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Abstract

In this paper we consider analyzing ordinal data using the Proportional
Odds model. Our interest is in the efficiency of the General Estimating
Equations (GEE) method versus Maximum Likelihood Estimation (MLE).
Using an appropriate simulation without repeated measures we show that
the GEE results follow those of the MLE quite closely. We conclude that
the difference in efficiency is negligible when not using repeated measures,
and place further interest in the efficiency of the GEE method otherwise.
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1 Introduction

The use of ordinal data is prevalent in the public health fields. In a recent study
at the CTRI1, data was collected from women with pelvic floor disorders before
surgery, and at six and twelve weeks after surgery. A portion of the data was
collected via a series of questionnaires, and the researchers were interested in ana-
lyzing a specific set of responses on the questionnaires, which had an ordinal score
of 0, 1, 2, 3, or 4. The analysis used the Generalized Estimating Equations (GEE)
approach, given the repeated measures. The statisticians found the R function
repolr{repolr} [1] to fit the repeated measures ordinal data, which converts the
ordinal data into binary pseudo-data before applying the GEE approach. The
purpose of this paper is to examine this method in a simpler setting of i.i.d. data
without repeated measures in order to compare its efficiency to the asymptotically
efficient Maximum Likelihood Estimation (MLE). Given the theoretical optimality
of the MLE, we expect that the GEE will follow in performance yet are interested
in measuring the difference by which it does. The result may provide some indi-
cation as to how they might compare over repeated measures.

2 Theoretical basis

Consider a record of ordinal scores obtained in a clinical study with n subjects
assumed to be i.i.d. and K ordered categories. Let Yi be the response for the
i-th individual. Let Xi be a vector of length L containing the observed covariates,
specific to individual i. Let β be a corresponding vector of coefficients, and ζ a
vector of intercepts between response levels. Denote pik = P (Yi = k|Xi = x). We
define the odds of k to be the ratio pik/(1 − pik). The proportional odds model
with K = 2 and L = 1 has:

P (Yi = k|Xi = x) =
exp(ζk + βx)

1 + exp(ζk + βx)
, k = 1, 2 (1)

where −∞ < β < ∞. Taking the logit2 of the above ratio as a link function, or
transformation, we obtain:

logit{P (Yi = k|Xi = x)} = ζk + βx , (2)

allowing us to view the components through a generalized linear model. Now,
for K ≥ 2, we may derive odds ratios in a number of ways. One might consider
the proportion between multinomial, cumulative, or adjacent probabilities. It is

1Clinical and Translational Research Institute, UC San Diego
2logit(p) = log{p/(1− p)}
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worth noting that each of these derivations utilize the same basic structure, but
the values for the ζ intercepts may vary between the three possibilities. We will
use the cumulative odds. In this particular case, we note that as the cumulative
probabilities must increase, ζk must strictly increase with k. We consider P (Yi ≤ k)
and obtain the following cumulative logit:

logit{P (Yi ≤ k|Xi)} = ζk + β1xi1 + β2xi2 + ...βLxiL (3)

We note the conceptual basis behind the proportional odds model by relating it to
the latent variable Z, having a logistic distribution with P (Y ≤ k) = P (Z ≤ zk).
Then:

P (Y ≤ k) = P (Z ≤ zk) =
exp (zk)

1 + exp (zk)
=

exp (ζk + β′x)

1 + exp (ζk + β′x)
(4)

We may interpret β as the proportional odds between groups, and the ζ as ‘base-
line’ odds. An assumption of the model is that our covariate coefficients are con-
stant across each level, while ζk varies with k, indicating the intercept for propor-
tional odds between response levels. In a simplistic setting with K = 2 and L = 1
this may be interpreted as the relationship between predictor and binary response,
treatment and outcome. Extending this model to K ≥ 2 allows us to consider more
refined structures of treatment and outcome, such as scales of quality. We may
also extend L and consider factors such as age3 and gender.

