
A Wavelet-Based Approach to Template Matching

Under Scaling and Translation

Natalie Sauerwald
Advisor: David Meyer

Department of Mathematics
University of California, San Diego

June 6, 2012

1

Acknowledements

Most importantly, I’d like to thank my advisor, David Meyer. Without his
guidance and insight none of this project would have been possible. The
amount I have learned throughout this experience goes well beyond what is
found on these pages, and I owe much of that to Dr. Meyer. I’d also like to
thank the professors and TAs I’ve had over the past four years, who have
challenged and inspired me continually. Coming into college I wasn’t one
hundred percent sure that I wanted to pursue mathematics, but I quickly
realized I had made the right choice after taking a few classes in this de-
partment and meeting several of the faculty and graduate students. This
department is full of great people, whose advice, enthusiasm, and encourage-
ment in the pursuit of challenges has helped push me towards any success
I may have acheived here. Finally, I’d like to thank my friends and family
for their continued patience through the past few years. Whether it means
listening to my attempts to explain my enthusiasm for a subject few of them
care about or simply being there for support through the stressful times, I
wouldn’t be here without their help.

2

Contents

1 Introduction 5
1.1 Correlation with Translations 5

2 Wavelets 8
2.1 The Haar Wavelet . 8
2.2 The Hadamard Matrix . 9

3 Scaling Algorithm 10
3.1 S Permutation Matrix . 11
3.2 The Actual Scaling Algorithm 11
3.3 Matching with Imperfections 14
3.4 Examples and Results . 15
3.5 Preliminary Translation and Scaling Algorithm 18

4 Conclusions 20

5 Appendix – MATLAB code 21

6 References 26

3

Abstract

In this paper we study the problem of template matching in signals, specifi-
cally focusing on images. First we present the solution to the case where the
template is translated in the image, then discuss how to locate a template
if it appears scaled in the image. The tools used for this scaling algorithm
are wavelets, specifically the Haar wavelet. Wavelets naturally encode scal-
ing information, which made them attractive for our template matching
problem. We discuss using a Hadamard matrix instead of the Haar matrix,
because it captures the same information while satisfying some very nice
properties. Finally we present our scaling algorithm using this Hadamard
matrix, and show some examples and results of this algorithm. In the future
this algorithm could be expanded to apply in more cases, and also translated
to a quantum setting.

4

1 Introduction

Template matching refers to a technique of finding which pieces of an im-
age match a given template image. The applications are numerous and
extremely diverse, ranging from controlling a robot to medical imaging to
computer vision and beyond. This paper in particular is aimed at finding
a template matching algorithm which could be easily modified to work in a
quantum setting.

The goal of this paper is to present an algorithm for template matching
when the image contains a scaled or translated version of the template. Such
an algorithm should take inputs of the template and the image, and return
the translation amount or the scaling factor. In the case where the template
simply appears translated in the image, the answer is well-documented and
fairly straightforward. This approach will be explained in the following sec-
tion. For scaling, however, the problem becomes more complicated. The
approach used here is wavelet-based, under the intuition that wavelet trans-
forms give a representation of the input at various resolutions, or scales.
More specifically, the Haar wavelet transform is the inspiration for the algo-
rithm, though a Hadamard matrix was used instead for several reasons that
will be detailed later in the paper.

The algorithm given at the end of the paper does precisely what was
mentioned before, in a special case: the inputs are a template vector and an
“image” vector, and the result is the amount of the scaling. We also have
an algorithm for a template which is translated and scaled in the image, but
while it returns nice results, it is fairly computationally expensive so we are
continuing to look for a more optimal algorithm.

1.1 Correlation with Translations

When the template appears exactly somewhere in the image, it is fairly sim-
ple to detect the amount of translation using convolution. The idea is that
if we convolve the template with the image, the maximum value will occur
at the point of correlation, i.e., the translation. To make the computations
simpler, we use the convolution theorem. The proof is a standard result
which can be found in countless sources, as well as derived fairly easily.

