The Impact of Topology and Communication
Models on Connectivity in Networks

Leilani Gilpin
Department of Mathematics
Undergraduate Honors Thesis 2010-2011
University of California, San Diego
Advisor: Melvin Leok

June 20, 2011

Abstract

Autonomous routing algorithms are intended to reach a global solution after
nodes independently process and share information. However, the role of
the mechanism used to share information has been previously overlooked
in previous analyses of these algorithms and network connectivity. In this
paper, I explicitly study how these network-communication models affects
network connectivity. In addition, I examine properties of connectivity in
robotic networks with a defined communication topology.

I show that network connectivity depends on the communication model
by using a taxonomy of communication models and identifying models of in-
terest. I will then analyze how network connectivity is preserved or not guar-
anteed through different models. These results are important for studying
the connectivity of distributed autonomous routing protocols because cer-
tain models are best for proving model-independent conditions that guaran-
tee connectivity, while other models are best for proving model-independent
conditions that do not guarantee network connectivity.

Contents

1 Introduction

2 Communication Model Networks
2.1 Communication Model Definition
2.2 Taxonomy Definition
23 Results.

3 Robotic Networks
3.1 Definition
3.2 Connectivity in Robotic Networks

4 Conclusions
5 Future Work

Bibliography

16
16
17

19

20

21

Chapter 1

Introduction

After spending a summer at Rutgers, New Jersey, at DIMACS (Center for
Discrete Mathematics and and Theoretical Computer Science) researching
properties of convergence and connectivity in communication model net-
works, I came back to UCSD in the fall and continued looking at networks.
While looking at channel reliability, and the numbers of neighboring nodes
processed per time step, I began to contemplate the issue of connectivity
when a network is constantly changing. In addition, I incorporated this into
my research in geometric mechanics by investigating the same properties in
robotic networks.

Networks, as studied in computer science, are expressed as graphs. They
are a collection of nodes, which represent computers or devices, intercon-
nected by edges that represent communication channels amongst the devices.
Computer networks are used for a variety of purposes including facilitating
communications, sharing hardware, and sharing software. It is also useful
to classifying networks as convergent (messages are guaranteed to reach the
destination d over time), or that they can oscillate. Using this notion of
convergence, we can express connectivity in these networks based on their
ability to converge to a destination.

Robotic networks, are represented as graphs but they include a spatial
component. Geometric objects model the interaction between robotic net-
works with the environment and proximity graphs represent the topology of
a network of robotic agent. Robotic networks can model motion coordina-
tion in vehicles, and there has recently been work using robotic networks
to model motion coordination in self-organized biological groups. The main
motivation for using robotic networks is to model the connectivity of differ-
ent communication models. I have been focusing on the computer simulation
component, by trying to generalize the connectivity in robotic networks as a
topological property.

Chapter 2

Communication Model
Networks

2.1 Communication Model Definition

An instance of a network is an undirected graph G = (V, E) with a distin-
guished destination node, d and for each node v € V" a set of permitted paths
P, which is a subset of all paths from v to d. There is also a ranking function
Av © P, — N indicating node v’s preference for each permitted path where
lower rank are more preferred paths.

The problem is to find a path assignment 7 = {m,},cv that for each
v#£d,is

1. consistent - Assuming that the next step in path m, is u, we have that
7, = v, (if v extends a path from u to d, then that path from u to d
is assigned to u.

2. connected - For all neighbors w # u of v, A\,(vm,) < A,(vm,). Which
means that 7, is more preferred than any other vm,,. We assume that
g = d.

Let C be the set of communication channels that might be used. For each
edge {u,v} in the undirected instance graph, C contains directed channels
(u,v) and (v,u). We assume that each channel is FIFO, so that messages
that are written by u to the channel (u,v) and that are not dropped by the
channel are process by v in the same order in which they were written.

