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1 Introduction

1.1 Analytic Number Theory and This Thesis

Analytic number theory is, roughly, the study of the integers using tools
and techniques from analysis. It is believed to have begun with the work of
Dirichlet, who used analytic objects called Dirichlet L-functions to prove the
purely number theoretic result that, for any pair of positive integers a and m
which are coprime, the arithmetic progression

a, a+m, a+ 2m, a+ 3m, . . .

contains infinitely many prime numbers. We will prove this in Theorem 5.3.7.
Another cornerstone of analytic number theory is the prime number

theorem, which describes the asymptotic behavior of the prime numbers. It
states that if x is a positive real number and π(x) denotes the number of
primes less than or equal to x, then

lim
x→∞

π(x) log(x)

x
= 1.

We will prove this result in Theorem 4.5.7.
In this thesis we will survey just a small sample of classical analytic

number theory, reproducing a few of the important result along the way. The
reader is assumed to be familiar with the most basic facts of elementary
number theory (such as properties of divisibility and prime factorization),
some undergraduate abstract algebra, and a fair amount of undergraduate
analysis, including complex analysis. Appendices covering the more niche
topics that are needed are included at the end.

1.2 An Example: The Infinitude of Primes via Analysis

In this section, we will prove a very elementary number theoretic result in two
ways—first, using an ancient argument; second, using an analytic argument.
We will see that the analytic argument actually gives us more information.

One of the oldest theorems in number theory is the following one, proved
by Euclid in his Elements.

Theorem 1.2.1 (Euclid). There are infinitely many prime numbers.
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Proof. It suffices to show that, given finitely many prime numbers p1, . . . , pn,
there exists a prime number p different from each pi. If we have a finite list
of primes p1, . . . , pn, then we consider q = p1 · · · pn + 1. If q is prime, then we
are done. Otherwise, q has some prime factor p. The prime p cannot divide
any of the primes p1, . . . , pn, since otherwise p would divide q − p1 · · · p1 = 1.
Therefore p is a prime number not listed in the sequence p1, . . . , pn.

Using elementary analysis, we can strengthen Euclid’s Theorem in the follow-
ing way. We will explain after why this is a stronger result.

Theorem 1.2.2 (Euler). The series∑
p

1

p
, (1.2.1)

taken over all prime numbers p, diverges. In particular, there are infinitely
many primes.

Proof. Suppose the series (1.2.1) converges. Then there exists a prime number
p0 such that ∑

p>p0

1

p
<

1

2
.

In particular, the series

∞∑
n=1

(∑
p>p0

1

p

)n

=
∞∑
n=1

∑
p0<p1≤···≤pn

1

p1p2 · · · pn
(1.2.2)

converges by comparison with the convergent geometric series

∞∑
m=1

(
1

2

)m
.

Define Q to be the product of all the prime numbers less than or equal to
p0, and fix a positive integer n. Then each prime dividing 1 + nQ must be
larger than p0, which shows that (1 + nQ)−1 occurs as a summand in the
series (1.2.2). It follows that the series

∞∑
n=1

1

1 + nQ
(1.2.3)
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converges by comparison with the convergent series (1.2.2). But this is absurd
since (1.2.3) diverges. Therefore the series (1.2.1) diverges, and this implies
that there are infinitely many prime numbers.

This is our first example of using tools from analysis to say things about
integers. Going beyond Theorem 1.2.1, Theorem 1.2.2 shows that, among
the infinite subsets of the positive integers, the set of primes is “large,” in
the sense that the sum over the reciprocals of its elements diverges. Other
infinite subsets—for example, the subset of perfect squares—is well-known to
be “small” in this sense: the series

∑∞
n=1 1/n2 converges.

1.3 Notation and Conventions

The bold letters

Z Z+ Q R R≥0 C

denote, respectively, the set of integers, the set of positive integers, the set
of rational numbers, the set of real numbers, the set of non-negative real
numbers, and the set of complex numbers. The letter p will always denote
a prime number unless stated otherwise. Notation such as

∑
p and

∏
p≤x

should be interpreted as sums and products taken over primes. We follow
the common practice of interpreting empty sums as 0 and empty products as
1. The greatest common divisor of two integers m and n is denoted (m,n).
For a real number x, we denote by [x] the greater integer less than or equal
to x, and by {x} the fractional part of x (i.e., {x} = x− [x]). Context will
always prevent ambiguity about issues like whether {x} means the singleton
set containing x or the fractional part of x. For a complex number s = a+ bi,
Re(s) = a and Im(s) = b are the real and imaginary parts of s, respectively.
The function log will denote the principal branch of the complex logarithm
unless stated otherwise.

We will occasionally use asymptotic notation, so we recall it here. Given
two complex-valued functions f and g, defined on sets such that the limit
below makes sense, we write

f(x) ∼ g(x) as x→ a

if and only if

lim
x→a

f(x)

g(x)
= 1
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(this includes a =∞). In this case, f(x) and g(x) are said to be asymptotically
equivalent as x→ a, and this relation is an equivalence relation. Moreover,
we write

f(x) = O(g(x)) as x→∞

(to be read as “f(x) is big O of g(x)”) if and only if there exists a C > 0 and
an x0 such that

|f(x)| ≤ C|g(x)|

for all x ≥ x0.

2 Arithmetic Functions

2.1 The Ring of Arithmetic Functions

Definition 2.1.1. An arithmetic function is a complex-valued function de-
fined on the set Z+ of positive integers.

The set CZ+ of all arithmetic functions has a a natural C-algebra structure:
the sum f + g and product fg of two arithmetic functions f and g is given by

(f + g)(n) = f(n) + g(n), (fg)(n) = f(n)g(n),

and the scalar multiple αh of an arithmetic function h by a complex number
α is given by

(αh)(n) = αh(n).

With these operations, CZ+ is a unital, associative, commutative C-algebra
which has zero divisors but no nilpotent elements. However, there is a more
useful multiplication operation on CZ+ , which is defined as follows.

Definition 2.1.2. Given two arithmetic functions f and g, their convolution
is the arithmetic function f ∗ g defined by

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
,

where the sum ranges over all positive divisors d of n.

The binary operation (f, g) 7→ f ∗ g on CZ+ is clearly C-bilinear, associative,
and commutative.
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Definition 2.1.3. We define the arithmetic function δ, called the convolution
identity function, by

δ(n) =

[
1

n

]
=

{
1, if n = 1,
0, otherwise.

We check at once that
δ ∗ f = f ∗ δ = f

for every arithmetic function f , so δ is the identity for convolution. Thus CZ+

has a unital, associative, and commutative C-algebra structure different from
the one given before, with the same addition and scalar multiplication, but
with multiplication given by convolution. Henceforth we adopt this C-algebra
structure on CZ+ as the default one. In particular, when we say (as in Lemma
2.1.4 below) that an arithmetic function f is invertible, we mean that it is a
unit in CZ+ with respect to convolution. That is, f is invertible if and only if
there exists a necessarily unique arithmetic function f−1 such that

f ∗ f−1 = f−1 ∗ f = δ.

Lemma 2.1.4. An arithmetic function f is invertible if and only if f(1) 6= 0.
Moreover, if f is invertible, then its inverse f−1 is given recursively by

f−1(1) =
1

f(1)

and
f−1(n) = − 1

f(1)

∑
d|n
d<n

f
(n
d

)
f−1(d)

for all integers n > 1.

Proof. Fix an arithmetic function f . If f is invertible, then we have

f(1)f−1(1) = (f ∗ f−1)(1) = δ(1) = 1,

so f(1) 6= 0. Conversely, suppose f(1) 6= 0. Let g be the arithmetic function
defined recursively by g(1) = 1/f(1) and

g(n) = − 1

f(n)

∑
d|n
d<n

f
(n
d

)
g(d)
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for n 6= 1. We then see that

(f ∗ g)(1) = f(1)g(1) =
f(1)

f(1)
= 1 = δ(1).

Next, if n > 1, then we have

(f ∗ g)(n) =
∑
d|n

f
(n
d

)
g(d) =

∑
d|n
d<n

f
(n
d

)
g(d) + f(1)g(n)

=
∑
d|n
d<n

f
(n
d

)
g(d)− f(1)

f(1)

∑
d|n
d<n

f
(n
d

)
g(d) = 0 = δ(n).

It follows that f ∗ g = δ, so f is invertible and g = f−1.

2.2 Multiplicative Functions

Definition 2.2.1. We say that an arithmetic function f is multiplicative if
and only if f is not identically zero and for all coprime positive integers m
and n, we have

f(mn) = f(m)f(n). (2.2.1)

Moreover, if (2.2.1) holds for all pairs of positive integers m and n, then f is
said to be totally multiplicative.

Note that the convolution identity function δ is totally multiplicative.

Lemma 2.2.2. Let f be a multiplicative function. Then f(1) = 1, and
consequently f is invertible.

Proof. Since f is multiplicative, there exists a positive integer n for which
f(n) 6= 0. Then f(n) = f(n)f(1) since n and 1 are coprime, and hence
f(1) = 1. Lemma 2.1.4 now implies that f is invertible.

Lemma 2.2.3. Let f and g be multiplicative functions. Then f ∗ g and f−1
are both multiplicative.

Proof. First we prove that f ∗ g is multiplicative. By Lemma 2.2.2, f(1) =
g(1) = 1, so

(f ∗ g)(1) = f(1)g(1) = 1.
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Next, let m and n be coprime positive integers. Then there is a one-to-one
correspondence between the divisors of mn and pairs of divisors of m and n.
Therefore we have

(f ∗ g)(mn) =
∑
d|mn

f(d)g
(mn
d

)
=
∑

a|m, b|n

f(ab)g
(m
a
· n
b

)
=
∑

a|m, b|n

f(a)f(b)g
(m
a

)
g
(n
b

)

=

∑
a|m

f(a)g
(m
a

)∑
b|n

f(b)g
(n
b

)
= (f ∗ g)(m)(f ∗ g)(n),

and hence f ∗ g is multiplicative.
Now we prove that f−1 is multiplicative. First we note that f−1(1) =

1/f(1) = 1. Next, if p is a positive prime number and k is a positive integer,
then by Lemmas 2.1.4 and 2.2.2 we have

f−1(pk) = − 1

f(1)

∑
d|pk
d<pk

f

(
pk

d

)
f−1(d)

= −
k∑
j=1

f(pj)f−1(pk−j).

(2.2.2)

Let h be the arithmetic function defined by

h(n) =
∏
p|n

f−1(pvp(n)),

where the product is taken over the nonzero prime ideals of 1 that divide n
and vp is the p-adic valuation. Then h is clearly a multiplicative function,
and h agrees with f−1 on powers of prime numbers. By the first part of this
lemma, f ∗ h is a multiplicative function, and for every positive prime p and
every positive integer k we have

(f ∗ h)(pk) =
∑
d|pk

f

(
pk

d

)
h(d) =

k∑
j=0

f(pj)f−1(pk−j)
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= f−1(pk) +
k∑
j=1

f(pj)f−1(pk−j) = 0 = δ(pk)

by (2.2.2). Therefore f ∗ h agrees with δ on powers of primes. Since both
f ∗ h and δ are multiplicative, it follows that f ∗ h = δ, and hence f−1 = h.
Thus f−1 is a multiplicative function.

Lemmas 2.2.2 and 2.2.3 show that the set of multiplicative functions is a
subgroup (under convolution) of the group of units of the ring CZ+ .

2.3 The Derivative of an Arithmetic Function

Definition 2.3.1. If f is an arithmetic function, then we define its derivative
to be the arithmetic function f ′ given by

f ′(n) = − log(n)f(n).

Lemma 2.3.2. The map f 7→ f ′ is a derivation on the C-algebra CZ+.

Proof. The only thing to verify is that the equation

(f ∗ g)′ = f ′ ∗ g + f ∗ g′ (2.3.1)

holds for all arithmetic functions f, g. Thus, fix two arithmetic functions f
and g, and let n ∈ Z+ be given. Then we have

(f ∗ g)′(n) = − log(n)
∑
d|n

f(d)g
(n
d

)
= −

∑
d|n

(
log(d) + log

(n
d

))
f(d)g

(n
d

)
= −

∑
d|n

log(d)f(d)g
(n
d

)
−
∑
d|n

f(d) log
(n
d

)
g
(n
d

)
=
∑
d|n

f ′(d)g
(n
d

)
+
∑
d|n

f(d)g′
(n
d

)
= (f ′ ∗ g)(n) + (f ∗ g′)(n)

so (2.3.1) holds, and the proof is complete.
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2.4 The Euler Totient Function

Definition 2.4.1. The Euler totient function is the arithmetic function φ
defined by

φ(n) =
∣∣(Z/nZ)×

∣∣ ,
the cardinality of the group of units of Z/nZ.

There are alternate interpretations of φ. For example, φ(n) counts the number
of positive integers less than n which are coprime to n, and φ(n) is the number
of generators of the cyclic group Z/nZ.

Lemma 2.4.2. The Euler totient function φ is multiplicative.

Proof. Let m and n be coprime positive integers, By the Chinese remainder
theorem, we have the ring isomorphism

Z/mnZ ∼= (Z/mZ)× (Z/nZ) .

The functor mapping a ring to its group of units commutes with products, so
the lemma follows.

Lemma 2.4.3. Let p be a prime number, and let k be a positive integer.
Then

φ(pk) = pk−1 (p− 1)

Proof. Note that Z/pkZ is a local ring with maximal ideal pZ/pkZ. It follows
that Z/pkZ can be written as the disjoint union

Z/pkZ =
(
pZ/pkZ

)
q
(
Z/pkZ

)×
,

whence
φ(pk) = pk − [pZ : pkZ].

Therefore it suffices to prove that

[pZ : pkZ] = pk−1. (2.4.1)

This is clearly true if k = 1. Suppose k > 1. We have a canonical isomorphism(
Z/pkZ

)
/
(
pk−1Z/pkZ

) ∼= Z/pk−1Z,
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from which we conclude that

[pk−1Z : pkZ] =
pk

pk−1
= p.

Then we have

[pZ : pkZ] = [pZ : pk−1Z][pk−1Z : pkZ] = p[pZ : pk−1Z],

and therefore (2.4.1) follows by induction. This completes the proof.

Lemma 2.4.4. For every n ∈ Z+ we have

φ(n) = n
∏
p|n

(
1− 1

p

)
,

where the product is taken over all prime divisors of n.

Proof. Fix n ∈ Z+. Then we have n =
∏

p|n p
vp(n). By Lemmas 2.4.2 and

2.4.3 we have

φ(n) =
∏
p|n

φ(pvp(n)) =
∏
p|n

pvp(n)−1(p− 1)

=
∏
p|n

pvp(n)
(

1− 1

p

)
=
∏
p|n

pvp(n)
∏
p|n

(
1− 1

p

)

= n
∏
p|n

(
1− 1

p

)
.

Lemma 2.4.5. For every n ∈ Z+, we have

n =
∑
d|n

φ(d). (2.4.2)

In the language of convolution, (2.4.2) says that

id = φ ∗ 1, (2.4.3)

where id is the natural embedding Z ↪→ C and, by abuse of notation, 1 denotes
the constant arithmetic function n 7→ 1.
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Proof. If p is a prime number and r is a positive integer, then by Lemma
2.4.3 we have

φ(pr) = pr − pr−1.
Therefore ∑

d|pk
φ(d) =

k∑
r=0

φ(pr) = 1 +
k∑
r=1

(
pr − pr−1

)
= 1 + pk +

k−1∑
r=1

pr −
k∑
r=2

pr−1 − 1 = pk.

(2.4.4)

Thus we’ve proved (2.4.2) for the case of prime powers. The function φ is
multiplicative by Lemma 2.4.2, and the constant arithmetic function 1 is
clearly multiplicative. By Lemma 2.2.3, it follows that φ ∗ 1 is multiplicative.
We have therefore shown in (2.4.4) that the multiplicative functions id and
φ ∗ 1 agree on powers of primes. Thus we conclude that id = φ ∗ 1.

2.5 The Möbius Function, Möbius Inversion

Definition 2.5.1. The Möbius function is the arithmetic function µ defined
by setting µ(1) = 1, setting

µ(pk) =

{
−1, if k = 1,

0, if k > 1

for all prime numbers p and all positive integers k, and setting

µ(n) =
∏
p|n

µ(pvp(n))

for composite n ∈ Z+ with at least two prime factors.

It is clear that µ is multiplicative.

Lemma 2.5.2. For any n ∈ Z, we have∑
d|n

µ(d) =

{
1, if n = 1,

0, otherwise.
(2.5.1)

In the language of convolution, (2.5.1) says that

µ ∗ 1 = δ

(recall that δ denotes the convolution identity function).
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Proof. Formula (2.5.1) is clearly true when n = 1. Suppose n ∈ Z+ is greater
than 1, and let p1, . . . , pk be the distinct nonzero primes dividing n. By
throwing away those divisors d of n for which µ(d) = 0, we get∑

d|n

µ(d) = µ(1) +
k∑
j=1

∑
1≤i1<···<ij≤k

µ(pi1 · · · pij)

= 1 +
k∑
j=1

(
k

j

)
(−1)j = (1− 1)k = 0

by the binomial theorem.

