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Abstract

The goal of this paper is to construct a quantum algorithm to decode sec-
ond order Reed-Muller codes. We derive a way to apply the second order
Reed Muller code in the quantum applications, just as the way it is done for
the first order Reed-Muller code. In order to fully understand the relation-
ship between the classical model and the quantum model of the Reed Muller
decoder, we first analyze different algorithms to decode the first order Reed
Muller decodes and realize that there exists an efficient quantum algorithm
called ”Hadamard Decoding Algorithm”. Building on the first order Reed
Muller decoder, we derive a method to decode the second order Reed-Muller
code with a higher decoding probability.

1 Introduction
In information theory, the original message sent is often distorted by noise from
the channel and thus the received message is different from the original message.
To decode the original message, we use the error-correcting codes and apply to
the distorted message received. The basic process is : message goes through an
encoder, then the channel (where the noise distorts messages), and then a decoder.
If the coding is successful, then the decoded message will be identical to the orig-
inal message sent.

Notations .
The message is a binary number with length n. This is a n bit string of either
”0” or ”1”. RM(r,n-1) is a Reed-Muller code of order r, and length n-1.It is an
operation mapping n→ 2n−1 bits.
Hamming Distance, denoted by dhamming is defined to be the number of posi-
tions at which the corresponding symbols are different. For Reed Muller codes,
dhamming=2n−1−r. So for the first order Reed-Muller code, where r = 1, dhamming=2n−2.
Not all codes are correctly decodable. If the channel has too much noise and dis-
torts too many bits, then a decoder cannot correctly guess the original message.
For Reed-Muller codes, the number of correctable errors=2n−3 − 1. [3]

1.1 How to identify the order
Let x1, ...xm be binary variables, then a Boolean monomial p = xr11 x

r2
2 ...x

rm
m ,

where ri ∈ 0, 1and 1 ≤ i ≤ m, since xixj = xjxi andx2i = xi
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The degree of p is the number of variables in p. So, for example, q = x1 + x2 +
x1x2 + x2x3x4 has degree 3. We now focus on the first order Reed-Muller code
with length n, so RM(1,n-1).

2 First order Reed Muller Code
We first look at the existing algorithms for decoding the first order Reed-Muller
codes. With thorough examples and explanations, we examine how to encode and
decode a simple message and what methods are available. This paper will briefly
explain the classical version (Majority Decoding Algorithm) and give a detailed
explanations for the quantum version (Hadamard Decoding Algorithm). The first
order terms are all linear and do not have any quadratic or cubic terms such as
x1x2 or x2x3x4.

2.1 Encoder
Let the message = mn−1mn−2...m1m0 and create a matrix

1
x1
x2
...

xn−1


1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0

...
1 0 1 0 1 0 1 0


︸ ︷︷ ︸

2n−1


n

Then encoded message Me = mn−1 +mn−2x1 + . . .+m0xn−1
Again, n is the length of the message.
Example:
Let’s encode the message ’0110’. Here, the message length n=4.
So the encoder matrix for RM(1,n-1)=RM(1,3)is:

1
x1
x2
x3


1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0


3



Then for the message ’0110’ the most significant bit corresponds to m3, second
bit corresponds to m2, third bit corresponds to m1, and the last bit corresponds to
m0.

Hence encoded message

Me = m3 · 1 +m2 · x1 +m1 · x2 +m0 · x3
= 0 · (11111111) + 1 · (11110000) + 1 · (11001100) + 0 · (10101010)
= 11110000 + 11001100 = 00111100.

So Me=00111100.
Matlab code for 1st order encoder of any length is in the Appendix - section 4.1.

2.2 Noise
When the message goes through the noisy channel, some of the message bits get
flipped. In Reed-Muller code, the noise can flip up to 2n−3−1 bits and still be able
to detect and correct errors, i.e., ”1” becomes ”0” or ”0” becomes ”1”. For exam-
ple, in the case the message is ’0110’, we can correct up to 2n−3−1 = 24−3−1 =
2−1 bit errors. Both the Majority decoding algorithm and the Hadamard decoding
algorithm for the first order guarantee to correct up to 2n−3 − 1 errors (bit flips).
[3]

Matlab code for Noise (flipping 2n−3−1 random bits) is included in the Appendix
- section 4.2.

