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1 Introduction

One of the central research areas in the theory of graphs is planarity, dat-

ing back to early results of the ancient greeks on platonic solids. The first

discernable theorem on planar graphs in modern mathematics is attributed

to Euler, concerning traversing the bridges of Königsberg without walking

the same street twice. A century later, it was conjectured by a student of de

Morgan that every planar graph is colorable with four colors, and this ques-

tion was considered by a number of distinguished mathematicians for over

a century, until the conjecture was finally verified by Appel and Haken [6].

Planar graphs developed alongside the intrinsic interest in the four-colour

problem as an area worthy of research in its own right, and has a number of

surprising connections to other areas of mathematics.

This thesis studies the particular problem of induced forests in planar

graphs, motivated by a well-known conjecture of Albertson [3] and Borodin [7].

To describe the conjecture and our results, we require the following graph

theoretic terminology.

1.1 Graphs

A graph is a pair (V,E) where V is a set of vertices and E is a set of unordered

pairs of elements of V called edges. If G is a graph we write V (G) for its set

of vertices and E(G) for its set of edges. If {u, v} ∈ E, then we say that u

and v are adjacent in the graph. The neighborhood of a vertex v ∈ V is the

set of w such that {v, w} ∈ E, and we write Γ(v) for the neighborhood of v.
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The degree of v is denoted by d(v) and is |Γ(v)|. One of the basic results in

graph theory is the so-called handshaking lemma,∑
v∈V

d(v) = 2|E| (1)

A walk in a graph is an alternating sequence v1e1v2e2 . . . vkekv1 such that

vi ∈ V and ei ∈ E and ei = {vi, vi+1} for i < k and ek = {vk, v1}. Note that

both vertices and edges can be repeated. A closed walk is a walk whose first

and last vertices are identical. The length of a walk v1e1v2e2 . . . vkekv1 is k.

If all the vertices of a walk are distinct, then it is called a path, and if all

the vertices of a closed walk are distinct except the first and last, then the

walk is called a cycle. A graph is connected if any two vertices are the ends

of some walk. The span of a set L of edges in a graph is the graph whose

vertex set is the union of all vertices in edges of L and whose edge set is L.

If U is a set of vertices in a graph, then the subgraph induced by U is the

graph with vertex set U and consisting of all edges between vertices of U . A

subgraph of a graph G is induced if it is induced by some set U of vertices of

G. A component of a graph is a maximal (with respect to edges) connected

subgraph.

1.2 Planar Graphs

A planar graph is a graph (V,E) whose vertex set V can be represented by

a collection of distinct points in the plane such that two vertices u and v

which adjacent in the graph are joined by a simple curve in the plane with

endpoints u and v, and such that no two curves share any points except
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possibly their endpoints. If a graph is drawn in the plane in this way, then

the drawing is referred to as a plane embedding of the graph. If we remove

the points in a plane embedding of a planar graph from R2, then we are left

with a collection of disjoint topologically connected regions of R2 which are

called the faces of the plane embedding. The infinite face is the unique face

with infinite area. If f is a face in a plane embedding of a planar graph, then

∂f is the topological boundary of f . The (combinatorial) boundary of a face

f is the minimal closed walk in the graph containing all points and curves on

the boundary of f . The degree of a face f is the length of the boundary of

f and is denoted d(f). Note that in general, the boundary walk of a face is

not necessarily a cycle – for instance in the case of the plane embedding of a

tree, the unique boundary walk of the infinite face has many repeated edges.

An elementary combinatorial fact, following the proof of the handshaking

lemma, is that if F is the set of faces in a plane embedding, then∑
f∈F

d(f) = 2|E| (2)

We shall see using the notion of combinatorial duality that this is precisely

equivalent to the handshaking lemma.

1.3 Induced forests

A forest is a graph with no cycles, and a tree is a connected forest. An induced

forest in a graph is an induced subgraph containing no cycles. Of substantial

interest in graph theory is the question of removing a minimum number of

vertices in a graph to destroy all cycles – this is occasionally referred to as
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the decycling number. If a graph has n vertices, then the decycling number

added to the maximum size of an induced forest equals n, since they are

complementary notions. As an instance of this problem, the largest induced

forest in the (planar) graph below is shown. The decycling number must

therefore equal fifteen.

