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1 Abstract

In this paper we consider an a randomized test for a shift in a non-parametric
setting developed by Bell and Docsum and by an alternative means find the
asymptotic relative efficiency is 1.

2 Introduction

Given two independent samples X1, . . . , Xm and Y1, . . . , Yn from populations
with continuous cumulative distribution functions F0(x) and Fδ(x) = F0(x−δ).
We will consider testing the null hypothesis:

H0 : δ = 0

against the one-sided alternative hypothesis

H1 : δ > 0.

This is a classic set up for the t-test or z-test in the case where

F0(x) = Φ(x)
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where Φ is the cumulative density of a normal distribution. If it is suspected
that F0 is not normal then it is reasonable to consider a non-parametric test
such as the Mann-Whitney U test. The asymptotic cost of using the Mann-
Whitney test over the classic t-test when the F0 really is normal is given by
asymptotic relative efficiency 3

π .

2.1 Asymptotic Relative Efficiency

Asymptotic relative efficiency is a means of determining the power of one test
against another with large sample sizes. In this case, we will consider a sequence
of pairs of populations that tend to the null at a

√
n rate. On this sequence of

alternatives we compare the sample size of each test required to attain fixed α
and β levels such that the power is between 0 and 1. If the limit of the ratio
of the sample sizes exists then that ratio is the ARE. More technically, given a
sequence of estimators, δn of g(θ) satisfying

√
n[δn − g(θ)]→ N(0, τ2)

and a sequence of estimators δ′n′ , where δ′n′ is based on n′ = n′(n) observations,
also satisfies

√
n[δ′n′ − g(θ)]→ N(0, τ2), then the asymptotic relative efficiency

of {δn} with respect to {δ′n′} is

lim
n→∞

n′(n)

n
,

provided the limit exists and is independent of the subsequences n′.
To recover this loss of efficiency we will consider a randomized test developed

by Bell and Doksum [1]. In this test, an observation of rank i in the pooled
original data will be replaced by an observation of rank i in an independent
normal sample. The difference of the means of the new samples is the statistic
we will consider.

Under the null F0(x) = Fδ(x), the probability that rank(xi), in the pooled
sample, is less than rank(yj) is .5 because F0 is continuous for all i and j. So,
the sample that replaces the x′s is iid standard normal, as is the case for the
y′s. Thus, the z-test is a justified test for determining a difference in the means
of the replacement samples. This is a direct computation done in [1].

Lemma 1. Let F be a continuous cpf and let H be any cpf. If W1,W2, . . . ,WN ,
and Z1, Z2, . . . , ZN are independent random samples with cpf’s F and H, respec-
tively, if R(Wi) denotes the rank of Wi among W1,W2, . . . ,WN , and if Z(i) is
the ith order statistic of Z1, Z2, . . . , ZN ; then Z(R(W1)), Z(R(W2)), . . . , Z(R(WN ))
have the same joint distribution as the random sample of Z1, Z2, . . . , ZN .
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Proof. Let AN be a Borel set in N dimensional Euclidean space.

P{Z(R(W1)), . . . , Z(R(WN ))] ∈ AN}

=
∑

P{[Z(r1), . . . , Z(rN )] ∈ AN |R(W1) = r1, . . . , R(WN ) = rN}P{R(W1) = r1, . . . , R(WN ) = rN}

where the sum is over all the possible permutations of {r1, . . . , rN} of the ranks{1, . . . , N}

=

∑
P{[Z(r1), . . . , Z(rN )] ∈ AN}

N !

=
∑

P{[Z(r1), . . . , Z(rN )] ∈ AN |R(Z1) = r1, . . . , R(ZN ) = rN}P{R(Z1) = r1, . . . , R(ZN ) = rN}

= P{[Z1, . . . , Zn]} ∈ AN}

Since P{Z(R(W1)), . . . , Z(R(WN ))] ∈ AN} = P{[Z1, . . . , Zn} ∈ AN} for each
Borel set, Z(R(W1)), Z(R(W2)), . . . , Z(R(WN )) have the same join distribution
as the random sample of Z1, . . . , ZN .