2.1 Maximum Likelihood Estimation

Allowing Fik = {P (Yi ≤ k|Xi)}, we have pik = Fi,k − Fi,k−1 and the likelihood
function is:

n∏
i=1

K∏
k=1

{pik (ζk,β)}yik (5)

The ζ intercepts and β coefficients are then estimated by maximizing this function.

2.2 General Estimating Equations

The GEE is designed for correlated data and does not assume independence. We
consider the previous Yi, with logit{P (Yi ≤ k|Xi)} = ζk + β′Xi, and use it to
create a vector of binary variables:

Y ∗i =

 Y ∗i1
...

Y ∗i(K−1)

 where Y ∗ik =

{
1 : Yi > k
0 : Yi ≤ k

. (6)

3Covariates may be discrete, continuous, or neither

5



Let g−1 (µik) = E[Y ∗ik], the cumulative link function relative to our underlying
model. Let Vi be the covariance structure for the predictors. Then we have:∑

i

∂g(µik)

∂(β)
V −1i {Y ∗ik − g−1 (µik)} = 0

∑
i

∂g(µik)

∂(ζ)
V −1i {Y ∗ik − g−1 (µik)} = 0

(7)

for each k = 1, 2, ..., (K − 1). β and ζ may now be estimated by these systems of
equations using an iterative Newton-Raphson method. As the covariance structure
is generally unknown, it is treated as a nuisance parameter and the resulting GEE
estimations are consistent regardless of the specified structure. However, if the
covariance structure is correctly specified, the method may return a useful estimate
of the data correlation. This is favorable in the setting of repeated measures.

3 Implementation in R

Having outlined our underlying models and methods, we consider their implemen-
tation in the software package R.

3.1 polr()

polr{MASS} [2] performs logistic regression using the proportional odds model
(3) and the likelihood function (5). There is a slight methodical alteration in using
the parameter η = −β and so we adjust our code accordingly for simulation. Em-
ploying the MLE method, polr estimates are asymptotically normally distributed
and efficient.

3.2 gee()

gee{gee} [3] extends the Generalized Linear Model to apply the Generalized Esti-
mating Equations strategy outlined in Section 2.2. As implied, we manipulate the
ordinal data into K − 1 binary pseudo data points that are clustered. Each re-
sponse is paired with a vector of binary variables using equation (6). This creates
a new response vector of length n(K − 1). We also number the response clusters
and create a design vector to distinguish between levels for each response. The cu-
mulative logit link and binomial family are passed into the function to identify the
assumed underlying model and respective transformation for the use of equations
(7). This alteration forces applicability of the gee in regards to ordinal data. How-
ever, it is worth noting that the gee package does not calculate multiple intercept
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estimates. The function only produces ζk−1 and a coefficient of the design vector.
Thus, a few minor calculations are necessary to extract the remaining estimates.

4 Simulation

For simulation we consider K = 3, L = 2. Two Bernoulli covariates, x1 and x2,
are generated using sample with the respective probabilities of 0.49 and 0.51.
Appropriate values for the β coefficients and ζ intercepts are also selected such
that the resulting response samples will include each level. Simulating samples
in R, we selected β = {−2.05, 2.05} and ζ = {−0.7, 0.7}. The proportional odds
model becomes:

logit{P (Yi ≤ k|Xi)} = ζk + β1xi1 + β2xi2
k = 1, 2, 3
i = 1, 2, ..., n

(8)

Using (8) as the true model, we create probability vectors for the multinomial
probabilities pik = P (Yi = k) = P (Yi ≤ k)− P (Yi ≤ k − 1), for each 1 ≤ k ≤ K:

pi1 =
exp (ζ1 + βXi)

1 + exp (ζ1 + βXi)

pi2 =
1

1 + exp (ζ1 + βXi)
− 1

1 + exp (ζ2 + βXi)

pi3 = 1− pi1 − pi2

(9)