Definition 2.1.1. Path assignments 7,(t) is the path to the destination
that node v chooses at the end of step t. The collection of all path assignments
is w(t) = {my(t) }oev. mo(t + 1) = m,(t) unless v runs an update in step t+1
(we assume that one node is updated per time step).

3

Definition 2.1.2. Known routes After the execution of the first part of
the algorithm in step t, p,(c,t) contains the contents of the last update that v
successfully processed from channel c. py(c,t+ 1) = p,(c,t) unless v updates
from channel c in step t + 1. We let p,(c,0) =€ for everyv € V and ¢ € C.

Definition 2.1.3. Channel contents For a channel ¢ =(u,v), let c(t) be
the contents of ¢ at the beginning of step t, and let m.(t) be the number of
messages in c at the beginning of step t. ¢;(t) denotes the ith message in ¢ at
the beginning of step t, where the first message in the oldest, so that messages
are held in the channel like a queue. In addition, we let ¢(0) = 0 for every
cecC.

In each step of the algorithm, nodes: collect information from channels,
choose route objects based on their ranking function and permitted paths,
and share information by writing route objects to channels. The communi-
cation models studied here only affect the first of these actions. We use an
activation sequence to specify the nodes involved in each round and how the
first action is executed. An activation sequence determines the algorithm’s
execution.

Definition 2.1.4. An activation sequence « is a function on the on the non-
negative integers that assigns to each t € Zso a quadruple (U, X, f,g) such
that:

1. U CV is the set of vertices that will update in step t.

2. X C C 1is the set of channels that will be updated in step t. For each
¢ = (u,v) € C, we require that v € U so that the receiving end of each
channel is one of the nodes that is updating in step t.

3. [X — ZsoU{oo} indicates how many messages from each channel
should be processed. For ¢ = (u,v) € X, v will process f(c) messages
from c. If f(c) = oo, then v will process all messages in the channel

4. g: X = P(Zs) indicates which, if any, messages will be dropped from
each channel; the elements of g(c) are the indices of the messages that
will be dropped. We require that if f(c) = 0 then g(c) = 0, and if
0 < f(c) < o0, then g(c) € {1,2,3,.., f(c)}.

We say that an activation sequence is fair if every node tries to read each
of its channels infinitely often and, if a message is dropped from channel ¢ (a
possibility when unreliable channels are used), then there is a later message
on ¢ that is not dropped. This research focuses on fair activation sequences.

4

Definition 2.1.5. Given a network instance and an activation sequence o,
the iterative routing algorithm ezxecutes as follows, starting with t = 0.

1. Let (U, X, f,g) = a(t).
2. For each v € U and u € N(v) such that (u,v) € X
(a) Let ¢ = (u,v)

(b) If f(c) = oo, let i = m.(t); if f(c) < oo let i = maz{f(c),m.(t)}.

(c) If{1,2,..,i}\g(c) #, let j be the largest element of this set, and let
pu(c,t) be the route in the j'" message in c. If{1,2,...,i}\g(c) = 0,
let PU(C, t) = pv(cvt - 1)

(d) Delete the first i messages from ¢, and set m.(t + 1) = m.(t) — i.

3. For each v € U, set m,(t) to be the most preferred path from the set
{po((u,0),) NP, | u e N(b)} if v#d, and let m,(t) = d otherwise.

4. For each v € U and v € N(v), if m,(t) # m,(t — 1) and if prescribed
by export policy, write the path m,(t) to the channel (v,u) and increase
Mw,u) (t + 1) by one.

5. Increate t and repeat the process from step 1.

Definition 2.1.6. An activation sequence, o converges to the path assign-
ment 7 if, for the sequence of path assignments m(t), there exists some t*
such that for any t' > tx, w(t') = m. We write lim;_om(t) = 7, and say that
a converges if the limit exists.

Definition 2.1.7. A network model is said to be connected if there exists
a path assignment that converges to the destination node, d.

