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ABSTRACT. A partial ranking is a partially known total ordering of a set of
objects, i.e., elements in some subsets of the set may be assigned the same
rank. A typical example is a top k list, in which all the remaining objects are,
as far as list tells us, tied at rank k& + 1. We derive a metric on the set of
partial rankings that, unlike previous metrics, incorporates the intuition that
there should be greater significance to changes at the top of the ranking than
lower down. We apply this metric to the world ranking of professional men’s
tennis players to illustrate how it captures the desired phenomena.
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1. INTRODUCTION

Metrics on permutations have been well studied and include classical construc-
tions like Kendall’s tau [6] and Spearman’s Footrule [8]. Over the past decade, the
study of metrics on permutations (i.e., full rankings) has focussed on top k lists
and partial rankings. Top k lists are exemplified by top 10 lists, which can be the
results of a search engine query. Metrics have been developed to compare top k
lists with the goal of finding a top k list that is a “good” consolidation of multiple
top k lists [2].

Partial rankings arise in several applications such as sports rankings, political
rankings and commerce rankings. Due to the way these rankings are formed, there
is the possibility of ties. For example, the Chinese Communist Party produces a
ranked list of the Central Committee members, however, there are cases in which
several members are tied since the Party does not disclose complete information.
By comparing the partial rankings from National Congress to National Congress,
we are able to gain information about succession within the Party [7]. Another
application is online rating systems, such as for restaurants or hotels, in which even
with multiple criteria ties can arise.

We are specifically interested in timeseries of partial rankings, in which we will
quantify changes from one time step to the next. In the context of tennis, for
example, changes arise from individual players moving up and down in the rankings
each week. There is a connotation that when an element is in position 1, the top
position of the partial ranking, that is the best position, so moving up into that
position is signifiant, as is moving out of it. An ideal comparison of partial rankings
would incorporate this real world significance of different ranks. Current measures
treat each rank change equally, so real world significance from one change to the
next is not accurately described.

In this paper, we will focus on improving upon an existing family of metrics on
partial rankings. This is obtained by using the generalization of the L;-norm on
permutations as described in a recent paper of Fagin, Kumar, Mahdian, Sivakumar
and Vee [3]. In order to improve upon this metric, we introduce a Rank Transform
Function (RTF) that places a weight on each rank, and therefore on each change
in rank. This function weights changes at the top of a ranking more than changes
at the bottom. We prove that the L,-norm remains a metric even when the ranks
are transformed by the RTF. We use real data to compare our metric with Fagin,
et al.’s, and show that ours is better at accounting for the real-world significance
of top ranks.

1.1. Metrics on Permutations. Metrics on permutations quantify how permu-
tations differ from each other. A permutation, p, is a bijection from a set D onto
[N] = {1,...,N}, where N = |D|. For a permutation, p(i) is interpreted as the
position or rank of the element 3.
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Definition 1. A metric on a set X is a function d : X x X — R satisfying the
following conditions:

(1) d(z,z) =0 Ve e X
(2) d(z,y) >0 Ve#yeX
(3) d(z,y) = d(y, ) Ve,y € X
(4) d(z,y) < d(z,2) + d(y, 2) Va,y,z € X.

The classical metrics that have been well-studied for full rankings are Kendall’s
tau [6] and the L,-norm.

Definition 2. The Kendall tau distance between two permutations py and ps is
(p1,p2) = [{(i,7) 10 < 4, (p1(4) < pr(5) A p2(i) > p2(4)) V (p1(2) > p1(5) A p2(3) < p2(j)) }-

The Kendall tau distance between two full rankings is the number of pairs that
are in a different order in the rankings. It is the minimum number of pairwise
adjacent transpositions needed to transform p; into py [1]. For example, if given
the following permutations p1=(3,1,6,2,5,4) and p2=(1,3,6,4,2,5), the Kendall tau
distance between p; and p2 is 3 (7(p1, p2) = 3).

Definition 3. The Li-norm, Spearman’s Footrule, is defined by

li(p1, p2) = Z lp1(i) — pa(i)].

The Li-norm is the sum of the absolute values of the differences in ranks between
two permutations. Using the example above, ¢1(p1, p2) = 10. The maximum value
occurs when p; and ps are in reverse orders.

1.2. Hausdorff Metric. The Hausdorff metric measures how far two subsets of a
metric space are from each other [4]. Top k lists and partial rankings are viewed as
subsets of consistent full rankings so the Hausdorff distance between such subsets
gives a distance between partial rankings.