2.3 Majority Decoding Algorithm
Currently, there exists a classical Reed-Muller Decoding algorithm for any order
codes- first order, second order, etc. This method is called ”Majority decoding
algorithm” and the basic idea behind it is based on the distance between vectors
(also called Hamming distance). The Hamming distance between any two vectors
is the number of places in the two vectors that have different values. The decoder
assumes that the closest codeword in RM(r,n-1) to the received message is the
original encoded message. The decoder checks each row of the encoded matrix
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and uses majority logic to determine whether that row was used in forming the
encoded message. So it is possible to determine what the original message was.
[1] The author has coded a majority decoding algorithm on Matlab and the code is
attached in the Appendix - section 4.3.

2.4 Hadamard Decoding Algorithm
Now we consider another decoding algorithm, called the Hadamard decoding al-
gorithm for Reed-Muller codes. This code is based on Hadamard matrices. This
method is different from the Majority decoding algorithm in a way that it requires
fewer steps and that it measures the distance between code words to determine
the original message. Conveniently, this is the reason that there exists an efficient
quantum implementation of the Hadamard decoding algorithm, but there isn’t one
for the Majority decoding algorithm. Here is how the algorithm works.
Definition: Hadamard transform Hm is a 2m x 2m matrix.
H0 = 1

Hm = 1√
2

Hm−1 Hm−1

Hm−1 −Hm−1

 for m>0

For example,
H0 = +1

H1 =
1√
2

(
1 1
1 −1

)

H2 =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


.
.
.
(Hn)i,j =

1
2n/2 (−1)i·j , where i and j are bit string vectors.

Let k = km−12
m−1 + km−22

m−2 + ...+ k12 + k0
and n = nm−12

m−1 + nm−22
m−2 + ...+ n12 + n0

Then i · j is equivalent to
∑

j kjnj .
The Hadamard decoding algorithm utilizes these Hadamard transform matri-

ces. A message of length 4, let’s saym3m2m1m0, gets encoded toMe=Me7Me6Me5Me4Me3Me2Me1Me0.
Notice that the encoded message is either 0 or 1, but the Hadamard transform ma-
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trices consist of 1 or -1. Thus, we convert 0 to 1 and 1 to -1 and get F .
The mathematical formula is as follows:

F = [(−1)Me7 , (−1)Me6 , ...(−1)Me0 ].

Then we transform the message using the Hadamard transform matrix.
Let F̂ = FH , where H is the Hadamard matrix of the appropriate size. Using
the examples, we can conclude that the appropriate Hadamard matrix size for a
message of length n is Hn−1. Then the message decoded is the position of the
entry of F̂ with the largest magnitude. Again, the Hadamard decoding algorithm
can correct up to 2n−3 − 1 errors.
As an example, let us now decode the same message as in the Majority decoding
algorithm example, namely, the messae ’0110’. As before, the encoded message
Me = [00111100] and the message length n=4.
We then convert 0 to 1 and 1 to -1.

F = (−1)Me7(−1)Me6 ...(−1)Me0 .

So F=[1 1 -1 -1 -1 -1 1 1].
The appropriate Hadamard transform matrix is:

H3 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


Then the Hadamard transform F̂ is simply the product of F and H.

F̂ = FH

= [1 1 − 1 − 1 − 1 − 1 1 1]H

= [0 0 0 0 0 0 8 0].

Because 8 is the largest magnitude entry of the matrix F̂ , we look at the position
and realize that it’s 6 (the position is counted from 0 instead of 1). 6 in binary is
’0110’, which indeed is our original message. Thus, the message is successfully

6



decoded (with no noise, of course). Hadamard decoding algorithm would correct
up to 1 error in the case message length is 4. So even if any one of the bits from
Me=[0 0 1 1 1 1 0 0] is flipped, the decoder would still give out ’0110’. The
Hadamard decoding algorithm Matlab code is attached in the appendix section
4.4.
General idea of the proof . When there is no noise, the problem is simple. Since
the rows of a Hadamard matrix are orthogonal, when we take the product of one of
the rows to the encoded message, then the magnitude would be 2n−1 at the position
of the message bit and 0 everywhere else. If there is noise, then the magnitude of
the product would be greatest at the position of the message bit (but less than 2n−1

with some small values elsewhere.