If a network model is not connected, then then there exists a node that is
infinitely changing path assignments. In this case, we say that the network
oscillates.

2.2 Taxonomy Definition

This work focuses on a four dimensional model space that dictates the com-
munication model.
The four dimensional model is as follows:

1. Number of nodes updating: An activation sequence must specify the
set of nodes that update at each step. For this research, we require
exactly one node to update at each step. However we can have that
every node updates at every step, there are no restrictions on which
nodes update, or exactly one node updates at each step

2. Number of neighbors processed: Each model specifies how many chan-
nels a node should process when it updates.

(a)
(b)

(c)

E(Every): Whenever a node updates, it processes messages from
every one of its neighbors. = X, = N (v) for every v € U.

M (Multiple): Whenever a node updates, it processes messages
from some subset of its neighbors (potentially multiple neighbors),
including the possibility of processing no channels and that of
processing all channels. This imposes no additional restriction on
X,.

1: Whenever a node updates, it processes messages from exactly
one of its neighbors. |X,| =1 for every v € U.

3. Number of messages processed per channel: Each model specifies how
many messages a node should read from a channel when it processes
that channel.

(a)

A(All): Whenever a node v updates and is assigned to process
messages from a neighbor u, v processes all of the messages in this
channel so the f, = oc.

S(Some): There are no restrictions on the number of messages
that a node processes from each of its neighbors when it updates.

F(Forced): Each node is forced to process at least one message
from each of the neighbors from which it updates.

O(One): Whenever a node v updates and is assigned to process
messages from a neighbor u, it processes exactly one message from
this channel: f, = 1. If unreliable channels are used, this message
could be lost.

4. Channel reliability: Channels can either be reliable, or unreliable as
defined below.

(a) R(Reliable): Every message placed in a channel (u,v) by u is
always read by v. Hence the functions g, in the fourth component
of an activation sequence entry are always identically equal to .

(b) U(Unreliable): Some messages placed in channels are not read.
Hence the functions g, are not necessarily identically equal to .

The symbols for each option in the last three dimensions are used to
abbreviate the combinations.

Definition 2.2.1. We say that model B preserves the oscillations of another
model a if the existence of a monconvergent activation sequence « in A for
some network instance I implies that there exists an activation o in B for
network instance I that does not converge. This implies that the network is
not connected.

Definition 2.2.2. We say that a model B realizes the executions of model
A (exactly, exactly with repetition, or as subsequence) if, for every network
instance using B and activation sequence o (in B), there exists an activation
sequence o' in the A such that, if {m(t)}; and {7’ (t)}; are the path-assignment
sequences induces by o and o, we have

1. Ezact realization: Vt,7'(t) = w(t) so that the sequences are the same.
We then write A < B.

2. Ezxact realization with repetition: 3f : N = N such that Vi, ji < j =
F(i) < f(j) and f(t) <k < f(t+1) = 7'(k) = n(t) i.e. {7'(t)}+ is
obtained from w(t)}s by replacing each w(t) with one or more occurences
of (t). We then write A < B.

3. Realization as a subsequence: 3f : N = N such that Vi, j, i < j =

f@) < f(7) and Vt, ' (f(t)) = =w(t), i.e. {m(t)}+ is a subsequence of
{7'(t)};. We then write A <X B

Exact realization implies exact realization with repetition, which implies
realization as a subsequence. If one model realizes the executions of another,
in any of the senses, it immediately follows that the first model preserves the
oscillations of the second model.

Weak “Polling” Models Strong Models

Figure 2.1: A map of the previously known relationships between network
models. Arrows denote preservation of oscillation. Crossed-out arrows indi-
cate models on the right that can oscillate in ways the models in the middle
and left cannot.

