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ABSTRACT. In this paper we study the Local Discontinuous Galerkin scheme for solv-
ing the stochastic heat equation driven by the space white noise. We begin by giving a
brief introduction to stochastic processes, stochastic differential equations, and their im-
portance in the modern mathematical context. From there, using an example stochastic
elliptic partial differential equation, we approximate the white noise term using piece-
wise constant functions and show that it will also hold for the stochastic heat equation.
We give an introduction to Local Discontinuous Galerkin method and produce a block
matrix equation by separating the stochastic heat equation into two first order partial
differential equations. We prove that the stochastic heat equation has a unique solution
since its expected value converges to the heat equation without the white noise term.
From there, we give a possible numerical way of solving the matrix equation as well as
how to handle the stochastic term in this numerical method. After solving the matrix
equation, we discuss what the average is of all the equations that result from the matrix
equation.
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1. INTRODUCTION AND BACKGROUND

In this paper we study Local Discontinuous Galerkin method for the stochastic heat
equation. This problem comes up in mathematical finance often and has many impor-
tant applications, one of which is the Black-Scholes PDE [2]. This famous equation
can be transformed into the heat equation which is the problem we plan to explain and
approximate in this paper. We plan to approximate the noise by a piece-wise constant
random process to facilitate the convergence of the finite element approximation. We
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will then formulate the weak form of the stochastic heat equation and use Local Discon-
tinuous Galerkin method to get an approximation for the stochastic heat equation. We
will also discuss as well as prove with the matrix formed by the Local Discontinuous
Galerkin scheme that the stochastic heat equation has a unique solution. We will discuss
the basics of a stochastic term and its uses as well as propose a way to approximate it.

The stochastic heat equation is given by:{
δu
δt
− α∇2u+ Ẇ (x) = 0

u|δΩ = 0
(1.1)

To better understand this problem, we need to define other basic terms and concepts
first. To begin with, we will define a stochastic process.

A Stochastic Process is one whose behavior is non-deterministic, meaning that its
patterns are determined both by predictable actions and random events. Many times
there is a time factor within the process, as there is in the problem we will describe in
this paper. The goal with a problem with a stochastic term is to come up with the best
approximation through time. We find these processes throughout the physical world.
There is one famous problem (also mentioned earlier), the Black-Scholes PDE [2], that
contains a stochastic process. It helps represent the random events in the stock market,
which, as the definition suggests, are both random and somewhat predictable.

To completely define a stochastic process, we need to define a couple of other things
first. To begin with, we need to explain what a probability space is. To do this, we need
to reach as far back as defining σ-algebra.

Definition 1.1. Consider a set Ω. We consider a system of subsets of F of Ω. We assume
that F satisfies the following axioms:

• The set Ω itself and the empty set ∅ are in F
• If the countable (finitely or infinitely) many sets {Ai}i=1 are in F the the union⋃

Ai is in F
• If A∈ F then the complement Ac = Ω− A is in F

This such a system of subsets is called a σ-algebra.

Now, Let (Ω, F ) be a set and F a σ-algebra of subsets of Ω.

Definition 1.2. A measure on (Ω, F ) is a function µ : F 7−→ R>0 satisfying the following
condition:

(σ − additivity) If A is the union of finitely or countable infinitely many pairwise
disjoint sets A =

⋃∞
i=1Ai with Ai ∈ F and Ai ∩ Aj = ∅ when i 6= j, then µ(A) =∑∞

i=1 µ(Ai).

Putting all of these different pieces of information together, we come to the definition
of a Probability Space:

Definition 1.3. A measure space (Ω, F, µ) is called a probability space if µ(Ω) = 1.

[5]
Stochastic Processes are defined inside their own probability space. It is the probability

space that helps define what the expected value is. However, we will leave it here and
define a stochastic differential equation.

A stochastic differential equation is a differential equation with a stochastic element.
The field of numerical solutions for stochastic differential equations (especially stochas-
tic partial differential equations) is still relatively young. Not much is known about how
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to approximate the stochastic term and still approximate the differential equation itself.
Many times the convergence rate is poor.

The way that Stochastic DE’s are solved is to take the stochastic term out and approx-
imate it before approximating the entire DE. In a paper written by Yao & Bo [4], they
approximate the stochastic term with constant lines. In the next section, we will describe
in detail how exactly they approximated the term and proved its convergence. This ap-
proximation will be used to produce the LDG method and the final approximation of the
SPDE.

