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Abstract

In this paper, we study the distribution of quadrant marked mesh patterns in words
over the alphabet of positive integers. Quadrant marked mesh patterns are based on
how many elements lie in various quadrants of the graph of a permutation relative
to the coordinate system centered at one of the points in the graph of the permutation.
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1 Introduction

In this paper we study the distributions of quadrant marked mesh patterns in words. The
notion of mesh patterns was introduced by Brändén and Claesson [4] to provide explicit
expansions for certain permutation statistics as, possibly infinite, linear combinations of
(classical) permutation patterns (see [6] for a comprehensive introduction to the theory of
permutation patterns). This notion was further studied in [3, 5, 13]. In particular, the
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notion of a mesh pattern was extended to that of a marked mesh pattern by Úlfarsson in
[13]. The study of the distributions of quadrant marked mesh patterns in permutations
was initiated by Kitaev and Remmel [7]. Later Kitaev, Remmel, and Tiefenbruck studied
the distribution of quadrant marked mesh patterns in 132-avoiding permutations [9, 10]
and Kitaev and Remmel [8] studied the distribution of quadrant marked mesh patterns in
up-down and down-up permutations.

Let N = {0, 1, 2, . . .} denote the set of natural numbers and Sn denote the symmetric
group of permutations of 1, . . . , n. If σ = σ1 . . . σn ∈ Sn, then we will consider the graph
of σ, G(σ), to be the set of points (i, σi) for i = 1, . . . , n. For example, the graph of the
permutation σ = 471569283 is pictured in Figure 1. Then if we draw a coordinate system
centered at a point (i, σi), we will be interested in the points that lie in the four quadrants
I, II, III, and IV of that coordinate system as pictured in Figure 1. For any a, b, c, d ∈ N
and any σ = σ1 . . . σn ∈ Sn, we say that σi matches the quadrant marked mesh pattern
MMP (a, b, c, d) in σ if in G(σ) relative to the coordinate system which has the point (i, σi)
as its origin, there are ≥ a points in quadrant I, ≥ b points in quadrant II, ≥ c points in
quadrant III, and ≥ d points in quadrant IV. For example, if σ = 471569283, the point
σ4 = 5 matches the quadrant marked mesh pattern MMP (2, 1, 2, 1) since relative to the
coordinate system with origin (4, 5), there are 3 points in G(σ) in quadrant I, there is 1
point in G(σ) in quadrant II, there are 2 points in G(σ) in quadrant III, and there are 2
points in G(σ) in quadrant IV. Note that if a coordinate in MMP (a, b, c, d) is 0, then there
is no condition imposed on the points in the corresponding quadrant. In addition, we shall
consider patterns MMP (a, b, c, d) where a, b, c, d ∈ N∪{∅}. Here when one the parameters
a, b, c, or d in MMP (a, b, c, d) is the empty set, then for σi to match MMP (a, b, c, d)
in σ = σ1 . . . σn ∈ Sn, it must be the case that there are no points in G(σ) relative to
the coordinate system with origin (i, σi) in the corresponding quadrant. For example, if
σ = 471569283, the point σ3 = 1 matches the marked mesh pattern MMP (4, 2, ∅, ∅) since
relative to the coordinate system with origin (3, 1), there are 6 points in G(σ) in quadrant
I, 2 points in G(σ) in quadrant II, no points in G(σ) in quadrant III, and no points in G(σ)
in quadrant IV. We let mmp(a,b,c,d)(σ) denote the number of i such that σi matches the
marked mesh pattern MMP (a, b, c, d) in σ.
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Figure 1: The graph of σ = 471569283.

Note how the (two-dimensional) notation of Úlfarsson [13] for marked mesh patterns
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corresponds to our (one-line) notation for quadrant marked mesh patterns. For example,

MMP (0, 0, k, 0) =
k

, MMP (k, 0, 0, 0) =
k

,

MMP (0, a, b, c) =
a

b c

and MMP (0, 0, ∅, k) =
k

.

In Section 2 we will consider MMP (=k, 0, 0, 0), another type of quadrant marked mesh
patterns, which requires presence of exactly k elements in quadrant I. This type of patterns
is expressed in the terminology of Úlfarsson [13] as follows:

MMP (=k, 0, 0, 0) =
=k

.

Also, in Section ?? we define and study MMP (k≤max, ∅, 0, 0), yet another type of
quadrant marked mesh patterns, which is equivalent to the following pattern in the termi-
nology of Úlfarsson [13]:

MMP (k≤max, ∅, 0, 0) = k−1 .

Given a sequence σ = σ1 . . . σn of distinct integers, let red(σ) be the permutation found
by replacing the i-th smallest integer that appears in σ by i. For example, if σ = 2754, then
red(σ) = 1432. Given a permutation τ = τ1 . . . τj ∈ Sj, we say that the pattern τ occurs in
σ = σ1 . . . σn ∈ Sn provided there exist 1 ≤ i1 < · · · < ij ≤ n such that red(σi1 . . . σij) = τ .
We say that a permutation σ avoids the pattern τ if τ does not occur in σ. Let Sn(τ)
denote the set of permutations in Sn which avoid τ . In the theory of permutation patterns,
τ is called a classical pattern. See [6] for a comprehensive introduction to permutation
patterns.

Kitaev and Remmel [7] were able to compute a number of generating functions for the
distribution of quadrant marked mesh patterns in permutations. For example, if we let

P (k,0,0,0)(t, x) =
∑
n≥k

tn−k

(n− k)!

∑
σ∈Sn

xmmp(k,0,0,0)(σ),

then Kitaev and Remmel [7] proved that

P (k,0,0,0)(t, x) = k!