Under the alternative distribution, the thinned sample does not have a nor-
mal distribution. In fact for a fixed sample size the pseudo X ′s may not be
independent from the pseudo Y ′s or indeed from each other although they are
exchangeable because the pseudo X ′s and Y ′s have been reordered. This is a
problem because we would like to use the central limit theorem to compute the
ARE of the difference.

2.2 A poissonization approach

Poissonization is a device we used to create the random samples because the
number of one size interval will be independent of the one in a disjoint interval.
Fix n, ( it will tend to ∞ later).

Let X be a non-homogeneous poisson point process on R, following intensity
function

λn,0(x) = nφ(x)

This will scatter a poisson number:

M = Mn ∼ pois(n) of points x1, ..., xM on R

Fixing M, (i.e. conditioning on it ), the x’s were an iid sample of size M from
N (0, 1). (Needs a theorem to justify)

Independently let Y be a non-homogeneous poisson point process following
intensity function

λn,δ(y) = nφ(y − δ)

(δ puts us on the alternative; later we’ll take a sequence of δ’s that tend to 0 at
some rate.) This will also scatter a poisson number

N = N(n) of points y1, ..., yN
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(As if conditioning on N, the Y’s were an iid sample of size N from N (δ, 1).
(Needs the same theorem to justify)

Now superposing the two processes we have a poisson point process. W say,
with intensity: n(φ(w) + φ(w − δ)), of which X and Y are thinned versions,
hence poisson processes in their own right.

2.3 We can extend to different sample sizes

We can extend to a more general asymptotic setting, where the intensity function
for Y is knφ(y − δ) for some fixed k > 0, allowing for the sample sizes to grow
in some asymptotic proportion to each other. Extension to proportional growth
rate is a useful generalization that is not hard, but it is not done here.

2.4 Conditioning on M and N

Now, conditioning on M and N ( or just their sum ), but otherwise indepen-
dently of the mechanism that produced the X ′s and the Y ′s. Let:

z1, ..., zM+N ∼ iid N (0, 1)

put the order statistics W(i) into order correspondence with the Z(i) : i =
1, ...,M + N and by referring back to the sample identity labels X or Y , that
were pooled to form the W ′s, pull out an ordered subsample of M pseudo-X ′s,
x∗(1), ..., x

∗
M where for each i

x∗(i) is the ith largest among the ordered Z ′s that ”come from an X”

Do the corresponding thing to get an ordered subsample of N pseudo Y ′s,
{Y ∗(i)}.

Give the {X∗(i)} and {Y ∗(i)} some uniform random shuffles. (ie equal proba-

bility for all permutations). These shuffles should be independent of each other,
and everything else that has gone before, except the M and N , which are con-
ditioned on.

This will give unordered sets {X∗i } and {Y ∗i }.

With M , N conditioned on these are in fact iid independent samples from
two densities. What are they?

Well, let’s recognize too that these ensembles are realizations of two new non-
homogeneous poisson processes. We need to identify λ′s the intensity functions;
they are not necessarily even normal in shape. To get around this problem we
will use a linear perturbation formula for the inverse functions.
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3 A Linear Perturbation Formula for Inverse
Functions

3.1 Set Up

Define the symbol ow(δ):

ow(δ) ∈ {f(δ, w) : R2 → R| lim
δ→0

f(δ, w)

δ
= 0 for each w}

We will often not include the subscript w when it is clear from context that
ow(δ) is continuous in w. Let h0(w) and g(w) have continuous derivatives on a
closed interval I ⊂ R.
Let h0(w) be have a strictly positive derivative; hence h0(w) is invertible.
Let {hδ(w) : δ ∈ R≥0} be a smoothly indexed family of functions. (i.e. partial
derivatives in δ (for fixed w) are continuous for δ in some neighborhood of 0)

satisfying
hδ(w) = h0(w) + δg(w) + o(δ)

Proposition 2. If g : R → R is invertible and a, b ∈ R with b 6= 0 then
h(x) = a+ bg(x) is invertible with

h−1(y) = g−1
(
y − a
b

)
Proof.

h(h−1(y)) =h

(
g−1

(
y − a
b

))
=a+ bg

(
g−1

(
y − a
b

))
=a+ b

(
y − a
b

)
=y

and the other direction:

h−1(h(x)) =h−1(a+ bg(x))

=g−1
(
a+ bg(x)− a

b

)
=g−1 (g(x))

=x
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Proposition 3. If o(x) is a contractive map, o(0) = 0 is the fixed point, and
f(x) = x+ o(x) is invertible then

f−1(y) = y + õ(y)

where õ(y) = −o(y−o(y−o(y−· · · ))). In particular, if o(x) is little o in x then
õ(y) is little o in y.