Figure : Induced forests

This problem is interesting from both a combinatorial and algorithmic

perspective. We discuss a new approach to this problem in planar graphs,

using combinatorial duality, which provides some partial new results on some

well-known conjectures on induced forests in planar graphs. The motivation

for this section is a conjecture of Albertson and Berman [4] and, indepen-

dently Akiyama and Watanabe [2] which states that every planar graph con-

tains an induced forest on at least half of its vertices:
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Conjecture. Let G be a planar graph on n vertices. Then G contains

an induced forest on at least n
2

vertices.

This conjecture remains open and appears to be very difficult to prove. If

the conjecture is true, an important consequence is that every planar graph

has an independent set on at least one quarter of its vertices. The latter

statement follows immediately from the 4-color theorem (there must be a

set of at least n
4

of some color in every 4-coloring, and those vertices have

no edges between them). Finding a proof independent of the 4-color theo-

rem that every planar graph has such a large independent set has attracted

the attention of many researchers. The induced forest conjecture has been

studied by numerous researchers [4, 2, 8, 11, 15, 16] and has been proved for

planar graphs of girth at least five in [8] and later for triangle-free planar

graphs in [19] via discharging methods. In this paper, we give a short proof

of a substantially stronger result. Here and in what follows, a partition of a

planar graph into two induced forests refers to a partitioning of the vertex

set into two sets, each of which induces a forest.

Theorem 1.1 Every triangle-free planar graph has a vertex partition into

two induced forests.

This result was proved by lengthy discharging methods by Raspaud and

Wang [17]. It is also a strengthening in triangle-free graphs of the classical

result that every planar graph can be partitioned into at most three induced

linear forests [16] – these are forests of which every component is a path. In
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addition, we obtain the following result for all planar graphs. A pseudoforest

is a graph such that every block – every maximal 2-connected subgraph – has

two or three vertices. A pseudotree is a connected pseudoforest. The block

decomposition of a graph ensures that the graph has a tree-like structure: it

consists of triangles and edges joined in a tree-like fashion at cutvertices. We

prove the following result, which will be shown to imply Theorem 1.1.

Theorem 1.2 Let G be a 4-connected planar graph and let ∂ be any set of

three vertices on the boundary of some face of G and x ∈ ∂. Then there is

a partition V (G) = A ∪B such that both A and B induce pseudoforests and

x is in one of the pseudoforests while the vertices in ∂\{x} are in the other

pseudoforest

In the case that G is maximal planar and 4-connected, we actually get

pseudotrees in Theorem 1.2. The methods we use to prove these two new

theorems actually generalize to giving the best known bounds on the size of

induced forests in planar graphs with m edges, n vertices, and girth g. These

results are beyond the scope of the current discussion.

1.4 Organization

In the next section, we discuss the celebrated Euler’s Formula for planar

graphs, which will be used in subsequent material. One of the key tools in

this thesis is the notion of combinatorial duality, which is discussed in Section

5. Theorems 1.1 and 1.2 will be proved in Section 6.
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2 Euler’s Formula

A triangulation is defined as a planar graph such that the addition of an

edge between two non-adjacent vertices results in a non-planar graph. In a

triangulation, it is simple to check that every face has a boundary walk that

is a cycle of length three – a triangle. The number of edges and faces in a

triangulation with n vertices is invariant i.e. it is independent of the plane

embedding. This is a basic consequence of the famous Euler’s Formula:

Proposition 2.1 Let G be a connected plane embedding with n vertices, φ

faces and e edges. Then

n− e+ φ = 2.

This formula is easy to prove by induction on e: if we remove an edge of

the graph in a cycle, then the faces on either side of that edge merge into

one face and the formula stands. If the graph has no cycles, it must be a tree

and then e = n− 1 and φ = 1 so the formula holds once more.

2.1 The girth of a graph

To check the number of edges and faces in a triangulation on n ≥ 3 vertices,

we observe from (2) that since d(f) = 3 for every face in a plane embedding

of a triangulation, we have 3φ = 2e. Therefore by Euler’s Formula,

e = φ+ n− 2 =
2e

3
+ n− 2
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and therefore e = 3n− 6. Similarly, one obtains φ = 2n− 4. More generally,

the following result holds: here the girth of a graph containing at least one

cycle is the length of a shortest cycle in the graph.

Proposition 2.2 Let G be a plane embedding with n vertices and e edges

and girth g. Then

e ≤ g

g − 2
(n− 2). (3)

Proof. From (2), since d(f) ≥ g for every face of G we have gφ ≤ 2e.