Theorem 2.5.3 (Möbius inversion). Let f and g be arithmetic functions on
K. Then

f = g ∗ 1 if and only if g = f ∗ µ. (2.5.2)
That is, the equation

f(n) =
∑
d|n

g(d)

holds for every n ∈ Z+ if and only if the equation

g(n) =
∑
d|n

f(d)µ
(n
d

)
holds for every n ∈ Z+.

Proof. We use the facts that convolution is associative and commutative
together with Lemma 2.5.2. If f = g ∗ 1, then

f ∗ µ = g ∗ 1 ∗ µ = g ∗ δ = g,

proving one of the implications in (2.5.2). The other implication follows
similarly.

We mention a brief application of the Möbius inversion theorem. Formula
(2.4.3) of Lemma 2.4.5 was

id = φ ∗ 1.

Applying Theorem 2.5.3, we get

φ = id ∗µ.
That is, for every n ∈ Z+, we have

φ(n) =
∑
d|n

µ
(n
d

)
d. (2.5.3)
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2.6 The Von Mangoldt Function

Definition 2.6.1. The von Mangoldt function is the arithmetic function Λ
defined by

Λ(n) =

{
log(p), if n = pk for some prime p and k ∈ Z+,
0, otherwise.

Theorem 2.6.2. For n ∈ Z+, we have

log(n) =
∑
d|n

Λ(d). (2.6.1)

In the language of convolution, (2.6.1) becomes

log = Λ ∗ 1.

Proof. It is clear that (2.6.1) is true when n > 1, so suppose n 6= 1. Write
n = pa11 · · · parr for distinct primes p1, . . . , pr. Then we have

∑
d|n

Λ(d) =
r∑

k=1

ak∑
m=1

Λ(pmk ) =
r∑

k=1

ak∑
m=1

log(pk)

=
r∑

k=1

ak log(pk) =
r∑

k=1

log(pakk )

= log (pa11 . . . parr ) = log(n).

Theorem 2.6.3. For a nonzero ideal n of 1, we have

Λ(n) =
∑
d|n

µ(d) log
(n
d

)
= −

∑
d|n

µ(d) log(d). (2.6.2)

In the language of convolution, the first equality of (2.6.2) becomes

Λ = µ ∗ log .

Proof. The first equality of (2.6.2) follows from Möbius inversion (Theorem
2.5.3) applied to formula (2.6.1) of Theorem 2.6.2. Moreover, we have∑

d|n

µ(d) log
(n
d

)
= log(n)

∑
d|n

µ(d)−
∑
d|n

µ(n) log(d). (2.6.3)
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In Lemma 2.5.2 we showed that∑
d|n

µ(d) = δ(n),

so we have
log(n)

∑
d|n

µ(d) = log(n)δ(n) = 0

for all n ∈ Z+. Applying this to (2.6.3), we finish the proof the second
equality of (2.6.2).

2.7 Euler Products

We will frequently use infinite product starting with this section. The main
facts about infinite products that we will need are summarized in §A.1.

Theorem 2.7.1. Let f be a multiplicative function such that the series∑∞
n=1 f(n) converges absolutely. Then we have

∞∑
n=1

f(n) =
∏
p

∞∑
n=0

f(pn), (2.7.1)

where the infinite product on the right is taken over all prime numbers p and
is absolutely convergent. Moreover, if f is totally multiplicative, then

∞∑
n=1

f(n) =
∏
p

1

1− f(p)
. (2.7.2)

In either (2.7.1) or (2.7.2), the product is called the Euler product of the
series

∑∞
n=1 f(n).

Proof. By Lemma A.1.5, to prove that the infinite product∏
p

∞∑
n=0

f(pn), (2.7.3)

converges absolutely, it suffices to show that the series∑
p

∞∑
n=1

f(pn) (2.7.4)
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converges absolutely. Given a positive integer N , we have∑
p≤N

∣∣∣∣∣
∞∑
n=1

f(pn)

∣∣∣∣∣ ≤∑
p≤N

∞∑
n=1

|f(pn)| ≤
∞∑
n=1

|f(n)|

and the series on the right converges. Thus (2.7.4) converges absolutely, and
so the infinite product (2.7.3) also converges absolutely.

Now let ε > 0 be given, and choose a positive integer N such that
∞∑

n=N+1

|f(n)| < ε.

Let A be the set containing 1 and all positive integers whose prime factors
are all less than or equal to N , and let B be the set of all positive integers
that have a prime factor greater than N . If p1, . . . , pm are the nonzero prime
ideals less than or equal to N , then

m∏
k=1

∞∑
n=0

f(pnk) =
∞∑
n=0

∑
ν1,...,νm≥0
ν1+···+νm=n

f (pν11 · · · pνmm )

=
∑

ν1,...,νm≥0

f (pν11 · · · pνmm )

=
∑
n∈A

f(n).

Here the rearrangement of the series is justified by absolute convergence. Now
we have

∞∑
n=1

f(n)−
m∏
k=1

∞∑
n=0

f(pnk) =
∑
b∈B

f(b).

Thus ∣∣∣∣∣
∞∑
n=1

f(n)−
m∏
k=1

∞∑
n=0

f(pnk)

∣∣∣∣∣ ≤∑
b∈B

|f(b)| ≤
∑
n>N

|f(n)| < ε.

Therefore we have proved (2.7.1).
Finally, if f is totally multiplicative, then every term of the product∏

p

∑∞
n=0 f(pn) is a convergent geometric series, and we have

∞∑
n=1

f(n) =
∏
p

∞∑
n=0

f(p)n =
∏
p

1

1− f(p)
.

This finishes the proof.
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2.8 The Sieve of Eratosthenes

We end our discussion of arithmetic functions with a simple application. First,
let us motivate the upcoming theory with an example.

Example 2.8.1. Consider the positive integers up to 30:

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Suppose we want to determine all the prime numbers in this set. We can
immediately ignore 1 since it is not prime, and, for the rest, we note that a
number is not prime (i.e., composite) if it has a prime divisor smaller than
itself. The number 2 is the smallest prime in the list, and so all its multiples
are composite. Therefore we circle 2 to signify that it is prime, and we cross
out all the multiples of 2 in the list. We are left with

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

The next number uncrossed and uncircled is 3, so we repeat the preceding
procedure, circling 3 and crossing out its multiples.

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Notice that the numbers 6, 12, 18, 24, and 30 have now been crossed off
twice. The process now repeats one more time, circling 5 and crossing off its
multiples.

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30
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Several more numbers are crossed out twice at this stage (all of which have at
least two prime factors), and the number 30, the only product of three primes
in the list, is crossed out three times. We could continue this procedure
until everything would be either crossed out or circled. However, we notice
that the only numbers remaining in the list are already prime. This is not a
coincidence, but a consequence of the following elementary lemma.

Lemma 2.8.2. If an integer n > 1 is composite, then it has a prime factor
p ≤
√
n.

Proof. If n is a perfect square, then we are done. Thus, suppose n is not a
perfect square. Since n is composite, we can write n = ab, where a, b > 1 are
some integers. Since n is not a square, a 6= b, so a 6=

√
n and b 6=

√
n. If

a <
√
n, then any prime divisor p of a is less than

√
n, and if a >

√
n, then

b <
√
n, and any prime divisor of b is less than

√
n. In either case, there is a

prime divisor of n which is less than
√
n.

In Example 2.8.1 above, once we’ve circled the primes 2, 3, and 5, we have
circled all the primes less than or equal to

√
30 ≈ 5.477. Therefore, if some

number n in the list above were composite, then it would be a multiple of
some prime p ≤

√
n ≤

√
30 by Lemma 2.8.2, and so it would already be

crossed out. We may therefore complete the task of determining all the primes
less than or equal to 30 by circling the remaining numbers.

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Thus, the primes less than or equal to 30 are 2, 3, 5, 7, 11, 13, 17, 19, 23,
and 29; there are 10 of them. The preceding algorithm is attributed to the
Ancient Greek mathematician Eratosthenes of Cyrene, and it is called the
sieve of Eratosthenes.

The underlying idea of the sieve of Eratosthenes was later formalized by
Legendre. The set-up is as follows. Given a finite set of integers A, a finite
set of primes P , and an arithmetic function f , we define the following:

P =
∏
p∈P

p, S(A,P , f) =
∑
n∈A

(n,P )=1

f(n), Ad(f) =
∑
n∈A
d|n

f(n). (2.8.1)
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If f(n) = 1 for all n, then S(A,P , f) simply counts the number of n ∈ A
that are not divisible by any prime p ∈ P .

Theorem 2.8.3 (Legendre). With notation as above, we have

S(A,P , f) =
∑
d|P

µ(d)Ad(f).

Proof. In Lemma 2.5.2 we showed that

∑
d|n

µ(d) =

{
1, if n = 1,

0, otherwise.
(2.8.2)

Using (2.8.2), we can rewrite the definition of S(A,P , f) in (2.8.1) as

S(A,P , f) =
∑
n∈A

∑
d|(n,P )

µ(d)f(n)

=
∑
d|P

µ(d)
∑
n∈A
d|n

f(n)

=
∑
d|P

µ(d)Ad(f).

Definition 2.8.4. For any x ∈ R, we define

π(x) =
∑
p≤x

1,

the number of prime numbers less than or equal to x. The function π(x) is
called the prime-counting function.

The classical sieve of Eratosthenes demonstrated in Example 2.8.1 has one
interpretation as the following result, a consequence of Theorem 2.8.3.

Corollary 2.8.5 (Sieve of Eratosthenes). For all x > 0, we have

π(x) = π(
√
x)− 1 +

∑
d

p|d =⇒ p≤
√
x

µ(d)
[x
d

]
, (2.8.3)

where the sum is taken over all positive integers d such that every prime
divisor of d is less than or equal to

√
x.
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Proof. Since we will use Theorem 2.8.3, we first need to make a choice of
what the arithmetic function f and the sets A and P are. Let A be the set
of all the positive integers less than or equal to x, and let P be the set of
all primes less than or equal to

√
x. Also, let f be the constant arithmetic

function f(n) = 1. Then the sum in (2.8.3) is exactly∑
d

p|d =⇒ p≤
√
x

µ(d)
[x
d

]
=
∑
d|P

µ(d)Ad(f) = S(A,P , f)

by Theorem 2.8.3. Therefore, to prove (2.8.3), it suffices to show that

S(A,P , f)− 1 =
∑
√
x<p≤x

1, (2.8.4)

since the sum on the right of (2.8.4) is π(x)− π(
√
x). For this, we have

S(A,P , f)− 1 =
∑

1<n≤x
(n,P )=1

1 =
∑

√
x<n≤x

(n,P )=1

1 =
∑
√
x<p≤x

1. (2.8.5)

The second equality of (2.8.5) follows from the fact that if 1 < n ≤
√
x, then

(n, P ) > 1. The third equality of (2.8.5) follows from Lemma 2.8.2, since if√
x < n ≤ x and n has no prime divisors less than or equal to

√
x, then n

must be prime. Thus we’ve proved (2.8.4), and the proof is complete.

Let us now return to Example 2.8.1 from the beginning of this section to see
Corollary 2.8.5 in action. Suppose that, instead of wanting to determine all
the primes less than or equal to 30, we only want to perform the easier task
of counting how many such primes there are. That is, we want to compute
π(30). By Corollary 2.8.5, we know that

π(30) = π(
√

30)− 1 +
∑
d

p|d =⇒ p≤
√
30

µ(d)

[
30

d

]
. (2.8.6)

Note that there are 3 primes less than or equal to
√

30. They are 2, 3, and 5.
Therefore, the sum above is equal to

[30]−
∑

p1≤
√
30

[
30

p1

]
+

∑
p1<p2≤

√
30

[
30

p1p2

]
−

∑
p1<p2<p3≤

√
30

[
30

p1p2p2

]
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= [30]−
[

30

2

]
−
[

30

3

]
−
[

30

5

]
+

[
30

2 · 3

]
+

[
30

2 · 5

]
+

[
30

3 · 5

]
−
[

30

2 · 3 · 5

]
.

This formalizes our process of circling primes and crossing out their multiples
step-by-step in Example 2.8.1. When we circled the prime 2, we circled or
crossed out a total of [30/2] = 15 numbers in the list. Then when we circled
the prime 3 next, we circled or crossed out a total of [30/3] = 10 numbers in
the list, but [30/(2 · 3)] = 5 of those were already crossed out when we worked
with the prime 2. Finally, when we circled the prime 5, we circled or crossed
out a total of [30/5] = 6 numbers in the list. However, of these 6 numbers,
[30/10] = 3 were crossed out in the prime 2 step, and [30/15] = 2 were
already crossed out in the prime 3 step. Also, the number 30 = [30/(2 · 3 · 5)]
was crossed out at each stage. This is the intuitive justification for the
arrangements of plus and minus signs in the sums above, and it shows that
the factor µ(d) occurring in (2.8.6), and more generally in (2.8.3) of Corollary
2.8.5 plays an “inclusion-exclusion” role to avoid over-counting.

Stepping away from our example and into more generality, one wonders if
one can use Corollary 2.8.5 to give an estimate for

π(x)− π(
√
x) + 1 =

∑
d

p|d =⇒ p≤
√
x

µ(d)
[x
d

]
by bounding the right-hand side. An obvious first approach would be to
replace [t] by t, with some remainder term involving {t}, the fractional part
of t. We immediately have

π(x)− π(
√
x) + 1 =

∑
d

p|d =⇒ p≤
√
x

µ(d)
(x
d
−
{x
d

})

= x
∑

d|P (
√
x)

µ(d)

d
+R,

(2.8.7)

where our “remainder” R is

R = −
∑

d|P (
√
x)

µ(d)
{x
d

}
.

Recall from §2.5 that the Möbius inversion formula (Theorem 2.5.3) allowed
us to prove (2.5.3):

φ(n) =
∑
d|n

µ
(n
d

)
d.
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Changing the order of summation, we see that

φ(n)

n
=
∑
d|n

µ(d)

d
. (2.8.8)

Next, recall from Lemma 2.4.4 that

φ(n)

n
=
∏
p|n

(
1− 1

p

)
. (2.8.9)

Combining (2.8.8) and (2.8.9), we get∑
d|n

µ(d)

d
=
∏
p|n

(
1− 1

p

)
,

and so (2.8.7) becomes

π(x)− π(
√
x) + 1 = x

∏
p≤
√
x

(
1− 1

p

)
+R. (2.8.10)

To estimate the product in (2.8.10), we use the following theorem, presented
without proof.

Theorem 2.8.6 (Mertens). For z > 0, we have∏
p≤z

(
1− 1

p

)
=

e−γ

log(z)

(
1 +O

(
1

log(z)

))
as z →∞,

where γ is the Euler-Mascheroni constant (cf. Definition 4.2.5 below).

Proof. See [Mur08, Theorem 9.1.3].

One can now show, using Theorem 2.8.6 and (2.8.10), that

π(x)− π(
√
x) + 1 ∼ 2e−γ

(
x

log(x)

)
as x→∞.

This is not optimal, and we will get a better estimate when we later prove
the prime number theorem (Theorem 4.5.7), which states that

π(x) ∼ x

log(x)
as x→∞.
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Moreover, if we try to bound our remainder term R, we will get a cumbersome
bound of 2π(

√
x), which is huge as x→∞. Therefore, the sieve of Eratosthenes

has its limitations when used to bound sums.
In modern practice, the use of the sieve of Eratosthenes is usually super-

seded by more sophisticated sieve methods, such as the Brun sieve or the
Selberg sieve. A popular resource for sieve theory that covers these and many
other topics is [FI10].

Among the many application of sieves is the study of twin primes—primes
p such that p+ 2 is also prime. A famous open problem is the following.

Conjecture 2.8.7 (Twin Primes Conjecture). There are infinitely many twin
primes.

Although this is still open, there has been some progress made in the direction
of affirming the conjecture. In [Che73], Chen used sieve methods to prove the
tantalizingly close result that there are infinitely many primes p such that
p + 2 is a product of two primes. More recently, in [Zha14], Zhang proved
that

lim inf
n→∞

(pn+1 − pn) < 7 · 107,

where pn denotes the nth prime. Even more recently, Maynard used sieve
methods to prove that

lim inf
n→∞

(pn+1 − pn) ≤ 600

in his pre-print [May13].

3 Dirichlet Series

3.1 Summation Lemmas

Lemma 3.1.1. Let (fn)∞n=1 and (gn)∞n=1 be sequences of complex numbers,
and let a ≤ b be positive integers. Then the following hold:

(a)
b∑

n=a

fngn = fb

b∑
n=a

gn +
b−1∑
n=a

(fn − fn+1)
n∑
k=a

gk.