Proof. Fix y. õ(y) + y is the fixed point of the contractive map x 7→ y − o(x).
So, the contractive mapping theorem implies õ(y) is a function of y, it does not
depend on x. Then we can find the inverse of f .

x = y + o(y)

x− o(y) = y

x− o(x− o(y)) = y

x− o(x− o(x− o(x− · · · o(y)))) = y

x+ õ(x) = y

õ a contractive map.

|õ(x)− õ(y)| =|õ(x)− õ(y)|
=|õ(x)− õ(y)− (x− y) + (x− y)|
=|f−1(x)− f−1(y)− (x− y)|
=|f−1(f(x̃))− f−1(f(ỹ))− (f(x̃)− f(ỹ))|
=|x̃− ỹ − (x̃+ o(x̃)− ỹ − o(ỹ))|
=| − o(x̃) + o(ỹ)|

We also have õ(0) = 0 since 0 = f(0) = f−1(0) = 0 + õ(0).

Lemma 4. Let functions h0(w) and g(w) be C1 functions on the closure of
some bounded, open interval I and let h0 be invertible on I. Define hδ(w) =
h0(w) + δg(w) + o(δ) where o(δ) is contractive with o(0) = 0 then, for small δ
and u ∈ h0(I),

h−1δ (u) = h−10 (u)− δ( ∂
∂u
h−10 (u))g(h−10 (u)) + õ(δ)

Proof. let Ic be the bounded closure of I. Suppose with out loss of generality

that h0 is strictly increasing on I. ∂h0(w)+δg(w)
∂w > 0 for all w ∈ I because

∂h0(w)
∂w > ε because h0 is C1 and strictly increasing on I and g(w) is bounded

on Ic. Then Proposition 2 gives hδ is invertible on h0(I).
Proposition 3 states the inverse of f(δ) = δ + o(δ) is f−1(δ) = δ + ô(δ). Fix

u, when g(u) 6= 0 Proposition 2

h−1δ (u) =

(
δ − h0(u)

g(u)

)
+ ô

(
δ − h0(u)

g(u)

)
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We have h−10 (u) =
(

0−h0(u)
g(u)

)
+ô
(

0−h0(u)
g(u)

)
. Let õ(δ) = ô

(
δ−h0(u)
g(u)

)
−ô
(

0−h0(u)
g(u)

)
.

limδ→0
õ(δ)
δ = 0 because ô is contractive with ô(0) = 0.

Finally we check

(
∂

∂u
h−10 (u))g(h−10 (u))g(u)

=
g(h−10 (u))g(u)

h′0(h−10 (u))

=
g(w)g(u)

h′0(w)

=
g(w)g(h−10 (w))

h′0(w)

=1

Theorem 5. Let functions h0(w) and g(w) be C1
0 : R → R such that h0(u) is

strictly increasing, h−10 (u) exists and g′(w) is bounded. Define hδ(w) = h0(w)+
δg(w) + o(δ). Then there exists δ0 such that for δ0 ≥ δ > 0, h−1δ exists on a
bounded interval and

h−1δ (u) = h−10 (u)− δ( ∂
∂u
h−10 (u))g(h−10 (u)) + õ(δ)

Proof. h0(w) is strictly increasing on the interval so there exists w0 such that
for all w on the interval h′0(w) ≥ h′0(w0) > 0. Let ε = h′0(w0). Since g′(w)
is bounded there exists δ1 such that for all w δ1 ≥ δ > 0 ε

2 > |δg
′(w)|. Since

limδ→0 o(δ) = 0 there exists δ2 > 0 such that for δ2 ≥ δ > 0 |o(δ)| < ε
2 . Then we

may take δ0 = min[δ1, δ2] so that for δ0 ≥ δ > 0 hδ(w) is also strictly increasing
and therefore h−1δ (u) exists.