Combining this with Euler’s Formula, we obtain

e = φ+ n− 2 ≤ 2e

g
+ n− 2.

Solving for e gives the result. �

2.2 Kuratowski’s theorem

Euler’s Formula in general can be used as a simple certificate that a graph is

not planar. For instance we see from the above that a triangulation on n ≥ 3

vertices has at most 3n− 6 edges, so any graph on n vertices with more than

3n − 6 edges cannot be planar. As another example, using (2.2), a planar

graph with girth g = 7 and n vertices has at most 7
5
(n−2) edges. The graph

below has n = 14 and girth g = 7 so if it were planar would have less than

7
5
· 12 < 17 edges. However the graph clearly has 1

2
· 14 · 3 = 21 edges by (1),

so it cannot be planar.
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Figure : A non-planar graph

Of course, there are n-vertex graphs with fewer than 3n− 6 edges which

are not planar, so we do not have a necessary and sufficient certificate for

planarity. Such a certificate is provided by Kuratowski’s Theorem [12], which

we do not state here. That theorem is based on the fact that the complete

graph on five vertices (five vertices all joined by edges) and the complete

bipartite graph with three vertices in each part (three vertices completely

joined to three other vertices) are not planar, and that all non-planar graphs

can be reduced in a simple way to one of those two graphs. These graphs are

shown below.
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Figure : Kuratowski’s Theorem

There are now many equivalent formulations of Kuratowski’s Theorem.

3 Coloring Planar Graphs

Let [k] := {1, 2, . . . , k}. A graph (V,E) is k-colorable if there is a map

χ : V → [k] such that whenever {u, v} ∈ E, χ(u) 6= χ(v). In other words,

there is an assignment of colors to the vertices of the graph such that no two

adjacent vertices receive the same color. The smallest k such that a graph is

k-colorable is called the chromatic number of the graph. This invariant is the

subject of a remarkable amount of research outside of planar graph theory,

and is known to be extremely difficult to determine for an arbitrary graph.

It has sparked a number of new methods in graph theory, perhaps the most

famous being the topological method of Lovász [13], used to give a beautiful

proof of Kneser’s conjecture.
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3.1 The 4-color theorem

Perhaps the most famous problem in all of graph theory is the four color

problem. In the mid nineteenth century, a student of de Morgan conjectured

that every planar graph is 4-colorable. It is not hard to produce many planar

graphs which are not 3-colorable, and so this potential result would be tight.

The problem attracted much attention for over a century, until it was finally

solved by Appel and Haken [6]:

Theorem 3.1 Every planar graph is 4-colorable.

It is considered by some mathematicians a disadvantage that the proof by

Appel and Haken is computer aided, however recent simplifications of their

proof are sufficient to convince most mathematicians that the proof is correct.

A short proof of the four color theorem, without the aid of a computer,

remains elusive. We remark that the 4-color theorem is surprisingly related

to areas of mathematics outside combinatorics.

3.2 The 5-color theorem

An effective approach to coloring planar graphs is provided by Euler’s For-

mula. We sketch the proof that every planar graph is 5-colorable.

Theorem 3.2 Every planar graph is 5-colorable.

Proof. By (2.1), every planar graph contains a vertex of degree at most five,

otherwise (2.1) would give e ≤ 3n− 6 with g = 3, whereas if all vertices had
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degree at least six, then (1) gives the contradiction

e ≥ 1

2

∑
v∈V

d(v) ≥ 1

2
· 6n = 3n.

We use the existence of a vertex of degree at most five to come up with a

five-coloring of a planar graph by induction. Note that every planar graph on

at most five vertices is 5-colorable, since assigning a different color to every

vertex provides a coloring. So we assume n, the number of vertices, is at

least six. If (V,E) is a planar graph and v is the vertex of smallest degree in

V , we consider the case d(v) ≤ 4 and d(v) = 5 separately. If d(v) ≤ 4, we

remove v together with all edges on v. Inductively, there is a 5-coloring of

the remaining graph. In particular, the neighbors of v use in total at most

four colors, since d(v) ≤ 4. This implies the existence of a remaining color

which may be assigned to v to obtain a 5-coloring of the whole graph.