Theorem. (Convolution Theorem) The Fourier transform of the convolu-
tion of f and g is equal to the pointwise product of the Fourier transforms
of f and g. Otherwise stated,

f ∗ g = F−1[F(f) ◦ F(g)]

5

Proof. The version stated above will be used in the algorithm, but for the
proof we will show that F(f ∗ g) = F(f) ◦ F(g). Also note that this holds
in both the continuous and discrete cases, but as we will be applying it to
images, this proof will be of the discrete case. The convolution of f and g
is given by f ∗ g =

∑
f [x]g[z − x], where f and g are discrete functions, so

F(f ∗ g) =
∑
z

∑
x

f [x]g[z − x]e−2πizv

=
∑
x

∑
z

f [x]g[z − x]e−2πizv

Substituting y = z − x gives

=
∑
x

f [x]
∑
y

g[y]e−2πi(y+x)v

=
∑
x

f [x]e−2πixv
∑
y

g[y]e−2πiyv

=
∑
x

f [x]e−2πixv
∑
y

g[y]e−2πiyv

= F(f) ◦ F(g)

Using this, the algorithm for template matching is very straightforward.
If we take the inverse Fourier transform of the pointwise product of the
Fourier transform of the template and the image, the maximum value will
appear at the point desired. In image processing we use the discrete, two
dimensional Fourier transform, because both the template and the image
are matrices of discrete values. If t is the template and v is the image, the
algorithm finds the maximum of

F−1[F(t) ◦ F(v)].

An example of the results of this algorithm is shown in Figure 1. The
coordinates at the bottom of the third image give the point where the top
right corner of the template lines up with the image. Though the template
appears to be much larger than the version in the image, it is in fact an
exact copy of the pixels that exist in the original image.

6

Template Image

Point of Correlation

(119,217)

Figure 1: Example of Correlation Algorithm

7

2 Wavelets

Wavelets are a tool often used in image processing to study an image at var-
ious scales, making it an appropriate choice for our problem here. Wavelet
analysis is essentially an extension of Fourier analysis which studies the co-
efficients of wavelets instead of those of sines and cosines. Similar to the
Fourier transform, wavelets can be used to reconstruct a signal entirely by
adding together and manipulating the terms. By nature, wavelets encode
the changes in a signal at many scales, allowing us to see overall trends
as well as finer resolution changes. A locally constant signal makes certain
wavelet coefficients of zero, which generally leads to sparse results. For this
reason, wavelets are frequently used in image compression and are the basis
for the JPEG 2000 standard[3]. The choice of wavelets can be adapted to
a specific problem, though there seems to be debate on the topic of how to
chose a type of wavelet, and whether it is worth spending time choosing any
particular type[2].

The scaling nature of wavelets suggests that they should be a good choice
for this problem. If the template appears scaled in the image, it should show
the same pattern of changes at some level of detail of the wavelet transform.
The idea is that the wavelet transform of the image and that of the template
will match up at some level, and we will be able to detect that and discern
the scaling factor based on where they match up[1].

2.1 The Haar Wavelet

The type of wavelet studied for this paper was the Haar wavelet, an orthog-
onal wavelet transform which uses a combination of averages and differences
to study the details of a signal at many levels. Wavelets can be described
by a mother wavelet function ψ(t) and a scaling function, φ(t). The Haar
wavelet is therefore given by

ψ(t) =


1 if 0 ≤ t < 1

2

−1 if 1
2 ≤ t < 1

0 otherwise

φ(t) =

{
1 0 ≤ t < 1
0 otherwise

In the Haar case, the scaling function takes averages over certain intervals,
while the wavelet function encodes the differences between adjacent values

8

of the signal[2]. As an illustration of the 8× 8 case, the Haar matrix looks
like this: 

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


This matrix demonstrates several important properties of the Haar wavelet.
One thing to note is that the columns are all orthogonal, and can be nor-
malized so that they are orthonormal. Not all wavelets are orthogonal, but
the Haar wavelet belongs to the class which is. It is also clear from this
matrix that the result of multiplying this matrix with a given vector will
tell us a variety of information about the original vector. The first entry
gives the average— the broadest possible view of a signal. The next entry
is a slightly finer scale view, showing the difference of the average of the
first half of the signal with the second half. Each subsequent entry in the
resultant vector gives a finer scale view of the original signal, with the last
four showing any small changes or lack thereof. For most images, the result
of the Haar transform will be sparse, given that in an image most adjacent
pixels have similar values, except for changes such as edges or lighting. One
of the strengths of wavelets is the fact that not only can we analyze much
of the information in a signal from the results of the wavelet transform, but
the original signal can be entirely reconstructed from just this information
because the Haar matrix is invertible[4].

