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1 Abstract

In this paper we consider an a randomized test for a shift in a non-parametric
setting developed by Bell and Docsum and by an alternative means find the
asymptotic relative efficiency is 1.

2 Introduction

Given two independent samples Xi,...,X,, and Yi,...,Y, from populations
with continuous cumulative distribution functions Fy(z) and Fy5(z) = Fo(x—9).
We will consider testing the null hypothesis:

Ho :0=0
against the one-sided alternative hypothesis
H1 ) > 0.

This is a classic set up for the t-test or z-test in the case where



where ® is the cumulative density of a normal distribution. If it is suspected
that Fp is not normal then it is reasonable to consider a non-parametric test
such as the Mann-Whitney U test. The asymptotic cost of using the Mann-
Whitney test over the classic t-test when the Fj really is normal is given by
asymptotic relative efficiency %

2.1 Asymptotic Relative Efficiency

Asymptotic relative efficiency is a means of determining the power of one test
against another with large sample sizes. In this case, we will consider a sequence
of pairs of populations that tend to the null at a /n rate. On this sequence of
alternatives we compare the sample size of each test required to attain fixed «
and ( levels such that the power is between 0 and 1. If the limit of the ratio
of the sample sizes exists then that ratio is the ARE. More technically, given a
sequence of estimators, d, of g() satisfying

\/ﬁ[an - 9(9)] - N(07 7—2)

and a sequence of estimators ¢/,,, where 4/, is based on n’ = n’(n) observations,
also satisfies \/n[d),, — g(0)] — N(0,72), then the asymptotic relative efficiency
of {8,,} with respect to {&/,} is

n'(n)

lim
n—oo N
provided the limit exists and is independent of the subsequences n’.

To recover this loss of efficiency we will consider a randomized test developed
by Bell and Doksum [1]. In this test, an observation of rank ¢ in the pooled
original data will be replaced by an observation of rank ¢ in an independent
normal sample. The difference of the means of the new samples is the statistic
we will consider.

Under the null Fy(z) = Fs(x), the probability that rank(x;), in the pooled
sample, is less than rank(y;) is .5 because Fy is continuous for all ¢ and j. So,
the sample that replaces the z’s is iid standard normal, as is the case for the
y's. Thus, the z-test is a justified test for determining a difference in the means
of the replacement samples. This is a direct computation done in [1].

Lemma 1. Let F' be a continuous cpf and let H be any cpf. If W1, Wa, ..., Wy,
and Z1,Zs, ..., Zn are independent random samples with cpf’s F and H, respec-
tively, if R(W;) denotes the rank of W; among W1, Wa, ..., Wi, and if Z(i) is
the it order statistic of Zy, Za, ..., Zn; then Z(R(W1)), Z(R(W2)), ..., Z(R(Wy))
have the same joint distribution as the random sample of Z1,Zs, ..., Z .



Proof. Let Ay be a Borel set in NV dimensional Euclidean space.

P{Z(R(Wh)),..., Z(R(Wn))] € An}
=Y P{[Z(r1),..., Z(ry)] € AN|R(W1) =r1,...,R(Wy) = rn}P{R(W1) = 71,...,R(Wyx) =y}

where the sum is over all the possible permutations of {ri,...,ry} of the ranks{1,..., N}

_ S P{[Z(r1),..., Z(rN)] € AN}
N!

= ZP{[Z(rl),...,Z(rN)] € AN|R(Z1)=r11,...,R(ZN) =rN}P{R(Z1) =711,...,R(ZN) = TN}
= P{[Z1,...,Z,]} € An}

Since P{Z(R(W1)),...,Z(R(Wn))] € An} = P{[Z1,...,Z,} € AN} for each
Borel set, Z(R(Wh)), Z(R(W3)), ..., Z(R(Wx)) have the same join distribution
as the random sample of Z1,..., Zx. O

Under the alternative distribution, the thinned sample does not have a nor-
mal distribution. In fact for a fixed sample size the pseudo X’s may not be
independent from the pseudo Y's or indeed from each other although they are
exchangeable because the pseudo X’s and Y’s have been reordered. This is a
problem because we would like to use the central limit theorem to compute the
ARE of the difference.

2.2 A poissonization approach

Poissonization is a device we used to create the random samples because the
number of one size interval will be independent of the one in a disjoint interval.
Fix n, ( it will tend to co later).