2.5 Why does Hadamard decoding algorithm have an efficient
quantum implementation?

Now we examine how the first order Hadamard classical decoding algorithm can
be implemented as a quantum decoding algorithm.
Quantum state is determined by vector complex whose norm2=1. A quantum
algorithm is a step-by-step procedure, where each steps can be performed on a
quantum computer. It is usually described by a quantum circuit which acts on
some input qubits and terminates with a measurement. [4] A qubit is either a 0, or
a 1, or a superposition of both. There are two ways to make a measurement. First,
the complete measurement is where we pick a basis and take the magnitude of the
vector. The second is POVM, which will be discussed later in this paper.
We let ψ = 1√

2n

∑2n−1

i=1 (−1)Mei |i〉 ∈ (C2)⊗n = C2n

C2 is a quantum analog of a bit, namely a qubit. And (C2)⊗n is n qubits with
unitary transformations.
|i〉|i = 0, ..., 2n − 1 and Mei = (Men−1...M0 =Me)
H⊗n=H ⊗H ⊗ ...⊗H
Then ψ′ = H⊗nψ
This is the quantum algorithm, where each transforms are quantum operations.
This quantum algorithm is much more efficient than the classical algorithm, be-
cause instead of creating a big Hadamard transform matrix, the quantum algorithm
makes n single qubit operations.
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2.6 Summary of Number of Operations
We see that Quantum algorithms take in less number of operations than others,
and thus makes the circuit complexity simpler and faster to process.
Here, N = 2n where n is the length of the message.

Method Number of operations
Hadamard Transform N2

Fast Hadamard Transform NlogN
Quantum Fast Hadamard Transform logN

Table 1: Different methods and its number of operations. [2]

3 Second Order Reed Muller Code
Now we finally examine the Reed-Muller decoding algorithms for second order
terms. These include both the first order terms, and any quadratic terms as well,
such as x1x2 orx1x3. The difficulty arises when these quadratic terms show up,
since the Hadamard decoding algorithm for the 1st order does not apply to second
order anymore. The classical majority decoding algorithm still holds for second
order, but our goal is to develop a quantum decoding algorithm for second order
Reed-Muller codes.

3.1 Encoder
The encoder for the second order Reed-Muller codes is similar to the encoder
for the first order, except that now we have to consider all products of two linear
terms.
For example, RM(2,3) will have an encoder matrix of the following:
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x0 =
[
1 1 1 1 0 0 0 0

]
x1 =

[
1 1 0 0 1 1 0 0

]
x2 =

[
1 0 1 0 1 0 1 0

]
x0x1 =

[
1 1 0 0 0 0 0 0

]
x0x2 =

[
1 0 1 0 0 0 0 0

]
x1x2 =

[
1 0 0 0 1 0 0 0

]
And the encoder is the following (only the right of the vertical line is the encoder
matrix):

x1x2 x0x2 x0x1 x2 x1 x0


0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 0 1 0 1 1 0 0 1 1 0 0

...
...

1 1 1 1 1 1 0 1 1 1 1 1 1 0

For RM(2,3) Encoder matrix is:

fij(x) = i2x2 + i1x1 + i0x0 + j01x0x1 + j02x0x2 + j12x1x2

= i0 · 11110000 + i1 · 11001100 + i2 · 10101010
+j01 · 11000000 + j02 · 10100000 + j12 · 10001000

The encoder matrix for RM(2,3) is 64 by 8. Matlab code for RM(2,3) is in section
4.5

3.2 Results for on RM(2,3)
The following results are for a particular second order Reed-Muller code of length
4.
As mentioned in the earlier section, the second way of making a measurement is
POVM (Positive Operator Valued Measurement). It is a measure of whose values
are non-negative self-adjoint operators on a Hilbert space. [6]

Definition: POVM
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A POVM is a set of Hermitian positive semidefinite operators Fi on a Hilbert space
H that sum to unity,

n∑
i=1

Fi = IH .

This formula is similar to the decomposition of a Hilbert space by a set of orthog-
onal projectors:

N∑
i=1

Ei = IH , EiEj = δijEi

[4]

Now we introduce a specific type of POVM, called PGM (Pretty Good Mea-
surement).
Definition: Pretty Good Measurement (PGM)
Let σj be a set of quantum states, written as density matrices. That is, if |ψj〉 is a
set of pure states, σj = |ψj〉〈ψj|. Let σ =

∑
σj .

Then the PGM for this set of states is the set of positive operaters Ej,

Ej = σ−1/2σjσ
−1/2.