(
1

1− tx

) k
x
+1

.
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They also proved that

P (a,b,0,0)(t, x) =
∑
n≥a+b

tn−a−b

(n− a− b)!
R(a,b,0,0)
n (x) = (a+ b)!

(
1

1− tx

)a+b
x

+1

(1)

In [8], Kitaev and Remmel studied the distribution of the statistics mmp(1,0,∅,0), mmp(0,1,0,∅),
mmp(0,∅,0,1), and mmp(∅,0,1,0) in the set of up-down and down-up permutations. Given a
permutation σ = σ1 . . . σn ∈ Sn, we let Des(σ) = {i : σi > σi+1}. Then we say that σ is an
up-down permutation if Des(σ) is the set of all even numbers less than or equal to n and a
down-up permutation if Des(σ) is the set of all odd numbers less than or equal to n. That
is, σ is an up-down permutation if

σ1 < σ2 > σ3 < σ4 > σ5 < · · ·

and σ is an down-up permutation if

σ1 > σ2 < σ3 > σ4 < σ5 > · · · .

Let UDn denote the set of all up-down permutations in Sn and DUn denote the set of all
down-up permutations in Sn. Given a permutation σ = σ1 . . . σn ∈ Sn, we define the reverse
of σ, σr, to be σnσn−1 . . . σ2σ1 and the complement of σ, σc, to be (n+1−σ1) . . . (n+1−σn).

For n ≥ 1, let

A
(a,b,c,d)
2n (x) =

∑
σ∈UD2n

xmmp(a,b,c,d)(σ), B
(a,b,c,d)
2n−1 (x) =

∑
σ∈UD2n−1

xmmp(a,b,c,d)(σ),

C
(a,b,c,d)
2n (x) =

∑
σ∈DU2n

xmmp(a,b,d,d)(σ), and D
(a,b,c,d)
2n−1 (x) =

∑
σ∈DU2n−1

xmmp(a,b,c,d)(σ).

Then Kitaev and Remmel [8] proved the following simple proposition.

Proposition 1. For all n ≥ 1,
(1) A

(a,b,c,d)
2n (x) = C

(b,a,d,c)
2n (x) = C

(d,c,b,a)
2n (x) = A

(c,d,a,b)
2n (x),

(2) C
(a,b,c,d)
2n (x) = A

(b,a,d,c)
2n (x) = A

(d,c,b,a)
2n (x) = C

(c,d,a,b)
2n (x),

(3) B
(a,b,c,d)
2n−1 (x) = B

(b,a,d,c)
2n−1 (x) = D

(d,c,b,a)
2n−1 (x) = D

(c,d,a,b)
2n−1 (x), and

(4) D
(a,b,c,d)
2n−1 (x) = D

(b,a,d,c)
2n−1 (x) = B

(d,c,b,a)
2n−1 (x) = B

(c,d,a,b)
2n−1 (x).

It follows from Proposition 1 that the study the distribution of the statistics mmp(1,0,0,0),
mmp(0,1,0,0), mmp(0,0,1,0), and mmp(0,0,0,1) in the set of up-down and down-up permutations
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can be reduced to the study of the following generating functions:

A(1,0,0,0)(t, x) = 1 +
∑
n≥1

A2n(x)
t2n

(2n)!
, (2)

B(1,0,0,0)(t, x) =
∑
n≥1

B2n−1(x)
t2n−1

(2n− 1)!
, (3)

C(1,0,0,0)(t, x) = 1 +
∑
n≥1

C2n(x)
t2n

(2n)!
, and (4)

D(1,0,0,0)(t, x) =
∑
n≥1

D2n−1(x)
t2n−1

(2n− 1)!
. (5)

In the case when x = 1, these generating functions are well known. That is, for any
(a, b, c, d), let A2n(1) = A

(a,b,c,d)
2n (1), B2n+1(1) = B

(a,b,c,d)
2n+1 (1), C2n(1) = C

(a,b,c,d)
2n (1), and

D2n(1) = D
(a,b,c,d)
2n (1). The operation of complementation shows that A2n(1) = C2n(1) and

B2n1(1) = D2n−1(1) for all n ≥ 1 and André [1, 2] proved that

1 +
∑
n≥0

A2n(1)
t2n

(2n)!
= sec(t)

and ∑
n≥1

B2n−1(1)
t2n+1

(2n+ 1)!
= tan(t).

In [8], we proved the following.

Theorem 1.

A(1,0,0,0)(t, x) = sec(xt)1/x, (6)

B(1,0,0,0)(t, x) = sec(xt)1/x
∫ t

0

sec(xz)−1/xdz, (7)

C(1,0,0,0)(t, x) = 1 +

∫ t

0

sec(xy)1+
1
x

∫ y

0

sec(xz)1/xdz dy, and (8)

D(1,0,0,0)(t, x) =

∫ t

0

sec(xz)1+
1
xdz. (9)