Consider the following set of graphs generated by Mathematica using the
code:

h0[x_] := (x + .6)^6;

h01[y_] := z /. Solve[h0[z] == y, z][[6]];

h0d[x_] :=

h0[x] + (FullSimplify[

Normal[Series[Sin[15*z + 1], {z, 0, 11}]] /. z -> x]/50);

h01d[y_] := z /. Solve[h0d[z] == y, z][[6]];

h01d2[y_] :=

z /. Solve[h0d[z] == y, z][[8]]; Plot[{h0[x], h01[x], h0d[x],

h01d[x], h01d2[x], x}, {x, -.1, .35},

PlotStyle -> {Red, Red, Blue, Blue, Blue, Dashed}, AspectRatio -> 1,

PlotRange -> {-.1, 0.35},

Epilog -> {Text["\!\(\*

StyleBox[SubscriptBox[
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StyleBox[\"h\",\nFontSize->16], \"0\"],\nFontSize->16]\)", {.02, \

.04}], Text["\!\(\*

StyleBox[SubsuperscriptBox[

StyleBox[\"h\",\nFontSize->16], \"0\", \"l\"],\nFontSize->16]\)", \

{.04, .02}], Text["\!\(\*

StyleBox[SubsuperscriptBox[

StyleBox[\"h\",\nFontSize->16], \"\[Delta]\", \"l\"],\n\

FontSize->16]\)", {.12, .03}], Text["\!\(\*

StyleBox[SubsuperscriptBox[

StyleBox[\"h\",\nFontSize->16], \"\[Delta]\", \"l\"],\n\

FontSize->16]\)", {.036, .12}]}]

We will consider a small portion of this picture to illustrate the proof.

Figure 2: Diagram

Since h0 and hδ are C1
0 functions we can approximate each with a linear

function to arbitrary accuracy on a sufficiently small region. Fix u for all ε > 0
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Figure 1: A large view
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there exists δ0 > 0 such that δ0 ≥ δ > 0 implies

max[ sup
x,y∈[u−δ,u+δ]

|h0(x)− h0(y)|, sup
x,y∈[u−δ,u+δ]

|hδ(x)− hδ(y)|, D,E] < ε

Without loss of generality we can assume that h−10 (w) > h−1δ (w) then

h−1δ (w) = h−10 (w)−D

and E
D ≈ h

′
0(w) implies D ≈ E

h′
0(w) . Since o(δ)→ 0 as δ → 0 we have

hδ(w)− h0(w) = E ≈ δg(w) for small δ

Then D ≈ δg(w)
h′(w) but we can express w in terms of u: w = h−10 (u) then after a

substitution

h−1δ (u) = h−10 (u)− δ( ∂
∂u
h−10 (u))g(h−10 (u)) + õ(δ)

where õ(δ)→ 0 as δ → 0.

Then show that

1. EδX
∗
1 = − δ2

2. EδY
∗
1 = δ

2

Therefor separation is still δ and the asymptotic power will be the same for
δ → 0 inversely to 1√

n
.
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and Its inverse.pdf
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h0(normal)
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inverse of (h0+g)
inverse of h0
y=x

Figure 3: when δ = 1 hδ looks like

4 Computing the Mean and Variance

We need the mean and variance of x∗i ( and y∗i ):

Mean: Eδ(x
∗
1) = 2

∫ ∞
−∞

x
φ(H−1δ (Φ(x)))φ(x)

φ(H−1δ (Φ(x))) + φ(H−1δ (Φ(x))− δ)
dx

Let:

Hδ(w) =
1

2
(Φ(w) + Φ(w − δ)).

∂

∂δ
Hδ(w)

∣∣∣∣
δ=0

= −1

2
φ(w − δ)

∣∣∣∣
δ=0

= −1

2
φ(w)
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then Hδ(w) = Φ(w)− 1

2
φ(w)δ for δ sufficiently small

We use Theorem 4 to compute the inverse. We need h0 and g.

h0(w) = Φ(w)

g(w) =
1

2
φ(w)

Then these are substituted into the formula given in Theorem 4 for the inverse.