Theorem: for RM (2,3), Success Probability for PGM=
∑

j Trace(σjEj) =
1
8

Proof:
Let xm= binary encoded messages (with 0,1)
And let

ψ =
1√
8
xm|±1

φm =
1√
2n
ψm

10



Then

SuccessProbabilityforPGM =
1

22n

∑
|〈φm|ψm〉|2

=
1

22n

∑
m

1√
2n
|〈ψm|ψm〉|2

=
1

22n
1

2n

∑
m

|〈ψm|ψm〉|2

=
1

23n
|〈ψm|ψm〉|2

=
1

29
26

=
1

23

=
1

8

We then compare this result (1/8 success probability) to just pure Hadamard
decoding algorithm for the 1st order. In other words, we treated the 2nd order
encoder matrix as the first order because the length of each row is the same as that
of the 1st order, and got the following result:
8 vectors with probability 1

8

48 vectors with probability 1
32

8 vectors with probability 0
Thus, the overal probability

p =
8/8 + 48/32 + 0

64
=

5

128
≈ 1

32
.
Success probability for PGM 1/8 gives approximately 3.2 times better result than
blindly applying Hadamard decoding algorithm to the 2nd order.

3.3 Generalized 2nd order
Notation. Let N = 2n, let m = n +

(
n
2

)
, and let M=2m. Let fi : ZN → Z2 be

the N-bit codeword for message i ∈ Zm
2 . Let Of : |x〉|b〉 → |x〉|b + fi(x)〉 act

unitarily on CN ⊗ C2.
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3.4 Single Query
This function produces M vectors in an N¡M dimensional space, so the maximum
average probability of identifying a message i is N/M.[5]

Proposition:
1

M

M−1∑
i=1

|ψi〉〈ψi| = IN
1

N

Proof: Let

ψi,j =
1√
N

2n−1∑
x=0

(−1)fij(x)|x〉.

Here, i is the n bit string codeword of the coefficient of the linear terms, and j is
the
(
n
2

)
bit string codeword of the coefficients of the quadratic terms.

The function fij(x) creates the encoder matrix.

fij(x) = fi0,i1,...in−1j01,...,jn−2n−1(xn−1...x0)

.
For example, for encoding RM(2,3),

fij(x) = i2x2 + i1x1 + i0x0 + j01x0x1 + j02x0x2 + j12x1x2

= i0 · 11110000 + i1 · 11001100 + i2 · 10101010
+j01 · 11000000 + j02 · 10100000 + j12 · 10001000

Then

fij(x) =
n−1∑
k=0

ikxk +
∑

0≤a≤b≤n−1

jabxaxb

Using these definitions of encoding function,

1

M

∑
i,j

|ψij〉〈ψij| =
1

MN

∑
i,j

∑
x,y

(−1)fij(x)+fij(y)|x〉〈y|

=
1

MN

∑
x,y

(
∑
i,j

(−1)fiy(x)+fiy(y))|x〉〈y|
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When x = y,

1

MN

∑
x,y

M =
1

N

.
If x 6= y, then one of the linear terms is nonzero. Then (−1)fij(x)+fij(y) has just as
many +1 as -1, and thus the sum is zero. .
So when x 6= y,

1

MN

∑
x,y

(
∑
i,j

(−1)fiy(x)+fiy(y))|x〉〈y| = 0

.
So this N x N matrix has 1/N on the diagonal entries, and zero everywhere else.
Therefore,

1

M

M−1∑
i=1

|ψi〉〈ψi| = IN
1

N

3.5 Double Query
Because a single query followed by a PGM maximizes the success probability, we
cannot do better by asking multiple sequential queries using the same query reg-
ister. So of just one query, we know consider double query, namely, two parallel
queries. This is done by creating two of the same queries.
Definition:

vi = (
1√
N

∑
x∈<N

(−1)fi(x)|x〉)⊗2

In n=3, 64 vectors span 29 dimensional space, which means that the best we can
do is 29/64.
Success probability of PGM= 28.4/64 < 29/64. The theorem states that if the sum
of the density operators are proportional to the identity matrix, then the PGM is
optimal. [5] However, in double query for n=3 case, the sum of density operators
were close to the identity matrix, but not quite. It had zeros almost everywhere
except for the diagonal entries, but still had a few non-zero values. Thus, it is rea-
sonable that the success probability of PGM doesn’t reach as much as the optimal
value.
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So for n=2, dim. space is 7; n=3, dim. space is 29; n=4, dim. space is 211. Thus
we make a combinatorical argument for the generalized length n.
Proposition: dim(spanvi|i ∈ Zm