The definition of quadrant marked mesh patterns can easily be extended to words over
that alphabet of positive integers. That is, P = {1, 2, . . .} denote the set of positive integers
and for any k ∈ P, let [k] = {1, . . . , k}. Fix k ≥ 2. Then given a word w = w1 . . . wn ∈ [k],
we will consider the graph of w, G(w), to be the set of points (i, wi) for i = 1, . . . , n. For
example, the graph of the word w = 134214532 is pictured in Figure 2. Then if we draw
a coordinate system centred at a point (i, wi), we will be interested in the points that lie
in the four quadrants I, II, III, and IV of that coordinate system as pictured in Figure 2.
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For any a, b, c, d ∈ N and any w = w1 . . . wn ∈ Sn, we say that wi matches the quadrant
marked mesh pattern MMP (a, b, c, d) in σ if in G(w) relative to the coordinate system
which has the point (i, wi) as its origin, there are ≥ a points in quadrant I, ≥ b points in
quadrant II, ≥ c points in quadrant III, and ≥ d points in quadrant IV. Here we do not
consider points that lie on the x-axis of y-axis of the coordinate system which has the point
(i, wi) as its origin, to be part of any of quadrants I, II, III, of IV. Thus, for example, wi
matches the marked mesh pattern MMP (1, 0, 0, 0) in w if and only if there is a j > i such
that wj > wi. For example, if w = 134214532, the point w4 = 2 matches the quadrant
marked mesh pattern MMP (3, 2, 1, 1) since relative to the coordinate system with origin
(4, 2), there are 3 points in G(w) in quadrant I, 2 points in G(w) in quadrant II, 1 point
in G(w) in quadrant III, and 1 points in G(w) in quadrant IV. As with permutations,
if a coordinate in MMP (a, b, c, d) is 0, then there is no condition imposed on the points
in the corresponding quadrant. One can also consider patterns MMP (a, b, c, d) where
a, b, c, d ∈ N∪ {∅}. Here when one of the parameters a, b, c, or d in MMP (a, b, c, d) is the
empty set, then for wi to match MMP (a, b, c, d) in w = w1 . . . wn ∈ [k]n, it must be the
case that there are no points in G(w) relative to coordinate system with origin (i, wi) in
the corresponding quadrant. We let mmp(a,b,c,d)(w) denote the number of i such that wi
matches the marked mesh pattern MMP (a, b, c, d) in w.
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Figure 2: The graph of w = 134214532.

If w = w1 . . . wn ∈ [k]n, then we let |w| = n denote the length of w and, for any
1 ≤ i ≤ k, |w|i denote the number of times i occurs in w. We let wr = wn . . . w1 denote
the reverse of w and wc,k = (k + 1−w1) . . . (k + 1−wn) denote the complement of w with
respect to k.

The main goal of this paper is to study the generating functions

W
(a,b,c,d)
k (t, x, y1, . . . yk) = 1 +

∑
n≥0

tn
∑
w∈[k]n

xmmp(a,b,c,d)(w)

k∏
i=1

y
|w|i
i .

For any a, b, c, d ∈ {∅} ∪ N, let

W
(a,b,c,d)
n,k (x, y1, . . . , yk) =

∑
w∈[k]n

xmmp(a,b,c,d)(w)

k∏
i=1

y
|w|i
i .
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We note that operations of reverse and complement relative to k implies some obvious
relationships among the polynomials W

(a,b,c,d)
n,k (x1, . . . , xk). That is, the map which sends

w ∈ [k]n to wr shows that

W
(a,b,c,d)
n,k (x, y1, . . . , yk) = W

(b,a,d,c)
n,k (x, y1, . . . , yk). (10)

The map which sends w ∈ [k]n to wc,k shows that

W
(a,b,c,d)
n,k (x, y1, . . . , yk) = W

(d,c,b,a)
n,k (x, yk, . . . , y1). (11)

Finally, the map which sends w ∈ [k]n to (wr)c,k proves shows that

W
(a,b,c,d)
n,k (x, y1, . . . , yk) = W

(c,d,a,b)
n,k (x.yk, . . . , y1). (12)

The main goal of this paper is to compute W
(a,b,c,d)
k (t, x, y1, . . . yk) for various special

cases of k and (a, b, c, d). For example, the first result that we shall prove is

W
(1,0,0,0)
2 (t, x, y1, y2) =

(1− txy1)
(1− ty1)(1− txy1 − ty2)

. (13)

Using Mathematica, the expansion of W2(t, x, y1, 1) as a Taylor Series about x = 0 gives

1

(1− t)(1− ty1)
+

t2xy1
(1− t)2(1− ty1)

+

t3x2y21
(1− t)3(1− ty1)

+
t4x3y31

(1− t)4(1− ty1)
+

t5x4y41
(1− t)5(1− ty1)

+

t6x5y51
(1− t)6(1− ty1)

+
t7x6y61

(1− t)7(1− ty1)
+

t8x7y71
(1− t)8(1− ty1)

+ · · ·

This suggests that

W
(1,0,0,0)
2 (t, x, y1, 1)|xs =

ts+1ys1
(1− t)s+1(1− ty1)

and

W
(1,0,0,0)
2 (t, x, y1, 1)|x0 =

1

(1− t)(1− ty1)
.

This is true. In fact, we can prove the following theorem.

Theorem 2. For s ≥ 1,

W
(k,0,0,0)
2 (t, x, y1, 1)|xs =

ts+kys1
(1− t)s+1(1− ty1)k

7



W
(k,0,0,0)
2 (t, x, y1, 1)|x0 =

(1− t)(1− y1t)k − y1tk+1

(1− t)(1− ty1)k(1− t− y1t)
.

W
(k,0,0,0)
2 (t, x, y1, 1) =

((1− y1t)k(1− t− y1xt) + y1t
k+1(x− 1)

(1− ty1)k(1− t− y1xt)(1− t− y1t)
.

We shall also prove the following theorem

Theorem 3. For all n ≥ 2,

W (1,0,0,0)
n (t, x, y1, . . . , yn) = W

(1,0,0,0)
n−1 (t, x, y1, . . . , yn−1)

(
1− tx(

∑n−1
i=1 yi)

1− tyn − tx(
∑n−1

i=1 yi)

)
.