(b)
b∑

n=a

fn (gn+1 − gn) = fb+1gb+1 − faga −
b∑

n=a

gn+1 (fn+1 − fn).



3 DIRICHLET SERIES 26

Proof. The proof consists of re-indexing sums and gathering terms. We have
gn =

∑n
k=a gk −

∑n−1
k=a gk, whence

b∑
n=a

fngn =
b∑

n=a

fn

(
n∑
k=a

gk −
n−1∑
k=a

gk

)

= fb

b∑
n=a

gn +
b−1∑
n=a

fn

n∑
k=a

gk −
b∑

n=a+1

fn

n−1∑
k=a

gk

= fb

b∑
n=a

gn +
b−1∑
n=a

(fn − fn+1)
n∑
k=a

gk,

proving (a). For (b), we have

b∑
n=a

fn (gn+1 − gn) =
b∑

n=a

fngn+1 −
b−1∑

n=a−1

fn+1gn+1

=
b∑

n=a

fngn+1 − faga −
b∑

n=a

fn+1gn+1 + fb+1gn+1

= fb+1gb+1 − faga −
b∑

n=a

gn+1 (fn+1 − fn) .

Lemma 3.1.2 (Abel’s Lemma). Let f be an arithmetic function, and let g be
a C1 function defined on [a, b], where 0 < a < b. For any real number x ≥ 1,
define

F (x) =
∑

1≤n≤x

f(n),

the sum being taken over integers n greater than 0 and not exceeding x. Then

∑
a<n≤b

f(n)g(n) = F (b)g(b)− F (a)g(a)−
∫ b

a

F (t)g′(t) dt. (3.1.1)

Proof. The leftmost sum in (3.1.1) is the Riemann-Stieltjes integral

∑
a<n≤b

f(n)g(n) =

∫ b

a

g(t) dF (t).
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Therefore integration by parts gives∑
a<n≤b

f(n)g(n) = F (b)g(b)− F (a)g(a)−
∫ b

a

F (t) dg(t)

= F (b)g(b)− F (a)g(a)−
∫ b

a

F (t)g′(t) dt.

3.2 The Dirichlet Series of an Arithmetic Function

Definition 3.2.1. Let f be an arithmetical function. To f we associate the
complex-valued function

D(f, s) =
∞∑
n=1

f(n)

ns
,

defined for all those s ∈ C for which the series converges, called the Dirichlet
series of f .

Theorem 3.2.2. Let f be a multiplicative arithmetic function, and let s be a
complex number for which D(f, s) converges absolutely. Then we have

D(f, s) =
∏
p

∞∑
k=0

f(pk)

pks
.

Moreover, if f is totally multiplicative, then we have

D(f, s) =
∏
p

1

1 + f(p)p−s
.

Proof. Both claims are immediate corollaries of Theorem 2.7.1.

Theorem 3.2.3. If f and g are two arithmetic functions and s is a complex
number such that both D(f, s) and D(g, s) converge and at least one of D(f, s)
and D(g, s) converges absolutely, then we have

D(f, s)D(g, s) = D(f ∗ g, s).

Proof. By absolute convergence of one of the Dirichlet series, we may rearrange
the sums to get

D(f, s)D(g, s) =

(
∞∑
m=1

f(m)

ms

)(
∞∑
n=1

g(n)

ns

)
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=
∑

m,n∈Z+

f(m)g(n)

(mn)s
=
∞∑
n=1

∑
d|n

f(d)g
(n
d

) 1

ns

=
∞∑
n=1

(f ∗ g)(n)

ns
= D(f ∗ g, s).

3.3 Convergence of General Dirichlet Series

Definition 3.3.1. Let f : Z+ → C be an arithmetic function, and let
λ : Z+ → R be a strictly increasing and unbounded function. To f and λ we
associate the general Dirichlet series

D(f, λ, s) =
∞∑
n=1

f(n)e−λ(n)s, (3.3.1)

defined at all s ∈ C for which this series converges.

Note that when λ = log, we have

D(f, λ, s) = D(f, s),

and when λ(n) = n, then D(f, λ, s) is a power series in e−s.
For the remainder of this section, we f and λ as in Definition 3.3.1.

Theorem 3.3.2. Suppose D(f, λ, s0) converges for some s0 ∈ C. Then for
every θ > 0 with θ < π/2, the general Dirichlet series D(f, λ, s) converges
uniformly in the domain of all s ∈ C satisfying

|Arg(s− s0)| ≤ θ.

Proof. We may assume without loss of generality that s0 = 0, since otherwise
we could define

g(n) = f(n)e−λ(n)s0 , s′ = s− s0

and consider the general Dirichlet series

D(g, λ, s′) =
∞∑
n=1

g(n)e−λ(n)s
′
,
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which converges at s = 0. Thus, we henceforth assume that s0 = 0. That is,
the series

∞∑
n=1

f(n)

converges. For each n ∈ Z+, define

R(n) =
∞∑

k=n+1

f(k).

Then limn→∞R(n) = 0.
Now pick a real number θ strictly between 0 and π/2. Let ε > 0 be given.

Then there exists a positive integer N so that |R(n)| < ε for all integers
n ≥ N . Also, assume N is large enough so that λ(n) > 0 for every n ≥ N .

Fix an s ∈ C with |Arg(s)| < θ. Write s = σ + it with σ, t ∈ R (note
that σ > 0). Then by trigonometry we have

|s|
σ

= sec(Arg(s)) ≤ sec(θ). (3.3.2)

For N ∈ Z+, we define

S(N) =
N∑
n=1

f(n)e−λ(n)s.

Suppose m and n are positive integers with N ≤ m ≤ n. Then we have

S(n)− S(m) =
n∑

k=m+1

f(k)e−λ(k)s =
n∑

k=m+1

(R(k − 1)−R(k)) e−λ(k)s,

so by partial summation (Lemma 3.1.1(b)) we get

S(n)− S(m)

=
n∑

k=m+1

R(k)
(
e−λ(k+1)s − e−λ(k)s

)
+R(m)e−λ(m+1)s −R(n)e−λ(n+1)s

Taking absolute values gives us

|S(n)− S(m)| < ε

n∑
k=m+1

∣∣e−λ(k+1)s − e−λ(k)s
∣∣+ 2ε. (3.3.3)
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Moreover, we have

n∑
k=m+1

∣∣e−λ(k+1)s − e−λ(k)s
∣∣ =

n∑
k=m+1

∣∣∣∣∣−s
∫ λ(k+1)

λ(k)

e−us du

∣∣∣∣∣
≤ |s|

n∑
k=m+1

∫ λ(k+1)

λ(k)

e−uσ du

= |s|
∫ λ(n+1)

λ(m+1)

e−uσ du

=
|s|
σ

(
eλ(m+1)σ − eλ(n+1)σ

)
≤ |s|

σ
,

so now (3.3.2) and (3.3.3) give us

|S(n)− S(m)| < ε

(
|s|
σ

+ 2

)
≤ ε(sec θ + 2). (3.3.4)

The right-hand side of (3.3.4) goes to zero as ε→ 0 and does not depend on
s, so it follows that D(f, λ, s) is uniformly Cauchy in the domain of all s ∈ C
with |Arg(s− s0)| ≤ θ. Thus the lemma follows.

Corollary 3.3.3. If D(f, λ, s0) converges for some s0 ∈ C, then D(f, λ, s)
converges uniformly in all compact subsets of the domain of all s ∈ C with
Re(s) > Re(s0).

Proof. Suppose D(f, λ, s0) converges, and let K be a compact subset of the
half-plane {s ∈ C | Re(s) > Re(s0)}. Since K is compact, there exists a
θ ∈ (0, π/2) such that |Arg(s− s0)| ≤ θ for all s ∈ K, so the claim follows
from Theorem 3.3.2.

Definition 3.3.4. Let S be the set of all σ ∈ R such that there exists an
s ∈ C with Re(s) = σ and for which D(f, λ, s) converges. The number
σc = inf S (possibly ±∞) is called the abscissa of convergence of D(f, λ, s).
Moreover, the open set Hc = {s ∈ C | Re(s) > σc} is called the half-plane of
convergence of D(f, λ, s).

The name of Hc is justified by the following theorem.

Theorem 3.3.5. For all s ∈ C, if Re(s) > σc, then D(f, λ, s) converges, and
if Re(s) < σc, then D(f, λ, s) diverges.
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Proof. If s ∈ C and Re(s) < σc, then D(f, s) diverges by the definition of
σc. Now suppose Re(s) > σc, and suppose D(f, λ, s) diverges. Then, by the
definition of σc, there necessarily exists an s′ ∈ C with σc ≤ Re(s′) < Re(s)
such that D(f, λ, s′) converges. But the convergence of D(f, λ, s′) implies
the convergence of D(f, λ, s) by Corollary 3.3.3 since Re(s′) < Re(s). This
contradiction implies that D(f, λ, s) in fact converges.

In Theorem 3.3.7 we will derive an explicit formulas for σc in the case that∑∞
n=1 f(n) converges. We will need to use the following lemma.

Lemma 3.3.6. Suppose that there exists an s0 ∈ C with Re(s0) > 0 for
which D(f, λ, s0) converges. Let

α = lim sup
n→∞

1

λ(n)
log

∣∣∣∣∣
n∑
k=1

f(k)

∣∣∣∣∣ .
Then

α ≤ Re(s0).

Proof. For every n ∈ Z+, let

A(n) =
n∑
k=1

f(k)e−λ(k)s0 .

Since D(f, λ, s0) converges, there exists an M > 0 such that

|A(n)| < M (3.3.5)

for all n ∈ Z+. Partial summation (Lemma 3.1.1(a)) yields

n∑
k=1

f(k) =
n∑
k=1

eλ(k)s0f(k)e−λ(k)s0

= eλ(n)s0A(n) +
n−1∑
k=1

(
eλ(k)s0 − e−λ(k+1)s0

)
A(k).

After taking absolute values and applying (3.3.5), it follows that∣∣∣∣∣
n∑
k=1

f(k)

∣∣∣∣∣ < Meλ(n)Re(σ0) +M

n−1∑
k=1

∣∣eλ(k)s0 − e−λ(k+1)s0
∣∣ . (3.3.6)
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Moreover, we have
n−1∑
k=1

∣∣eλ(k)s0 − eλ(k+1)s0
∣∣ =

n−1∑
k=1

∣∣∣∣∣−s0
∫ λ(k+1)

λ(k)

eus0 du

∣∣∣∣∣
≤ |s0|

n−1∑
k=1

∫ λ(k+1)

λ(k)

euRe(s0) du

= |s0|
∫ λ(n)

λ(1)

euRe(s0) du

=
|s0|

Re(s0)

(
eλ(n)Re(s0) − eλ(1)Re(s0)

)
≤ |s0|

Re(s0)
eλ(n)Re(s0).

This and (3.3.6) imply that∣∣∣∣∣
n∑
k=1

f(k)

∣∣∣∣∣ ≤ eλ(n)Re(s0)M

(
1 +

|s0|
Re(s0)

)
.

Applying the logarithm and dividing by λ(n), we see that

1

λ(n)
log

∣∣∣∣∣
n∑
k=1

f(k)

∣∣∣∣∣ ≤ Re(s0) +
1

λ(n)
log

(
M +

|s0|M
Re(s0)

)
. (3.3.7)

Let ε > 0 be given. The function λ is strictly increasing and unbounded, so
there exists a positive integer N such that for n ≥ N we have

λ(n) >
1

ε
log

(
M +

|s0|M
Re(s0)

)
and hence

1

λ(n)
log

(
M +

|s0|M
Re(s0)

)
< ε,

Now (3.3.7) yields
1

λ(n)
log

∣∣∣∣∣
n∑
k=1

ak

∣∣∣∣∣ < Re(s0) + ε. (3.3.8)

Since (3.3.8) holds for all ε sufficiently small and all n sufficiently large, it
follows that α ≤ Re(s).
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Theorem 3.3.7. As in Lemma 3.3.6, define

α = lim sup
n→∞

1

λ(n)
log

∣∣∣∣∣
n∑
k=1

f(k)

∣∣∣∣∣ .
If the series

∑∞
n=1 f(n) diverges, then σc = α.

Proof. The divergence of the series
∑∞

n=1 f(n) implies that σc ≥ 0. We will
first prove that α ≤ σc. Since there is nothing to prove if σc =∞, we assume
that σc <∞. For a given s ∈ C with σc < Re(s), Theorem 3.3.5 implies that
D(f, λ, s) converges, and so α ≤ Re(s) by Lemma 3.3.6. Thus the definition
of σc implies that α ≤ σc.

Next we prove that σc ≤ α. There is nothing to prove if α =∞, so assume
α < ∞. It is sufficient to prove that the series D(f, λ, α + δ) converges for
every δ > 0. Therefore we fix a δ > 0 and let s = α+ δ. Choose a ε > 0 with
ε < δ. For every n ∈ Z+, define

A(n) =
n∑
k=1

f(k).

By the definition of α, there exists a positive integer N such that for all
n ≥ N we have

log |A(n)| < λ(n)(s− ε),
and so

|A(n)| < eλ(n)(s−ε), (3.3.9)

From partial summation (Lemma 3.1.1(a)) it follows that

n∑
m=1

f(m)e−λ(m)s = e−λ(n)sA(n) +
n−1∑
k=1

(
e−λ(k)s − e−λ(k+1)s

)
A(k). (3.3.10)

By (3.3.9), we have∣∣e−λ(n)sA(n)
∣∣ < e−λ(n)seλ(n)(s−ε) = e−λ(n)ε

for n ≥ N . Therefore, by (3.3.9) and (3.3.10), to prove that D(f, λ, s)
converges it suffices to prove that the series

∞∑
n=1

(
e−λ(n)s − e−λ(n+1)s

)
eλ(n)(s−ε) (3.3.11)
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converges. For this, note that

(
e−λ(n)s − e−λ(n+1)s

)
eλ(n)(s−ε) = s

∫ λ(n+1)

λ(n)

eλ(n)(s−ε)−st dt ≤ s

∫ λ(n+1)

λ(n)

e−εt dt,

so that

∞∑
n=1

(
e−λ(n)s − e−λ(n+1)s

)
eλ(n)(s−ε) ≤ s

∞∑
n=1

∫ λ(n+1)

λ(n)

e−εt dt = s

∫ ∞
λ(1)

e−εt dt.

The rightmost integral above converges, whence so does the series (3.3.11),
finishing the proof.

3.4 Absolute Convergence of General Dirichlet Series

As in §3.3, f : Z+ → C will denote a fixed arithmetic function and λ : Z+ → R
will denote a fixed increasing and unbounded function.

Definition 3.4.1. The abscissa of absolute convergence σa of D(f, λ, s) is
the abscissa of convergence of the general Dirichlet series D(|f |, λ, s).

Theorem 3.4.2. For s ∈ C, if s > σa, then D(f, λ, s) converges absolutely,
and if s < σa, then D(f, λ, s) does not converge absolutely. Moreover, if∑∞

n=1 |f(n)| diverges, then

σa = lim sup
n→∞

1

λ(n)
log

(
n∑
k=1

|f(n)|

)
.

Proof. This follows immediately from Definition 3.4.1, Theorem 3.3.5, and
Theorem 3.3.7.

Theorem 3.4.3. We have the inequality

0 ≤ σa − σc ≤ lim sup
n→∞

log(n)

λ(n)
.

Proof. It is clear that σa − σc ≥ 0. The difference σa − σc is invariant under
a change of variable in the corresponding general Dirichlet series, so we may
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assume without loss of generality that σc > 0. Then Theorems 3.3.7 and 3.4.2
apply, and we have

σc = lim sup
n→∞

1

λ(n)
log

∣∣∣∣∣
n∑
k=1

f(n)

∣∣∣∣∣ , σa = lim sup
n→∞

1

λ(n)
log

(
n∑
k=1

|f(n)|

)
Let ε > 0 be given. Choose a positive integer N such that for all n ≥ N we
have∣∣∣∣∣

n∑
k=1

f(k)

∣∣∣∣∣ < eλ(n)(σa+ε),
n∑
k=1

|f(k)| < eλ(n)(σc+ε), eλ(n)ε > 2. (3.4.1)

Therefore

|f(n)| =

∣∣∣∣∣
n∑
k=1

f(k)−
n−1∑
k=1

f(k)

∣∣∣∣∣ ≤ 2eλ(n)(σc+ε) < eλ(n)(σc+2ε) (3.4.2)

when n ≥ N . Then for sufficiently large n ≥ N , (3.4.1) and (3.4.2) imply
that

n∑
k=1

|f(k)| =
N∑
k=1

|f(k)|+
n∑

k=N+1

|f(k)|

<
N∑
k=1

|f(k)|+ neλ(n)(σc+2ε)

< neλ(n)(σc+3ε),

whence

σa ≤
1

λ(n)
(log(n) + λ(n)(σc + 3ε)) =

log(n)

λ(n)
+ σc + 3ε.