2.3 Results

Previous research in this area characterized the defined taxonomy into three
categories: Weak "polling” models, mid-range models, and strong models.
When looking solely at reliable channels, it remained left to show the rela-
tionship between RMA (Reliable channels, updating from a multiple number
of neighbors where each node processes all messages in the channel) and
REO (Reliable channels, updating from every neighbor, where each node
processes one message in the channel). Though it was assumed that REA
(Reliable channels, updating from every neighbor, where each node processes
all messages in the channel) and RMA were nearly equivalent models, I found
a network that can oscillate in RMA, but it cannot oscillate in REA. Fur-
ther, by showing that this network cannot oscillate in REO, there is further
classification needed to categorize these models.

Using the network NAUGHTY GADGET [9], as shown in Figure 2.2, I
show that there exists a network that can oscillate in some models, but it is
guaranteed to converge in other models.

Proposition 2.3.1. Naughty Gadget cannot oscillate in REO.
Proof. Look at node 4 when it is first activated: There are three possibilities:

1. Node 4 chooses no path: Since we are working with fair activation
sequences, node 4 will be updated infinitely often and it will eventually
choose a path, and hence it will fall into case 2 or case 3.

13D 21D

\ 4 43D
%)
342D .

3D

Figure 2.2: The example network NAUGHTY GADGET. This network does
have a stable, connected solution, but it may oscillate when we examine
different network models. This model was used to show new relationships
between network models. The allowable paths are written in order from most
preferred to least preferred.

2. Node 4 chooses 42D for the first time in the activation sequence: That
implies that node 2 chose path 2D sometime earlier in the activation
sequence. We can also assume that node 3 is activated sometime after
node 4, and node 1 is activated sometime after 2 (otherwise 4 would
have chosen path 43D, which would contradict our hypothesis, and 2
would have chosen path 21D, also to contradict our hypothesis). Be-
cause we have assumed fair activation sequences, node 1 will eventually
have to be activated and choose path 1D. After that point, node 2 will
be activated and choose path 21D. Similarly, node 3 will eventually have
to be activated and it will choose path 342D, since it is its most favor-
able path. After this point when node 4 is updated, it will choose no
route, since it is conflicted by its neighbors’ path assignments. When
node 3 is next activated, it will see that node 4 chose no route and
therefore, it will choose path 3D. From here, the next time node 4 is
activated, it will see that node 3 chose path 3D, and case 3 now applies.

3. Node 4 chooses 43D for the first time in the activation sequence: That
implies that node 3 chose path 3D sometime earlier in the activation
sequence. Since node 3 chose path 3D, when node 1 is next activated,

it will choose path 13D, since that is its most preferred path. And
when node 2 is next activated, it will choose path 2D. Therefore, it is
in a stable solution and it cannot oscillate.

O
Proposition 2.3.2. If REA can oscillate, then REO can oscillate
Note: This proves that REO realizes REA as a subsequence.

Proof. 1If there exists a fair activation sequence that can oscillate in REA,
then create a fair activation sequence for REO as follows: For every node in
the activation sequence, activate that node continuously until it receives the
most current update from each of its neighbors This will ensure that each
node in the activation sequence will see the most current update from its
neighbors, and it can oscillate as REA does.]

Proposition 2.3.3. NAUGHTY GADGET oscillates in UFEA.

Proof. We achieve the oscillation by dropping updates from node 3 to node 4
that contain the preferred path 43D at node 4, allowing only the withdrawl of
3D (or announcement of 342D) to successfully traverse the channel from node
3 to 4. This amounts to dropping every other message on that channel. Doing
so satisfies the condition that a message is eventually delivered after any
dropped message. No messages on any other channels need to be dropped.

10

In particular, consider the following activation sequence:

t = 12 3 4 5 6 7 8
U(t) = d 2 4 3 4 1 2 4
) = d 2d 42d 342d 42d 1d 21d e

t = 9 10 11 12 13 14 15
. U(t) = 3 1 2 4 3 4
mow(t) = 3d 13d 2d 42d 342d 42d

where the message containing from node 3 that advertises the path 3D to
node 4 (permitting the path 43D at node 4) is dropped before node 4 updates
in step t=12. Continued updates in this fashion will repeat the oscillation
(steps 11-14 repeat steps 2-5).]