Let X be a non-homogeneous poisson point process on R, following intensity
function

Ano(#) = no(x)

This will scatter a poisson number:
M = M, ~ pois(n) of points z1,...,zp on R

Fixing M, (i.e. conditioning on it ), the x’s were an iid sample of size M from
N(0,1). (Needs a theorem to justify)

Independently let Y be a non-homogeneous poisson point process following
intensity function

Ans(y) = no(y —9)

(6 puts us on the alternative; later we’ll take a sequence of §’s that tend to 0 at
some rate.) This will also scatter a poisson number

N = N(n) of points y1,...,yn



(As if conditioning on N, the Y’s were an iid sample of size N from AN (4,1).
(Needs the same theorem to justify)

Now superposing the two processes we have a poisson point process. W say,
with intensity: n(¢(w) + ¢(w — 0)), of which X and Y are thinned versions,
hence poisson processes in their own right.

2.3 We can extend to different sample sizes

We can extend to a more general asymptotic setting, where the intensity function
for Y is kno(y — 0) for some fixed k > 0, allowing for the sample sizes to grow
in some asymptotic proportion to each other. Extension to proportional growth
rate is a useful generalization that is not hard, but it is not done here.

2.4 Conditioning on M and N

Now, conditioning on M and N ( or just their sum ), but otherwise indepen-
dently of the mechanism that produced the X’s and the Y’s. Let:

Zly s RM+N ™~ iid N(O, 1)

put the order statistics W(;) into order correspondence with the Z;) : i =
1,...,M 4+ N and by referring back to the sample identity labels X or Y, that
were pooled to form the W's, pull out an ordered subsample of M pseudo-X's,
;UZ‘U, ..., o3; where for each i

x’(*i) is the " largest among the ordered Z’s that ”come from an X”

Do the corresponding thing to get an ordered subsample of N pseudo Y's,
{Yi)+-

Give the {X7;)} and {Y{})} some uniform random shuffies. (ie equal proba-
bility for all permutations). These shuffles should be independent of each other,
and everything else that has gone before, except the M and N, which are con-
ditioned on.

This will give unordered sets { X} and {Y;"}.

With M, N conditioned on these are in fact iid independent samples from
two densities. What are they?

Well, let’s recognize too that these ensembles are realizations of two new non-
homogeneous poisson processes. We need to identify A’'s the intensity functions;
they are not necessarily even normal in shape. To get around this problem we
will use a linear perturbation formula for the inverse functions.



3 A Linear Perturbation Formula for Inverse

Functions
3.1 Set Up
Define the symbol o,,(6):
0,(6) € {f(5,w) : R? = R| girr%) f(é(;w) = 0 for each w}

We will often not include the subscript w when it is clear from context that
0y (0) is continuous in w. Let hg(w) and g(w) have continuous derivatives on a
closed interval I C R.
Let ho(w) be have a strictly positive derivative; hence ho(w) is invertible.
Let {hs(w) : 6 € R>o} be a smoothly indexed family of functions. (i.e. partial
derivatives in ¢ (for fixed w) are continuous for § in some neighborhood of 0)

satisfying

hs(w) = ho(w) + dg(w) + o(6)

Proposition 2. If g : R — R is invertible and a,b € R with b # 0 then
h(z) = a+ bg(x) is invertible with

Proof.




Proposition 3. If o(x) is a contractive map, o(0) = 0 is the fized point, and
f(z) = x4+ o(x) is invertible then

7 y) =y +oy)

where 6(y) = —o(y—o(y—o(y—--+))). In particular, if o(x) is little o in x then
o(y) is little o in y.