2. NOISE APPROXIMATION

In this section, we will use an example problem to demonstrate a possible way of
approximating the white noise with constant lines. We will show that the expected value
of the approximation converges. In addition, the error between the approximation and
the actual value of the noise term goes to zero. At the end, we will discuss how this
approximation holds for the stochastic heat equation as well.

As the example [4], let us look at:{
−∆u(x) = λu(x) + q(x) + Ẇ (x), x ∈ D
u|δD = 0

(2.1)

where D = (0, 1)d for d ∈ {2, 3}, λ is some positive constant, q(·) : D → R is an
L2(D)-function, and {Ẇ (x);x ∈ D} denotes the space of white noise on some proba-
bility space (Ω, F, P ). Formally, E(Ẇ (x)Ẇ (y)) = δ(|x − y|) with x, y ∈ D and δ(·)
is the Dirac function. E(·) is the expected value. For this problem, the expected value
is defined as

∫
f(x1, ..., xn)P (x1, ..., xn) where P (x1, ..., xn) is the probability density

function and is defined above.
From here we can get the weak form:

u(x) = λ

∫
D

G(x, y)u(y)dy +

∫
D

G(x, y)q(y)dy +

∫
D

G(x, y)W (dy) (2.2)

where G(x, y) is Green’s function corresponding to the elliptic PDE: −∆v(x) = φ(x)
with v|δD = 0 such that v(x) =

∫
D
G(x, y)φ(y)dy.

To begin the approximation of the white noise, we need to define several variables.
First, let N ∈ N and h = 1

N
. Suppose that {xj := jh}Nj=0 is a partition for [0, 1]. Set

k = (k1, k2, ..., kd) ∈ IdN := {0, 1, ..., N − 1}d, D = (0, 1)d for d ∈ {2, 3}, and
Dk =

∏d
j=1(xkj

, xkj
+ h). This is all done for d > 2. Then, for y ∈ D, define

Ẇ :=
∑
k∈Id

N

ηkχDk
(y), (2.3)

where ηk := 1
hd

∫
Dk
W (dy) = 1

hdW (Dk) and χA(·) denotes the indicator of a set A.
For each L2(D)-function f : D × Ω → R, define an integral by∫

D

f(y)W h(dy) :=

∫
D

f(y)Ẇ h(y)dy. (2.4)

Each Ẇ is made by approximating the points inside that specific partition with a line.
This all leads to our first Lemma:

Lemma 2.1. For each ω ∈ Ω , Ẇ h(ω, ·) ∈ L2(D), and



4 M. EBRAHIMI, M. HOLST, AND H. MILES-LEIGHTON

(1) E(|
∫
D
W h(dy)|2) = 1

(2) E(||Ẇ h(·)||2L2) = 1
hd

(3) E(|
∫
D
g(y)W h(dy)|2) 6 ||g||2L2

with the deterministic integrand g ∈ L2(D).

This Lemma provides us with a better understanding of how our approximation of the
noise process acts within our domain. This helps us in proving that the solution for the
entire SPDE does converge.

Now, we want to consider the approximated form of the example elliptic stochastic
equation: {

−∆uh(x) = λuh(x) + q(x) + Ẇ h(x), x ∈ D
uh|δD = 0

(2.5)

Note that uh also satisfies:

uh(x) = λ

∫
D

G(x, y)uh(y)dy +

∫
D

G(x, y)d(y)dy +

∫
D

G(x, y)W h(dy). (2.6)

Let ê = u(x) − uh(x) and M(x) =
∫
D
G(x, y)(W (dy) −W h(dy)). As the approx-

imation of the example stochastic elliptic PDE converges, M(x) should go to zero. So,
by (2.2) and (2.6) we have:

ê = u(x)− uh(x) = λ

∫
D

G(x, y)u(y)dy +

∫
D

G(x, y)q(y)dy +

∫
D

G(x, y)W (dy)

−λ
∫
D

G(x, y)uh(y)dy −
∫
D

G(x, y)d(y)dy −
∫
D

G(x, y)W h(dy) =

λ

∫
D

G(x, y)(u(y)−uh(y))dy+

∫
D

G(x, y)(W (dy)−W h(dy)) = λ

∫
D

G(x, y)ê(y)dy+M(x)

Using this information, we see that:

||ê||2L2 = ||u−uh||2L2 ≤ λ2

∫
D2

G2(x, y)dxdy||ê||2L2+2λ(

∫
D2

G2(x, y)dxdy)
1
2 ||ê||L2||M ||L2+||M ||2L2 .