Proposition 2.3.4. UEA < REO

Proof. As shown in Proposition 2.3.3, NAUGHTY GADGET has an oscil-
latory sequence in UFE A, but as shown in prop, it cannot oscillate in REO.
Thus REO does not preserve the oscillations of UFEA. O

Proposition 2.3.5. UEO realizes UEA as a subsequence

Proof. Using the same argument as Proposition 2.3.2 and applying Propo-
sition 2.3.4, we get that UFO £ REO. [

Proposition 2.3.6. If node / chooses path 43D, then NAUGHTY GADGET
drops into a stable solution

Proof. 1f node 4 chooses path 43D at time t-1, then node 3 was previously
activated and chose path 3D at some ¢’ such that ¢ < ¢ — 1. Now there are
4 cases at time t':

1. U(t') = 4: Node 4 will still choose path 43D since it is in its most
favorable path. When node 3 is next activated, it will choose path 3D.
Assume for sake of contradiction that node 3 choose path 342D. That
would imply that node 4 previously chose path 42D, at a time when 3
did not choose path 3D. But that is a contradiction because we assumed
that node 3 choose path 3D at a previous time. Therefore, our initial
assumption is false and node 3 chooses path 3D as required. Because
node D chooses path 3D, when node 1 is next activated, it will choose
path 13D since it is in its most favorable path. Finally, whenever node 2

11

is activated, it chooses path 2D because it is the only valid assignment.

I claim that any sequence of nodes activated after time t’ will not change

from these assignments, and hence, the network is in a stable solution.

The only nodes that will want to change assignment are node 2 and

node 3 since they are not in their most favorable solution. However,

node 2 will change paths only if node 1 chooses path 1D. But since

node 3 chose path 3D and node 1 chooses path 13D to be in its most
favorable path, node 1 will not choose path 1D, and therefore node 2

will remain to choose path 2D. Node 3 can change to 342D only if node

4 chooses 42D. Though 42D is a valid assignment for node 4 to choose,
it will not choose path 42D because path 43D is also a valid assignment

and its most favorable assignment. Therefore, any sequence of nodes
activated after time t” will not change to different path assignments, so

the network is in a stable solution.

2. U(t'") = 3: Node 3 will not change its path since node 4 chooses path
43D so there is no option for node 3 to choose 342D. As case 1 states
above, whenever node 2 and node 1 are activated next, they will choose
paths 2D and 13D respectively, and therefore the network is in a stable

solution.

3. U(t') = 1: If node 1 is activated next, then it will choose path 13D,
and when node 2 is activated after that, it will have to choose path 2D.

Neither node 4 nor node 3 will change its path assignments since both
nodes have chosen their most favorable paths. Therefore, the network

is in a stable solution.

4. U(t') = 2: There are two scenarios:

(a) Node 2 chooses path 21D: This implies that node 1 was previously

activated and chose path 1D. If 1 chose path 1D, this implies that

node 3 did not choose path 2D. However, this is a contradiction
since it is assumed that node 3 choose path 3D. Therefore, node

2 cannot choose path 21D if node 4 chose path 43D.

(b) Node 2 chooses path 2D: Then when node 1 is next activated, it
had chosen path 13D. Now the network is in the stable solution.

Proposition 2.3.7. NAUGHTY GADGET will not oscillate in REA.

Proof. T will show that node 4 does not oscillate. There are 3 cases:

12

O

1. Node 4 chooses no route: Since neighboring nodes 2 and 3 update
infinitely often, node 4 will process updates from nodes 2 and 3 and
choose a route.

(a) If node 3 is activated before node 2, then it will choose path 3D
since node 4 has chosen no route. When node 4 is next updated,
it will choose path 43D and it will drop into a stable solution as
shown in Proposition 2.3.6.