Proof. Fix y. 6(y) + y is the fixed point of the contractive map = — y — o(x).
So, the contractive mapping theorem implies 6(y) is a function of y, it does not
depend on z. Then we can find the inverse of f.

z=y+o(y)
z—oly) =y
z—o(r—o(y) =y
z—o(x—o(x—olr—--0y))) =y
z+o(x) =y
0 a contractive map.
|o(z) — o(y)| =[o(x) - o(y)]
=lo(z) = o(y) — (z —y) + (z — y)|
=IfH @) = () — (@~ )]
=N @) — @) — (F@) — f@))]
=T =7 —(Z+0(F) =y —o(y))|
=[ —o(Z) + o(y)|
We also have 6(0) = 0 since 0 = f(0) = f~1(0) = 0 + 6(0). O

Lemma 4. Let functions ho(w) and g(w) be C* functions on the closure of
some bounded, open interval I and let hy be invertible on I. Define hs(w) =
ho(w) + dg(w) + o(8) where o(d) is contractive with o(0) = 0 then, for small §
and u € ho(I),

_ _ 0, _ _ -
hy *(u) = hg (u) — 0(5, M0 H(u)g(hg ' () +6(6)
Proof. let I¢ be the bounded closure of I. Suppose with out loss of generality

that hg is strictly increasing on I. w > 0 for all w € I because

% > € because hg is C* and strictly increasing on I and g(w) is bounded

on I°. Then Proposition 2 gives hg is invertible on ho(I).
Proposition 3 states the inverse of f(§) =6 +o(d) is f~1(0) = 6 + 6(d). Fix
u, when g(u) # 0 Proposition 2

= () ()



We have hg ' (u) = (Ofg]zzg“»—f—é (0;’533“)). Let 6(5) = 6 (‘5;};%“))—6 (07h0(u)).
5(5)

lims_,o 5> = 0 because 0 is contractive with 6(0) = 0.
Finally we check

O

Theorem 5. Let functions ho(w) and g(w) be C& : R — R such that ho(u) is
strictly increasing, hy *(u) exists and g'(w) is bounded. Define hs(w) = ho(w) -+
Sg(w) + o(8). Then there exists &g such that for 5o > § > 0, hy' exists on a
bounded interval and
hy ' (u) = hg ' (u) — 5(%/151(“))9(%1(“)) +0(9)

Proof. ho(w) is strictly increasing on the interval so there exists wg such that
for all w on the interval h{(w) > hi(we) > 0. Let € = h{(wp). Since ¢'(w)
is bounded there exists §; such that for all w 6; > 6 > 0 § > |dg'(w)|. Since
lims_,0 0(d) = O there exists d2 > 0 such that for 6o > 6 > 0 |o(d)| < 5. Then we
may take dop = min[dy, d2] so that for dg > § > 0 hs(w) is also strictly increasing
and therefore h; ' (u) exists.

Consider the following set of graphs generated by Mathematica using the
code:

ho[x_] := (x + .6)76;
ho1ly_] := z /. Solvel[hO[z] ==y, z][[6]];
hod[x_] :=
hO[x] + (FullSimplify[
Normal [Series[Sin[15*z + 1], {z, 0, 11}]] /. z -> x]1/50);
hO1d[y_] := z /. Solvel[hOd[z] ==y, z][[6]];
ho1d2[y_]1 :=
z /. Solve[hOd[z] ==y, z][[8]]; Plot[{hO[x], hO1[x], hOd[x],
hOi1d[x], ho1d2([x], x}, {x, -.1, .35},
PlotStyle -> {Red, Red, Blue, Blue, Blue, Dashed}, AspectRatio -> 1,
PlotRange -> {-.1, 0.35},
Epilog -> {Text["\!\(\*
StyleBox [SubscriptBox [



StyleBox[\"h\",\nFontSize->16], \"O\"],\nFontSize->16]1\)", {.02, \
.04}], Text["\'\(\*

StyleBox [SubsuperscriptBox[

StyleBox[\"h\",\nFontSize->16], \"O\", \"1\"],\nFontSize->16]\)", \
{.04, .02}], Text["\!\(\*

StyleBox [SubsuperscriptBox[

StyleBox [\"h\",\nFontSize->16], \"\[Delta]l\", \"1\"],\n\
FontSize->16]1\)", {.12, .03}], Text["\!\(\*

StyleBox [SubsuperscriptBox [

StyleBox[\"h\",\nFontSize->16], \"\[Deltal\", \"1\"],\n\
FontSize->16]\)", {.036, .12}]1}]

We will consider a small portion of this picture to illustrate the proof.

ho

Figure 2: Diagram

Since hg and hs are C3 functions we can approximate each with a linear
function to arbitrary accuracy on a sufficiently small region. Fix u for all € > 0