Clearly, W
(1,0,0,0)
1 (t, y1) = 1

1−ty1 so plugging this into the above, we get

W
(1,0,0,0)
2 (t, x, y1, y2) = (1−txy1)

(1−ty1)(1−txy1−ty2) .
and

W
(1,0,0,0)
3 (t, x, y1, y2, 1) = (1−txy1)(1−txy1−txy2)

(1−ty1)(1−txy1y2−ty2)(1−t−txy1−txy2) .

Theorem 4.

W
(1,1,0,0)
2 (t, x, y1, y2) =

1− y1t(x+ 1) + y1y2t
2(1− x− xy1)

(1− y1t)(1− y1xt)(1− y1xt− y2t)

2 W
(k,0,0,0)
n,2 (x, y1, y2)

Note that for any word w ∈ [2]n, |w| = |w|1 + |w2| so that we do not have to simultaneously
keep track of |w|, |w|1, and |w|2 in our generating functions. Thus we let

W (k,0,0,0)
n (x, y) = W

(k,0,0,0)
n,2 (x, y, 1)

and
W (k,0,0,0)(t, x, y) = 1 +

∑
n≥1

tnW (k,0,0,0)
n (x, y).

3 W
(1,0,0,0)
2 (t, x, z) and W

(1,1,0,0)
2

In this section I will consider two specific examples that will aid in drawing some general
conclusions.

Theorem 5. W
(1,0,0,0)
2 (t, x, y1, 1) = 1−txy1

(1−y1t)(1−t−xy1t)

8



Proof. By definition,

W
(k,0,0,0)
n (t, x, z) =

∑
w∈{1...n}∗

t|w|y
|w|1
1 xmmp

(k,0,0,0)

= 1 +
∑
n≥1

tn
n∑
k=0

W
(k,0,0,0)
2 (n, k, x)yk1

So for this case our equation becomes

W
(1,0,0,0)
2 (t, x, y1) =

∑
w∈{1,2}∗

t|w|y
|w|1
1 xmmp

(1,0,0,0)(w)

= 1 +
∑
n≥1

tn
n∑
k=0

h(n, k, x)yk1

where
h(n, k, x) =

∑
w∈R(1k2n−k)

xmmp
(1,0,0,0)(w)

,

which is all possible rearrangements of k ones and n − k twos. The sum breaks into the
following parts:

W
(1,1,0,0)
2 (t, x, y1) = 1 +

∑
n≥1

tnh(n, 0, x) (1)

+
∑
n≥1

tnh(n, n, x)zk (2)

+
∑
n≥2

tn
n−1∑
k=1

h(n, k, x)zk (3)

where (1) is words of all twos, (2) is words of all ones, and (3) is words with at least one of
each, and its length is greater than 2.
For (1), since h(n, 0, x) = 1 we get∑

n≥1

tn = t+ t2 + t3 . . . =
t

1− t
Similarly, for (2), we have that h(n, n, x) = 1 so∑

n≥1

tnh(n, n, x)yn1 =
∑
n≥1

(y1t)
n = y1t+ (y1t)

2 + (y1t)
3 . . . =

y1t

1− y1t
.

Finally, for (3) we need to use recursion: If a word starts with 1, then we get xh(n −
1, k − 1, x) since the first one matches the pattern. If the word starts with 2 then we get
h(n− 1, k, x) so for n ≥ 2, h(n, k, x) = xh(n− 1, k − 1, x) + h(n− 1, k, x) (3) becomes∑
n≥2

tn
n−1∑
k=1

h(n, k, x)yk1 =
∑
n≥2

tn
n−1∑
k=1

(xh(n− 1, k− 1, x) +h(n− 1, k, x))yk1 which we split up

into:
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∑
n≥2

tn
n−1∑
k=1

xh(n− 1, k − 1, x)yk1 (A)

+
∑
n≥2

tn
n−1∑
k=1

h(n− 1, k, x)yk1 (B)

We solve each one separately:

A =
∑
n≥2

tn
n−1∑
k=1

xh(n− 1, k − 1, x)yk1

= txy1
∑
n≥2

tn−1
n−1∑
k=1

h(n− 1, k − 1, x)yk−11

= txy1
∑
n≥2

tn−1[(
n−1∑
k=1

h(n− 1, k − 1, x)yk−11 ) + h(n− 1, n− 1, x)yn−11 ]

− txy1
∑
n≥2

tn−1f(n− 1, n− 1, x)yn−11

= txy1(W2(t, x, y1)− 1)− txy1(
y1t

1− y1t
)

Similarly, for (B) we get that

B =
∑
n≥2

tn
n−1∑
k=1

h(n− 1, k, x)

= t
∑
n≥2

tn−1
n−1∑
k=1

h(n− 1, k, x)yk1 + h(n− 1, 0, x)

− t
∑
n≥2

tn−1h(n− 1, 0, x)

= t(W2(t, x, y1)− 1)− t t

1− t

Combining each of these four parts, we get
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W
(1,0,0,0)
2 (t, x, y1) = 1 +

t

1− t
+

y1t

1− y1t
+ txy1W

(1,0,0,0)
2 (t, x, y1)− txy1

− t2xy21
1− y1t

+ t(W
(1,0,0,0)
2 (t, x, y1))− t−

t2

1− t

From which it follows that
(1− t− txy1)W (1,0,0,0)

2 (t, x, y1) = 1 + t
1−t + y1t

1−y1t − txy1 −
t2xy21
1−y1t − t−

t2

1−t

And finally, solving for W
(1,0,0,0)
2 (t, x, y1) and simplifying with Mathematica, we get

W
(1,0,0,0)
2 (t, x, y1) = 1−txy1

(1−y1t)(1−t−txy1)

This gives us the generating function for words with letters that match mmp(1, 0, 0, 0).
Using Mathematica to expand this generating function about x = 0 we obtain the following:

1

(1− t)(1− ty1)
+

t2xy1
(1− t)2(1− ty1)

+

t3x2y21
(1− t)3(1− ty1)

+
t4x3y31

(1− t)4(1− ty1)
+

t5x4y41
(1− t)5(1− ty1)

+

t6x5y51
(1− t)6(1− ty1)

+
t7x6y61

(1− t)7(1− ty1)
+

t8x7y71
(1− t)8(1− ty1)

+ · · ·

from which we can prove the following about the coefficient of x for various s.