(b) If node 2 is activated before node 3, then it will either choose
path 21D or path 2D. If it chooses path 2D, then the next time
that node 4 is updated, node 4 could choose 42D, which will not
oscillate by case 3. If node 2 chooses path 21D, then node 4 will
eventually get a route after node 3 gets activated an chooses path
3D. Therefore node 4 will choose a path when it is activated after
all its subsequent neighbors are activated and choose routes.

2. Node 4 chooses path 43D infinitely often: This will drop into a stable
solution by Proposition 2.3.6.

3. Node 4 chooses path 42D infinitely often: This will go into a stable
state by Proposition 2.3.8 below.

Therefore, REA cannot oscillate in REA. [

Proposition 2.3.8. If node 4 chooses path 42D in NAUGHTY GADGET
in REA, the network will go into a stable state.

Proof. Assume that node 4 was activated at time t, so that node 2 was
activated and chose path 2D at some time t' < ¢. I claim any arbitrary
activate sequence at time ¢ + 1 will go into a stable state

When node 3 is next activated, it will choose path 342D, since that is
its most favorable path. When node 1 is next activated, it will choose path
1D, since it is its only valid path. However, the next time that node 2 is
activated, it will choose path 21D, since that is its most favorable path.
Consequently, this path assignment will put the network into a stable state
where it cannot oscillate. When node 4 is next updated, it will choose no
route because it cannot send messages to either of its neighbors by their
chosen paths. Therefore, when node 3 is next updated, it will choose path
3D, since it processes that node 4 chose no route. And finally, when node 4
is updated next, it will choose path 43D, and by case 2 in Proposition 2.3.7,
it will be in a stable solution. O]

Proposition 2.3.9. NAUGHTY GADGET has an oscillatory activation se-
quence in RMA.

13

Proof. RMA is a model like REA, except that when a node updates, it
processes messages from some subset of its neighbors. (In REA, a node
processes messages from every one of its neighbors). Constrain node 4 to
only process messages from path 342D. (So node 4 will only receive messages
from node 2, and it will never choose path 43D). If the channels that are
activated at each step are given by X (¢), then we can have a cycle as follows:

t= 1 2 3 4
X)) = Aldd} {(d,)} {(d,1),(1,2)} {(d,1),(1,2),(d,3)}
m(t) = —— 1d 1d 1d
" my(t) = — — 21d 21d
Wg(t): —_ —_ —_ 3d
7T4<t>: —_ —_ —_ —_
5 6 7
{3.1),2,0),(d;3) } {(3,1),(d,2),(d,3)} {(3,1),(d,2),(d,3),(4,2)}
13d 13d 13d
21d 2d 2d
3d 3d 3d
— — 42d
8 9 10
{(3.1),(4,2),(4,3), 2,4} {(d1),(d,2),(4.3),(4,2)} {(d,1),(1,2),(4,3),(2,4)}
13d 1d 1d
2d 2d 21d
342d 342d 342d
42d 42d 42d
11 12
{(d,1).(1,2),(4,3)} {(d,1),(1,2),(d.3)}
1d 1d
21d 21d
342d 3d

Because 4 can only choose path 42D, (or no path at all), the network oscillates
between 2 valid assignments. One is where 4 chooses no path, and node 2
is in its most favorable path, and the other is where 4 chooses 42D and 3
is in its most favorable path. If 4 could process an update from 3, then we
would drop into a stable assignment, and the network would not oscillate.
In any step in the activation sequence illustrated above, at least one node,
call it x, wants to switch to a more favorable path, therefore, when x is next
activated, it choose a more favorable path, and the network path assignments

14

Weak “Polling” Models Strong Models

Figure 2.3: A map indicating updates to the previously known relationships
between network models with reliable channels. Arrows denote preservation
of oscillation. Crossed-out arrows indicate models on the right that can
oscillate in ways the models in the middle and left cannot. Green circles
designate my contributions

will change. Since at least one node will want another path assignment, it
will oscillate, then the arguments of NAUGHTY GADGET apply and we
can get an oscillation. O

Though it was previously assumed that models REA and RMA were in
the same model category, the example network NAUGHTY GADGET shows
that RMA can oscillate in ways that REA cannot. With this statement, REA
and RMA are no longer in the same category, and further REO and REF
are not in the same category. Using this knowledge, we are now working
on creating new categories for these models since the relationships are more
complicated than what was previously assumed.