Figure 1: A large view



there exists dg > 0 such that dg > 6 > 0 implies

max[  sup  |ho(z) —ho(y)l,  sup  |hs(z) —hs(y)|, D, E] <€
z,y€[u—38,u+d] z,y€[u—¥8,u+d]

Without loss of generality we can assume that iy ' (w) > h; ' (w) then
hs ' (w) = hg' (w) = D
£ ~ hj(w) implies D ~ % Since o(d) — 0 as 6 — 0 we have

hs(w) — ho(w) = E = dg(w) for small ¢

Then D = ‘;ﬂgzg but we can express w in terms of u: w = hy'(u) then after a
substitution

9,1

hy () = ho ' (w) = 8(5-hg  (w)g(hg ' (u)) + 6(3)

where 6(§) — 0 as § — 0. O
Then show that
1. BsX{=-%
2. BsYy =13

Therefor separation is still § and the asymptotic power will be the same for

. 1
4 — 0 inversely to T

10



and Its inverse.pdf

h0+g and Its inverse

m —
—e— hO(normal)
-8 - hO+g
—— inverse of (h0+g)
AN .
inverse of h0
y=X
— — /_/——

Figure 3: when § = 1 hg looks like

4 Computing the Mean and Variance

We need the mean and variance of x}( and y):

ean: ) = - T ¢(H71(¢(x))) () -

Let:




then Hs(w) = ®(w) — %qﬁ(w)é for § sufficiently small

We use Theorem 4 to compute the inverse. We need hg and g.
ho(w) = ®(w)

g(w) = 56(w)

Then these are substituted into the formula given in Theorem 4 for the inverse.

H; ) = by () + 62 (w)g (g () + 6(5)

Ju
Hy ) = @ () + 6587 () 56(87 () +0(6)
Hy () = 7 ) + 6t ))

Hy ' (u)

O () + g +6(6)

so we have

Then substituting back into the integral and omitting the error term:

> ¢(Hy ' (D()))9()
2/_0056(;5(]{51( dzx

®(2))) + ¢(Hy ' (®(2)) = 0)

Then we can also Taylor ¢(z + %) in about 6 =0

B+ 5) = 6(a) + 50/(2) + of0)
= o{a)(1 — °2) + o(0)
similarly
B+ 2) = 6(@)(1+ ) +0(9)

12



Then substituting these two expansions back into the integral we have:

) /°° (@ + 3)¢()

Cdar Do

N o (e 216
‘2ﬁm o)1 — %) + o(a)(1 + %)
:2/m$ oa)(1 - %)

o -+ A+ )

> oz
— [ s )
= x¢(x) dx — 3 xP(x) dr
_ 0
2
Thus we have Es(z}) = —3 and similarly we find E5(y;) = $ under the null.

Starting at # we will compute Es(z3?)

o 2
= /O:O 22¢(x) dx — g /Z 3¢(x) dx

Thus we have Es(z}?) = 1 — o(0) and similarly we find Es(y}?) = 1 — o(6)
under the null.

For ¢ near zero z* is very near normally distributed.

13
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Histogram of sx
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Figure 4: small ¢

For large ¢ the pseudo x’s are skewed away from zero.
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of sx big delta.pdf
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4.1 An application of CLT

Now we compute the distribution of the difference in the means. Note here that
z; and y; are independent because they were generated by a thinned poisson
process.

by Slutsky’s Theorem and the Central Limit Theorem. But we also have

lim v/n (i —v—3)=N(0,1)

n—oo

where u; are iid from ®(z) and v; are iid from ®(x — §). Thus, the ARE of the
Bell-Doksum procedure against the standard z-test, and t-test, is 1.

15



4.2 De-poissonization

If T had more time I would go on to undo the poisson process that generated
the data to show that the data could have come from sampling a population.

5 Empirical Evidence

The following in an implementation, in R, of the test described in Bell and
Doksum [1]. Various versions of this test are used in computing figures that
follow.