Letting ε go to zero, we prove the theorem.

3.5 Dirichlet Series as Analytic Functions

Lemma 3.5.1. Let U be an open subset of C, and let {fn} be a sequence
of analytic functions that converges uniformly on every compact subset of U .
Let f be the limit of {fn}. Then f is analytic and for every z ∈ U and every
positive integer k we have

f (k)(z) = lim
n→∞

f (k)
n (z).
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Proof. Let D be a closed disk in U , and let C be its boundary, oriented in
the usual way. Then for every positive integer n, every nonnegative integer k,
and every point z0 ∈ D we have

f (k)
n (z0) =

k!

2πi

∮
C

fn(z)

(z − z0)k+1
dz

The uniform convergence of {fn} on D implies that we may pull limits through
the integral above, and hence the lemma follows.

Theorem 3.5.2. Let f be an arithmetic function, and let D(f, s) be its
Dirichlet series. Then there exist σf , σ|f | ∈ R ∪ {±∞} such that
(a) we have the inequality

0 ≤ σ|f | − σf ≤ 1;

(b) D(f, s) diverges if Re(s) < σf ;
(c) D(f, s) converges uniformly in every compact subset of the half-plane

Hf = {s ∈ C | Re(s) > σf};

(d) D(f, s) converges absolutely in the half-plane

H|f | = {s ∈ C | Re(s) > σ|f |};

(e) D(f, s) defines an analytic function for Re(s) > σf , and

D(f, s)′ = D(f ′, s),

where f ′(n) = − log(n)f(n) as in §2.3;
(f) If

∑∞
n=1 f(n) diverges, then

σf = lim sup
n→∞

log |
∑n

k=1 f(k)|
log(n)

.

(g) If
∑∞

n=1 |f(n)| diverges, then

σ|f | = lim sup
n→∞

log (
∑n

k=1 |f(k)|)
log(n)

.
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Proof. Everything except for (e) follows from the results of §3.3. Part (e)
follows from Lemma 3.5.1 since the partial sums of a Dirichlet series are
clearly analytic.

The numbers σf and σ|f | of Theorem 3.5.2 are called the abscissa of con-
vergence and the abscissa of absolute convergence of the Dirichlet series
D(f, s).

Theorem 3.5.3. If f is an arithmetic function taking only nonnegative real
number values, then there is no extension of D(f, s) to a function which is
analytic at σf .

Proof. Without loss of generality, we may assume σf = 0. For the sake
of contradiction, suppose that there exists a complex function F extending
D(f, s) which is analytic at 0. Then F is analytic at 1 and can therefore be
written locally as a Taylor series centered at 1 with radius of convergence
strictly greater than 1. Let s be a negative number for which this Taylor
series converges. Then we have

F (s) =
∞∑
k=0

D(f, s)(k)
∣∣
s=1

k!
(s− 1)k

=
∞∑
k=0

(1− s)k

n!

∞∑
n=1

f(n) log(n)k

n

=
∞∑
n=1

f(n)

n

∞∑
k=0

(1− s)k log(n)k

k!

=
∞∑
n=1

f(n)

n

∞∑
k=0

log (n1−s)
k

k!
,

where changing the order of summation is justified since everything is non-
negative. Therefore, since

1

ns−1
= elog(n

1−s) =
∞∑
k=0

log (n1−s)
k

k!
,

we have

F (s) =
∞∑
n=1

f(n)

n
· 1

ns−1
=
∞∑
n=1

f(n)

ns
,
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which shows that D(f, s) converges as a Dirichlet series at s < 0, contradicting
the fact that σf = 0.

Lemma 3.5.4. Let f be an arithmetic function, and suppose that

F (x) =
∑

1≤n≤x

f(n) = O(xδ) (3.5.1)

as x→∞ for some δ > 0. Then for Re(s) > δ we have

D(f, s) = s

∫ ∞
1

F (t)

ts+1
dt.

Proof. Fix an s ∈ C with Re(s) > δ. By Abel’s lemma (Lemma 3.1.2) we
have ∑

1≤n≤x

f(n)

ns
=
F (x)

xs
+ s

∫ x

1

F (t)

ts−1
dt. (3.5.2)

Since F (x) = O(xδ) and Re(s) > δ, it follows that

lim
x→∞

∣∣∣∣F (x)

xs

∣∣∣∣ = lim
x→∞

|F (x)|
xRe(s)

= 0.

Therefore the limit in (3.5.2) is zero, and the lemma follows.

4 The Riemann Zeta Function

4.1 Elementary Properties of ζ(s)

Definition 4.1.1. The Riemann zeta function is the Dirichlet series

ζ(s) = D(1, s) =
∞∑
n=1

1

ns

associated to the constant arithmetic function n 7→ 1.

By the general theory of Dirichlet series developed in §3 (in particular,
Theorems 3.2.2, 3.5.2, and 3.5.3), we immediately see that ζ(s) has abscissa
of regular and absolute convergence 1, that for Re(s) > 1 we have

ζ(s) =
∏
p

1

1− p−s
, (4.1.1)
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that ζ(s) is analytic for Re(s) > 1, satisfying

ζ ′(s) = −
∞∑
n=1

log(n)

ns
,

and that ζ(s) has a pole at s = 1. The convergence of the Euler product
(4.1.1) implies that ζ(s) 6= 0 for Re(s) > 1.

Lemma 4.1.2. If s ∈ C and Re(s) > 1, then

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
. (4.1.2)

Proof. Fix s ∈ C with Re(s) > 1. For all n ∈ Z+, we have |µ(n)| ≤ 1, so that∣∣∣∣∣
∞∑
n=1

µ(n)

ns

∣∣∣∣∣ ≤
∞∑
n=1

|µ(n)|
nRe(s)

≤ ζ(Re(s)),

which shows that the right side of (4.1.2) converges absolutely for Re(s) > 1.
By Theorem 3.2.3 and Lemma 2.5.2 (which states that µ ∗ 1 = δ), we have

ζ(s)D(µ, s) = D(1 ∗ µ, s) = D(δ, s) = 1. (4.1.3)

Since ζ(s) 6= 0, we divide (4.1.3) by ζ(s) to get

1

ζ(s)
= D(µ, s) =

∞∑
n=1

µ(n)

ns
.

Lemma 4.1.3. If s ∈ C with Re(s) > 2, then

ζ(s− 1)

ζ(s)
=
∞∑
n=1

φ(n)

ns
.

Proof. Fix s ∈ C with Re(s) > 2, so that both ζ(s) and ζ(s − 1) converge
(absolutely). Then we have

ζ(s− 1) =
∞∑
n=1

1

ns−1
=
∞∑
n=1

n

ns
= D(id, s). (4.1.4)
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Thus D(id, s) converges absolutely. Since for all n ∈ Z+ we have

0 ≤ φ(n) ≤ n,

it follows that D(φ, s) also converges absolutely. In Lemma 2.4.5 we proved
the identity

id = φ ∗ 1,

so using Theorem 3.2.3 and (4.1.4), we obtain the equality

ζ(s)D(φ, s) = D(1 ∗ φ, s) = D(id, s) = ζ(s− 1).

Therefore we conclude that

ζ(s− 1)

ζ(s)
=
∞∑
n=1

φ(n)

ns
.

Lemma 4.1.4. If s ∈ C and Re(s) > 1, then

− ζ ′(s)

ζ(s)
=
∞∑
n=1

Λ(n)

ns
=
∑
p

log(p)

ps − 1
, (4.1.5)

where the second series is taken over all positive prime numbers p.

Proof. Fix s ∈ C with Re(s) > 1, and let σ = Re(s). Since

ζ ′(s) = −
∞∑
n=1

log(n)

ns

converges absolutely, it follows that the series∑
p

log(p)

ps

converges absolutely. By the limit comparison test, the series∑
p

log(p)

ps − 1
=
∑
p

∞∑
k=1

log(p)

pks
=
∑
p

∞∑
k=1

Λ(pk)

pks
=
∞∑
n=1

Λ(n)

ns

also converges absolutely. We have thus proved the second equality of (4.1.5).
Next, by Theorem 2.6.2, we have

log = Λ ∗ 1,
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so since

−ζ ′(s) =
∞∑
n=1

log(n)

ns
= D(log, s),

it follows from Theorem 3.2.3 that

D(Λ, s)ζ(s) = −ζ ′(s),

proving the first equality of (4.1.5).

4.2 Analytic Continuation of ζ(s) to Re(s) > 0

Theorem 4.2.1. The function

ζ(s)− 1

s− 1
,

defined a priori for Re(s) > 1, extends to a holomorphic function in the
half-plane Re(s) > 0. In particular, the residue of ζ(s) at s = 1 is 1.

Proof. First note that for s ∈ C with Re(s) > 1 we have

ζ(s)− 1

s− 1
=
∞∑
n=1

1

ns
−
∫ ∞
1

1

xs
dx

=
∞∑
n=1

∫ n+1

n

(
1

ns
− 1

xs

)
dx.

(4.2.1)

Let ε > 0 be given, and let K be a compact subset of the half-plane Re(s) > ε.
Define

M = sup
s∈K
|s|.

Then for s ∈ K we have∣∣∣∣∫ n+1

n

(
1

ns
− 1

xs

)
dx

∣∣∣∣ =

∣∣∣∣s ∫ n+1

n

∫ x

n

1

us+1
du dx

∣∣∣∣
≤ |s|

∫ n+1

n

∫ n+1

n

1

uRe(s)+1
du dx

= |s|
∫ n+1

n

1

uRe(s)+1
du
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≤ |s| max
n≤u≤n+1

1

uRe(s)+1

=
|s|

nRe(s)+1
≤ M

nε+1
.

It follows that the final series of (4.2.1) converges absolutely and uniformly
in compact subsets of the half-plane Re(s) > ε for every ε > 0, and hence
this series defines a holomorphic function for Re(s) > 0 by Lemma 3.5.1.

Corollary 4.2.2. We have∑
p

1

ps
∼ log

(
1

s− 1

)
as s→ 1+.

(Recall that this means that lims→1+

(∑
p p
−s
)
/ log

(
1
s−1

)
= 1.) Moreover,

the series ∑
p

∞∑
k=2

1

pks

is bounded as s→ 1+.

Proof. For s > 1, the Euler product (4.1.1) of ζ(s) implies

log(ζ(s)) =
∑
p

log

(
1

1− p−s

)

=
∑
p

∞∑
k=1

1

kpks
=
∑
p

1

ps
+ ψ(s),

(4.2.2)

where we define

ψ(s) =
∑
p

∞∑
k=2

1

kpks
.

We then have

ψ(s) ≤
∑
p

∞∑
k=2

1

pks
=
∑
p

1

ps (ps − 1)

≤
∑
p

1

p(p− 1)
≤

∞∑
n=2

1

n(n− 1)
= 1.
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Therefore ψ(s) is bounded for s > 1. By Theorem 4.2.1, we know that

ζ(s) ∼ 1

s− 1
as s→ 1,

so that
log(ζ(s)) ∼ log

(
1

s− 1

)
as s→ 1+.

Now (4.2.2) implies that∑
p

1

ps
∼ log

(
1

s− 1

)
as s→ 1+.

since ψ(s) is bounded.

Lemma 4.2.3. For all s 6= 1 with Re(s) > 0 we have

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx,

where {x} is the fractional part of x.

Proof. If F (x) denotes
F (x) =

∑
1≤n≤x

1

for x ≥ 1, then F (x) = [x] = x− {x}, where [x] is the greatest integer less
than or equal to x. Then F (x) = O(x), so by Lemma 3.5.4 we have

ζ(s) = s

∫ ∞
1

x− {x}
xs+1

dx

=
s

s+ 1
− s

∫ ∞
1

{x}
xs+1

dx

(4.2.3)

for Re(s) > 1. The bottom expression of (4.2.3) is analytic for Re(s) > 0
(away from s = 1) and it agrees with ζ for Re(s) > 1, so it must agree with ζ
for Re(s) > 0 and s 6= 1.

Lemma 4.2.4. If Re(s) > 0 and s 6= 1, then we have(
1− 1

2s−1

)
ζ(s) = −

∞∑
n=1

(−1)n

ns
. (4.2.4)
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Proof. For Re(s) > 1, the absolute convergence of the Dirichlet series ζ(s)
lets us write (

1− 1

2s−1

)
ζ(s) =

∞∑
n=1

1

ns
−
∞∑
n=1

2

(2n)s

=
∑
2-n

1

ns
+
∑
2|n

(
1

ns
− 2

ns

)

= −
∞∑
n=1

(−1)n

ns
.

Thus we have proved (4.2.4) for Re(s) > 1. Note that the right-hand Dirichlet
series in (4.2.4) converges (not necessarily absolutely) for Re(s) > 0 by the
alternating series test, so (4.2.4) must hold for all s 6= 1 with Re(s) > 0.

Definition 4.2.5. Write the Laurent expansion of ζ at s = 1 as

ζ(s) =
1

s− 1
+
∞∑
n=0

An (s− 1)n .

Then for each nonnegative integer n, the nth Stieltjes constant is

γn = (−1)n n!An.

The number γ = γ0 is called the Euler-Mascheroni constant.

That is, for s in some sufficiently small punctured neighborhood of 1, we have

ζ(s) =
1

s− 1
+
∞∑
n=1

(−1)n γn
n!

(s− 1)n .

Lemma 4.2.6. We have

γ = lim
n→∞

(
n∑
k=1

1

k
− log(n)

)
.

Proof. By Lemma 4.2.3, we have

ζ(s) =
s

s− 1
+ s

∫ ∞
1

[x]− x
xs+1

dx

=
1

s− 1
+ 1 + s

∫ ∞
1

[x]− x
xs+1

dx
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for Re(s) > 0. Therefore

γ = lim
s→1

(
ζ(s)− 1

s− 1

)
= 1 +

∫ ∞
1

[x]− x
x2

dx

= lim
n→∞

(
1 +

n−1∑
k=1

∫ k+1

k

k − x
x2

dx

)

= lim
n→∞

(
1 +

n−1∑
k=1

(
1− k

k + 1
+ log(k)− log(k + 1)

))

= lim
n→∞

(
1 +

n−1∑
k=1

(
1− k

k + 1

)
− log(n)

)

= lim
n→∞

(
n∑
k=1

1

k
− log(n)

)
.

4.3 A Zero-Free Region of ζ(s)

In this section we will prove the following theorem, which will help us in
proving the prime number theorem in §4.5.

Theorem 4.3.1. If Re(s) ≥ 1 and s 6= 1, then ζ(s) 6= 0.

Proof. We know that ζ(s) 6= 0 when Re(s) > 1 from the convergence of
the Euler product (4.1.1) of ζ(s), so it suffices to prove that ζ(s) 6= 0 when
Re(s) = 1 and s 6= 1. For any t ∈ R we have

3 + 4 cos(t) + cos(2t) = 2 + 4 cos(t) + 2 cos(t)2

= 2(1 + cos(t))2 ≥ 0.
(4.3.1)

Next, for σ, t ∈ R with σ > 1 we use the Euler product of ζ(s) to get

log |ζ(σ + it)| = Re(log(ζ(σ + it))

= Re

(
−
∑
p

log

(
1− 1

pσ+it

))
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= Re

(∑
p

∞∑
n=1

1

npn(σ+it)

)

=
∑
p

∞∑
n=1

1

npnσ
cos(t log(n)),

so that by (4.3.1) we have

log
∣∣ζ(σ)3ζ(σ + it)4ζ(σ + 2it)

∣∣
=
∑
p

∞∑
n=1

1

npnσ
(3 + 4 cos(t log(n)) + cos(2t log(n))) ≥ 0.

(4.3.2)

Applying the exponential function and dividing by σ − 1 in (4.3.2), it follows
that

((σ − 1)ζ(σ))3
∣∣∣∣ζ(σ + it)

σ − 1

∣∣∣∣4 |ζ(σ + 2it)| ≥ 1

σ − 1
. (4.3.3)

From Theorem 4.2.1 we know that the residue of ζ(s) at the simple pole s = 1
is 1, so

lim
σ→1

(σ − 1)ζ(σ) = 1. (4.3.4)

Now assume t ∈ R× and ζ(1 + it) = 0. Then

lim
σ→1

ζ(σ + it)

σ − 1
= ζ ′(1 + it).

Thus taking the limit as σ → 1 in (4.3.3) and using (4.3.4), we get

(ζ ′(1 + it))
4

lim
σ→1
|ζ(σ + 2it)| ≥ lim

σ→∞

1

σ − 1
=∞.

It follows that
lim
σ→1
|ζ(σ + 2it)| =∞,

and so 1 + 2it is a pole of ζ, contradicting Theorem 4.2.1 since t 6= 0. Thus
ζ(1 + it) 6= 0.