2 ) = 2n−1(2n − 1) + 1.
Proof: We will prove that dim(spanwi|i ∈ Zm

2 ) = 2n−1(2n − 1) and argue that
dim(spanvi|i ∈ Zm

2 ) is only one more than dim(spanwi|i ∈ Zm
2 ), because vi has

x=y terms, whereas wi doesn’t have x=y terms.

Now we consider leaving out the terms x=y, because they are not adding any
additional information. Consider the coefficients of |x〉|x〉 in vi. They are the
same, 1/N, for all i, so they don’t contain any information about i. So we leave
them out of the query and get the following:

wi =
1√

N2 −N

∑
x 6=y∈ZN

(−1)fi(x)+fi(y)|x〉|y〉

.
Proposition: ∑

|wij〉〈wij| ∝ I

Proof:
Some notations.

1

M

∑
|wij〉〈wij| =

1

N2 −N
IN2−N

.∑
|wi〉〈wi| =

1√
N2 −N

∑
i,j

∑
x 6=y∈ZN

(−1)fiy(x)+fiy(y)|x〉|y〉
∑

u6=v∈ZN

(−1)fiy(u)+fiy(v)〈u|〈v|

When x = u and y = v, the above equals a constant c for all x,y
When x 6= u, OR y 6= v, the above equals 0 for all x,y,u,v.
When x=u, y=v,
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∑
|wi〉〈wi| =

1√
N2 −N

∑
i,j

(−1)2fij(x)+2fij(y)|x〉|y〉〈x|〈y|

=
1√

N2 −N

∑
i,j

1|x〉|y〉〈x|〈y|

=
M√

N2 −N
|x〉|y〉〈x|〈y|.

Thus,
∑
|wij〉〈wij| ∝ I

Proposition: dim(spanwi|i ∈ Zm
2 ) = 2n−1(2n − 1)

. Proof: wi is an N(N-1) by M marix.
Because the in the rows (x,y) are identical to (y,x) the rank is at most

N(N − 1)

2
=

22n − 2n

2
= 22m−1 − 2n−1

= 2n−2(2n − 1).

So the rank ≤ 2n−1(2n − 1) .

Showed that ≤ - still need to show that it’s =.

4 Appendix
Matlab Codes

4.1 RM 1st order Encoder

f u n c t i o n [ sum ] = rmencoder ( message )
m= l e n g t h ( message )−1;
e n c o d e r = z e r o s (m+1 ,2 ˆm) ;
e n c o d e r ( 1 , : ) = ones ( 1 , 2 ˆm) ;
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mess ( 1 , 1 ) = message (1)−48;
f o r i = 1 :m

f o r j = 1 : 2 ˆ (m−i + 1 ) : 2 ˆm
e n c o d e r ( i +1 , j : j + 2 ˆ (m−i )−1) = ones ( 1 , 2 ˆ (m−i ) ) ;

end

mess ( 1 , i +1)= message ( i +1)−48;

end

f o r i = 1 :m+1
enc ( i , : ) = mess ( i )∗ e n c o d e r ( i , : ) ;

end
sum = z e r o s ( 1 , l e n g t h ( enc ) ) ;
f o r i = 1 : l e n g t h ( enc ( : , 1 ) ) ;

sum = xor ( sum , enc ( i , : ) ) ;
end

end

4.2 RM Noise

f u n c t i o n [ Me ] = rmno i se ( Mc )

%To g e t Me= rmno i se ( rmencoder ( ’ w h a t e v e r message i want ’ )

t = l e n g t h (Mc ) ;
C=2ˆ t ;
n= log2 ( t ) + 1 ;
w h i l e (C>2ˆ( n−3)−1)

B= round ( r and ( 1 , t ) ) ;
C=sum (B ) ;

end

Me = xor (Mc, B ) ;

end
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4.3 RM Majority Decoder

f u n c t i o n [ decmsg ] = r m d e c o d e r m a j o r i t y 1 (Me)