RandTtest<-function(X, Y, alternative ="two.sided", paired = FALSE,
var.equal = TRUE, conf.level = 0.95){

Cx=complex(real =X, imaginary = rep(l,length(X)))

#The x’s are identified with a complex value of 1 where y’s have 0
XandY=sort (c(Cx,Y))

model=sort( rnorm( length( XandY)))

newX=rep(NA,length(X))

newY=rep (NA,length(Y))

k=1

j=1

for(i in 1:length(XandY)){

if (Im(XandY[i]) == 1){

newX[k] = modell[i]

k=k+1}

if (Im(XandY[i])==0){

newY [j]=model [i]

j=j+1

}}

t.test(newX,newY, alternative=alternative, paired=paired,
var.equal=var.equal,conf.level=conf.level)

}

The following describes the ratio of sample sizes, starting at 5 and taking
steps of 5 to 200, required for the Bell Doksum procedure against the one sided
z-test with @ = .05 and 8 = .2.

[1]0.6250000 0.7142857 0.8333333 0.8333333 0.8928571 0.8823529 0.8974359
0.9183673  0.9615385 0.9322034 0.9230769 0.9285714 0.9589041 0.9259259
[17]0.9550562 0.9677419 0.9500000 0.9345794 0.9459459 0.9565217 0.9583333
0.9541985  0.9629630 0.9642857 0.9655172 0.9863946 0.9615385 0.9687500
[33]1.0000000 1.0000000 0.9668508 0.9890110 0.9840426 0.9844560 0.9653465

5.1 Comparison to Mann-Whitney U

It is interesting to compare the Bell Doksum procedure to the Mann-Whitney
U test. I found that the U test is more powerful for sample sizes smaller than

16

0.9302326
0.9302326
0.9523810
0.9638554
0.9615385



40 and because of the ARE the Bell Doksum procedure is more powerful for
large sample sizes.

> iterations=10000;randzSize=47;zSize=45;

>
>
+

+
+
+
+
+
+
+
+
+
+
+

[
>
>
>
+
+
+

power=0;

for(i in 1:iterations){
x=rnorm(randzSize) ;

sx=rep(NA,randzSize) ;
cx=complex(real=x,imaginary=rep(1l,randzSize));
y=rnorm(randzSize,mean=sqrt (2)* (qnorm(.8)+qnorm(.95))/sqrt(zSize)) ;
sy=rep(NA,randzSize) ;

xANDy=sort (c(cx,y));

z=sort (rnorm(2*randzSize)) ;

a=1;b=1;

for(j1 in 1:(2*randzSize)){

if (Im(xANDy [j11)==1){sx[al=z[j1];a=a+1}

else{sy[bl=z[j1];b=b+1}};
power=power+(qnorm(.95)<=((mean(sy)-mean(sx))*sqrt(randzSize/2)))/iterations};power

1] 0.8017

iterations=10000;USize=47;zSize=45;
power=0;

for(i in 1:iterations){

x=rnorm(USize) ;

y=rnorm(USize,mean=sqrt (2)*(qnorm(.8)+qnorm(.95))/sqrt(zSize));
power=power+(.05>=(wilcox.test(x,y,alternative="less")$p.value))/iterations};power

[1] 0.8004
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The following is a comparison of the Bell Doksum procedure against the Man

Whitney U test on various sample populations.

N(0,1)
N(0,1)
N(0,1)
exp(1)
exp(1)
exp(1)
N(-.5,1) + N(.5,1)
N(—.3,1)+ N(.7,1)
N(—.1.5,1) + N(.85,1)
cauchy(0,1)
uni form(0,1)
uni form(0,1)

uniform(0, 1)

References

Y

N (0.828825,1)
N(0.4539661, 1)
N(0.2486475, 1)

exp(.5)

exp(.6)

exp(.8)
N(0,1) + N(1,1)
N(0,1) + N(1,1)
N(0,1) + N(1,1)

cauchy(.2,1)

uniform(.2,1.2)
uniform(.1,1.1)

uni form(.05,1.05)

sample size (
18
60
200
18
60
200
18
60
200
1000
18
60

200

0.7498
0.7582
0.7795
0.7787
0.7945
0.781
0.5289
0.5342
0.78648
0.77355
0.63485
0.61019
0.63039
0.64357
0.73273
0.72749
0.6787
0.66639

0.793

power of Bell Doksum
power of Man Whitney U

N N N N N

0.6657)

0.66841
0.59597
0.7263
0.56576
0.75744
0.52091

[1] C. B. Bell and K. A. Doksum, Some new distribution-free statistics, The
Annals of Mathematical Statistics 36 (1965), no. 1, pp. 203214 (English).
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