2.2 The Hadamard Matrix

While the Haar transform has the properties we are looking for to detect
scaling, it is a bit difficult to work with as a matrix. In just the 8× 8 case,
we need three different normalizing factors for the different rows. There is
no simple formula for determining each value in the matrix, rather it follows
a pattern which is clear to a viewer but harder to program into a computer
and access without a relatively complicated formula. For these reasons, and
also with an eye to translating this algorithm into a quantum setting, we
decided to use the Hadamard matrix instead. Each entry is determined by
the simple formula

Hi,j = (−1)i·j

9

where i and j are binary strings, and the labelling of rows and columns
begins with zero. For comparison, we can look at the 8× 8 version:

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


Note that in order to normalize this matrix we can simply multiply the
entire matrix by a factor of 1√

n
, in this case 1

2
√
2
. It also is its own inverse

(once normalized), which is very convenient in minimizing computations.
It retains the property of all of its rows being mutually orthogonal, and
can be constructed through basic row operations on the Haar matrix. The
Hadamard matrix is simply a linear transformation of the Haar matrix,
which shows that the Hadamard matrix encodes the exact same information
we get from the Haar matrix. For all of these reasons the Hadamard matrix
appears to be a better choice for our algorithm, while giving us the same
information we were looking for in choosing the Haar transform.

3 Scaling Algorithm

Using this Hadamard matrix we can construct a scaling algorithm which is
fairly similar in form to the original convolution algorithm which we used
in the simple scaling case. We have reduced our problem from images with
pixel values of zero to 255 down to vectors of ±1. This was accomplished
by computing the average pixel value of the image, then setting any pixels
greater than this average equal to 1, and all pixels with value less than the
average were set to −1. This creates a kind of silhouette of the original
image, maintaining the overall shapes. So the input template has entries of
only ±1, padded by zeros to be the same size as the “image” vector. We
only consider scalings by a factor of 2n, given that the scales encoded by
the Haar wavelet are only powers of two. There is one last thing to mention
before we discuss the algorithm itself.

10

3.1 S Permutation Matrix

One important part of the algorithm is an operation which will be referred to
as S. S is a permutation matrix which takes a binary string and moves the
last bit to the front, permuting the vector entries or matrix rows accordingly.
By extension, Sk cyclically moves the last k bits of the string to the front.

Example. Below we see how S reorganizes the entries of a vector. The
leftmost vector is the original v, the middle vector shows Sv, and the last
shows S2v. 

0
1
2
3
4
5
6
7


−→



0
2
4
6
1
3
5
7


−→



0
4
1
5
2
6
3
7


Note in particular that Sk moves the entries which are multiples of 2k

up to the top (with labelling starting at zero), and the rest of the entries
down to the bottom. This will be important later— indeed it is the entire
reason for using this S permutation in our algorithm.

3.2 The Actual Scaling Algorithm

The result of this algorithm is a matrix, taking inputs t and v, the template
and the scaled version, and returning a matrix in which the kth column
represents a scaling by 2k. Algebraically, we define the nth entry of the
scaled version (scaled by k) to be the dnk e entry of the template. As an
example, the vector on the left could be a template, and the vector on the
right represents the template scaled by two.(

4 7 8 2 0 0 0 0
)
→
(
4 4 7 7 8 8 2 2

)
The result of the scaling algorithm is a matrix where each column wi is given
by:

wi = H(Ht ◦ SiHv)

where ◦ represents a pointwise product. We could even reduce this to only
consider the first row of this result, further minimizing computations by only
multiplying by the first row of H, instead of the entire matrix.

11

Claim. The maximum value of the first row of this matrix will occur in the
column which represents the correct scaling.