We then use these probabilities to generate a response vector with K = 3 levels
and probabilities corresponding to each level given the covariate values. The polr
function is applied to the data and the MLE estimates are stored. The true data
are then transformed into ‘new’ correlated binary data, as discussed in Section
3.2, and gee applied. After all the estimates are stored, the process is repeated
N times and the results tabulated. For this paper we consider sample sizes of
n = 200, 500, 1000, 2000 at N = 5000. The R code used in this simulation is
included in the appendix. Comparing the results of the gee and polr functions
across varying sample sizes in Tables 1 - 4 we see that, while the GEE method is
consistently less accurate than MLE as we had expected, it does indeed approach
the MLE. The standard deviation (SD), standard error (SE), and mean-squared
error (MSE) of each ζ̂k and β̂ are quite close to those of the MLE, with coverage
probabilities of 95% confidence intervals (CP) approaching 0.95. Comparing the
estimate for ζ1 in Tables 1 and 4, we see that the respective SD, SE, and MSE of
{0.255, 0.256, 0.065} at n = 200 are reduced to {0.082, 0.080, 0.007} at n = 2000
under the polr function, while the corresponding values {0.255, 0.258, 0.065} at
n = 200 are reduced to {0.082, 0.080, 0.007} at n = 2000 using the gee function.
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5 Discussion

In this paper we have outlined the theory and methods for MLE and the GEE
regarding ordinal scores and assuming the proportional odds model, briefly dis-
cussing the benefits and complications of their usage. We observe that the GEE
closely follows the MLE in efficiency during simulation, with the difference be-
tween estimates becoming virtually indistinguishable for large sample sizes. From
these results we conclude that the GEE is relatively efficient compared to MLE in
estimating ζk and β with ordinal data, placing further interest in how efficient the
GEE is over repeated measures.
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Appendix

library(MASS)
library(gee)

N=5000
n=2000
#Zeta and Beta coefficients
#Note : Zeta for logit*P( Y <= k )
Z=c(-0.7, 0.7)
B=c(2.05, -2.05)

#result data frame
dfp <- as.data.frame(matrix(nrow=8, ncol=6))

#result vectors
X1 <- numeric(N)
Y1 <- numeric(N)
U1 <- numeric(N)
V1 <- numeric(N)
X2 <- numeric(N)
Y2 <- numeric(N)
U2 <- numeric(N)
V2 <- numeric(N)

#CI vectors
CIX1 <- numeric(N)
CIY1 <- numeric(N)
CIU1 <- numeric(N)
CIV1 <- numeric(N)
CIX2 <- numeric(N)
CIY2 <- numeric(N)
CIU2 <- numeric(N)
CIV2 <- numeric(N)

#error vectors
eX1 <- numeric(N)
eY1 <- numeric(N)
eU1 <- numeric(N)
eV1 <- numeric(N)
eX2 <- numeric(N)
eY2 <- numeric(N)
eU2 <- numeric(N)
eV2 <- numeric(N)

#probability vectors
p1 <- numeric(n)
p2 <- numeric(n)
p3 <- numeric(n)

#response vectors
response <- numeric(n)
y1 <- numeric(n)
y2 <- numeric(n)
res <- numeric(2*n)

#design vectors
identity <- numeric(2*n)
des <- numeric(2*n)
tx2 <- numeric(2*n)
sex2 <- numeric(2*n)

for (iter in 1:N) {
#generate treatment and gender covariates
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tx <- sample(c(0,1), n, replace=TRUE, prob = c(.49,.51))
sex <- sample(c(0,1), n, replace=TRUE, prob = c(.51,.49))
#construct probabilities according to logit model
for (i in 1:n){
p1[i] = exp(Z[1]-(B[1]*tx[i]+B[2]*sex[i]))/(1+exp(Z[1]-(B[1]*tx[i]+B[2]*sex[i])))
p2[i] = 1/(1+exp(Z[1]-B[1]*tx[i]-B[2]*sex[i]))-1/(1+exp(Z[2]-B[1]*tx[i]-B[2]*sex[i]))
p3[i] = (1-p1[i]-p2[i])
}

#build ordinal responses from probabilities
for (i in 1:n){
response[i] <- sample( 1:3, 1, replace=TRUE, c(p1[i],p2[i],p3[i]) )
}

#fit data to polr and add to result matrices
response = as.factor(response)
pfit <- polr(response ~ tx + sex, Hess=TRUE, model=TRUE, method="logistic")