15

Chapter 3

Robotic Networks

3.1 Definition

Robotic networks are a group of robots that can sense their own position,
exchange messages according to their communication topology, process in-
formation, and control their motion [1]. The following the basic definition
of a robot and a model for movement:

A model robot is a continuous-time continuous space dynamical system
that is a tuple (X, U, Xy, f), where X is a d-dimensional space chosen from
R? S¢ and the Cartesian products R% x S%, for some d; + dy = d called
the state space. U is a compact subset of R™ containing 0,,, called the input
space. Xy is a subset of X, called the set of allowable initial states. And
f: XaU — R is a continuously differentiable control vector field on X, that
is , f determines the robot motion x : R>y — X via the control system

subject to the control u: Rso — U.

r € X and u € U are referred to as the physical state and an input of
the robot. Usually, the physical state will have some knowledge of location,
or location and velocity.

Definition 1. A robotic network S, consists of a tuple (I, R, E¢ppm) where
I = {1,..,n}, Iis called the set of unique identifiers. R = {R"};c; =
{(xt U[i},Xg],f[i])}iel is a set of mobile robots. And E,,.,, the commu-
nication edge map, is a map from ;e X to the subset of I x I.

In order to show connectivity in a robotic network, we create a set cover
on the robotic network. If the distance between any two robots is covered

16

by a circular segment, or a set of circular segments illustrating their commu-
nication range, then the robots are said to be connected. If the network is
entirely covered (ie every robot is connected to every other robot), then the
network as a whole is connected.

Unlike communication models in networks, robotic networks assume con-
nectivity initially. If we were to strip this assumption, how could we general-
ize the notion of a connected network from an arbitrary initial state? In the
next section, I discuss a probable tool for maintaining and testing network
connectivity.

3.2 Connectivity in Robotic Networks

Because connectivity is a topological issue, I have been looking at ways to
compute the topology of a given robotic network. The Mayer-Vietoris Se-
quence [5] can compute algebraic invariants of topological spaces. If we look
at a robotic network as a sequence of subspaces (such that each subspace con-
tains a strongly connected group of robots), we can apply the Mayer-Vietoris
Sequence to relate the homology groups of the space to the homology groups
of the subspace.

Using the definition of the mathematical definition of a robotic definition
in [6] , we can partition the set of robots, S C x-y plane. To apply the
Mayer-Vietoris Sequence, choose a pair of subspaces, A, B C X, where X is
the union of the interiors of A and B, then the Mayer-Vietoris Sequence has
the form:

.— H,(A N B) = H(A) & H,(B) =y H,(X) =5 H,.1(A) B) —
...... — Hy(X) = 0

After studying several ”basic” applications of the sequence to spheres and
Mobius strips, I started contemplating the sequence’s pertinence to robotic
networks. FEven if we could apply the Mayer-Vietoris Sequence to a set
generalization of a network, could this structure truly model the connectivity
of a continuously changing network?

Topology objects are appropriate to study when examining connectivity
in a robotic network. However, it is difficult to apply the Mayer-Vietoris
Sequence to a robotic network because the network dynamics and communi-
cations between the robots are constantly changing. Since the Mayer-Vietoris
Sequence relates the homology group of any space to the homology group of
two of its subspace and their intersection, these spaces need to stay constant.