Proof. We will show that if v is scaled by 2k,

~1 · (Ht ◦ SkHv) ≥ ~1 · (Ht ◦ SjHv)

where ~1 represents a vector of all ones of the appropriate size, and ◦ is the
dot product. Note that this is the first row of the Hadamard matrix, so this
is equivalent to taking the first row of the matrix originally described above.
First we will consider the vector Ht. If t has length n and v is scaled by
2k, t should have l = n

2k
nonzero terms at the top, followed by a padding of

zeros. These zeros essentially eliminate the last n − l columns of H when
considering Ht, so we will now consider the structure of the first l columns
of H. Recall that the entries of H are defined by the formula

Hi,j = (−1)i·j

where i and j are the labels in binary, with the first row and column labeled
as zero. Note that because l is a power of 2 and we are only considering
j < l, (i + l) · j = i · j, so Hi,j = Hi+l,j . Because of this, Ht also has the
property that Hti = Hti+l where the subscript indicates the entry in the
vector. For simplicity later on, let

Ht =


X
X
...
X

 where X =


x1
x2
...
xl


and there are 2k copies of X in Ht. Now we will look at the structure of
Hv. We defined v to be t, scaled by 2k. This means that the first 2k entries
of v are equal, as are the second 2k entries, and so on. Because of this, all
entries of Hv which are not multiples of 2k (when the first row and column
are labelled as zero) will be zero. For all of the odd rows, Hi,jeven = −Hi,j+1,
so given that vieven = vi+1 with any scaling, all of these rows will go to zero.
The same argument applies for larger scaling factors, so that Hv has the

12

basic structure 

v1
0
...
0
v2
0
...
0
v3
...


with each set of zeros containing 2k − 1 zeros, so that the nonzero terms all
occur at multiples of 2k. Now we would like to look more closely at what the
nonzero terms actually are. They correspond to the dot product of the rows
of H which are multiples of 2k with the vector v. So these terms are equal
to Hm2k,j · v for some m ∈ N. Note that within a row which is a multiple of

2k, we get that

Hi,m2k = Hi,m2k+1 = · · · = Hi,m2k+1−1

Starting with the most basic case, it is fairly clear that the first entry in
Hv should be 2kx1, or 2k times the first entry in Ht. Similarly, the second
nonzero entry in Hv, at position 2k, is 2kx2. So in fact we have a good idea
of what Hv looks like: 

2kx1
0
...
0

2kx2
0
...
0

2kx3
0
...


This is where we use the S matrix described earlier. S was constructed such

13

that

SkHv =


2kX

0
...
0


Any other power of S will permute the entries of Hv, but will not give the
same result. Now when we note that for any two vectors u and v

~1 · (u ◦ v) = u · v

where again ~1 is the vector of all ones, · refers to the dot product, and ◦ is the
pointwise product. Therefore we are now trying to show that (Ht ·SkHv) ≥
(Ht · SjHv) for all k and j. Given our previous work,

Ht · SkHv =


X
X
...
X

 ·


2kX
0
...
0

 = X · 2kX = 2k(X ·X)

For j 6= k, Ht · SjHv will be the same length as Ht · SkHv, but it will be
the sum of cross terms instead of the sum of the squared terms, so by the
Cauchy-Schwarz inequality, we have that Ht ·SkHv ≥ Ht ·SjHv, as desired.
Note that Cauchy-Schwarz also asserts that these will be equal only when
SkHv = SjHv, so we are assured to have a unique maximum.

3.3 Matching with Imperfections

Often in template matching the template is not exactly represented in the
image, but there are a few slight differences or imperfections in the copy. In
an image this might be a result of noise, imperfections in the image quality,
change in lighting, or a number of other things. Algebraically this means
that the pixel values may not match up exactly. With our technique of
thresholding the image at its average pixel value and converting all pixels
above that threshold to positive one and all pixels below the average to
negative one, we already account for small changes in pixel values. In most
cases, if a pixel in our template had a grayscale value of 203 for example, but
in the image the matching pixel(s) had a value of 209, or some other value
close to our original pixel, both of these will be sent to positive one, so they
will still be identical when plugged into the algorithm. In the case of noise
or a change that happens to be close enough to the average where a pixel

14

in the template will be sent to its negation in the image, we end up with
an image vector which is very close to a scaled version of our template, but
with a few very small imperfections. The algorithm should still return the
correct scaling factor here, though perhaps the maximum will not be quite as
separated from the other values as in the case of a perfect copy. We can see
in the proof of our algorithm that we will still be comparing the dot product
of two very similar vectors against the dot product of two less similar vectors.
Though the best results clearly come from the template being copied exactly
in the image, this scaling algorithm is strong enough to still capture the
correct scale, even given a few imperfections in the matching.

