf link. The framed embedded graph in the left picture is called a clasper, 

and each loop at the end of a clasper is called a leaf of the clasper. 

We have the following notation when dealing with claspers: 

  



 

 

 

Relations: Claspers satisfy the following relations: 

 

(A.1)  

 

 

(A.2)  

 

 

 

(A.3)  

 

 

 

(A.4)  

 



(A.5)   

 

where the dotted lines indicate strands which are possibly knotted and linked in some 

manner. 

Proof: We have that (A.1) is obtained by 

 

where the equalities are obtained by surgery along the links. We get (A.2) by noting that 

the 3-space obtained by the surgery along the link  

 

is homeomorphic to the initial manifold. (A.3) is obtained by 

 

𝐿𝐻𝑆    =                                     =                                       =     𝑅𝐻𝑆 

 

where the middle equality is obtained by the handle slide of the vertical strand over the 

component of the dotted line. (A.4) follows from (A.3). And finally (A.5) is obtained by 

applying (A.2) and (A.1) to the definition.      ∎ 

6. Claspers and Knots: 

Definition: Let 𝕂 denote the set of knots and note that 𝕂 is a commutative semigroup with 

respect to connect sum of knots. We call a connected graph without cycles a tree. We define a 



tree clasper as a union of claspers obtained from a connected uni-trivalent tree in a three 

dimensional space by replacing univalent vertices with leaves and trivalent vertices with sets of 

Borromean rings. A disc-leaf is a leaf bounding a disk intersecting at precisely one point. A tree 

clasper on a knot 𝐾 is a tree clasper such that at least one of the leaves of the clasper is a disc-

leaf and each of the other leaves bounds a disk intersecting parts on 𝐾 and edges of the clasper. 

This is graphically shown as: 

 

where the band implies some nonempty bundle of strands of 𝐾 and other edges of the clasper. 

 We say that a tree clasper on a knot 𝐾 has degree 𝑑 if it has 𝑑 − 1 trivalent vertices. We 

define the 𝐶𝑑-equivalence to be the equivalence relation of two knots 𝐾 and 𝐾̃ where 𝐾̃ is 

obtained by surgery along tree claspers on 𝐾of degree 𝑑. Furthermore, we write 𝕂𝑑  to mean the 

set of knots which are 𝐶𝑑-equivalence to the unknot. The set 𝕂𝑑 forms a commutative semigroup 

as a sub-semigroup of 𝕂. 

Remark: Surgery along a tree clasper on a knot in 𝑆3 results in another knot in 𝑆3 by the 

structure of the tree claspers, use of (A.2), and the fact that Borromean rings completely 

unlink when one of its components unlinks. 

For the following lemma’s, relations and theorems, the pictures indicate local diagrams of tree 

claspers except for a ball where they differ as indicated. Furthermore, we denote the unknot as 0. 

It should also be noted that the proofs of these lemmas can be found in detain in Habiro’s paper 

circa 2000. 

Lemma 1: We have that  

 

 



Lemma 2: A box moves beyond a trivalent vertex as 

 

Lemma 3: Let 𝐾 be a knot, and let 𝐾̃ be the knot obtained from 𝐾 by surgery along a degree 𝑑 

tree clasper 𝑇 on 𝐾. Then 𝐾 can be obtained from 𝐾̃ by surgery along a degree 𝑑 tree clasper 𝑇̃ 

on 𝐾̃. 

Lemma 4: We have the following relation between two knots obtained from another knot via 

surgery along two degree 𝑑 tree claspers which differ as below 

 

Lemma 5: We have the following relation between two knots obtained from a third knot by 

surgery on collections of tree claspers 

 

Here we note that the left leaf in the left picture, and so the right leaf in the right picture, is a leaf 

of a degree 𝑑 tree clasper, and the other leaves belong to some other tree clasper. 

Lemma 6: We have the following relation between the trivial knot and a knot obtained by 

connect-summing together a pair of knots, each which is obtained from the trivial knot by 

surgery along a tree clasper: 



 

Lemma 7: We have the following relation among the three knots, each of which is obtained from 

the trivial knot by surgery along a degree 𝑑 tree clasper. 

 

The AS Relation: We have the following AS relation, which relates the connect sum of two knots, 

each obtained from the trivial knot by surgery along a tree clasper of degree 𝑑, to the trivial knot. 

 

 Proof: The tree clasper on the far left hand side is equal to 

 

by a half twist of a neighborhood of the trivalent vertex. Hence we can apply Lemma 

6 to it three times and yield the desired formula.  

∎ 



The STU Relation: We have the following STU relation, which relates three knots, each obtained 

from the trivial knot by surgery along a degree 𝑑 tree clasper. 

 

 Proof: We consider the simple case below for simplicity. We have then that 

  

where the three equalities are obtained by isotopy, the definition of the box, and 

lemma 2 respectively. Moreover, the last picture is equal to the following picture by 

lemmas 4 and 5. Thus, by lemma 6 we have the desired formula. 



 

∎ 

The IHX Relation: We have the following IHX relation, which relates three knots, each obtained 

from the trivial knot by surgery along a degree 𝑑 tree clasper. 

 

Theorem: For each positive integer 𝑑, we have the following surjective homomorphism, 

𝜑 ∶  𝑠𝑝𝑎𝑛 {
𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝐽𝑎𝑐𝑜𝑏𝑖 𝑑𝑖𝑎𝑔𝑟𝑎𝑚𝑠

𝑜𝑛 𝑆1 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑑
} /𝐴𝑆, 𝐼𝐻𝑋, 𝑆𝑇𝑈 →  𝕂𝑑 /𝐶𝑑+1-𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 

Which takes primitive Jacobi diagrams to a knot obtained from the unknot by surgery along a 

tree clasper on the unknot. We obtain a tree clasper from a Jacobi diagram by replacing 

trivalent and univalent vertices as follows: 

 

I.  

  

II.   

 



where we choose the image of each trivalent vertex in such a way that the resulting image is a 

tree clasper. 

 Proof: This follows from the above lemmas. 

Thus we now have representations of both Chord diagrams and Jacobi diagrams as knots. 
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