Definition 4. Let X and Y be two non-empty subsets of a metric space (M,d).
The Hausdorff distance is defined by

dg(X,Y) := d(z,Y d(y, X
H( ) ) max{r;lea))(( (‘Tv )7Iyn€a’§( (y7 )}7

where
d(x,Y) := mind .
(z,Y) :=mind(z,y)

The quantity minyecy d(x,y) is the distance between x and the set Y. Therefore,
the quantity max,ex d(z,Y) is the maximal distance of a member of X from the
set Y. Similarly, the quantity max,cy d(y, X) is the maximal distance of a member
of Y from the set X. The Hausdorff distance between X and Y is the maximal
distance of a member of X or Y from the other set.

1.3. Metrics on Top k Lists. A top k list is the top & of a full ranking so metrics
on permutations can be applied to top & lists through the Hausdorff metric.

Definition 5. A top k list, T, is a bijection from a domain D, to [k] [2].
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The element ¢ appears in the top k list 7 if ¢ € D, where 7(7) is the rank of 7 in
7. If 7 is a top k list and p is a permutation on D O D., then we say that p is an
extension of 7, if p(i) = 7(i) Vi € D-.

When we are comparing the top k, the elements might not be the same in each
list. Let D=D, UD,,; Z=D, ND.;S=D;\D.,; T=D,,\D, [2].

Crtichlow introduced “induced Hausdorff metrics” in order to determine the
distance between two top k lists [1]. The distance between two top k lists using
Kendall’s tau is

1 . .
Taus (p1,02) = 5 (k = 2)(5k =2+ 1)+ Y 7ii(p1.p2) = D pa(i) = D pali),
ijez ies €T
where z = |Z| and 7; j(pi, p2) = 1 if p1 and py rank ¢ and j oppositely, and vanishes
otherwise [2]. Just as Kendall’s tau can be “induced” with the Hausdorff metric,
so can the Li-norm. Similarly, Fagin et al. found [2]

Friaus(p1,p2) = (k= 2)Bk — 2+ 1) + Y |p1()) = p2(i)] = >_ p1 (i) = D> _ pal(i)

i€Z €S i€T

1.4. Metrics on Partial Rankings. A partial ranking is a ranking in which the
ordering is not complete [1]. The formulas that have been used to determine the
distance between top k lists can not be applied to partial rankings because those
metrics do not completely deal with the ties.

Definition 6. A partial ranking on D, with |D| = N, is a map o : D — [N] such
that o= ([n —1])] >n—1= o7 (n) = 0.

Definition 7. A permutation p : D — [N] is an extension of a partial ranking o
on D for all z, y € D, o(x) < o(y) = p(x) < p(y). Let Sp D R, :={p € Splp is
an extension of o}.

A partial ranking, o is a permutation in which ties occur. A tie is defined when
two or more elements in the partial ranking have the same rank or position. For
example, if o(z) = o(y) = 0(2), x,y, z are tied at the same position. A top k list is
a very specific type of partial ranking. There are k elements in the partial ranking
with known positions. The remaining elements in the domain are not listed in the
top k are all tied in the position k + 1.

The reverse of a partial ranking with domain D is defined as of(d) = |[D| + 1 —
o(d) for all d € D. For two partial rankings a and 8 with domain D, it is said
that « is a refinement of 5 if for 7,5 € D, a(i) < a(j) whenever B(i) < (j). A
7 refinement of o, (7 * ), is the refinement of ¢ with the following properties: for
i,j € D if

(5) o(1) =o(j) and 7(3) < 7(j) = (rtx0)(@) < (r*x0)(j);
(6) o(i) = o(j) and 7(i) = 7(5) = (rx0)()=(r*0)();
(7) o(i) <o(j) = (r*0)(@) < (T*0)(j).

With this notation, the Hausdorff distance induced by the Lj-norm for partial
rankings is

R

Fraus(o,7) = max{F(w* %% o wxo*7), FwxT*o,w*x o x7)},

where w is any full ranking, o, 7 are partial rankings and F' is Spearman’s Footrule
distance, i.e., the Li-norm [3].
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We will be using the following global notation throughout the paper.

Notation 1. When two partial rankings o1 and o9 are understood, D = D,, UD,,;
Z =Dy, NDy,; S=Dy \Dy,; T = Dy,\Dy, [2].