% n= l e n g t h o f message=m+1;
% Mc= encoded m a t r i x
% # of e r r o r s c o r r e c t a b l e = 2 ˆ ( n−3) − 1
% Me=message a f t e r t h e e r r o r s

t = l e n g t h (Me ) ;
n= log2 ( t ) + 1 ;
m=n−1;

% 1 . t h a t one m a t r i x we formed f o r e n c o d i n g wi th 1 , x1 , x2 , e t c .

e n c o d e r = z e r o s (m+1 ,2 ˆm) ;
e n c o d e r ( 1 , : ) = ones ( 1 , 2 ˆm) ;

f o r i = 1 :m
f o r j = 1 : 2 ˆ (m−i + 1 ) : 2 ˆm

e n c o d e r ( i +1 , j : j + 2 ˆ (m−i )−1) = ones ( 1 , 2 ˆ (m−i ) ) ;
end

end

% 2 . Xn= e v e r y c o m b i n a t i o n s o f x j and x i where i != j and j < n , i < n

f o r i =1 :m
x{ i , 1}= e n c o d e r (1+ i , : ) ;
%now ” b a r s ” f o r ”2”
x{ i , 2}= ones ( 1 , 2 ˆm)−x{ i , 1 } ;

end

perms= z e r o s (m,m−1);
y = [ 1 :m] ;
f o r i =1 :m

perms ( i , : ) = y ( y ˜= i ) ;
end
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t empbin = d e c 2 b i n ( [ 0 : 2 ˆ ( m−1)−1] ,m−1);

f o r i =1 :m % Number o f Xs
f o r k =1: l e n g t h ( tempbin ) % Number o f tempbin

i f ( s t r2num ( tempbin ( k , 1 ) ) = = 0 )
temp ( k , : ) = x{perms ( i , 1 ) , 1 } ;

e l s e
temp ( k , : ) = x{perms ( i , 1 ) , 2 } ;

end
f o r l =1 : l e n g t h ( tempbin ( 1 , : ) )

i f ( s t r2num ( tempbin ( k , l ) ) = = 0 )
temp ( k , : ) = and ( temp ( k , : ) , x{perms ( i , l ) , 1 } ) ; %=x2

e l s e
temp ( k , : ) = and ( temp ( k , : ) , x{perms ( i , l ) , 2 } ) ;

end
end
c{ i }=temp ;

end
end

% 3 . R( Xn ) = Me ∗ Xn loop

f o r i =1 :m
Rx{ i }=mod (Me∗c{ i } ’ , 2 ) ;

end

% 4 . R( Xn)∗ xn + R( Xn−1)∗xn−1 + R( Xn−2)∗xn−2 e t c . = My

f o r i =1 :m
i f ( sum ( Rx{ i } ) > l e n g t h ( Rx{ i } ) / 2 )

decoded ( 1 , i ) = 1 ;
e l s e

decoded ( 1 , i ) = 0 ;
end

end

My = 0 ;
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f o r i =1 :m
My = My+ decoded ( 1 , i )∗ x{ i } ;

end
My = mod (My, 2 ) ;

% 5 . My + Me = Mye
Mye = mod (My+Me , 2 ) ;

% 6 . I f Mye has more 0 s t h a n 1 s −−> R( x0 ) = 0 ; 1 o t h e r w i s e
i f ( sum (Mye) > l e n g t h ( Mye ) / 2 )

decoded =[1 decoded ] ;
e l s e

decoded =[0 decoded ] ;
end

% 7 . Encoded message = R( xn )∗ xn R( xn−1)∗xn−1 . . . . R( x0 )

decmsg = ’ ’ ;
f o r i =1 : l e n g t h ( decoded )

decmsg = s t r c a t ( decmsg , num2s t r ( decoded ( 1 , i ) ) ) ;
end

end

4.4 RM Hadamard Decoder

f u n c t i o n [ Ff ] = rmdecoderhadamard ( Me )

%n= l e n g t h o f message=m+1;

t = l e n g t h (Me ) ;
n= log2 ( t ) + 1 ;
m=n−1;

%c o n v e r t i n g 0 , 1 t o 1 , −1

F= ((−2)∗Me ( : ) + 1 ) ’ ;
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%forming Hadamard Trans fo rm

H=[ 1 , 1 ; 1 , −1];
f o r i =2 :m

H=[H H; H −H ] ;
end

Ff=F∗H;
%G e t t i n g t h e o r i g i n a l message
Ff= abs ( Ff ) ;
[ z , p ] = max ( Ff ) ;
p=p−1;
d e c 2 b i n ( p , n ) ;
end