#store estimate data
X1[iter] = as.double(pfit$zeta[1])
X2[iter] = as.double(pfit$zeta[2])
Y1[iter] = as.double(pfit$coef[1])
Y2[iter] = as.double(pfit$coef[2])
#std. error
eX1[iter] <- as.double(summary(pfit)$coefficients[3,2])
eX2[iter] <- as.double(summary(pfit)$coefficients[4,2])
eY1[iter] <- as.double(summary(pfit)$coefficients[1,2])
eY2[iter] <- as.double(summary(pfit)$coefficients[2,2])

#construct confidence interval and store result
if( Z[1] < X1[iter]+1.96*eX1[iter] && Z[1] > X1[iter]-1.96*eX1[iter] )
{ CIX1[iter]=1 }
if( Z[2] < X2[iter]+1.96*eX2[iter] && Z[2] > X2[iter]-1.96*eX2[iter] )
{ CIX2[iter]=1 }
if( B[1] < Y1[iter]+1.96*eY1[iter] && B[1] > Y1[iter]-1.96*eY1[iter] )
{ CIY1[iter]=1 }
if( B[2] < Y2[iter]+1.96*eY2[iter] && B[2] > Y2[iter]-1.96*eY2[iter] )
{ CIY2[iter]=1 }

#convert ordinal data to a series of binary vectors
#construct new response and covariate vectors accordingly
j=1
for(k in 1:n) {
if(response[k]==1) {y1[k]=0; y2[k]=0}
if(response[k]==2) {y1[k]=0; y2[k]=1}
if(response[k]==3) {y1[k]=1; y2[k]=1}
res[2*k-1]=y1[k]
res[2*k]=y2[k]
identity[2*k]=j
identity[2*k-1]=j
j=j+1

tx2[2*k-1]=tx[k]
tx2[2*k]=tx[k]
sex2[2*k-1]=sex[k]
sex2[2*k]=sex[k]
des[2*k]=1
des[2*k-1]=0
}

#fit new psuedo data to GEE
gfit <- gee(res ~ des + tx2 + sex2, id=identity, family = "binomial",
corstr="exchangeable", silent=TRUE)

#store estimate data
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#retrieving intercepts from given GEE value
U1[iter] = as.double(-gfit$coef[1]-gfit$coef[2])
U2[iter] = as.double(-gfit$coef[1])
V1[iter] = as.double(gfit$coef[3])
V2[iter] = as.double(gfit$coef[4])

#calculate standard error for retrieved intercepts
a = gfit$naive.variance[1,1]
b = gfit$naive.variance[2,2]
c = gfit$naive.variance[1,2]
nst = sqrt(a+b+2*c)

#store std. error
eU1[iter] <- as.double(nst)
eU2[iter] <- as.double(summary(gfit)$coefficients[1,2])
eV1[iter] <- as.double(summary(gfit)$coefficients[3,2])
eV2[iter] <- as.double(summary(gfit)$coefficients[4,2])

#construct confidence interval and store result
if( Z[1] < U1[iter]+1.96*eU1[iter] && Z[1] > U1[iter]-1.96*eU1[iter])
{ CIU1[iter]=1 }
if( Z[2] < U2[iter]+1.96*eU2[iter] && Z[2] > U2[iter]-1.96*eU2[iter])
{ CIU2[iter]=1 }
if( B[1] < V1[iter]+1.96*eV1[iter] && B[1] > V1[iter]-1.96*eV1[iter])
{ CIV1[iter]=1 }
if( B[2] < V2[iter]+1.96*eV2[iter] && B[2] > V2[iter]-1.96*eV2[iter])
{ CIV2[iter]=1 }
}

colnames(dfp) <- c("True", "Estimate", "SD", "SE", "MSE", "CP")
row.names(dfp) <- c("1|2 POLR","1|2 (GEE)","2|3 POLR","2|3 (GEE)",
"Beta 0 (POLR)","Beta 0 (GEE)","Beta 1 (POLR)","Beta 1 (GEE)")