4.4 An Analytic Theorem

This section is devoted to the following theorem, which will be crucial to our
proof of the prime number theorem in §4.5.
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Theorem 4.4.1. Let f : R≥0 → C be a bounded and locally integrable
function such that the function

g(z) =

∫ ∞
0

f(t)e−zt dt,

defined for Re(z) > 0, extends to a holomorphic function for Re(z) ≥ 0. Then
g(0) =

∫∞
0
f(t) dt.

Proof. First, fix an M > 0 such that

|f(x)| ≤M

for all x ≥ 0. For each T > 0, define gT : C→ C by

gT (z) =

∫ T

0

f(t)e−zt dt.

By differentiating under the integral sign, we see that each gT is an entire
function.

For T > 0 and R > 0, the function

(g(z)− gT (z)) ezT
(

1

z
+

1

R2

)
(4.4.1)

is analytic for Re(z) ≥ 0 and z 6= 0 with a simple pole at z = 0 with residue
g(0)− gT (0). Moreover, a simple calculation shows that, on the circle |z| = R,
the rightmost factor in the right-hand side of (4.4.1) becomes(

1

z
+

1

R2

)
=

2 Re(z)

R2
(4.4.2)

Having fixed R > 0, there exists an ε ∈ (0, 1) such that g is analytic in the
region of all z ∈ C satisfying Re(z) > ε, | Im(z)| < R. Let D be the following
contour in C:

D

ε
R
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Now define

I =

∫
D

(g(z)− gT (z)) ezT
(

1

z
+

1

R2

)
dz,

so that, by the residue theorem, we have

I = 2πi(g(0)− gT (0)) (4.4.3)

We also define the following contours:

D1

R

D2

R

D3

ε

R

Finally, we define three integrals:

I1 =

∫
D1

(g(z)− gT (z)) ezT
(

1

z
+

1

R2

)
dz

I2 =

∫
D2

gT (z)ezT
(

1

z
+

1

R2

)
dz

I3 =

∫
D3

g(z)ezT
(

1

z
+

1

R2

)
dz

Then by the residue theorem and (4.4.3) we have

I1 − I2 + I3 = 2πig(0)− 2πigT (0) = I. (4.4.4)

Now for z ∈ C with Re(z) > 0 we have

|g(z)− gT (z)| =
∣∣∣∣∫ ∞
T

f(t)e−zt dt

∣∣∣∣
≤M

∫ ∞
T

e−Re(z)t dt = M
e−Re(z)T

Re(z)
.
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It follows from (4.4.2) that

|I1| ≤ πR sup
z∈D1

(
M
e−Re(z)T

Re(z)
eRe(z)T 2 Re(z)

R2

)
=

2πM

R
(4.4.5)

Next, for z ∈ C with Re(z) < 0 we have

|gT (z)| ≤M

∫ T

0

e−Re(z)t dt =
e−Re(z)T − 1

|Re(z)|
≤ e−Re(z)T

|Re(z)|
,

so from (4.4.2) it follows that

|I2| ≤ πR sup
z∈D2

(
M
e−Re(z)T

|Re(z)|
eRe(z)T 2|Re(z)|

R2

)
=

2πM

R
. (4.4.6)

Thus we have bounded I1 and I2. We now proceed to bound I3. Pick a δ
between 0 and ε, and consider the following pair of contours in C:

δ R

D2
3

D2
3

D1
3

ε

R
•

•

so that D3 = D1
3 ∪D2

3. The function g(z)
(
1
z

+ 1
R2

)
is analytic on D3, so it is

bounded in absolute value by some constant C > 0. Therefore we have

|I3| ≤

∣∣∣∣∣
∫
D1

3

g(z)ezT
(

1

z
+

1

R2

)
dz

∣∣∣∣∣+

∣∣∣∣∣
∫
D2

3

g(z)ezT
(

1

z
+

1

R2

)
dz

∣∣∣∣∣
≤ (2ε− 2δ +R)Ce−δT + 2δC

≤ C(2 +R)Ce−δT + 2δC

As T →∞, we have

0 ≤ lim inf
T→∞

|I3| ≤ lim sup
T→∞

|I3| ≤ 2δC,
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and taking the limit δ → 0+, we get

lim
T→∞

|I3| = 0 (4.4.7)

Now we can finish the proof. From (4.4.3) and (4.4.4) we get that

|g(0)− gT (0)| =
∣∣∣∣ I2πi

∣∣∣∣ ≤ |I1|+ |I2|+ |I3|.
As T →∞, we get from (4.4.5), (4.4.6), and (4.4.7) that

0 ≤ lim inf
T→∞

|g(0)− gT (0)| ≤ lim sup
T→∞

|g(0)− gT (0)| ≤ 4πM

R
.

Letting R→∞, we get

lim
T→∞

|g(0)− gT (0)| = 0,

so we conclude that

g(0) = lim
T→∞

gT (0) =

∫ ∞
0

f(t) dt.

4.5 The Prime Number Theorem

The proof of the prime number theorem given here is based heavily on Zagier’s
modification of Newman’s 1980 proof (cf. [New80], [Zag97]). We rely on
complex analysis instead of elementary methods, and our main tool will be
Theorem 4.4.1 of §4.4.

Recall the definition of the prime-counting function π(x) from Definition
2.8.4:

π(x) =
∑
p≤x

1

for x ∈ R. We already know from Euclid’s Theorem 1.2.1 that

π(x)→∞ as x→∞,

but we would like to know more about the asymptotic behavior of π(x). The
goal of this section is to prove the prime number theorem:

π(x) ∼ x

log(x)
as x→∞. (4.5.1)
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That is, we want to prove that

lim
x→∞

π(x) log(x)

x
= 1.

We will prove (4.5.1) in Theorem 4.5.7 at the end of this section. Before that,
we need several definitions and lemmas.

Definition 4.5.1. For x ∈ R, we define

ϑ(x) =
∑
p≤x

log(p),

where p ranges over the positive prime numbers less than or equal to x.

Lemma 4.5.2. For x ≥ 2, we have

ϑ(x) ≤ 2x log(4).

In particular,
ϑ(x) = O(x) as x→∞.

Proof. For any positive integer n we have

4n = (1 + 1)2n =
2n∑
k=0

(
2n

k

)
by the binomial theorem. Therefore

4n ≥
(

2n

n

)
≥

∏
n<p≤2n
p prime

p = eϑ(2n)−ϑ(n),

and so
ϑ(2n)− ϑ(n) ≤ n log(4). (4.5.2)

For any k ∈ Z+, repeated application of (4.5.2) gives

ϑ(2k+1) =
k∑
i=0

(
ϑ(2i+1)− ϑ(2i)

)
≤ log(4)

k∑
i=0

2i ≤ 2k+1 log(4). (4.5.3)

Now if x ≥ 2, there exists a k ∈ Z+ such that

2k ≤ x < 2k+1 ≤ 2x,

and so by (4.5.3) we have

ϑ(x) ≤ ϑ(2k+1) ≤ 2k+1 log(4) ≤ 2x log(4).
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Definition 4.5.3. For s ∈ C, we define

Φ(s) =
∑
p

log(p)

ps
,

wherever this series, taken over all prime numbers, converges.

Lemma 4.5.4. The function Φ(s) converges for Re(s) > 1, and

Φ(s)− 1

s− 1

extends to a holomorphic function for Re(s) ≥ 1.

Proof. From Lemma 4.1.4 it follows that

− ζ ′(s)

ζ(s)
=
∑
p

log(p)

ps − 1
= Φ(s) +

∑
p

log(p)

ps(ps − 1)
, (4.5.4)

which shows the convergence of Φ(s) for Re(s) > 1. Moreover, from (4.5.4)
we now have

Φ(s) = −ζ
′(s)

ζ(s)
−
∑
p

log(p)

ps(ps − 1)
, (4.5.5)

and the series here converges absolutely for Re(s) > 1
2
. Thus (4.5.5) gives a

meromorphic extension of Φ to Re(s) > 1
2
, with poles at 1 and at the zeros of

ζ(s) in the strip 1
2
< Re(s) ≤ 1. Since ζ(s) has no zeros on the line Re(s) = 1

by Theorem 4.3.1, it follows that Φ(s)− 1
s−1 is holomorphic for Re(s) ≥ 1.

Lemma 4.5.5. The integral ∫ ∞
1

ϑ(x)− x
x2

dx

converges.

Proof. Let f : R≥0 → C be the function given by

f(t) =
ϑ(et)

et
− 1.

Lemma 4.5.2 implies that there exists a C > 0 such that for t sufficiently
large we have

f(t) =
ϑ(et)

et
− 1 ≤ C − 1.
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Thus f is a bounded function, and it is clearly locally integrable.
Next, let g(s) denote the integral

g(s) =

∫ ∞
0

f(t)e−st dt

for all s ∈ C where this makes sense. We note that for all s ∈ C with
Re(s) > 1 we can use integration by parts to obtain the formula

Φ(s) =
∑
p

log p

ps
=

∫ ∞
1

1

xs
dϑ(x)

= lim
x→∞

ϑ(x)

xs
+ s

∫ ∞
1

ϑ(x)

xs+1
dx.

(4.5.6)

The limit in (4.5.6) is zero since

lim
x→∞

∣∣∣∣ϑ(x)

xs

∣∣∣∣ ≤ lim
x→∞

C

xRe(s)−1 = 0.

Thus (4.5.6) implies that

Φ(s)

s
=

∫ ∞
1

ϑ(x)

xs+1
dx,=

∫ ∞
0

ϑ(et)e−st dt

after we make the change of variables x = et. Since 1/s =
∫∞
0
e−st dt, it

follows that
Φ(s+ 1)

s+ 1
− 1

s
=

∫ ∞
0

(
ϑ(et)

et
− 1

)
e−st dt = g(s). (4.5.7)

By Lemma 4.5.4, Φ(s+ 1) is holomorphic for Re(s) ≥ 0 except for a simple
pole at s = 0 with residue 1. Therefore the function Φ(s+ 1)/(s+ 1) has a
simple pole at s = 0 with residue

lim
s→0

s
Φ(s+ 1)

s+ 1
=

lims→0 sΦ(s+ 1)

lims→0(s+ 1)
= 1.

Thus (4.5.7) shows that g(s) is holomorphic for Re(s) ≥ 0. We now apply
the analytic theorem of §4.4 (Theorem 4.4.1) to conclude that the integral

g(0) =

∫ ∞
0

f(t) dt =

∫ ∞
0

(
ϑ(et)

et
− 1

)
dt =

∫ ∞
1

ϑ(x)− x
x2

dx

converges, proving the lemma.
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Lemma 4.5.6. ϑ(x) ∼ x as x→∞.

Recall that this means that limx→∞ ϑ(x)/x = 1.

Proof. First suppose that there is a λ > 1 such that

ϑ(x) ≥ λx

for all x sufficiently large. We would then have∫ λx

x

ϑ(t)− t
t2

dt ≥
∫ λx

x

λx− t
t2

dt =

∫ λ

1

λ− u
u2

du > 0

for sufficiently large x, contradicting Lemma 4.5.5. Next, suppose that there
is a λ < 1 such that

ϑ(x) ≤ λx

for all x sufficiently large. We would then have∫ x

λx

ϑ(t)− t
t2

dt ≤
∫ x

λx

λx− t
t2

dt =

∫ 1

λ

λ− u
u2

du < 0

for sufficiently large x, again contradicting Lemma 4.5.5. Thus it must be
the case that ϑ(x)/x→ 1 as x→∞, and so the lemma is proved.

Theorem 4.5.7 (The Prime Number Theorem).

π(x) ∼ x

log(x)
as x→∞.

Proof. First, note that

ϑ(x) =
∑
p≤x

log(p) ≤ π(x) log(x) (4.5.8)

for x > 0. Next, for a fixed ε > 0 we have

ϑ(x) ≥
∑

x1−ε<p≤x

log(p) ≥ (π(x)− π(x1−ε)) log(x1−ε) (4.5.9)

Combining (4.5.8) and (4.5.9), we get

ϑ(x)

x
≤ π(x) log(x)

x
≤ 1

1− ε
ϑ(x)

x
+

log(x)

xε
.
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By Lemma 4.5.6, it follows that

1 ≤ lim inf
x→∞

π(x) log(x)

x
≤ lim sup

x→∞

π(x) log(x)

x
≤ 1

1− ε
,

and since this holds for arbitrary ε > 0, it follows that

lim
x→∞

π(x) log(x)

x
= 1,

which proves the prime number theorem.

4.6 The Functional Equation of ζ(s)

This section relies heavily on facts about the gamma function and the Fourier
transform. See §A.2 and §B.3, respectively, for an overview of these topics.

Lemma 4.6.1. Let h : R→ C be the function defined by

h(x) = e−πx
2

.

Then h is its own Fourier transform: ĥ = h.

Proof. Note that
dh(x)

dx
= −2πxh(x).

Applying the Fourier transform to both sides and using Lemmas B.3.2 and
B.3.3, we get the differential equation

dĥ(y)

dy
+ 2πyĥ(y) = 0,

whence
ĥ(y) = ce−πy

2

for some c ∈ R. We have

c = ĥ(0) =

∫
R

e−πx
2

dx = 1,

and hence ĥ = h.
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Lemma 4.6.2. Let g ∈ L1(R), r ∈ R, and s > 0 be given. If gr,s denotes
the function

gr,s(x) = g(rs+ sx),

then we have
ĝr,s(y) = s−1e2πiryĝ(s−1y).

Proof. A simple substitution shows that

ĝr,s(y) =

∫
R

g(rs+ sx)e−2πixy dx

= s−1
∫
R

g(u)e−2πi(u−rs)s
−1y du

= s−1e2πiry
∫
R

g(u)e−2πius
−1y du

= s−1e2πiryĝ(s−1y).

Lemma 4.6.3. For all a ∈ R and t > 0 we have∑
n∈Z

e−π(n+a)
2/t = t1/2

∑
n∈Z

e−πn
2t+2πina.

Proof. The function h(x) = e−πx
2 is its own Fourier transform by Lemma

4.6.1. Fix an a ∈ R and a t > 0, and let g be the function

g(x) = h(at−1/2 + t−1/2x) = e−π(a+x)
2/t.

By Lemma 4.6.2 we have

ĝ(y) = t1/2e2πiayĥ(t1/2y) = t1/2e2πiay−πy
2t. (4.6.1)

The Poisson summation formula (Theorem B.3.5) and (4.6.1) then give∑
n∈Z

e−π(n+a)
2/t =

∑
n∈Z

g(n) =
∑
n∈Z

ĝ(n) = t1/2
∑
n∈Z

e−πn
2t+2πina.

Definition 4.6.4. For t > 0, we define

θ(t) =
∑
n∈Z

e−πn
2t, ω(t) =

∞∑
n=1

e−πn
2t =

θ(t)− 1

2
.
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Lemma 4.6.5. As t→∞, we have

θ(t) = O(e−πt), ω(t) = O(e−πt).

Proof. For t ≥ 1, we have

θ(t) ≤
∑
n∈Z

e−πn
2t

= e−πt
∑
n∈Z

e−π(n
2−1)t

≤ e−πt
∑
n∈Z

e−π(n
2−1).

This proves that θ(t) = O(e−πt). Since ω(t) ≤ θ(t), it also follows that
ω(t) = O(e−πt).

Lemma 4.6.6. For all t > 0, we have

θ(t−1) = t1/2θ(t) (4.6.2)

and

ω(t−1) = −1

2
+
t1/2

2
+ t1/2ω(t). (4.6.3)

Proof. Setting a = 0 in Lemma 4.6.3 immediately gives us (4.6.2). Moreover,
since

ω(t) =
θ(t)− 1

2
and θ(t) = 1 + 2ω(t),

we use (4.6.2) to get

ω(t−1) =
θ(t−1)− 1

2
=
t1/2θ(t)− 1

2

=
t1/2(1 + 2ω(t))− 1

2
= −1

2
+
t1/2

2
+ t1/2ω(t),

proving (4.6.3).

Definition 4.6.7. We define

ξ(s) =
1

s− 1
− 1

s
+

∫ ∞
1

(
ts/2 + t(1−s)/2

)
ω(t)

dt

t
, (4.6.4)

for all s ∈ C where this makes sense.
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Lemma 4.6.8. The function ξ(s) is meromorphic on C, with only simple
poles at s = 0 and s = 1, with residues −1 and 1, respectively. Morevoer, we
have the functional equation

ξ(s) = ξ(1− s) (4.6.5)

for all s different from s = 0 and s = 1.

Proof. The integral defining ξ(s) in (4.6.4) is absolutely and uniformly conver-
gent on compact subsets of C since ω(t) = O(e−πt) as t→∞ by Lemma 4.6.5.
Therefore this integral defines an entire function, and from the definition of
ξ(s) we conclude that ξ(s) is analytic everywhere except s = 0 and s = 1,
with poles −1 and 1, respectively. Finally, the functional equation (4.6.5)
follows from the simple observation that (4.6.4) is invariant under the change
of variables s 7→ 1− s.