H−1δ (u) = h−10 (u) + δ(
∂

∂u
h−10 (u))g(h−10 (u)) + õ(δ)

H−1δ (u) = Φ−1(u) + δ(
∂

∂u
Φ−1(u))

1

2
φ(Φ−1(u)) + õ(δ)

H−1δ (u) = Φ−1(u) + δ(
1

φ(Φ−1(u)
))

1

2
φ(Φ−1(u)) + õ(δ)

H−1δ (u) = Φ−1(u) +
δ

2
+ õ(δ)

so we have

H−1δ (Φ(x)) = x+
δ

2
+ õ(δ)

Then substituting back into the integral and omitting the error term:

2

∫ ∞
−∞

x
φ(H−1δ (Φ(x)))φ(x)

φ(H−1δ (Φ(x))) + φ(H−1δ (Φ(x))− δ)
dx

= 2

∫ ∞
−∞

x
φ(x+ δ

2 )φ(x)

φ(x+ δ
2 ) + φ((x+ δ

2 )− δ)
dx

= 2

∫ ∞
−∞

x
φ(x+ δ

2 )φ(x)

φ(x+ δ
2 ) + φ(x− δ

2 )
dx

Then we can also Taylor φ(x+ δ
2 ) in about δ = 0

φ(x+
δ

2
) = φ(x) +

δ

2
φ′(x) + o(δ)

= φ(x)(1− δx

2
) + o(δ)

similarly

φ(x+
δ

2
) = φ(x)(1 +

δx

2
) + o(δ)
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Then substituting these two expansions back into the integral we have:

2

∫ ∞
−∞

x
φ(x+ δ

2 )φ(x)

φ(x+ δ
2 ) + φ(x− δ

2 )
dx

= 2

∫ ∞
−∞

x
φ(x)(1− δx

2 )φ(x)

φ(x)(1− δx
2 ) + φ(x)(1 + δx

2 )
dx

= 2

∫ ∞
−∞

x
φ(x)(1− δx

2 )

(1− δx
2 ) + (1 + δx

2 )
dx

=

∫ ∞
−∞

xφ(x)(1− δx

2
) dx (])

=

∫ ∞
−∞

xφ(x) dx− δ

2

∫ ∞
−∞

x2φ(x) dx

= −δ
2

Thus we have Eδ(x
∗
1) = − δ2 and similarly we find Eδ(y

∗
1) = δ

2 under the null.

Starting at ] we will compute Eδ(x
∗
1
2)

Eδ(x
∗
1
2) =

∫ ∞
−∞

x2φ(x)(1− δx

2
) dx

=

∫ ∞
−∞

x2φ(x) dx− δ

2

∫ ∞
−∞

x3φ(x) dx

= 1

Thus we have Eδ(x
∗
1
2) = 1 − o(δ) and similarly we find Eδ(y

∗
1
2) = 1 − o(δ)

under the null.
For δ near zero x∗ is very near normally distributed.
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Figure 4: small δ

For large δ the pseudo x’s are skewed away from zero.
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of sx big delta.pdf
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Figure 5: large δ

4.1 An application of CLT

Now we compute the distribution of the difference in the means. Note here that
x∗i and y∗j are independent because they were generated by a thinned poisson
process.

lim
n→∞

√
n

(
ȳ∗ − x̄∗ − δ√

1− o(δ)

)
= lim
n→∞

√
n (ȳ∗ − x̄∗ − δ) = N (0, 1)

by Slutsky’s Theorem and the Central Limit Theorem. But we also have

lim
n→∞

√
n (ū− v̄ − δ) = N (0, 1)

where ui are iid from Φ(x) and vi are iid from Φ(x− δ). Thus, the ARE of the
Bell-Doksum procedure against the standard z-test, and t-test, is 1.
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4.2 De-poissonization

If I had more time I would go on to undo the poisson process that generated
the data to show that the data could have come from sampling a population.

5 Empirical Evidence

The following in an implementation, in R, of the test described in Bell and
Doksum [1]. Various versions of this test are used in computing figures that
follow.