3.4 Examples and Results

First we will show an explicit example for the 8 × 8 case, then I will show
a few results for larger inputs using the program I wrote for this algorithm,
including an example where the image is not an exact copy of the template,
but contains some imperfections.

Example. In the 8x8 case, we will consider a template with four nonzero
entries, and the scaled version as twice the template. So we have

t =



−1
1
−1
−1
0
0
0
0


v =



−1
−1

1
1
−1
−1
−1
−1


Multiplying both by H yields the following

Ht =



−2
−2

2
−2
−2
−2

2
−2


Hv =



−4
0
−4

0
4
0
−4

0



15

So if we apply S to Hv and take the dot product, we get

~1 · (Ht ◦ SHv) =



−2
−2

2
−2
−2
−2

2
−2


·



−4
−4

4
−4

0
0
0
0


= 32

In contrast, if we apply S2 to Hv, instead we have

~1 · (Ht ◦ S2Hv) =



−2
−2

2
−2
−2
−2

2
−2


·



−4
4
0
0
−4
−4

0
0


= 16

So as desired the maximum (in this case 32) occured when we used S instead
of S2, because our vector was scaled by 2 instead of 4.

Example. We have only seen the results for a very small input with very
limited scaling possibilities. For much larger inputs we prefer not to do the
computations by hand, so the results shown here are the results of a program
written to implement the algorithm. In the first example, the input vectors
have length 64, and the nonzero entries of the template are shown below. v
is scaled by a factor of 8 in this case.

t =



1
−1

1
1
−1
−1
−1
−1


The algorithm gives a resulting row vector shown below, where the maximum
value shows us the correct scaling factor.(

−128 384 −384 512 −128 128
)

16

The maximum here is clearly 512, and it occurs in column three (remember
we begin labelling by zero), so the scaling factor should be 23 = 8.

Example. In the next example, the inputs have length 128 and the template
has four nonzero values, therefore it has been scaled by 32. The nonzero
values are again given below

t =


1
1
1
−1


This time the result we get is given by(

256 256 256 256 256 512 256
)

Again the maximum is 512 and this time it occurs in column 5, so the scaling
must have been by 25 = 32.

Example. Here we will show an example of template matching with im-
perfections in the image vector. The inputs have lengths of 16, and the
template will be scaled by 4 in the image. However, three of the entries in
the scaled version have been negated to simulate an imperfect scaling. These
imperfections were randomly chosen, and happen in the second, sixth, and
sixteenth entries. The template and scaled version with imperfections are
shown below.

t =



−1
−1
−1

1
0
0
0
0
0
0
0
0
0
0
0
0



v =



−1
1
−1
−1
−1

1
−1
−1
−1
−1
−1
−1

1
1
1
−1


17

For these inputs the algorithm returns the following vector:(
0 32 64 0

)
The maximum, 64, occurs in the second column demonstrating a scaling of
4 despite the imperfections.

Example. Figure 2 shows the output of the scaling algorithm applied to an
image. In this case the inputs were clearly matrices with color pixel values,
so it was first converted to grayscale. At that point the values ranged from
zero to 255, so we then reduced the image to ±1 using the thresholding
concept described earlier. The algorithm in this case had to be adapted to
work for matrices instead of just vectors, but the concept remains the same.
The program used to find these results can be found in the appendix. The
vector output by the program is:(

1536 10752 −2560 −6656 −5632 2560 −3584 1536
)

The maximum is 10752, occuring in column 1 so the image is scaled by 2.

3.5 Preliminary Translation and Scaling Algorithm

Unfortunately, it is not often the case that in template matching we are
looking either for a translation or a scaling— often both occur together.
The algorithm given for scaling does not seem to be able to capture both,
so we have a preliminary algorithm which has that capability, though it is
fairly inefficient. It is based entirely on the previous algorithm, and only
works for shifts of 2k. The idea is that instead of outputting a vector, the
output will be a matrix in which the columns still represent the different
scaling factors and the rows represent the different translations. In this
case the location of the maximum tells the exact translation amount and
scaling amount, with the first row representing no translation (instead of a
translation of 20), and for all other rows, row i represents a translation of
2i. We essentially compute the above algorithm for each given translation,
and ouput them as described.