2. RESULTS

We will use the metric on Sp defined by the L,-norm for p > 1,
(o1, p2) = (3 Ior(d) — pa(d)[")1/7.
d

The value of p determines the relative importance of small versus large differences
in position; the larger p is, the more important are larger changes. When /P is
extended to a metric on partial rankings, we will necessarily compute distances
between permutations containing some maximized differences in positions.

2.1. Rank Transform Function. In practice, one views a difference at a smaller
rank to be more significant than the same difference at a larger rank. In order
to add this significance into a metric, we introduce a Rank Transform Function.
The classical metrics for comparing partial rankings treat each change in rank as
the same so changes at the larger ranks are given the same significance as those at
a smaller rank. In order for changes at the top of the partial ranking to make a
larger contribution than the same changes at the bottom, we use a Rank Transform
Function.

Definition 8. Let f : R — R, which we will use as a Rank Transform Function
(RTF): Define

i (p1, p2) = L°(f o p1, f © p2).

Then E? is symmetric and positive semidefinite for any f. Also, the triangle
inequality holds:

Proof.

Ci(p1, p2)+ (p2, p3) = P (fopr, fop2)+LP (fopa, fops) = £¥(fopr, fops) = L4(p1, p3).
O

Proposition 1. If f is a bijection then 6? is a metric on Sp.

Proof. Tt remains to be shown that if f is bijective the K?(pl, p2) =0 & p1 = pa.

Certainly if p1 = p2, (5 (p1,p2) = 0. And if py # pa, f o p1 # f o py since f is
bijective, whence £} (p1, pa) = €7(f o p1, f o p2) # 0. 0O

If f is bijective and continuous, then it is necessarily monotone and we will
assume that each RTF is monotone increasing such that f’(r) > 0, where r is the
rank. We are interested in permutations p where the value of p(4) is interpreted
as the rank of i. Then f(r) determines how important a difference at rank r is
compared with differences at other ranks.

In most of the applications we consider, if not all, it is natural to think of a
difference at a smaller rank as being more significant than the same difference at a
larger rank. This implies that f’ should be decreasing, i.e., f”/ <0, so f is concave.
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Lemma 1. For any monotone increasing f : R — R and p € Sp, if p(x) < p(y)
and 1 <r <s <N, then

[f(p(2)) = F(r)IP + [ (p(y) = F()I” < [f(p(2)) = F()IP + [f(p(y)) = F(r)]"-

Proof. Since f is monotone increasing, we have a := f(p(z)) < f(p(y)) =: b and
c:= f(r) < f(s) =: d. Hence, we want to show

la—c|P+b—dP <la—dP 4+ |b—c|’.

Let the convex function g(x) = |z|P for p > 1. There are three cases which arise as
follows: i) c<d<a<b;il) c<a<d<b;iilja<ec<d<b.

Case 1. Let X1 =a—c, Xo=b—d, Y, =b—c, and Y5 = a — d. The sequence
Y = (Y1,Y2) majorizes X = (X1,X2). Y1 > X1 and Y1 +Y2 = X1+ Xo. Since g(x)
is convez, using Karamata’s inequality [5], one obtains

g(Y1) 4+ g(Y2) > g(X1) + g(X3).
This can be rewritten as:

la—c|P+|b—d|P <l|a—dP+ |b—c|P.

le wlm
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2.2. Rank Transformed L, Metric. Given any metric on Sp, the Hausdorff
metric [4] on subsets of Sp defines a metric on partial rankings:
d(o1,02) :=dg(Rey,, Ry,) := max{ max d(p1,R,,), max d(ps, Rs,)},
pP1ERG, p2€R,,
where

d(p17R02):: min d(p17p2)7

p2€R,,
and similarly for d(ps, Rys,). To compute this distance between partial rankings
efficiently, we apply Lemma 1.