Theorem 6. For s ≥ 1,

W
(1,0,0,0)
2 (t, x, y1, 1)|xs =

∑
w∈{1,2}∗,mmp(1,0,0,0)(w)=s

t|w|y
|w|1
1 =

ts+1ys1
(1− t)s+1(1− ty1)

W
(1,0,0,0)
2 (t, x, y1, 1)|x0 =

∑
w∈{1,2}∗,mmp(1,0,0,0)(w)=0

t|w|y
|w|1
1 =

1

(1− t)(1− ty1)
.

Proof. To count the number of words with exactly s ones that match the pattern there are
two cases to be examined.

Case 1. s = 0 counts all words with no instances of a 1 followed by a 2:
For the word of all ones, {1}∗ = 1 . . . 1 = 1

1−y1t .

For the word of all twos, 2{2}∗ (We need at least one 2, so we do not count the empty word
twice) = 2 . . . 2 = t

1−t

11



The last case looks like:
2s211s
The first block of twos gives 1

1−t , the mandatory 2 followed by a 1, gives y1t
2, and the last

block of ones gives 1
1−y1t , hence, for s = 0 the coefficient of x0 is

1
1−zt + t

1−t + zt2

(1−t)(1−zt)

=
∑

w∈{1,2}∗,mmp(1,0,0,0)(w)=0 t
|w|y

|w|1
1 = 1

(1−t)(1−ty1)

Case 2. If s ≥ 1 then the word must look like
2s 1 2s 1 2s... again, the block of twos gives ( 1

1−t)
s+1 the mandatory 2, and the s 1s give

ys1t
s+1 which means that my coefficient of xs is:

ys1t
s+1

(1−t)s+1

The next example counts mmp(1, 1, 0, 0), that is finding a generating function for words
of length n with wi ∈ {1, 2}∗ that counts the 1’s with at least one 2 to the right of it and
one 2 to the left of it.

Theorem 7. W
(1,1,0,0)
2 (t, x, y, z) =

∑
w∈{1,2}∗

t|w|y
|w|1
1 xmmp(1,1,0,0)|w| =

1− t(x+ y)z + t2z(yx+ xyz)

(1− tz)(1− t− txz)(1− tyz)

Proof. Consider

W
(1,1,0,0)
2 (t, x, y, z) =

∑
w∈{1,2}∗

t|w|z|w|1xmmp(1,1,0,0)ymmp(1,∅,0,0)

= 1 +
∑
n≥1

tn
n∑
k=0

g(n, k, x, y)zk

where
g(n, k, x, y) =

∑
w∈ R(1k,2n−k)

xmmp(1,1,0,0)ymmp(1,∅,0,0)

Let us first consider our special cases:
1. If the word is all ones, then w ∈ {1}∗, then we get that W

(1,1,0,0)
2 (t, x, y, z) = 1

1−zt

2. If the word is all twos, then w ∈ 2{2}∗, so W
(1,1,0,0)
2 (t, x, y, z) = t

1−t

3. If the word has one 2 followed by only ones, then: w ∈ 2{1}∗ and W
(1,1,0,0)
2 (t, x, y, z) =

zt2

1−zt
4. If the word has exactly one 2 and it is not the first entry, the word looks like 1s1211s1

so W
(1,1,0,0)
2 (t, x, y, z =) yzt

1−yzt
1

1−zt
And lastly, we consider the case where we have at least two 2s, and for that expression we
use a recursion again. We must count the letters that match mmp(1, ∅, 0, 0) in order to be
able to use recursion, and again, we get two cases.

12



If a word begins with 1, then g(n, k, x, y) = yg(n − 1, k − 1, x, y) because the 1 matches
ymmp(1,∅,0,0) since there are at least two 2s. If the word starts with a 2, then g(n, k, x, y) =
g(n− 1, k, x, x), because now every subsequent 1 matches the pattern for y. So,

g(n, k, x, y) = y ∗ g(n− 1, k − 1, x, y) + g(n, k, x, x).
And

W
(1,1,0,0)
2 (t, x, y, z) = 1 +

∑
n≥1

zng(n, n, x, y)tn +
∑
n≥1

g(n, 0, x, y)tn

+
∑
n≥2

tn
n−1∑
k=1

zkg(n, k, x, y)tn (∗)

where (∗) =
∑
n≥2

tn
n−1∑
k=1

[yg(n− 1, k − 1, x, y) + g(n− 1, k, x, x)]zk

Let

A =
∑
n≥2

tn
n−1∑
k=1

y ∗ g(n− 1, k − 1, x, y)zk

=
∑
n≥2

tnzy
n−1∑
k=1

g(n− 1, k − 1, x, y)zk−1

= tyz
∑
n≥2

tn−1
n−1∑
k=1

g(n− 1, k − 1, x, y)zk−1

= tyz
∑
n≥1

tn
n∑
k=1

g(n, k − 1, x, y)zk−1

= tyz
∑
n≥1

tn
n−1∑
k=0

g(n, k, x, y)zk

This last sum can be evaluated using a recursion. To get the expression in terms of
W