If we define ρ := λ(
∫
D2 G

2(x, y)dydx)
1
2 and let ρ < 1 by choosing a small λ. So, the

above equation now becomes:

(1− ρ2)E(||ê||2L2) ≤ 2ρ(E(||ê||2L2))
1
2 (E(||M ||2L2))

1
2 + E(||M ||2L2).

Below is an estimation of E(||M ||2L2):

Proposition 2.2. For every ε > 0, there exists a positive constant c3(ε, d) such that
E(||M ||2L2) ≤ c3(ε, d)h2−ε, for d = 2.

This proposition states that as h gets very small, the expected value of the error be-
tween the approximation of the white noise and the actual white noise term goes to zero
as well.

From here, we can refer back to the original problem. As a reminder, this is the original
problem: {

δu
δt
− α∇2u+ Ẇ (x) = 0

u|δΩ = 0
(2.7)
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Referring back up to Lemma 2.1, we see that the approximation of the white noise for
the example problem will also work for the stochastic heat equation since the definition
is not dependent on the individual problem.

In this section, we used an example problem to approximate the white noise and
showed that its expected value does converge. We also explained how this method of
approximating the white noise can also be applied to the stochastic heat equation. In the
next section, we will apply Local Discontinuous Galerkin (LDG) method to the stochas-
tic heat equation and discuss the uniqueness of the solution.

3. LDG METHOD

Local Discontinuous Galerkin Method is, simply put, the finite element method with
discontinuous nodes. For example, if we were to study the one dimensional line from a to
b , we would split up the interval into subintervals with a discontinuous point in-between
each subinterval. For a visual of this, look at Figure 1 below:

Dk-1 Dk

... ...

D

xk- xk+

xk

a b

FIGURE 1. An example of a discretized 1-D line in DG method

Each xk is a node. At each node is the discontinuous point which creates the subinter-
vals. We will describe how to approximate the SPDE over just one of those subintervals.
We will then piece together all the different approximations over each node to create the
final approximation.

There are many reasons why we chose to use LDG method to approximate the stochas-
tic heat equation. It can easily handle approximations that have polynomials of different
degrees in different elements. Since we are approximating the stochastic term over each
individual subinterval, LDG method can handle the possible changes from interval to in-
terval. Additionally, the methods are locally conservative which makes them stable and
high-order accurate.

To illustrate how to use LDG method, we will go through how it is used with the
stochastic heat equation. Here is the original problem:

u̇ = ∇2u+ Ẇ

This equation can be broken into a system of PDE’s:{
p = ∇u
u̇ = ∇ · p+ Ẇ

Let,
Vk := {u ∈ L2(Dk) : u|K ∈ Qk(K),∀K ∈ T}

Mk := {p ∈ (L2(Dk))
d : p|K ∈ (Qk(K))d,∀K ∈ T}
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From here, the system of equations can be modified into their respective weak formu-
lations: ∫

Dk

p · w +

∫
Dk

u∇ · w −
∫
δDk

uw · n = 0 (3.1)∫
Dk

u̇v =

∫
Dk

p · ∇v −
∫
δDk

vp · n +

∫
Dk

Ẇv (3.2)

where v and w are weight functions. Let u =
∑n

j=1 u
jφj and p =

∑n
j=1 p

jψj , where
w ∈ Mk, and v ∈ Vk. T is a triangulation, n is the normal vector, and Qk(K) :=
{polynomials of degree at most k in each variable K}, for k ∈ N. We restrict the defini-
tions of w and v to subspaces spanned by {ψj} and {φj}, respectively. From here, we
can approximate the above equations with the approximations that we have just defined.

If we refer back to Equation 3.2, we see that it now becomes:∫
Dk

(
n∑
j=1

u̇jφj)φidx =

∫
Dk

(
n∑
j=1

pjψj) · ∇φidx−
∑
e

∫
e

{φj}[[pj]]de+

∫
Dk

Ẇφjdx

where [[pj]] = p+n+ + p−n− and {φj} =
φ+

j +φ−j
2

. The e stands for edges. So, this means
that the discontinuous part of the LDG method is approximated in that interval on the
edges around the node. As you can see, we are looking at what the functions do at each
side of the node inside that interval. This is how the discontinuous node is approximated.