17

But most robotic networks change communication connectivity with their
neighbors over time, and the connectivity of the network usually changes
constantly. Therefore, I claim that using the Mayer-Vietoris Sequence is not
entirely applicable to distributed robotic networks because the set properties
are constantly changing, and therefore the group homology (the key compo-
nent in using the Mayer-Vietoris Sequence), will be constantly changing, and
so applying the Mayer-Vietoris Sequence is not a realistic tool to determine
connectivity.

18

Chapter 4

Conclusions

Using the taxonomy of communication models, I have generalized conver-
gence and connectivity in networks. I defined realization relationships and
classified models based on their oscillation behavior.

Though it was previously assumed that some communication models
were nearly equivalent to other models, by using the example network of
NAUGHTY GADGET [9], network connectivity depends on the communi-
cation model in nontrivial ways. For some pairs of models, any execution
of one model can be realized as an execution of other models. Conversely,
as shown in the results, we can show by example that some executions in
some models cannot be realized in other models so that there are network
instances which are connected in one model but oscillate in another model.

When looking at robotic networks in particular, it is difficult to model
connectivity when initial assumptions about the communication of the net-
work are overlooked. Because communication connectivity with neighboring
nodes changes rapidly over time, it is difficult to generalize the connectivity of
the network as a whole. In addition, it is difficult to apply topological objects
to generalize notions of connectivity because of the changing environment of
the system.

19

Chapter 5

Future Work

[am continuing to work on this project to try to answer some of the remaining
questions of this classification. We have no extensively studied models in
which multiple nodes are activated simultaneously. There is also the question
of algorithm behavior in the context of mixed channels.

I am specifically concentrating on the role of unreliable channels. Al-
though unreliable channels model reliable channels, (hence some results for
unreliable channels do apply to a mixture of reliable and unreliable channels),
we do not have results when nodes pool and others act on messages. Finally,
the question of behavior in the presence of adversarial or unfaithful nodes
is important. We assume that nodes use the most recent information that
they have to execute the algorithm when activated; however, in adversarial
settings, nodes may use the other messages to read to act in different ways
that affect network connectivity.

20

Bibliography

1]

F. Bullo, J. Cortes, S. Martinez. Distributed Control of Robotic Net-
works: Mathematical Approach to Motion Coordination Algorithms.
Princeton Univ. Press, Princeton, 2009.

F. Bullo, R. Carli, P. Frasca. Gossip Coverage Control for Robotic Net-
works: Dynamical Systems on the Space of Partitions. December 28,
2009, available at http://arxiv.org/pdf/0903.3642v2.pdf

S. Martinez, F. Bullo, J. Cortes, E. Frazzoli. Synchronous Robotic Net-
works and Complexity of Control and Communication laws. February 1,
2008, available at http://arxiv.org/pdf/math/0501499v1

S.I. Roumeliotis, M.J. Mataric. 7Small-World” Networks of Mo-
bile Robots, American Association for Artificial Intelligence, avail-
able at http://www-users.cs.umn.edu/~stergios/papers/aaai00_
small_world.ps.

A. Hatcher. Algebraic Topology. Cambridge University Press, Cam-
bridge, 2002. Available at http://www.math.cornell.edu/~hatcher/
AT/AT.pdf.

S. Martinez, J. Cortes, F. Bullo . Motion Coordination with Distributed
Information. IEEE Controls Magazine, August 2007.

J. Cortes . Distributed Motion Coordination of Robotic Networks. CON-
NECT: Frontiers in Science and Technology. February 18, 2010.

A.D. Jaggard, V. Ramachandran, R. Wright .The Impact of Com-
munication Models on Routing-Algorithm Convergence. Proceedings of

ICDCS 2009. June 20009.

T. G. Griffin, F. B. Shepherd, and G. Wilfong. The Stable Paths Problem
and Interdomain Routing. IEEE/ACM Transactions on Networking, Vol.
10, No. 2, April 2002.

21