dfp[1,] <- c(Z[1], mean(X1), sd(X1), mean(eX1),
(Z[1]-mean(X1))^2+sd(X1)^2, mean(CIX1))
dfp[3,] <- c(Z[2], mean(X2), sd(X2), mean(eX2),
(Z[2]-mean(X2))^2+sd(X2)^2, mean(CIX2))
dfp[5,] <- c(B[1], mean(Y1), sd(Y1), mean(eY1),
(B[1]-mean(Y1))^2+sd(Y1)^2, mean(CIY1))
dfp[7,] <- c(B[2], mean(Y2), sd(Y2), mean(eY2),
(B[2]-mean(Y2))^2+sd(Y2)^2, mean(CIY2))
dfp[2,] <- c(Z[1], mean(U1), sd(U1), mean(eU1),
(Z[1]-mean(U1))^2+sd(U1)^2, mean(CIU1))
dfp[4,] <- c(Z[2], mean(U2), sd(U2), mean(eU2),
(Z[2]-mean(U2))^2+sd(U2)^2, mean(CIU2))
dfp[6,] <- c(B[1], mean(V1), sd(V1), mean(eV1),
(B[1]-mean(V1))^2+sd(V1)^2, mean(CIV1))
dfp[8,] <- c(B[2], mean(V2), sd(V2), mean(eV2),
(B[2]-mean(V2))^2+sd(V2)^2, mean(CIV2))

dfp
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Tables

Values at N = 5000 simulations

Table 1: n = 200

True Estimate SD SE MSE CP

ζ1
polr -0.70 -0.712 0.255 0.256 0.065 0.952
gee -0.70 -0.712 0.255 0.258 0.065 0.954

ζ2
polr 0.70 0.709 0.256 0.256 0.066 0.953
gee 0.70 0.710 0.256 0.258 0.066 0.953

β1
polr 2.05 2.085 0.329 0.323 0.109 0.949
gee 2.05 2.092 0.332 0.326 0.112 0.949

β2
polr -2.05 -2.085 0.330 0.323 0.110 0.948
gee -2.05 -2.092 0.333 0.326 0.112 0.949

Table 2: n = 500

True Estimate SD SE MSE CP

ζ1
polr -0.70 -0.703 0.162 0.161 0.026 0.948
gee -0.70 -0.703 0.162 0.161 0.026 0.947

ζ2
polr 0.70 0.705 0.163 0.161 0.027 0.946
gee 0.70 0.705 0.163 0.161 0.027 0.947

β1
polr 2.05 2.06 0.203 0.202 0.041 0.949
gee 2.05 2.07 0.203 0.203 0.042 0.950

β2
polr -2.05 -2.065 0.198 0.202 0.040 0.956
gee -2.05 -2.067 0.199 0.203 0.040 0.956
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Table 3: n = 1000

True Estimate SD SE MSE CP

ζ1
polr -0.70 -0.701 0.116 0.113 0.013 0.948
gee -0.70 -0.701 0.116 0.114 0.013 0.948

ζ2
polr 0.70 0.701 0.116 0.113 0.013 0.949
gee 0.70 0.701 0.116 0.114 0.013 0.950

β1
polr 2.05 2.056 0.143 0.142 0.021 0.948
gee 2.05 2.057 0.144 0.143 0.021 0.949

β2
polr -2.05 -2.059 0.142 0.142 0.020 0.953
gee -2.05 -2.061 0.143 0.143 0.020 0.954

Table 4: n = 2000

True Estimate SD SE MSE CP

ζ1
polr -0.70 -0.701 0.082 0.080 0.007 0.945
gee -0.70 -0.701 0.082 0.080 0.007 0.944

ζ2
polr 0.70 0.701 0.080 0.080 0.006 0.950
gee 0.70 0.701 0.080 0.080 0.006 0.950

β1
polr 2.05 2.054 0.102 0.100 0.010 0.948
gee 2.05 2.055 0.102 0.101 0.010 0.947

β2
polr -2.05 -2.055 0.101 0.100 0.010 0.949
gee -2.05 -2.056 0.101 0.101 0.010 0.950
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