(1,1,0,0)
2 (t, x, y, z), add the nth term and then subtract it:

tyz
∑
n≥1

tn
n−1∑
k=0

g(n, k, x, y)zk + g(n, n, x, y)zn − tyz
∑
n≥1

tng(n, n, x, y)zn

Since g(n, n, x, y) = 1 we get

tyz
∑
n≥1

tnzn =
tz

1− tz
and the first part is just

tyz ∗W (1,1,0,0)
2 (t, x, y, z)− 1

13



so A = tyz(W
(1,1,0,0)
2 (t, x, y, z)− 1)− tyz tz

1−tz
If the word starts with 2, and there are at least two 2s, then the word looks like 2 . . . 12 . . . 12 . . .
In this case, any 1 that matches y now also matches x, because of the 2 at the beginning
of the word. Thus, y can be replaced in to obtain the expression g(n− 1, k, x, x) Let

B =
∑
n≥2

tn
n−1∑
k=1

g(n− 1, k, x, x)zk

= t
∑
n≥2

tn−1
n−1∑
k=1

g(n− 1, k, x, x)zk

= t
∑
n≥1

tn
n∑
k=1

g(n, k, x, y)zk

= tyz
∑
n≥1

tn
n∑
k=1

g(n, k, x, x)zk

Again, this expression can be simplified using recursion to get an expression in terms of
W

(1,1,0,0)
2 (t, x, y, z). this can be done by adding the “0th” term to the sum and then sub-

tracting it:

t
∑
n

≥ 1tn
n∑
k=1

g(n, k, x, x)zk + g(n, 0, x, x)− t
∑
n≥1

tng(n, 0, x, x)

However, since g(n, 0, x, x) = 1, the second sum becomes
t

1−t .
The first sum looks like the original expression with a x where there was a y:

i.e. W
(1,1,0,0)
2 (t, x, x, z)− 1

Thus B = t(W
(1,1,0,0)
2 (t, x, x, z)− 1)− t2

1−t
L(t, x, y, z) can now be found by combining the four special cases, with the expressions for
A and B

W
(1,1,0,0)
2 (t, x, y, z) =

1

1− zt
+

t

1− t

+ tyz(W
(1,1,0,0)
2 (t, x, y, z)− 1)− t2yz2

1− tz

+ t(W
(1,1,0,0)
2 (t, x, x, z)− 1)− t2

1− t

This expression has W
(1,1,0,0)
2 (t, x, x, z), so to solve for this in terms of W

(1,1,0,0)
2 (t, x, y, z)

14



set y = x in the expression for W
(1,1,0,0)
2 (t, x, y, z):

W
(1,1,0,0)
2 (t, x, x, z) =

1

1− zt
+

t

1− t

+ txz(W
(1,1,0,0)
2 (t, x, x, z)− 1) − t2xz2

1− tz

+ t(W
(1,1,0,0)
2 (t, x, x, z)− 1) − t2

1− t

⇒ (1− t− txz)W
(1,1,0,0)
2 (t, x, x, z) =

1

1− zt
+

t

1− t

− txz − t2xz2

1− tz

− t − t2

1− t

⇒ W
(1,1,0,0)
2 (t, x, x, z) =

1

1− t− txz
[

1

1− zt
+

t

1− t
− txz − t2xz2

1− tz
− t − t2

1− t
]

=
1− txz

(1− tz)(1− t− txz)

(Using Mathematica to simplify.)
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To get the final expression forW
(1,1,0,0)
2 (t, x, y, z) plug this expression in forW

(1,1,0,0)
2 (t, x, x, z)

W
(1,1,0,0)
2 (t, x, y, z) =

1

1− zt
+

t

1− t

+ tyz(W
(1,1,0,0)
2 (t, x, y, z)− 1)− t2yz2

1− tz

+ t(
1− txz

(1− tz)(1− t− txz)
− 1) − t2

1− t
⇒ (1− tyz)W

(1,1,0,0)
2 (t, x, y, z)

=
1

1− zt
+

t

1− t
− tyz − t2yz2

1− tz

+ t(
1− txz

(1− tz)(1− t− txz)
− 1)− t2

1− t
⇒ W

(1,1,0,0)
2 (t, x, y, z)

=
1

1− tyz
[

1

1− zt
+

t

1− t
− tyz − t2yz2

1− tz

+ t(
1− txz

(1− tz)(1− t− txz)
− 1)− t2

1− t
]

=
1− t(x+ y)z + t2z(y − x− xyz)

(1− tz)(1− t− txz)(1− tyz)

Again using Mathematica to simplify. However, recall that the expressionW
(1,1,0,0)
2 (t, x, y, z)

gave us the generating function that counted mmp(1, 1, 0, 0) and mmp(1, ∅, 0, 0). So in or-
der to get the generating function for just mmp(1, 1, 0, 0) simply let y = 1 in our polynomial
expression.

Again, we would like to observe the general case for words with exactly s 1s that match
the pattern.