Example. In this example the inputs both have length 32, and the template
has 8 nonzero values. The translated and scaled version has been shifted by
8 and scaled by 4. The nonzero entries of the template and the results of the

18

Figure 2: Example of scaling algorithm applied to an image

19

matrix are shown below.

t =



−1
−1
−1

1
1
−1
−1

1




64 64 −128 192 64
64 −64 −128 192 64
−64 −64 0 −64 −64

64 64 256 −64 64
64 64 −128 −64 64



The maximum is 256, and it occurs in column 2, representing a scaling of
22 = 4 and in row 3, representing a translation of 23 = 8 as expected.

4 Conclusions

As we have demonstrated, the Haar transform does provide an algorithm
which is analogous to the solution to the translation problem mentioned in
the introduction. Taking advantage of the scaling nature of wavelets, we
were able to design an approach to template matching under scales of 2k

which always correctly identifies the scale, even if the image is not exactly
identical to the template. The Hadamard matrix provided a nicer basis than
the Haar matrix given that it is symmetric and unitary, can be scaled with
only one factor, has a simple formula for determining its entries, and is more
easily translated for a quantum algorithm. It was clearly able to encode the
same information as the Haar matrix, and gave us very nice results.

Future work on this project includes finalizing the translation and scaling
algorithm, hopefully finding a way to make it more efficient. We also would
like to translate this to a quantum setting. I would also like to find a
way to detect translations and scalings which are not powers of 2, but it
appears that the Haar wavelet may not be the right way to do that, since
it very effectively captures scales which are powers of 2, but is much less
effective at any other scale. Wavelets still seem to be an appropriate tool,
but the Haar wavelet seems to be too simple and idealized only for scales of
two. Beyond this there are countless other possibilities for continuing this
work, including detection of rotated templates or templates which have been
degraded at some point. Some of these questions have been studied already,
but there is room for a huge amount of research to continue in this field of
template matching.

20

5 Appendix – MATLAB code

This appendix contains all of the relevant programs I have written for this
project (all in MATLAB).

1. Correlation (translation only case)

function out = imagecorrelation2(A,B)

%Finds the point of correlation between a template and an image

%input order doesn’t matter- template or image could be first

[m1,n1,k1] = size(A);

[m2,n2,k2] = size(B);

%In case the input images are in color, we convert them to black&white

if k1>1

A=rgb2gray(A);

end

if k2>1

B=rgb2gray(B);

end

%The following group of code normalizes the pixel to all be roots of unity

%Without this step the program won’t find the correct correlation

C=zeros(1,257);

C(1,1)=1;

C(1,257)=-1;

w=roots(C);

A2=zeros(m1,n1);

B2=zeros(m2,n2);

for i=1:m1

for j=1:n1

A2(i,j)=w(A(i,j)+1);

end

end

for i=1:m2

for j=1:n2

B2(i,j)=w(B(i,j)+1);

end

end

21

%Here is the one line which implements the Correlation Theorem

X= ifft2((conj(fft2(A2, m2, n2)).*fft2(B2)));

%We find the maximum and output the indices at which it occurs

[x,y]=max(X(:));

[i,j]=ind2sub(size(X), y)

%This simply makes the point of correlation easier to visually see- now it

%is a 10x10 box of white instead of only 1 pixel

corr=zeros(size(X));

for a=i:i+10

for b=j:j+10

corr(a,b)=1;

end

end

%We plot the inputs and results

subplot(2,2,1), imshow(A);

title(’Template’);

subplot(2,2,2), imshow(B);

title(’Image’);

subplot(2,2,3), imshow(corr);

title(’Point of Correlation’)

2. Hadamard Matrix

function H = hadamard(L)

%Creates an nxn Hademard matrix, where n is the smallest power of 2

%still greater than the input L

n=ceil(log2(L));

for i=1:2^n

for j=1:2^n

H(i,j)=(-1)^(de2bi(i-1,n)*de2bi(j-1,n)’);

end

end

22

%The line below can be uncommented to create an orthonormal Hadamard matrix

%H = (1/sqrt(2^n))*H;