Theorem 4.6.9. For all s ∈ C with Re(s) > 1, we have

ξ(s) = π−s/2Γ
(s

2

)
ζ(s). (4.6.6)

The right-hand side of (4.6.6) extends to a meromorphic function on C with
only simple poles at s = 0 and s = 1, with residues −1 and 1, respectively,
and we have

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s) (4.6.7)

for all s ∈ C different from 0 and 1.

Proof. Fix a positive integer n, and note that

π−s/2Γ
(s

2

)
n−s = π−s/2n−s

∫ ∞
0

xs/2e−x
dx

x

=

∫ ∞
0

ts/2e−πn
2t dt

t

after a change of variables. Summing over all positive n, we get

π−s/2Γ
(s

2

)
ζ(s) =

∞∑
n=1

∫ ∞
0

ts/2e−πn
2t dt

t

=

∫ ∞
0

ts/2ω(t)
dt

t
.

(4.6.8)
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The interchange of integral and summation in (4.6.8) is justified by the
absolute convergence of the the final integral (since ω(t) = O(e−πt) by Lemma
4.6.5). The functional equation for ω (4.6.3) now give

π−s/2Γ
(s

2

)
ζ(s) =

∫ 1

0

ts/2ω(t)
dt

t
+

∫ ∞
1

ts/2ω(t)
dt

t

=

∫ ∞
1

t−s/2ω(t−1)
dt

t
+

∫ ∞
1

ts/2ω(t)
dt

t

=

∫ ∞
1

(
t(1−s)/2

2
− t−s/2

2
+
(
ts/2 + t(1−s)/2

)
ω(t)

)
dt

t

=
1

s− 1
− 1

s
+

∫ ∞
1

(
ts/2 + t(1−s)/2

)
ω(t)

dt

t
= ξ(s).

This proves that (4.6.6) holds. The remaining assertions of this theorem are
immediate consequences of Lemma 4.6.8.

Corollary 4.6.10. The Riemann zeta function ζ(s) extends to a meromorphic
function for all s ∈ C with only a simple pole at s = 1.

Proof. Theorem 4.6.9 implies that ζ(s) has a meromorphic continuation to
C. We already know that ζ(s) has a simple pole at s = 1 by Theorem 4.2.1.
From the facts that Γ(s) is non-vanishing and has a simple pole at 0, that
ξ(s) only has simple poles at s = 0 and s = 1 (Lemma 4.6.8), and that

ξ(s) = πs/2Γ
(s

2

)
ζ(s)

for all s 6= 0, 1, it follows that ζ(s) cannot have any other poles.

Corollary 4.6.11. We have ζ(0) = −1/2.

Proof. The gamma function has a simple pole at s = 0 with residue 1, so

lim
s→0

sΓ
(s

2

)
= 2 lim

s→0

s

2
Γ
(s

2

)
= 2.

On the one hand, from Theorem 4.6.9 we get

lim
s→0

s(s− 1)ξ(s) = lim
s→0

(s− 1)π−s/2sΓ
(s

2

)
ζ(s) = −2ζ(0). (4.6.9)

On the other hand, by the functional equation (4.6.5) we have

lim
s→0

s(s− 1)ξ(s) = lim
s→1

s(s− 1)ξ(1− s)
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= lim
s→1

s(s− 1)ξ(s)

= lim
s→1

s(s− 1)π−s/2Γ
(s

2

)
ζ(s)

=
1√
π

Γ

(
1

2

)
lim
s→1

(s− 1)ζ(s) = 1.

The last equality holds since Γ(1/2) =
√
π and ζ(s) has a simple pole of

residue 1 at s = 1. Thus from (4.6.9), we get

ζ(0) = −1

2
.

Corollary 4.6.12. For every positive integer n, ζ(s) has a simple zero at
s = −2n. Moreover, if s ∈ C is a zero of ζ(s), then either s is a negative
even integer, or 0 < Re(s) < 1.

Proof. For every positive integer n, Γ(s) has a simple pole at s = −n. Since

ξ(s) = π−s/2Γ
(s

2

)
ζ(s)

is analytic when Re(s) < 0, it follows that

ξ(−2n) = (−2n)(−2n− 1)π−s/2Γ(−n)ζ(−2n)

is well-defined, so ζ(s) must have a simple zero at s = −2n.
Next, suppose s ∈ C is a zero of ζ(s) different from a negative even integer.

By Corollary 4.6.11, s 6= 0, and so s is not a pole of Γ(s/2). By Theorem
4.3.1, we know that ζ(z) 6= 0 when Re(z) ≥ 1, so Re(s) < 1. Moreover, we
have ξ(s) = 0, and so ξ(1− s) = 0 by the functional equation (4.6.5) of ξ(s).
Since the gamma function is never zero, it follows that ζ(1− s) = 0. Now if
Re(s) ≤ 0, then Re(1 − s) ≥ 1, contradicting the non-vanishing of ζ(z) on
Re(z) ≥ 1. Therefore Re(s) > 0, and so

0 < Re(s) < 1.

Definition 4.6.13. The trivial zeros of ζ(s) are the non-negative integers.
The non-trivial zeros of ζ(s) are the zeros of ζ(s) in the strip 0 < Re(s) < 1.

Conjecture 4.6.14 (The Riemann Hypothesis). Every non-trivial zero of
ζ(s) lies on the line Re(s) = 1

2
.
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Currently, the Riemann Hypothesis is one of the most important open prob-
lems in mathematics. Among other things, the Riemann hypothesis being
true would improve the estimate of the prime-counting function π(x) of §4.5
given by the prime number theorem. Recall that the prime number theorem
(Theorem 4.5.7) stated that

π(x) ∼ x

log(x)
as x→∞.

In [Sch76], Schoenfeld proved that, if the Riemann hypothesis were true, then
the stronger statement

|π(x)− li(x)| < 1

8π

√
x log(x) for all x ≥ 2657

would hold, where

li(x) = lim
ε→0+

(∫ 1−ε

0

1

log(t)
dt+

∫ x

1+ε

1

log(t)
dt

)
for x > 1.

5 Dirichlet L-Functions

5.1 Dirichlet Characters, Dirichlet L-Functions

Definition 5.1.1. Let m be a positive integer. A character of the multiplica-
tive group (Z/mZ)× is called a Dirichlet character modulo m.

The trivial character of (Z/mZ)× will be denoted 1m.
If χ is a Dirichlet character modulo m, then it is useful to extend χ to all

of Z/mZ by setting
χ(n) = 0

if (n,m) > 1. Moreover, it is useful to extend χ to all of Z by defining (via
abuse of notation) χ(n) = χ(n), where n is the residue class of n modulo m.
Viewed as functions Z→ C, the Dirichlet characters modulo q are precisely
those functions χ satisfying
(1) χ(n+m) = χ(n) for every n ∈ Z;
(2) χ(n) = 0 if (n,m) > 1, and |χ(n)| = 1 if (n,m) = 1;
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(3) χ(n1n2) = χ(n1)χ(n2) for all n1, n2 ∈ Z.
If d | m, then there is a natural surjective homomorphism

Z/mZ→ Z/dZ.

Thus for any Dirichlet character modulo d we obtain the induced Dirichlet
character modulo m via composition with this homomorphism.

Definition 5.1.2. A Dirichlet character modulo m is called primitive if it is
not induced by any Dirichlet character modulo d for any divisor d 6= m of m.
A Dirichlet character χ is called odd if χ(−1) = −1, and it is called even if
χ(−1) = 1.

Definition 5.1.3. For a Dirichlet character χ modulom, viewed as a function
χ : Z+ → C, we define the associated Dirichlet L-function L(s, χ) by the
Dirichlet series

L(s, χ) = D(χ, s) =
∞∑
n=1

χ(n)

ns
.

Fix a Dirichlet character χ modulo m. By Theorem 3.5.2, the abscissa of
absolute convergence of L(s, χ) is

σ|χ| = lim sup
n→∞

log (
∑n

k=1 |χ(k)|)
log(n)

≤ lim sup
n→∞

log(n)

log(n)
= 1.

Thus L(s, χ) is at least absolutely convergent and analytic for Re(s) > 1.
Moreover, the absolute convergence of L(s, χ) and Theorem 3.2.2 imply that
for Re(s) > 1, we have the Euler product representation

L(s, χ) =
∏
p

1

1− χ(p)p−s
=
∏
p-m

1

1− χ(p)p−s
. (5.1.1)

In particular, the convergence of the Euler product (5.1.1), whose factors are
all nonzero, implies that L(s, χ) 6= 0 for Re(s) > 1.

We note that if χ = 1m is the trivial Dirichlet character modulo m, then
by (5.1.1) we have

L(s,1m) = ζ(s)
∏
p|m

(
1− 1

ps

)
. (5.1.2)
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Lemma 5.1.4. If χ is a nontrivial Dirichlet character modulo m, then L(s, χ)
converges and is analytic for Re(s) > 0.

Proof. Suppose χ 6= 1m, and let σχ be the abscissa of convergence of L(s, χ).
Note that L(0, χ) diverges by the periodicity of χ, so σχ ≥ 0. For n ∈ Z+,
pick the smallest r ∈ Z+ such that n ≡ r (mod m). Then Lemma C.2.1 (one
of the orthogonality relations for characters of finite abelian groups) implies
that

n∑
k=1

χ(k) =
r∑

k=1

χ(k) +
n∑

k=r+1

χ(k) =
r∑

k=1

χ(k)

since the sum
∑n

k=r+1 χ(k) cycles over all elements of Z/mZ. Therefore∣∣∣∣∣
n∑
k=1

χ(k)

∣∣∣∣∣ ≤
φ(m)∑
k=1

1 = φ(m),

and hence the formula for σχ obtained from Theorem 3.5.2 gives

0 ≤ σχ = lim sup
n→∞

log |
∑n

k=1 χ(k)|
log(n)

≤ lim sup
n→∞

log(φ(m))

log(n)
= 0.

Therefore σχ = 0, and so L(s, χ) converges and is analytic for Re(s) > 0.

5.2 Non-Vanishing of L(1, χ)

In this section we will prove that if χ is a nontrivial Dirichlet character modulo
m, then L(1, χ) 6= 0. We closely follow Serre’s exposition in [Ser73] in this
section and the next one.

Let m denote a fixed positive integer, let G(m) = (Z/mZ)×, and for every
prime p not dividing m, let f(p) denote the order of the image of p in G(m).
Also define

g(p) =
φ(m)

f(p)
,

which is equal to the order of the quotient of G(m) by the subgroup generated
by the image of p.

Lemma 5.2.1. Let p be a prime not dividing m. Then in the polynomial
ring C[T ] we have ∏

χ∈Ĝ(m)

(1− χ(p)T ) =
(
1− T f(p)

)g(p)
.
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Proof. Let W denote the group of f(p)-th roots of unity in C. Then we have

1− T f(p) =
∏
ω∈W

(1− ωT ).

Moreover, for each ω ∈ W , there are exactly g(p) Dirichlet characters χ
modulo m such that χ(p) = ω. Therefore the lemma follows.

Definition 5.2.2. For Re(s) > 1, define

ζm(s) =
∏

χ∈Ĝ(m)

L(s, χ).

Since each L(s, χ) is analytic for Re(s) > 1, so is ζm(s).

Lemma 5.2.3. For Re(s) > 1, we have

ζm(s) =
∏
p-m

1

(1− p−f(p)s)g(p)
, (5.2.1)

and ζm(s) can be expressed as the Dirichlet series of a positive arithmetic
function.

Proof. The Euler products (5.1.1) of the Dirichlet L-functions together with
Lemma 5.2.1 (setting T = p−s) immediately give us (5.2.1). Moreover, the
product expansion of ζm(s) clearly shows that ζm(s) can be written as the
Dirichlet series of a positive arithmetic function.

Theorem 5.2.4. Suppose χ is a nontrivial Dirichlet character modulo m.
Then L(1, χ) 6= 0.

Proof. Suppose that L(1, χ) = 0. Then this zero cancels the simple pole of
L(s,1m) at s = 1, and so ζm(s) is analytic for Re(s) > 0. By Lemma 5.2.3,
ζm(s) has a Dirichlet series expansion with positive coefficients. By Theorem
3.5.3, ζm(s) must have a pole at its abscissa of convergence. Since ζm(s) is
analytic for Re(s) > 0, it follows that its Dirichlet series converges at least
for Re(s) > 0. However, for each prime p not dividing m we have

1

(1− p−f(p)s)g(p)
=

(
∞∑
n=0

p−nf(p)s

)g(p)

≥
∞∑
n=0

p−nφ(m)s.
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Therefore the coefficients of the Dirichlet series ζm(s) are all greater than
those of the series ∑

(n,m)=1

1

nφ(m)s
,

and this series diverges for s = 1/φ(m). Therefore, L(1/φ(m), χ) must diverge
as a Dirichlet series, and so L(1, χ) 6= 0.

Corollary 5.2.5. ζm(s) has a simple pole at s = 1.

Proof. By (5.1.2), the L-function L(s,1m) has a simple pole at s = 1 (since
ζ(s) has a simple pole at s = 1 by Theorem 4.2.1). Moreover, if χ is a
nontrivial Dirichlet character modulo m, then L(s, χ) is analytic for Re(s) > 0
by Lemma 5.1.4, and L(1, χ) 6= 0 by Theorem 5.2.4. Therefore, since

ζm(s) =
∏

χ∈Ĝ(m)

L(s, χ),

we see immediately that ζm(s) has a simple pole at s = 1.

5.3 Primes in Arithmetic Progressions

Definition 5.3.1. Let A be any set of prime numbers. We say that A has
density α ∈ R if

lim
s→1+

∑
p∈A

1
ps

log
(

1
s−1

) = α.

We have previously shown that the density of the set of all primes is 1
(Corollary 4.2.2). In this section we will prove that for a positive integer
m and an integer a such that (a,m) = 1, the set of primes congruent to a
modulo m has density 1/φ(m). This is a refinement of a theorem of Dirichlet
which states that the arithmetic progression

a, a+m, a+ 2m, a+ 3m, . . .

contains infinitely many primes (because the density of any finite set is zero).
For the remainder of this section, fix a positive integer m and an integer

a with (a,m) = 1.
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Definition 5.3.2. If χ is a Dirichlet character modulo m, define

fχ(s) =
∑
p-m

χ(p)

ps
.

Lemma 5.3.3. We have

f1m(s) ∼ log

(
1

s− 1

)
as s→ 1+,

where 1m is the trivial Dirichlet character modulo m.

Proof. By Corollary 4.2.2, we have∑
p

1

ps
∼ log

(
1

s− 1

)
as s→ 1+.

The lemma follows since f1m(s) differs from
∑

p
1
ps

by only the summands
corresponding to primes dividing m.

Lemma 5.3.4. If χ is a nontrivial Dirichlet character modulo m, then fχ(s)
is bounded as s→ 1+.

Proof. Using the Euler product (5.1.1) of L(s, χ) for s > 1, we have

log(L(s, χ)) =
∑
p

log

(
1

1− χ(p)p−s

)

=
∑
p

∞∑
n=0

χ(p)n

npns
= fχ(s) + Fχ(s),

(5.3.1)

where

Fχ(s) =
∑
p

∞∑
n=2

χ(p)n

npns

By Corollary 4.2.2, the series
∑

p

∑∞
n=2

1
pns is bounded as s → 1+. By

comparison with this series, it follows that Fχ(s) is also bounded as s→ 1+.
Moreover, L(1, χ) 6= 0 by Theorem 5.2.4, so log(L(s, χ)) is also bounded
as s → 1+. Therefore from (5.3.1) we conclude that fχ(s) is bounded as
s→ 1+.
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Definition 5.3.5. Let Pa denote the set of all prime numbers p such that
p ≡ a (mod m). Moreover, for s > 1, define

ga(s) =
∑
p∈Pa

1

ps
.

Lemma 5.3.6. For s > 1, we have

ga(s) =
1

φ(m)

∑
χ∈Ĝ(m)

χ(a)−1fχ(s).

Proof. We have

∑
χ∈Ĝ(m)

χ(a)−1fχ(s) =
∑
p-m

 ∑
χ∈Ĝ(m)

χ(a−1p)

 1

ps
(5.3.2)

by the definition of fχ. The orthogonality relations for characters of finite
abelian groups (cf. Lemma C.2.2) imply that

∑
χ∈Ĝ(m)

χ(a−1p) =

{
φ(m), if p ≡ a (mod m),

0, otherwise.

Now from (5.3.2) we get∑
χ∈Ĝ(m)

χ(a)−1fχ(s) =
∑
p∈Pa

φ(m)

ps
= φ(m)ga(s),

finishing the proof.

We are now ready to prove our version of Dirichlet’s theorem on primes in
arithmetic progressions.

Theorem 5.3.7. The set Pa has density 1/φ(m).