In order to break ties in a partial ranking o, we will use the refinement described
earlier. The permutations that resolve the ties in o7 do so in such a way as to
maximize the distance to the closest extension of o3. Lemma 1 implies that any
set of elements tied in o7 should be placed into the reverse order in which they
are ranked in 0. This permutation, which is an extension of o; is defined as:
K1 1= W * o§ x 01. Similarly for ko which is an extension of o3. Now Lemma 1
implies that any set of elements tied in o2 should be put into the order of which
they are ranked in o;. The permutation which is an extension of o5 is defined as:
L2 = w * 01 * 09. Similarly for p; which is an extension of o;. This proves the
following theorem:

Theorem 1. With the definitions in the preceding paragraph,
d(o1,09) = max{d(k1, u2),d(p1, k2)}

Still using the definitions in the paragraph preceding Theorem 1, when all the
elements are tied beneath the last rank of the partial ranking, d(x1, u2) becomes:

(8)
d(ry,p2) =) f(p(t)) = FN +1 =07+ 37 [(F(r(50)) = F(IDes]) + DI,

t;eT s;ES
9)

N—|S|—|T|-|Z]
+ Y D8 = FUSI T+ |21+ D + Y 1f(51(2)) = fua(2)P)M7s
z2€Z

and similarly for d(uq, K2).

3. APPLICATION TO DATA

In order to determine if the Rank Transformed L, metric gives more information
about how partial rankings change, we apply Fhaus metric and Rank Transformed
L, metric with p = 1. If p > 1, then the relative contribution of large distances
is not minimized. Therefore the only difference between the metrics is the Rank
Transform Function. The RTF that is used is f(r) = —1/r. We will examine
the Association of Tennis Professional’s partial rankings of Men’s Singles Tennis
Players from January to early November of 2013.

Before we apply the metrics, it is useful to understand how tennis players are
ranked. Points are assigned to the losers of specific rounds in tournaments. Hence
if a player wins in the third round, that player gets the number of points specified
for that round. If players have to qualify to be in the main draw of the tournament,
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they receive qualifying points as well. Different tournaments are worth different
numbers of points, i.e., Grand Slams such as Wimbledon, have the most points [9].

For the application, we will be looking at the Top 100 Men’s Singles players
where the value of N = 130. The value of N is chosen based on what the last rank
is for a player enters the top 100 from one week to the next.

FiGUurRE 1. Men’s Top 100 Players January - November 4 2013
Partial Ranking Distances with Fagin et al.’s Metric
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First, we will look at the maximum in the graph of Fagin et al. results (Figure
1), which occurs at d(June24, July8). The distance at this point is the maximum so
one would suspect that a lot of change occurred, which is an accurate interpretation
of the large distance. The changes that occur however, are at the bottom half of the
partial ranking. A lot of changes occurred in the bottom half because Wimbledon
took place between June 24 and July 7. Several players’ ranks changed due to
participating in qualifying tournaments so the bottom half of the ranking was more
unstable compared to the top half. This metric is unable to determine what changes
are significant. Since changes in the Top 25 are the most significant in the tennis
rankings, when the distance is dominated by the changes at the bottom of the
ranking, the metric is not capturing what it should be.

When we look at d(June24, July8), in the graph of the Rank Transformed L,
metric results (Figure 2), we notice that it is not a maximum. This a more accurate
representation of what is happening in the partial ranking. Since the majority of
changes that occur are at the bottom half of the ranking, they contribute less to the
total distance because of the RTF. The RTF gives less importance to the changes
at the bottom of the ranking compared to the top.

Lastly, we will look at d(September30, October7), when the most significant
event of the year took place, when Rafael Nadal overtook Novak Djokovic as the
best player in the world, ranked number 1. The Fpy,.s metric does not produce a
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FIGURE 2. Men’s Top 100 Players January - November 4 2013
Partial Ranking Distances with Rank Transformed L, Metric

0.8

016 —

Diztance

0.08 .|

0.06 —

maxima between these partial rankings. There are not many large changes in the
partial rankings which is why the distance is not a maxima. Fagin et al.’s metric
treats each change in a ranking as the same hence, changes at the top of the ranking
are viewed the same as changes at the bottom of the ranking, which is not how
changes are viewed in application.

However, when we examine the Rank Transformed L, metric results for
d(September30, October7), we see that it is indeed the maximum. This is an
accurate representation of the significance of the changes that have occurred. The
RTF allows the change in position one to contribute the most distance to the total
distance. The RTF is essential in distinguishing what rank changes are significant
and which ones are of less significance.

4. CONCLUSION

In this paper, we developed a metric that accurately describes the changes in
partial rankings. With the use of the Rank Transform Function, rank changes
have a weight that accurately describes how rank changes are viewed in the world,
changes at the top carrying more weight than changes at the bottom. We have
proved that with the inclusion of the RTF, we still have a metric. In application,
the Rank Transformed L, metric describes the rank changes that are occurring
better than the existing metrics.
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