Case 3. s ≥ 1
Then the word must look like:
1s 2s 2 1 2s 1 2s 1 2 2s 1s The numerator becomes zsts+2; the first block of 1s gives, 1

1−yzt ;

the last block of ones, gives 1
1−zt ; the middle blocks of 2s, gives 1

(1−t)s+1
. Thus, for s ≥ 1

zsts+2

(1−t)s+1(1−zt)(1−yzt)

Case 4. If s = 0, then there are several ways in which a word can be arranged such that
it does not match the pattern at all.
(1) {1}∗ = 1 . . . 1 gives 1

1−zt
(2) 22∗ which gives t

1−t
(3) There is at least one 1 and one 2. Then two situations arise. In the first situation we
have 11s22s1s (A) and the second situation looks like 22s11s (B). for A, our block looks
like 1 1s 2 2s 1s so the generating function is:
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yzt2

(1−yzt)(1−t)(1−zt)
Similarly for B we get:

zt2

(1−t)(1−zt) .
Combining these expressions and using Mathematica to simplify:

∑
w∈{1,2}∗mmp(1,1,0,0)|w|=0

t|w|z|w|1

=
1

1− zt
+

t

1− t
+

yzt2

(1− yzt)(1− t)(1− zt)
+

zt2

(1− t)(1− zt)

=
(1− yzt)(1− t) + t(1− yzt)(1− zt) + yzt2 + zt2(1− yzt)

(1− yzt)(1− t)(1− zt)

4 The generating functions W
(1,0,0,0)
n (t, x, y1, . . . , yn).

In this section, we will consider the distribution of the quadrant marked mesh pattern
MMP (1, 0, 0, 0) over words in [n]∗ where n ≥ 2. The key idea is considerW

(1,0,0,0)
n (t, x, y1, . . . , yn)|ysn

which is is the sum of t|w|xmmp(1,0,0,0)(w)
∏n

i=1 y
|w|i
i over all words w ∈ [n]∗ with exactly s oc-

currences of the letter n. Clearly if s = 0, then

W (1,0,0,0)
n (t, x, y1, . . . , yn)|y0n = W

(1,0,0,0)
n−1 (t, x, y1, . . . , yn−1). (14)

Now if s ≥ 1 and |w|n = s, then we can write w = u1nu2n . . . usnus+1 where u1, u2, . . . , us, us+1

are words in [n − 1]∗. Clearly, every letter in each of u1, . . . , us will match the pattern
MMP (1, 0, 0, 0) due to the presence of the an occurrence of n to the right of that letter in

w. Thus the contribution to W
(1,0,0,0)
n (t, x, y1, . . . , yn)|ysn as we sum over all possibilities of

each ui is just
1

1− tx(y1 + · · · yn−1)
.

For letters in us+1, the letters to the left of us+1 in w have no effect on whether a letter in us+1

matches MMP (1, 0, 0, 0) in w. Thus Thus the contribution to W
(1,0,0,0)
n (t, x, y1, . . . , yn)|ysn

as we sum over all possibilities ofus+1 is just W
(1,0,0,0)
n−1 (t, x, y1, . . . , yn−1). Thus for s ≥ 1.

W (1,0,0,0)
n (t, x, y1, . . . , yn)|ysn =

(
ynt

1− tx(y1 + · · ·+ yn−1)

)s
W

(1,0,0,0)
n−1 (t, x, y1, . . . , yn−1).

(15)
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It follows that

W (1,0,0,0)
n (t, x, y1, . . . , yn) =

∑
s≥0

W (1,0,0,0)
n (t, x, y1, . . . , yn)|ysn

=
∑
s≥0

(
ynt

1− tx(y1 + · · ·+ yn−1)

)s
W

(1,0,0,0)
n−1 (t, x, y1, . . . , yn−1)

= W
(1,0,0,0)
n−1 (t, x, y1, . . . , yn−1)

∑
s≥0

(
ynt

1− tx(y1 + · · ·+ yn−1)

)s
= W

(1,0,0,0)
n−1 (t, x, y1, . . . , yn−1)

1

1−
(

ynt
1−tx(y1+···+yn−1)

)
= W

(1,0,0,0)
n−1 (t, x, y1, . . . , yn−1)

1− tx(y1 + · · · yn−1)
1− ynt− tx(y1 + · · · yn−1)

.

Thus we have proved the following Theorem.

Theorem 8. For all n ≥ 2,

W (1,0,0,0)
n (t, x, y1, . . . , yn) = W

(1,0,0,0)
n−1 (t, x, y1, . . . , yn−1)

1− tx(y1 + · · ·+ yn−1)

1− ynt− tx(y1 + · · ·+ yn−1)
. (16)

It is easy to see that

W
(1,0,0,0)
1 (t, x, y1) =

1

(1− y1t)
.

Thus

W2(t, x, y1, y2) =
1

(1− y1t)
(1− y1xt)

(1− y1xt− y2t)
,

W3(t, x, y1, y3) =
1

(1− y1t)
(1− y1xt)

(1− y1xt− y2t)
(1− (y1 + y2)xt)

(1− (y1 + y2)xt− y3t)
,

W3(t, x, y1, y3) =
1

(1− y1t)
(1− y1xt)

(1− y1xt− y2t)
(1− (y1 + y2)xt)

(1− (y1 + y2)xt− y3t)
(1− (y1 + y2 + y3)xt)

(1− (y1 + y2 + y3)xt− y4t)
.

etc..

5 The generating functions W
(k,0,`,0)
3 (t, x, y1, y2, y3)

In this section, we will study the generating function W
(k,0,`,0)
3 (t, x, y1, y2, 1) for k, ` ≥ 1.