Proof. It suffices to prove that

lim
s→1+

ga(s)

log
(

1
s−1

) =
1

φ(m)
. (5.3.3)
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By Lemma 5.3.6, we have

ga(s) =
f1m(s)

φ(m)
+

1

φ(m)

∑
χ 6=1m

χ(a)−1fχ(s).

The sum above is bounded as s→ 1+ by Lemma 5.3.4, so (5.3.3) follows from
Lemma 5.3.3 since

f1m(s) ∼ log

(
1

s− 1

)
as s→ 1+.

5.4 Gauss Sums

Definition 5.4.1. Let χ be a Dirichlet character modulo m. For n ∈ Z+, we
define

τ(χ, n) =
m−1∑
k=0

χ(k)e2πink/m.

The Gauss sum associated to χ is

τ(χ) = τ(χ, 1) =
m−1∑
k=0

χ(k)e2πik/m.

Lemma 5.4.2. Suppose χ is a Dirichlet character modulo m, and suppose
that either
(a) (m,n) = 1, or
(b) (m,n) > 1 and χ is primitive and non-trivial.

Then
τ(χ, n) = χ(n)τ(χ). (5.4.1)

Proof. First suppose (a) holds. Then n is invertible in Z/mZ, and so we have

χ(n)τ(χ) =
m−1∑
k=0

χ(k)χ(n)e2πik/m

=
m−1∑
k=0

χ(kn−1 (mod m))e2πik/m

=
m−1∑
h=0

χ(h)e2πihn/m = τ(χ, n)
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by changing the order of summation.
Now suppose (b) holds. Then χ(n) = 0, so to prove (5.4.1), it suffices to

prove that
τ(χ, n) = 0.

Choose positive integers m1, n1, d such that m = m1d, n = n1d, d > 1, and
(m1, n1) = 1. Then we have

τ(χ, n) =
m−1∑
k=0

χ(k)e2πin1k/m1 .

Since m1 is a proper divisor of m and χ is a primitive Dirichlet character
modulo m, it follows that there exists an integer c0 such that (c0,m) = 1,
c0 ≡ 1 (mod m)1, and χ(c0) 6= 1. Let c1 be an inverse of c0 modulo m1. Then
we have

n1c1k ≡ n1k (mod m1).

Therefore

χ(c0)τ(χ, n) =
m−1∑
k=0

χ(c0k)e2πin1k/m1

=
m−1∑
k=0

χ(k)e2πin1c1k/m1

=
m−1∑
k=0

χ(k)e2πin1k/m1 = τ(χ, n).

Since χ(c0) 6= 1, it follows that τ(χ, n) = 0, proving (5.4.1) for case (b).

Lemma 5.4.3. Suppose χ is a primitive Dirichlet character modulo m. Then

|τ(χ)| =
√
m.

Proof. Using Lemma 5.4.2, we have

|τ(χ)|2 = τ(χ)τ(χ) =
m−1∑
k=0

χ(n)τ(χ)e−2πik/n

=
m−1∑
k=0

τ(χ, n)e−2πik/n =
m−1∑
k=0

m−1∑
`=0

χ(`)e2πi(`−1)k/n
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=
m−1∑
`=0

χ(`)
m−1∑
k=0

e2πi(`−1)k/n = m

since
m−1∑
k=0

e2πi(`−1)k/n =

{
m, if n = 1

0, if n 6= 1.

5.5 The Functional Equation for L(s, χ)

In this section, we prove that for a primitive Dirichlet character χ modulo
m, the L-function L(s, χ) is related to the L-function L(s, χ) by a functional
equation similar to that of the Riemann zeta function (cf. §4.6). The proof
strategy will be very similar, relying heavily on the Poisson summation formula
(Theorem B.3.5). We must divide the discussion into the cases where χ is
even and where χ is odd. Recall that χ is even if χ(−1) = 1, and χ is odd if
χ(−1) = −1.

5.5.1 The Even Case

Definition 5.5.1. For every primitive even Dirichlet character χ modulo m
and t > 0, we define

θ(t, χ) =
∑
n∈Z

χ(n)e−πn
2t/m.

Lemma 5.5.2. For χ a primitive even Dirichlet character modulo m, we
have

θ(t, χ) = O(e−πt)

as t→∞.

Proof. For t ≥ 1, we have

|θ(t, χ)| ≤
∑
n∈Z

e−πn
2t/m

= e−πt
∑
n∈Z

e−π(n
2−m)t/m

≤ e−πt
∑
n∈Z

e−π(n
2−m)/m.
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Lemma 5.5.3. Let χ be a primitive even Dirichlet character modulo m. For
t > 0, we have

τ(χ)θ(t, χ) =
(m
t

)1/2
θ(t−1, χ). (5.5.1)

Proof. Note that

τ(χ)θ(t, χ) =
m−1∑
k=0

χ(k)
∑
n∈Z

e−πn
2t/m+2πink/m. (5.5.2)

By Lemma 4.6.3, the inner sum in (5.5.2) is∑
n∈Z

e−πn
2t/m+2πink/m =

(m
t

)1/2∑
n∈Z

e−π(n+k/m)2m/t,

so (5.5.2) becomes

τ(χ)θ(t, χ) =
(m
t

)1/2 m−1∑
k=0

χ(k)
∑
n∈Z

e−π(nm+k)2/(tm)

=
(m
t

)1/2 m−1∑
`=0

χ(`)
∑
n∈Z

e−π`
2/(tm)

=
(m
t

)1/2
θ(t−1, χ).

Definition 5.5.4. For a primitive even Dirichlet character χ modulo m, we
define

ξ(s, χ) =
1

2

∫ ∞
1

ts/2θ(t, χ)
dt

t
+

√
m

2τ(χ)

∫ ∞
1

t(1−s)/2θ(t, χ)
dt

t
(5.5.3)

for all s ∈ C where this makes sense.

Lemma 5.5.5. Let χ be a primitive even Dirichlet character modulo m. The
function ξ(s, χ) is entire, and for all s ∈ C we have

m1/2ξ(s, χ) = τ(χ)ξ(1− s, χ). (5.5.4)

Proof. The integrals defining ξ(s, χ) in (5.5.3) are absolutely and uniformly
convergent on compact subsets of C by Lemma 5.5.3 since θ(t, χ) = O(e−πt).
This proves that ξ(s, χ) is an entire function. Moreover, the functional
equation (5.5.4) of ξ(s, χ) follows from the functional equation (5.5.1) of θ(t, χ)
and the change of variables s 7→ 1− s in the integrals defining ξ(s, χ).
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Theorem 5.5.6. Let χ be a primitive even Dirichlet character modulo m.
For all s ∈ C with Re(s) > 1, we have

ξ(s, χ) = π−s/2ms/2Γ
(s

2

)
L(s, χ). (5.5.5)

The right-hand side of (5.5.5) extends to an entire function, and we have

π−s/2msΓ
(s

2

)
L(s, χ) = π−(1−s)/2τ(χ)Γ

(
1− s

2

)
L(1− s, χ) (5.5.6)

for all s ∈ C different from 0 and 1.

Proof. Let n be a positive integer, and note that

π−s/2ms/2Γ
(s

2

)
χ(n)n−s = π−s/2ms/2χ(n)n−s

∫ ∞
0

xs/2e−x
dx

x

= χ(n)

∫ ∞
0

ts/2e−πn
2t/m dt

t

after a change of variables. Summing over all positive n, we get

π−s/2ms/2Γ
(s

2

)
L(s, χ) =

∞∑
n=1

∫ ∞
0

ts/2χ(n)e−πn
2t/m dt

t

Since χ(−1) = 1 and χ(0) = 0, it follows that

π−s/2ms/2Γ
(s

2

)
L(s, χ) =

1

2

∑
n∈Z

∫ ∞
0

ts/2χ(n)e−πn
2t/m dt

t

=
1

2

∫ ∞
0

ts/2θ(t, χ)
dt

t
.

(5.5.7)

The last equality of (5.5.7) holds because the final integral converges absolutely
by Lemma 5.5.2. From (5.5.7) and the functional equation of θ(t, χ) (5.5.1)
it follows that

π−s/2ms/2Γ
(s

2

)
L(s, χ) =

1

2

∫ ∞
1

ts/2θ(t, χ)
dt

t
+

1

2

∫ 1

0

ts/2θ(t, χ)
dt

t

=
1

2

∫ ∞
1

ts/2θ(t, χ)
dt

t
+

1

2

∫ ∞
1

t−s/2θ(t−1, χ)
dt

t
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=
1

2

∫ ∞
1

ts/2θ(t, χ)
dt

t
+

√
m

2τ(χ)

∫ ∞
1

t(1−s)/2θ(t, χ)
dt

t

= ξ(s, χ).

Thus we’ve proved (5.5.5), and the rest of the theorem follows from Lemma
5.5.3.

Corollary 5.5.7. For any primitive even Dirichlet character modulo m, the
L-function L(s, χ) extends to an entire function on C.

Proof. This is an immediate consequence of Theorem 5.5.6 since ξ(s, χ) is
entire and the gamma function is never zero.

5.5.2 The Odd Case

The same method used in §5.5.1 to prove the functional equation (5.5.6) of
L(s, χ) when χ is even cannot be used if χ is odd since the function

θ(t, χ) =
∑
n∈Z

χ(n)e−πn
2t/m

is identically zero in this case. We define a replacement for θ(t, χ) when χ is
odd as follows.

Definition 5.5.8. Let χ be a primitive odd Dirichlet character modulo m.
For t > 0, define

θ1(t, χ) =
∑
n∈Z

nχ(n)e−πn
2t/m.

Lemma 5.5.9. For t > 0 and χ a primitive odd Dirichlet character modulo
m, we have

τ(χ)θ1(t, χ) = im1/2t−3/2θ1(t
−1, χ). (5.5.8)

Proof. We have

τ(χ)θ1(t, χ) =
m−1∑
k=0

χ(k)
∑
n∈Z

ne−πn
2t/m+2πink/m

Thus to prove (5.5.8), it suffices to prove that∑
n∈Z

ne−πn
2t/m+2πikn/m = i

(m
t

)3/2∑
n∈Z

(
n+

k

m

)
e−π(n+k/m)2m/t,
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and this follows from differentiating both sides of the equation∑
n∈Z

e−n
2πt/m+2πink/m =

(m
t

)1/2∑
n∈Z

e−π(n+k/m)2m/t (5.5.9)

given by Lemma 4.6.3.

Definition 5.5.10. For a primitive odd Dirichlet character χ modulo m, we
define

ξ(s, χ) =
1

2

∫ ∞
1

ts/2θ1(t, χ)
dt√
t

+
i
√
m

2τ(χ)

∫ ∞
1

t(1−s)/2θ1(t, χ)
dt√
t

(5.5.10)

for all s ∈ C where this makes sense.

Lemma 5.5.11. Let χ be a primitive odd Dirichlet character modulo m. The
function ξ(s, χ) is entire, and for all s ∈ C we have

im1/2ξ(s, χ) = τ(χ)ξ(1− s, χ). (5.5.11)

Proof. Like in the corresponding even case, the integrals defining ξ(s, χ) in
(5.5.10) are absolutely and uniformly convergent on compact subsets of C, so
ξ(s, χ) is an entire function. The functional equation (5.5.11) of ξ(s, χ) follows
from the functional equation (5.5.8) of θ1(t, χ) and a change of variables.

Theorem 5.5.12. Let χ be a primitive odd Dirichlet character modulo m.
For all s ∈ C with Re(s) > 1, we have

ξ(s, χ) = π−(s+1)/2m(s+1)/2Γ

(
s+ 1

2

)
L(s, χ). (5.5.12)

The right-hand side of (5.5.12) extends to an entire function, and L(s, χ)
extends to an entire function on C.

Proof. For a positive integer n, note that

π−(s+1)/2m(s+1)/2Γ

(
s+ 1

2

)
χ(n)n−s = χ(n)

∫ ∞
0

ne−πn
2t/mt(s+1)/2 dt

t
,

so that, using the functional equation (5.5.8) of θ1(t, χ), we get

π−(s+1)/2m(s+1)/2Γ

(
s+ 1

2

)
L(s, χ) =

∞∑
n=1

∫ ∞
0

nχ(n)e−πn
2t/mt(s+1)/2 dt

t
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=
1

2

∫ ∞
0

t(s+1)/2θ1(t, χ)
dt

t

=
1

2

∫ ∞
1

t(s+1)/2θ1(t, χ)
dt

t
+

1

2

∫ ∞
1

t−(s+1)/2θ1(t
−1, χ)

dt

t

= ξ(s, χ).

Thus we’ve proved (5.5.12). Since Γ(s) is never zero, it follows from the
functional equation (5.5.11) of ξ(s, χ) that L(s, χ) has no poles.

We have seen in this section that the Dirichlet L-functions L(s, χ) behave much
like the Riemann zeta function ζ(s) in that they have a continuation to the
entire plane C and satisfy a functional equation involving the gamma function.
In fact, both Dirichlet L-functions and the Riemann zeta function are a special
case of so-called Artin L-functions, which arise from Galois representations
of number fields. Like the Riemann zeta function and the Dirichlet L-
functions (which arise from one-dimensional Galois representations), Artin
L-functions also satisfy properties like possessing a meromorphic continuation
and satisfying a functional equation. The theory of Artin L-functions is
a much larger and richer area of study, and they fit into a much broader
framework of the Langlands program. For an good overview of this current
area of research, see [Gel84].

A Complex Analysis

A.1 Infinite Products

Definition A.1.1. Let α1, α2, α3, . . . be a sequence of complex numbers.
Suppose that the following conditions hold:
(1) there exists a positive integer N such that αn 6= 0 for all n ≥ N ;
(2) the limit

L = lim
m→∞

m∏
n=N

αm

exists and is different from zero.
If the preceding conditions hold for some N , then we say that the infinite
product

∏∞
n=1 αi converges, and its value is, by definition,

∞∏
n=1

αi = L

N−1∏
n=1

αn.
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We follow the convention that any product taken over the empty set is 1.

Lemma A.1.2. Suppose the infinite product
∏∞

n=1 αn converges. Then

lim
n→∞

αn = 1.

Proof. Without loss of generality, assume αn 6= 0 for all n ∈ Z+. In particular,∏∞
n=1 αn 6= 0. Then we have

αn =

∏n
k=1 αk∏n−1
k=1 αk

,

and letting n→∞, the lemma follows.

Lemma A.1.3. The infinite product
∏∞

n=1 αn converges if and only if there
exists a positive integer N such that the series

∑∞
n=N log(αn) converges (here

log denotes the principal branch of the logarithm).

Proof. Without loss of generality, assume αn 6= 0 for each n ∈ Z+, so we
may take N = 1 in the statement of the lemma. For every positive integer n,
define

Pn =
n∏
k=1

αk, Sn =
n∑
k=1

log(αk).

Suppose first that the series
∑∞

n=1 log(αn) = limn→∞ Sn converges to the
complex number S. Then we have

Pn = eSn

for each n, so the convergence of Sn to S implies the convergence of Pn to
eS 6= 0. In particular, the product

∏∞
n=1 αn converges.

Conversely, suppose the infinite product
∏∞

n=1 αn = limn→∞ Pn converges
to the nonzero complex number P . Then Pn/P → 1 as n → ∞, whence
log(Pn/P ) → 0 as n → ∞. For each n ∈ Z+, there exists an hn ∈ Z such
that

log

(
Pn
P

)
= Sn − log(P ) + 2πihn. (A.1.1)

Thus we have

2πi(hn+1 − hn) = log

(
Pn+1

P

)
− log

(
Pn
P

)
− log(αn).
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Looking at the imaginary parts of the equation above, we get

2π(hn+1 − hn) = Arg

(
Pn+1

P

)
− Arg

(
Pn
P

)
− Arg(αn).

Since |Arg(αn)| ≤ π for all n, and since Arg(Pn/P )→ 0 as n→∞, it follows
that the sequence of integers h1, h2, h3, . . . is eventually constant. That is,
there exists an h ∈ Z with hn = h for all n sufficiently large, and so by (A.1.1)
we have

lim
n→∞

Sn = log(P )− 2πih.

In particular, the series
∑∞

n=1 log(αn) converges.

Definition A.1.4. The infinite product
∏∞

n=1 αn is said to converge absolutely
if and only if there exists an N ∈ Z+ such that the series

∑∞
n=N log(αn)

converges absolutely.

Lemma A.1.5. The infinite product
∏∞

n=1(1 + αn) converges absolutely if
and only if the series

∑∞
n=1 αn converges absolutely.

Proof. Without loss of generality, assume 1 + αn 6= 0 for all n ∈ Z+. By
Lemma A.1.3, it suffices to show that

∑∞
n=1 log(1 + αn) converges absolutely

if and only if
∑∞

n=1 αn converges absolutely. But this follows from the limit
comparison test and the fact that

lim
s→0

log(1 + s)

s
= 1.

A.2 The Gamma Function

In this section we will list the fundamental and well-known properties of the
gamma function without proof. The proofs of the properties are contained in
many texts (e.g., [Ahl78]).