3. S Permutation Matrix

function S = spermutation(n,m)

S=zeros(n,m);

for i=1:n

for j=1:m

a=zeros(log2(n),1);

a(1:ceil(log2(i)))=de2bi(i-1);

b=zeros(log2(n),1);

b(1:ceil(log2(j)))=de2bi(j-1);

if a==circshift(b,-1)

S(i,j)=1;

end

end

end

4. Scaling Algorithm

function H = htransform2 (temp,new)

[n,m]=size(temp);

Ht=hadamard(n)*temp;

Hv=hadamard(n)*new;

%The vectors x and b created below are needed for the S permutation matrix,

%and adjustments of +/- 1 have to be made for the indices because Matlab

%labels vectors and matrices beginning with 1 instead of 0, as the

%algorithm dictates.

x=zeros(n,log2(n));

for i=1:n

23

for j=1:log2(n)

s=(spermutation(n,n))^(j-1);

sHv=s*Hv;

H(i,j) = (Ht(i,1))*(sHv(i,1));

end

end

%The line below gives the same result as taking the first row of the result

%of using the inverse Hadamard matrix

H=ones(1,n)*H;

5. Converting Images to 0,1

function X = convertbw(A)

[n,m,k] = size(A);

%First we convert the image to grayscale if it was in color

if k>1

A=rgb2gray(A);

end

%Take the treshold to be the average pixel value

thresh=mean(A(:));

X=zeros(n,m);

%For all pixels above the treshold, set them equal to 1, and all below

%the threshold set to 0

for i=1:n

for j=1:m

if A(i,j)>=thresh

X(i,j)=1;

else

X(i,j)=0;

end

end

end

24

6. Scaling Algorithm Adapted for Images

function H = himage(temp, image)

[n1,m1,k1] = size(temp);

[n2,m2,k2] = size(image);

%First change the inputs to have values of +/-1 instead of 1s and0 0s

for i=1:n1

for j=1:m1

if temp(i,j)==0

temp(i,j)=-1;

end

if image(i,j)==0

image(i,j)=-1;

end

end

end

%The following is the implementation of the algorithm- to adapt it to

%images we have to multiply S by the transpose of the matrix twice

%essentially, so we look at S[((S^j)Hv’)’] instead of just (S^j)Hv

Ht=hadamard(n1)*temp;

Hv=hadamard(n1)*image;

for j=1:log2(n1)

s=(spermutation(n1,n1))^(j-1);

sHv=(spermutation(n1,n1)*(s*Hv)’)’;

H(1:n1,j) = (ones(1,n1)*(Ht.*sHv))’;

end

7. Scaling and Translation Algorithm

function H = haarshsc (temp,new)

%Shifting and Scaling algorithm- temp should be the template, and "new" is

%the result of shifting and scaling the template by some power of 2

[n,m]=size(temp);

25

Ht=hadamard(n)*temp;

x=zeros(n,log2(n));

%The first for loop runs the algorithm over every possible shift of 2^k,

%and the second and third for loop are copied almost exactly from the

%htransform2.m file

for k=1:log2(n)

if k<2

Hv=hadamard(n)*new;

else

Hv=hadamard(n)*(circshift(new, -2^(k-1)));

end

for i=1:n

for j=1:log2(n)

b=zeros(log2(n),1);

b(1:ceil(log2(i)))=de2bi(i-1);

x(i,j)= (Ht(i,1)*Hv(bi2de(circshift(b’,[1,j-1]))+1,1));

H(k,1:log2(n))=ones(1,n)*x;

end

end

end

6 References

[1] Graps, Amara, 1995: An Introduction to Wavelets. IEEE Computational
Science & Engineering, 1070-9924, 50-61.

[2] Hubbard, Barbara Burke, The World According to Wavelets. A K Peters,
Wellesley, Massachusetts, 2nd Edition, 1998.

[3] Rabbani, Majid, and Rajan Joshi, 2002: An Overview of the JPEG 2000
Still Image Compression Standard. Signal Processing: Image Communi-
cation, 17-1, 3-48.

[4] Walnut, David F., An Introduction to Wavelet Analysis Birkhäuser
Boston, 2004

26