Now, here is the approximation for Equation 3.1. You will see the same kind of ap-
proximation involved:∫

Dk

(
n∑
j=1

pjψj)ψidx+

∫
Dk

(
n∑
j=1

ujφj) · ∇ψidx−
∑
e

∫
e

[[uj]]{ψj}de = 0

where [[uj]] = u+n+ + u−n− and {ψj} =
ψ+

j +ψ−j
2

, much like before.
From here we can set up a system of equations:{

Mu̇ = BTp+ Z

Ap = −Bu
(3.3)

whereMj,i =
∫
Dk
φjφidx ∈ Rn×n, Bj,i =

∫
Dk
φj∇·ψidx+

∑
e

∫
e
[[uj]]{ψj} ∈ Rn×dn,

Zj =
∫
Dk
Ẇ (x)φjdx ∈ Rn, and Aj,i =

∫
Dk
ψjψidx ∈ Rdn×dn. The d stands for what

dimension p is in. So, this means that we have two square matrices, one of which is
bigger than the other, and two rectangular matrices. These create a block matrix:[

M d
dt
−BT

B A

] [
U
P

]
=

[
Z
0

]
Since A is a diagonal matrix, we can rewrite this matrix equation as:

SU = Z (3.4)

where S = M d
dt

+BTA−1B.
Now, let ũ∆x be the solution from the LDG approximation of equation 2.7 without

the white noise and let Ũ be the corresponding matrix coefficient. Then, we have the
following:

Proposition 3.1. Let ũ∆x be the solution of the LDG approximation to the equation 2.7
without the white noise term, i.e. ũ∆x satisfies



LOCAL DISCONTINUOUS GALERKIN METHOD FOR THE STOCHASTIC HEAT EQUATION 7

{
˙̃u∆x = α∇2ũ∆x in D,

ũ∆x|δD = 0.

Then E(uh,∆x(x)) = ũ∆x(x),∀x ∈ D.

Proof. It follows from the definitions of Ẇ h and Z that E(Z) = 0. Hence,

Ũ = E(U) = E(S−1Z) = S−1E(Z) = 0.

The reason why we can pull S−1 out of the expected value computation is because all of
the elements of S (and therefore all the elements of S−1) are functions defined throughout
Ω. Since the expected value is computed on a probability space, the only function that
this affects is the one that contains the noise term.

So, the conclusion follows that E(uh,∆x(x)) = ũ∆x(x),∀x ∈ D since without the
white noise, our matrix equation becomes SŨ = 0. �

This shows us that even though the original equation does contain a stochastic term,
it does converge to a solution without a white noise term. So, since ˙̃u∆x = α∇2ũ∆x is
a well-posed problem (since it does not have the noise term), and since equation 2.7 has
been shown to have an expected value equal to that of the equation above, we can say
that equation 2.7 has a unique solution.

Now that we have approximated the white noise using piece-wise constant functions
and approximated the solution to the stochastic heat equation using LDG method, we
need to use a numerical method to solve the block matrix equation that we have ended
up with.

4. NUMERICAL METHODS

In the future, we are interested in exploring different numerical methods to solve this
problem. In the coming year before my graduation, I hope to be able to explore these
different methods. For now, we have given an explanation of a numerical method that
could be used to solve the stochastic heat equation. We explain the reason why this is a
good method to use as well as discuss the values that result from it.

At this point, we want to look deeper into what makes up each matrix. First, let’s look
at M . Recall that Mj,i =

∫
Dk
φjφidx. Each of the φi’s and φj’s are only defined within

their own support. So, if there is no support within the mesh for them, they are equal to
zero, just like they would in FEM. This means that M is a banded matrix with elements
only in the center bands (how many depends on the definition of the mesh). The same
idea applies to B and A. Hence, our block matrix is banded and sparse. This means that
we need to be cautious about what method we use to solve this matrix equation because
we could possibly increase the complexity while working towards solving it.

There are several different methods that we could use to solve the matrix system.
However, there are also some things that we need to consider first before we choose
what method to use. First, we already have a sparse matrix, with only three bands of
information that we need to work with. When we separate the matrix down, we do
not want to make the decomposition dense. We want to be able to take advantage of
the fact that it is sparse and keep it that way without greatly increasing the complexity
of the problem. The next thing that we will want to examine is the mesh that we are
approximating over. If we were to approximate over an even mesh, our matrix would
also be symmetric. This makes solving the system even easier. However, in most cases



8 M. EBRAHIMI, M. HOLST, AND H. MILES-LEIGHTON

we have an uneven mesh. In those cases, our matrix is most likely not symmetric but
remains sparse.