Definition A.2.1. For every s ∈ C different from a non-positive integer, we
define Γ(s) by the infinite product

Γ(s) =
e−γs

s

∏
n∈Z+

es/n

1 + s
n

(A.2.1)

The function Γ is called the gamma function.
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The number γ in (A.2.1) is the Euler-Mascheroni constant, which by Definition
4.2.5 and Lemma 4.2.6 is equal to

γ = lim
s→1

(
ζ(s)− 1

s− 1

)
= lim

n→∞

(
n∑
k=1

1

k
− log(n)

)
.

Theorem A.2.2. The gamma function satisfies the following properties:
(a) Γ is a non-vanishing meromorphic function with a simple pole at each

non-positive integer;
(b) the residue of Γ at −k for k a non-negative integer is (−1)k

k!
;

(c) we have

Γ(s) =

∫ ∞
0

tse−t
dt

t

whenever Re(s) > 0;
(d) we have

Γ(s+ 1) = sΓ(s)

for all s ∈ C where Γ(s) and Γ(s+ 1) are defined;
(e) we have

Γ(n+ 1) = n!

for every non-negative integer n;
(f) we have

Γ(s)Γ(1− s) =
π

sin(πs)

for all non-integer s ∈ C;
(g) we have

Γ

(
1

2

)
=
√
π.

B Fourier Analysis

B.1 Fourier Series

Let f : R→ C be a periodic function with period T > 0 which is integrable
on every bounded interval.
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Lemma B.1.1. For all a, b ∈ R we have∫ a+T

a

f(x) dx =

∫ b+T

b

f(x) dx

Proof. Let g : R→ C be given by

g(a) =

∫ a+T

a

f(ξ) dξ.

Then the fundamental theorem of calculus implies that

g′(a) = f(a+ T )− f(a) = 0

for all a ∈ R, so g is a constant function, and the lemma follows.

For every integer n, we define a function χn : R→ C by

χn(x) = e2πinx/T .

We then have χn(x) = χ−n(x) = 1/χn(x) and χm(x)χn(x) = χm+n(x), as well
as

1

T

∫ T/2

−T/2
χn(ξ) dξ =

{
1, if n = 0,
0, if n 6= 0.

(B.1.1)

Definition B.1.2. For an integer n, the nth Fourier coefficient cn of f is

cn =
1

T

∫ T/2

−T/2
f(ξ)χn(ξ) dξ.

Theorem B.1.3 (Bessel’s Inequality).

∞∑
−∞

|cn|2 ≤
1

T

∫ T/2

−T/2
|f(ξ)|2 dξ.

Proof. Fix a positive integer N . For ξ ∈ [−T/2, T/2] we have∣∣∣∣∣f(ξ)−
N∑

n=−N

cnχn(ξ)

∣∣∣∣∣
2
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=

(
f(ξ)−

N∑
n=−N

cnχn(ξ)

)(
f(ξ)−

N∑
n=−N

cnχ−n(ξ)

)

= |f(ξ)|2 −
N∑

n=−N

(
cnf(ξ)χn(ξ) + cnf(ξ)χn(ξ)

)
+

N∑
m,n=−N

cmcnχm−n(ξ)

Now by (B.1.1) we have

0 ≤ 1

T

∫ T/2

−T/2

∣∣∣∣∣f(ξ)−
N∑

n=−N

cnχn(ξ)

∣∣∣∣∣
2

dξ

=
1

T

∫ T/2

−T/2
|f(ξ)|2 dξ −

N∑
n=−N

(cncn + cncn) +
N∑

n=−N

cncn

=
1

T

∫ T/2

−T/2
|f(ξ)|2 dξ −

N∑
n=−N

|cn|2 ,

so
N∑

n=−N

|cn|2 ≤
1

T

∫ T/2

−T/2
|f(ξ)|2 dξ.

The monotone sequence of partial sums
∑N

n=−N |cn|
2 is therefore bounded by

1
T

∫ T/2
−T/2 |f(ξ)|2 dξ, whence the theorem follows.

We now wish to find a condition on f under which we have

f(x) =
∞∑

n=−∞

cnχn(x) = lim
N→∞

N∑
n=−N

cnχn(x).

The infinite series above is the Fourier series of f . Given a positive integer
N , let SN (x) denote the Nth partial sum of the Fourier series of f at x. That
is,

SN(x) =
N∑

n=−N

cnχn(x) =
1

T

N∑
n=−N

∫ T/2

−T/2
f(ξ)e2πin(x−ξ)/T dξ.

Using a change of variables and reversing the order of summation, we get

SN(x) =
1

T

N∑
n=−N

∫ T/2+x

−T/2+x
f(x+ φ)e2πinφ/T dφ.
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The integrand above is periodic with period T , so Lemma B.1.1 implies that

SN(x) =
1

T

N∑
n=−N

∫ T/2

−T/2
f(x+ φ)e2πinφ/T dφ.

If we define

DN(φ) =
1

T

N∑
n=−N

e2πinφ/T , (B.1.2)

then we have

SN(x) =

∫ T/2

−T/2
f(x+ φ)DN(φ) dφ. (B.1.3)

We call DN the N th Dirichlet kernel. By (B.1.2) and the formula for a
geometric sum, we have

DN(φ) =
1

T
e−2πiNφ/T

2N∑
n=0

(
e2πiφ/T

)n
=

1

T

e2πi(N+1)φ/T − e−2πiNφ/T

e2πiφ/T − 1
. (B.1.4)

Lemma B.1.4. For any positive integer N , we have∫ 0

−T/2
DN(φ) dφ =

∫ T/2

0

DN(φ) dφ =
1

2

Proof. From the definition of DN in (B.1.2), we see that

DN(φ) =
1

T
+

1

T

N∑
n=1

(
e2πinφ/T + e−2πinφ/T

)
=

1

T
+

2

T

N∑
n=1

cos (2πnφ/T ) ,

so ∫ 0

−T/2
DN(φ) dφ =

[
φ

T
+

N∑
n=1

sin (2πnφ/T )

πn

]0
−T/2

=
1

2
.

The integral from 0 to T/2 is evaluated similarly.

Theorem B.1.5. Suppose f is piecewise smooth on R. Then for every x ∈ R
we have

lim
N→∞

SN(x) =
1

2
[f(x−) + f(x+)] ,

where
f(x±) = lim

h→0+
f(x± h).



B FOURIER ANALYSIS 82

Proof. Fix x ∈ R. By Lemma B.1.4, we have

1

2
(f(x−) + f(x+)) = f(x−)

∫ 0

−T/2
DN(φ) dφ+ f(x+)

∫ T/2

0

DN(φ) dφ,

so from (B.1.3) it follows that

SN(x)− 1

2
(f(x−) + f(x+))

=

∫ 0

−T/2
(f(x+ φ)− f(x−))DN(φ) dφ

+

∫ T/2

0

(f(x+ φ)− f(x+))DN(φ) dφ.

Let g : (−T/2, T/2)→ C be given by

g(φ) =


f(x+ φ)− f(x−)

e2πiφ/T − 1
if −T/2 < φ ≤ 0

f(x+ φ)− f(x+)

e2πiφ/T − 1
if 0 < φ < T/2.

Then by (B.1.4) we have

SN(x)− 1

2
(f(x−) + f(x+))

=
1

T

∫ T

−T/2
g(φ)

(
e2πi(N+1)φ/T − e−2πiNφ/T

)
dφ

(B.1.5)

If Cn denotes the nth Fourier coefficient of g, then Bessel’s inequality (Theorem
B.1.3) applied to g implies that the series

∑∞
n=−∞ |Cn|

2 converges, whence
limn→0Cn = 0. Moreover, (B.1.5) becomes

SN(x)− 1

2
(f(x−) + f(x+)) = CN+1 − CN ,

and the right hand side of this equation tends to zero as N → ∞. This
concludes the proof of the theorem.
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B.2 Schwartz Functions

Definition B.2.1. A function f : R→ C is said to be a Schwartz function if
and only if f is smooth and for all positive integers m,n there exist M,N > 0
such that ∣∣∣∣xmdnf(x)

dxn

∣∣∣∣ < N

if |x| > M . The set S of all Schwartz functions is called the Schwartz space.

Clearly S has a natural structure of a C-vector space.

Example B.2.2. Any smooth function on R with compact support is in S.
In particular, for any a, b ∈ R with a < b, S contains the function

x 7→

{
e−

1
(x−a)(b−x) if a < x < b

0 otherwise

which is smooth and vanishes on R \ [a, b].

Lemma B.2.3. For every f ∈ S, the integral
∫
R
|f(x)| dx is finite.

Proof. Let f ∈ S be given. Then there exist constants M,N > 0 such that

|f(x)| < N

x2

if |x| > M . Then we have∫
R

|f(x)| dx ≤
∫ M

−M
|f(x)| dx+ 2N

∫ ∞
M

1

x2
dx =

∫ M

−M
|f(x)| dx+

2N

M
,

which proves the lemma.

If L1(R) denotes the C-vector space of all measurable functions f : R→ C for
which

∫
R
|f(x)| dx is finite, then Lemma B.2.3 is the assertion that S ⊆ L1(R).

B.3 The Fourier Transform

Definition B.3.1. Let f ∈ L1(R) be given. The Fourier transform of f is
the function f̂ : R→ C defined by

f̂(y) =

∫
R

f(x)e−2πixy dx.
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For a function f : R → C, we denote by Mf the function x 7→ xf(x).
Moreover, if f is differentiable, then we denote by Df the function x 7→ f ′(x).

Lemma B.3.2. If f ∈ S, then f̂ is smooth and

Dnf̂ = (−2πi)n M̂nf

for every positive integer n.

Proof. By induction it suffices to prove only the case n = 1. Let g : R2 → C
denote the function (x, y) 7→ f(x)e−2πixy, so that f̂(y) =

∫
R
g(x, y) dx. Then

∂

∂y
g(x, y) = −2πixf(x)e−2πixy.

Differentiating under the integral, we get

Df̂(y) =
d

dy

∫
R

g(x, y) dx =

∫
R

∂

∂y
g(x, y) dx = −2πiM̂f(y).

Lemma B.3.3. If f ∈ S, then

Mnf̂ =
1

(2πi)n
D̂nf

for every positive integer n.

Proof. If f is a Schwartz function, then integration by parts gives

yf̂(y) =

∫
R

f(x)ye−2πixy dx =
1

2πi

∫
R

Df(x)e−2πixy dx =
1

2πi
D̂f(y),

which proves the lemma when n = 1. The general case follows by induction.

Lemma B.3.4. If f ∈ S, then f̂ ∈ S.
Proof. Let f ∈ S be given, and let m and n be arbitrary positive integers.
Lemmas B.3.2 and B.3.3 imply that f̂ is smooth and that we have

MmDnf̂ = (−1)m (2πi)m−n D̂mMnf. (B.3.1)

It is clear that DmMnf ∈ S since f ∈ S, and if g ∈ S, then

|ĝ(y)| ≤
∫
R

|g(x)| dx,

so g is bounded. Thus (B.3.1) implies that MnDnf̂ is bounded. and hence
f̂ ∈ S.
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Theorem B.3.5 (Poisson summation formula). Let f ∈ S. Then∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Proof. Let g : R→ C be given by

g(x) =
∑
k∈Z

f(x+ k).

Note that this series converges for every x since f is a Schwartz function. The
function g is smooth and periodic of period 1, so by Theorem B.1.5 it is the
limit of its Fourier series. Let cn be the nth Fourier coefficient of g. That is,

cn =

∫ 1

0

g(ξ)e−2πinξ dξ

=
∑
k∈Z

∫ 1

0

f(ξ + k)e−2πinξ dξ

=
∑
k∈Z

∫ 1

0

f(ξ + k)e−2πin(ξ+k) dξ

=

∫
R

f(x)e−2πinx dx = f̂(n),

whence ∑
m∈Z

f(m) = g(0) =
∑
m∈Z

cm =
∑
m∈Z

f̂(m).

C Characters of Finite Abelian Groups

C.1 The Dual Group

Throughout this section, let G denote a finite abelian group of order n.

Definition C.1.1. A character of G is a group homomorphism χ : G→ C×.

If χ is a character of G, then the image of χ is contained in the set of complex
roots of unity of order n. The trivial character on G is the function x 7→ 1
from G to C×.
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If χ and φ are characters of G, then so is the function χφ : G→ C× given
by (χφ)(x) = χ(x)φ(x). With respect to the operation (χ, φ) 7→ χφ, the set
Hom(G,C×) of characters of G is a finite abelian group, called the dual of G
and denoted Ĝ.

Lemma C.1.2. If G is a cyclic group, then Ĝ ∼= G.

Proof. Let g be a generator of G, and let ω be a primitive nth root of unity
in C. If ga = gb for some positive integers a, b, then n divides a− b, whence
ωa−b = 1, and so ωa = ωb. Thus we may define a character χ0 : G→ C× by
χ0(g

a) = ωa. For each i ∈ {0, . . . , n− 1}, we have χi0(g) = ωi, so χi0 6= χj0 for
all i, j ∈ {0, . . . , n− 1} with i 6= j. Now if χ ∈ Ĝ, then χ(g) = ωi for some
i ∈ {0, . . . , n− 1}. It follows that χ = χi0, and hence Ĝ = 〈χ0〉.

Lemma C.1.3. If G and H are finite abelian groups, then Ĝ×H ∼= Ĝ× Ĥ.

Proof. Let iG : G→ G×H and iH : H → G×H be the canonical homomor-
phisms. We define a function f : Ĝ×H → Ĝ× Ĥ by f(χ) = (χ ◦ iG, χ ◦ iH).
We also define a function g : Ĝ × Ĥ → Ĝ×H by g(χ, φ)(x, y) = χ(x)φ(y).
Clearly f and g are homomorphisms and are inverse to each other, proving
the lemma.

Theorem C.1.4. For any finite abelian group G, we have G ∼= Ĝ.

Proof. Since G is a finite abelian group, we have G ∼= C1 × · · · × Cr, where
each Ci is s finite cyclic group. By Lemma C.1.2, we have Ci ∼= Ĉi for each i,
and by Lemma C.1.3, we have

Ĝ ∼= Ĉ1 × · · · × Ĉr ∼= C1 × · · · × Cr ∼= G.

Theorem C.1.5. Let G be a finite abelian group. For every subgroup H of
G and every φ ∈ Ĥ, there exists a χ ∈ Ĝ such that χ

∣∣
H

= φ.

Proof. We induct on [G : H], with the claim being trivially true if [G : H] = 1.
Suppose H is a proper subgroup of G and φ is a character of H. Choose an
x ∈ G \H, and let n be the least positive integer such that xn ∈ H. Let z be
a complex root of unity such that zn = φ(xn). Suppose h1xm1 = h2x

m2 for
some h1, h2 ∈ H and m1,m2 ∈ N, so that xm2−m1 = h1h

−1
2 ∈ H. Without

loss of generality, assume m1 ≤ m2, so that by the minimality of n we have
n | m2 −m1. Then

zm1−m2 = φ(xm1−m2) = φ(h2)φ(h1)
−1,
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and so zm1φ(h1) = zm2φ(h2). Therefore, if H ′ denotes the subgroup of G
generated by H and x, then we may extend φ to a character φ′ of H ′ by
φ′(hxm) = zmφ(h). Since [G : H ′] < [G : H], we may extend φ′ to a character
χ on G by induction.

Theorem C.1.6. The map ε : G → ̂̂
G given by ε(x)(χ) = χ(x) is an

isomorphism.

Proof. Since G and ̂̂
G are isomorphic finite groups by Theorem C.1.4, it

suffices to prove that ε is injective. Thus it suffices to show that if x ∈ G is
not the identity, then there exists a χ ∈ Ĝ for which χ(x) 6= 1. Let x ∈ G
be a non-identity element, and let H be the cyclic subgroup generated by x.
There must exist a nontrivial character on H (otherwise H ∼= Ĥ would be
trivial), and by Theorem C.1.5, we can extend this nontrivial character to a
character χ of G. Since χ is nontrivial on H, we have χ(x) 6= 1.

C.2 Orthogonality Relations

Lemma C.2.1. Let G be a finite abelian group of order n, and let χ ∈ Ĝ.
Then ∑

x∈G

χ(x) =

{
n, if χ is the trivial character,
0, otherwise.

Proof. The claim is clearly true if χ is the trivial character. If χ is nontrivial,
then there exists a y such that χ(y) 6= 1. Then

χ(y)
∑
x∈G

χ(x) =
∑
x∈G

χ(xy) =
∑
x∈G

χ(x),

so
∑

x∈G χ(x) = 0.

Lemma C.2.2. Let G be a finite abelian group of order n, and let x ∈ G.
Then ∑

χ∈Ĝ

χ(x) =

{
n, if x is the identity,
0, otherwise.

Proof. This follows from applying Lemma C.2.1 to the dual group Ĝ and
using Theorem C.1.6.
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