This time, our first task is to to understand the generating functions

U(s, k, l, t, y1, y2) = W
(k,0,`,0)
3 (t, x, y1, y2, 1)|xs

for s ≥ 1. Thus

U(s, k, l, t, y1, y2) =
∑

w∈[3]∗,mmp(k,0,`,0)(w)=s

t|w|y
|w|1
1 y

|w|2
2 . (17)
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Now fix s ≥ 1. If w ∈ [3]∗ and mmp(k,0,`,0)(w) = s, then the only letters that can
match the quadrant marked mesh pattern MMP (k, 0, `, 0) in w are 2’s. Thus we must be
able to write w as w = u12u22 . . . us2us+1 where the 2’s following u1, u2, . . . us, respectively,
are the elements of w which match the quadrant marked mesh pattern MMP (k, 0, `, 0)
in w. Thus there must be at least ` 1’s in u1 and k 3’s in us+1. Then we can write
u1 = v11v21 . . . v`1v`+1 where the 1s following v1, . . . , v`, respectively are the leftmost `
1s that appear in u1. Similarly, we us+1 = w13w23 . . . wk3vk+1 where the 3s following
w1, . . . , wk, respectively are the rightmost ` 3s that appear in us+1. For example, Figure
?? pictures such a factorization when ` = 3, k = 2, and s = 2. Thus we have written

w = v11v21 . . . v`1v`+12u22 . . . us2w13w23 . . . wk3wk+1.

mmp(2,0,3,0)(w) = 2 First observe that since mmp(k,0,`,0)(w) = s, there can be no 2s in
v`+1, u2, . . . , us, w1 since any 2s in these words would automatically match the quadrant
marked mesh pattern MMP (k, 0, `, 0) in w. Thus each of these word can be arbitrary
words in {1, 3}∗. Thus as we allow v`+1, u2, . . . , us, w1 to vary over all possible words in

{1, 3}∗, we would get a contribution of
(

1
(1−y1t−t)

)s
to U(s, k, l, t, y1, y2).

Next we observe that there can be no 1’s in v1, . . . , v` by the fact that the 1’s following
v1, . . . , v` where chosen to the leftmost ` 1s in u1. We claim that each vi can be an arbitrary
word in {2, 3}∗ since each 2 that occurs in vi will have at most i− 1 1s to its left and hence
cannot match the quadrant marked mesh pattern MMP (k, 0, `, 0) in w. It follows that as
we allow v1, . . . , v` to vary over all possible words in {2, 3}∗, we would get a contribution

of
(

1
(1−y2t−t)

)`
to U(s, k, l, t, y1, y2).

Finally, observe that there can be no 3’s in w2, . . . , wk+1 by the fact that the 3’s following
w1, . . . , wk where chosen to the rightmost k 3s in us+1. We claim that each wi where i ≥ 2
can be an arbitrary word in {1, 2}∗ since each 2 that occurs in such wi will have at most k−i
3s to its right and hence cannot match the quadrant marked mesh pattern MMP (k, 0, `, 0)
in w. It follows that as we allow w2, . . . , wk+1 to vary over all possible words in {1, 2}∗, we

would get a contribution of
(

1
(1−y1t−y2t)

)k
to U(s, k, l, t, y1, y2).

It follows that for all s ≥ 1,

U(s, k, l, t, y1, y2) =
y`1y

s
2t
k+`+s

(1− y1t− y2t)k(1− y2t− t)`(1− y1t− t)s+1
. (18)

Next let
V3(k, l, t, x, y1, y2) =

∑
s≥1

xsU(s, k, l, t, y1, y2).

Thus
V3(k, l, t, x, y1, y2) =

∑
w∈[3]∗,mmp(k,0,`,0)(w)6=0

xmmp(k,0,`,0)(w)t|w|y
|w|1
1 y

|w|2
2 (19)
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We see that

V3(k, l, t, x, y1, y2) =
∑
s≥1

xsU(s, k, l, t, y1, y2) (20)

=
∑
s≥1

xs
y`1y

s
2t
k+`+s

(1− y1t− y2t)k(1− y2t− t)`(1− y1t− t)s+1

=
y`1t

k+`

(1− y1t− y2t)k(1− y2t− t)`(1− y1t− t)
×∑

s≥1

(
xy2t

(1− y1t− t)

)s
=

y`1t
k+`

(1− y1t− y2t)k(1− y2t− t)`(1− y1t− t)
×

xy2t

1− y1t− t
1

1− xy2t
1−y1t−t

=
xy2y

`
1t
k+`+1

(1− y1t− y2t)k(1− y2t− t)`(1− y1t− t)(1− t− y1t− xy2t)
.

It follows that

W
(k,0,`,0)
3 (t, x, y1, y2, 1)|x0 =

1

(1− y1t− y2t− t)
− V (k, l, t, 1, y1, y2) (21)

=
(1− y1t− y2t)k(1− y2t− t)`(1− y1t− t)− y2y`1tk+`+1

(1− y1t− y2t)k(1− y2t− t)`(1− y1t− t)(1− t− y1t− y2t)
.

Hence

W
(k,0,`,0)
3 (t, x, y1, y2, 1) = W

(k,0,`,0)
3 (t, x, y1, y2, 1)|x0 + V3(k, l, t, x, y1, y2). (22)

Combining (20) and (21), one can easily show that the following theorem holds.

Theorem 9. For all k, ` ≥ 1,

W
(k,0,`,0)
3 (t, x, y1, y2, 1) = (23)

A
(k,0,`,0)
3 (t, x, y1, y2, 1)

(1− y1t− t)(1− t− y1t− y2t)(1− t− y1t− y2xt)(1− y1t− y2t)k(1− y2t− t)`

where

A
(k,0,`,0)
3 (t, x, y1, y2, 1) = (1− y1t− t)(1− t− y1t− y2xt)(1− y1t− y2t)k(1− y2t− t)` −

y2y
`
1t
k+`+1(1− t− y1t− y2xt) + xy2y

`
1t
k+`+1(1− t− y1t− y2t).
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