4.5 RM(2,3) Encoder

x1= [ −1 −1 −1 −1 1 1 1 1 ] ; % x1
x2= [−1 −1 1 1 −1 −1 1 1 ] ; % x2
x3= [−1 1 −1 1 −1 1 −1 1 ] ; % x3
x4= [−1 −1 1 1 1 1 1 1 ] ; % x1x2
x5= [−1 1 −1 1 1 1 1 1 ] ; % x1x3
x6= [−1 1 1 1 −1 1 1 1 ] ; % x2x3

x =[ x6 ’ x5 ’ x4 ’ x1 ’ x2 ’ x3 ’ ] ’ ;

rm2encoder = ones ( 2 ˆ 6 , 2 ˆ 3 ) ;
rm2encoder ( 1 , : ) = ones ( 1 , 2 ˆ 3 ) ;
rm2encoder ( 1 , : ) = −1.∗ rm2encoder ( 1 , : ) ;

%tempbin = d e c 2 b i n ( [ 0 : 6 3 ] , 6 ) ;

d = ( 0 : 6 3 ) ’ ;
b = d e 2 b i ( d , ’ l e f t −msb ’ ) ;
%d i s p ( ’ Dec B ina ry ’ )
%d i s p ( ’ −−−−− −−−−−−−−−−−−−−−−−−−’)
%d i s p ( [ d , b ] )
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t empbin =b ;

f o r i =1:64
f o r j =1:6

i f t empbin ( i , j ) == 1
rm2encoder ( i , : ) = rm2encoder ( i , : ) . ∗ x ( j , : ) ;

end
end

end

4.6 PGM of RM(2,3)

rm8dim= z e r o s ( 8 , 8 ) ;
f o r k =1:64

rm8dim=rm8dim+ rm2encoder ( k , : ) ’ ∗ rm2encoder ( k , : ) ;
end
rm8dim
e i g ( rm8dim )

%%%%F i n d i n g PGM ( P r e t t y Good Measurement)%%%%%
psim = ( 1 / s q r t ( 8 ) ) ∗ rm2encoder ;
phim = ( 1 / s q r t ( 8 ) ) ∗ psim ;
P =0;
f o r l =1:64

P=P+( phim ( l , : ) ∗ psim ( l , : ) ’ ) ˆ 2 ;
end
P =1/64∗P

4.7 Hadamard Transform on RM(2,3)

L= z e r o s ( 6 4 , 8 ) ;

NEWrm2=( rm2encoder −1) / ( −2) ;

f o r i =1:64
L ( i , : ) = rmdecoderhadamard (NEWrm2( i , : ) ) ;
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end

4.8 Two queries RM(2,3)

t w o q u e r i e s = z e r o s ( 6 4 , 6 4 ) ;
f o r j =1:64

t w o q u e r i e s ( : , j ) = 1 / 8∗ kron ( rm2encoder ( j , : ) , rm2encoder ( j , : ) ) ;
end

rank ( t w o q u e r i e s )

%%f i n d i n g sum of d e n s i t y o p e r a t o r s o f 64 s t a t e s ( hope i t ’ s i d e n t i t y )

rm64dim= z e r o s ( 6 4 , 6 4 ) ;
f o r k =1:64

rm64dim=rm64dim+ t w o q u e r i e s ( : , k )∗ t w o q u e r i e s ( : , k ) ’ ;
end
rm64dim =1/64∗ rm64dim ;
%e i g ( rm64dim )

%f i n d i n g t h e PGM f o r two q u e r i e s c a s e
P =0;
[ v , d ]= e i g ( rm64dim ) ;

f o r i =1:64
i f d ( i , i )>0

E ( i , i ) = 1 / d ( i , i ) ;
e l s e

E ( i , i ) = 0 ;
end

end
E= s q r t ( r e a l ( E ) ) ;
r h o m i n u s h a l f =v∗E∗v ’ ;
f o r m=1:64

P=P+( abs ( ( t w o q u e r i e s ( : ,m) ’ ∗ ( 1 / 8 ) ∗ r h o m i n u s h a l f ∗ t w o q u e r i e s ( : ,m ) ) ) ) ˆ 2 ;
end

P = ( 1 / 6 4 )∗P
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