RandTtest<-function(X, Y, alternative ="two.sided", paired = FALSE,

var.equal = TRUE, conf.level = 0.95){

Cx=complex(real =X, imaginary = rep(1,length(X)))

#The x’s are identified with a complex value of 1 where y’s have 0

XandY=sort(c(Cx,Y))

model=sort( rnorm( length( XandY)))

newX=rep(NA,length(X))

newY=rep(NA,length(Y))

k=1

j=1

for(i in 1:length(XandY)){

if(Im(XandY[i]) == 1){

newX[k] = model[i]

k=k+1}

if(Im(XandY[i])==0){

newY[j]=model[i]

j=j+1

}}

t.test(newX,newY, alternative=alternative, paired=paired,

var.equal=var.equal,conf.level=conf.level)

}

The following describes the ratio of sample sizes, starting at 5 and taking
steps of 5 to 200, required for the Bell Doksum procedure against the one sided
z-test with α = .05 and β = .2.

[1]0.6250000 0.7142857 0.8333333 0.8333333 0.8928571 0.8823529 0.8974359 0.9302326
0.9183673 0.9615385 0.9322034 0.9230769 0.9285714 0.9589041 0.9259259 0.9302326

[17]0.9550562 0.9677419 0.9500000 0.9345794 0.9459459 0.9565217 0.9583333 0.9523810
0.9541985 0.9629630 0.9642857 0.9655172 0.9863946 0.9615385 0.9687500 0.9638554

[33]1.0000000 1.0000000 0.9668508 0.9890110 0.9840426 0.9844560 0.9653465 0.9615385

5.1 Comparison to Mann-Whitney U

It is interesting to compare the Bell Doksum procedure to the Mann-Whitney
U test. I found that the U test is more powerful for sample sizes smaller than
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40 and because of the ARE the Bell Doksum procedure is more powerful for
large sample sizes.

> iterations=10000;randzSize=47;zSize=45;

> power=0;

> for(i in 1:iterations){

+ x=rnorm(randzSize);

+ sx=rep(NA,randzSize);

+ cx=complex(real=x,imaginary=rep(1,randzSize));

+ y=rnorm(randzSize,mean=sqrt(2)*(qnorm(.8)+qnorm(.95))/sqrt(zSize));

+ sy=rep(NA,randzSize);

+ xANDy=sort(c(cx,y));

+ z=sort(rnorm(2*randzSize));

+ a=1;b=1;

+ for(j1 in 1:(2*randzSize)){

+ if(Im(xANDy[j1])==1){sx[a]=z[j1];a=a+1}

+ else{sy[b]=z[j1];b=b+1}};

+ power=power+(qnorm(.95)<=((mean(sy)-mean(sx))*sqrt(randzSize/2)))/iterations};power

[1] 0.8017

> iterations=10000;USize=47;zSize=45;

> power=0;

> for(i in 1:iterations){

+ x=rnorm(USize);

+ y=rnorm(USize,mean=sqrt(2)*(qnorm(.8)+qnorm(.95))/sqrt(zSize));

+ power=power+(.05>=(wilcox.test(x,y,alternative="less")$p.value))/iterations};power

[1] 0.8004
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The following is a comparison of the Bell Doksum procedure against the Man
Whitney U test on various sample populations.

x y sample size

(
power of Bell Doksum

power of Man Whitney U

)
N(0, 1) N(0.828825, 1) 18

(
0.7498
0.7582

)
N(0, 1) N(0.4539661, 1) 60

(
0.7795
0.7787

)
N(0, 1) N(0.2486475, 1) 200

(
0.7945
0.781

)
exp(1) exp(.5) 18

(
0.5289
0.5342

)
exp(1) exp(.6) 60

(
0.78648
0.77355

)
exp(1) exp(.8) 200

(
0.63485
0.61019

)
N(−.5, 1) +N(.5, 1) N(0, 1) +N(1, 1) 18

(
0.63039
0.64357

)
N(−.3, 1) +N(.7, 1) N(0, 1) +N(1, 1) 60

(
0.73273
0.72749

)
N(−.1.5, 1) +N(.85, 1) N(0, 1) +N(1, 1) 200

(
0.6787
0.66639

)
cauchy(0, 1) cauchy(.2, 1) 1000

(
0.6657
0.793

)
uniform(0, 1) uniform(.2, 1.2) 18

(
0.66841
0.59597

)
uniform(0, 1) uniform(.1, 1.1) 60

(
0.7263
0.56576

)
uniform(0, 1) uniform(.05, 1.05) 200

(
0.75744
0.52091

)
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