One possible way of solving the matrix system is using sparse Gaussian Elimination.
For generality purposes, we will assume that the matrix was created on a non-uniform
mesh and hence, the matrix is not symmetric. However, the matrix is symmetric in
design. It is tri-banded but still sparse. There are many programs available that can
create the LU decomposition for a sparse matrix. We will analyze MATLAB’s way of
handling a sparse matrix but there are other codes, such as MA28 from Harwell for
unsymmetric sparse matrices [1] and SPARSPAK from the University of Waterloo for
symmetric sparse matrices [3], that also work with sparse matrices.

In Gaussian Elimination, the idea is to break the matrix up into two separate matrices:

PH = LU

where H is the block matrix shown earlier, P is the permutation matrix, L is the unit
lower triangular with all the entries satisfying |lji| ≤ 1, and U is the upper triangular
matrix. From here, we have a much easier system to solve. Since P is a permutation
matrix, we know that P TP = PP T = 1, hence it is nonsingular and P−1 = P T . This

means that we now have A = P TLU . So, instead of solving Hx = b, where x =

[
U
P

]
and b =

[
Z
0

]
, we will solve P TLUx = b. We can do this by successively solving

P T b̂ = b, Ly = b̂, andUx = y.
MATLAB calculates the LU-decomposition using gaussian elimination with partial

pivoting. The reason why I chose to use MATLAB as my example is because of the
way it handles sparse matrices. It stores the matrix such that it only knows the non-zero
values. This way, it is able to save a large amount of space. The function in MATLAB
that calculates the LU-decomposition is [L,P,U] = lu(H). Since our H would be stored in
MATLAB using a sparse memory allocation, it will preform this operation and save its
resulting matrices also in a sparse format. It is because of its ability to save memory that
I chose MATLAB as the example.

In MATLAB, we created an example problem in which the structure of the matrix it
comes up with is much like what ours would look like if done in one dimension. Below
is a snap shot of both matrix H and L+ U after the operation:

0 50 100 150 200

0

50

100

150

200

nz = 405
0 50 100 150 200

0

50

100

150

200

nz = 405

FIGURE 2. The left image is H and the right image is L+U
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As you can see, they look exactly the same. The numbers that make up the two are
different, but this shows that MATLAB was able to keep the sparseness of the matrix
H through the decomposition. This is important because it keeps the complexity of the
problem low.

As we have seen earlier, our block matrix is calculated directly through our basis
functions. As for the white noise term (the Z vector in the matrix equation), a random
number generator would be needed to provide input for the white noise term to calculate
the individual integrals. This means that a new random number would need to be created
for each node and Dk space. After calculating each of the integrals a set number of times
and therefore creating our matrix system, we can begin the calculations that were dictated
earlier using MATLAB. After the solution has been made, they all need to be averaged
together so as to reach our final approximation of the stochastic heat equation. This
approximation will actually be a system of ordinary differential equations (ODE) (one for
each Dk ”box” and node) because time is kept as a continuous variable. This is sufficient
as long as the solution is not needed for adaptivity in space. This will theoretically create
our approximation of the stochastic heat equation and complete the problem.

5. CONCLUDING REMARKS

In this paper, we gave a brief introduction to stochastic processes and SDE’s as well
as their importance in modern mathematics. We used these definitions to help introduce
the stochastic heat equation which was the main focus of the paper. We then gave our
approximation of the noise term and proved its convergence in two dimensions using an
example stochastic elliptic PDE. After this example, we explained how this approxima-
tion works well with the stochastic heat equation as well. From there, we introduced
LDG method and used it to approximate our SPDE. After coming up with our block
matrix, we were able to show that its expected value did converge to the approximation
of the heat equation without a noise term and hence showed that it did have a unique
solution. From there, we discussed Sparse Gaussian Elimination as a numerical way to
solve our system and showed how it kept the sparse nature of the matrix and therefore
kept the complexity of the problem down.

In future work, we are interested in looking into different numerical methods to solve
the stochastic heat equation including programming a numerical method and showing
that the solution does converge. There is also the possibility of looking into higher order
stochastic differential equations, which is part of the doctoral work of Moe Ebrahimi.
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