The second case we consider is d(v) = 5. Let Γ(v) = {v1, v2, v3, v4, v5}

be the neighbors of v. If all pairs of neighbors of v form edges, then the

graph could not be planar, since it contains K5 with vertex set Γ(v), and by

Kuratowski’s Theorem [12], K5 is not planar. So we may assume that v1 and

v2 are not adjacent. Now we perform the following deformation of the plane

embedding. We move v1 and v2 continuously onto v to obtain a new planar

graph Ĝ, as shown in the figure below. The vertices v1 and v2 are red, v is

blue, and v1 and v2 are “dragged” along with all their edges onto v.
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Figure : 5-Color Theorem

By induction, Ĝ admits a 5-coloring χ̂, and we may assume χ̂(v) = 1

and χ̂(v3), χ̂(v4), χ̂(v5) ∈ {2, 3, 4}. Now define a coloring χ∗ of the original

planar graph G as follows. If x 6∈ {v, v1, v2}, define χ(x) = χ̂(x) – note that

x ∈ V (Ĝ). If x = v1 or x = v2, define χ(x) = χ̂(v) = 1 – the coloring is fine

since v1 and v2 are not adjacent in G. Finally, we see that the colors used

in Γ(v) are contained in {1, 2, 3, 4}, so we can define χ(v) = 5 to obtain a

5-coloring of G. �

The simple approach given here does not work for the 4-color theorem,

and indeed hundreds of different configurations have to be eliminated when

attempting the 4-color theorem in this way. One of the early attempts at the

4-color theorem, due to Tait [20] at the end of the nineteenth century, was

to recast the 4-color problem in terms of combinatorial duality.

4 Combinatorial Duality

If G is a plane embedding, the a combinatorial dual of G, denoted G∗, is a

new plane embedding defined as follows. Into the interior of each face f of G,
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insert a new point vf . If f and g are distinct faces sharing a boundary curve,

join vf to vg with a simple curve through some interior point of the common

boundary curve of f and g, and for each curve which is on the boundary of

only one face f , join vf to vf with a simple closed curve through an interior

point of that curve. We ensure that no two of the added curves share any

interior points. Then we remove all points and curves in G to obtain G∗. An

example is shown below:

Figure : Duality

The combinatorial dual of a plane embedding is not necessarily unique.

4.1 Whitney’s theorem

However, a theorem of Whitney [23] gives the following results on drawing

planar graphs. A graph is said to be k-connected if the removal of any set of

at most k − 1 vertices and all edges containing those vertices always gives a

connected graph. For instance, the graph in the above picture is 2-connected,

but certainly not 3-connected since there are two vertices whose removal
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disconnects the graph. The key to drawing planar graphs and uniqueness of

combinatorial duals is 3-connectivity:

Theorem 4.1 Let G be 3-connected planar graph. Then G has a plane em-

bedding such that the topological boundary of every face is a convex polygon.

Furthermore, G has a unique plane embedding up to deformation of the edges,

and that plane embedding has a unique combinatorial dual.

For instance, it is a simple task to check that a triangulation on at least

four vertices is 3-connected, and therefore maximal plane embeddings have

unique combinatorial duals.

4.2 Duals of triangulations

In a triangulation, we observed that every face boundary is a triangle, and

that every triangulation on at least four vertices is 3-connected. By Theorem

4.1, the dual G∗ of a triangulation G is unique. Moreover, the dual is cubic –

every vertex of the dual has degree three – and also 3-connected. An approach

to the 4-color theorem was suggested by Tait [20]. A graph is hamiltonian

if it contains a cycle through all its vertices – a hamiltonian cycle. Tait [20]

showed that if every cubic 3-connected planar graph is hamiltonian, then

every planar graph is 4-colorable. Unfortunately, as discovered roughly fifty

years later by Tutte [21], there are cubic three-connected planar graphs which

are not hamiltonian. An example with forty-four vertices is shown below, and

the smallest examples have thirty-eight vertices [10]. In fact, Robinson and
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Wormald [18] later showed that the proportion of cubic 3-connected planar

graphs on n vertices which are not hamiltonian tends to one as n→∞.

Figure : Nonhamiltonian planar graph

4.3 Bonds and cycles

The following observations on combinatorial duals will be used in this thesis.

A bond in a graph is a minimum set of edges of the graph whose removal

disconnects the graph. If G = (V,E) is a plane embedding and G∗ a combina-

torial dual to G, then there is natural a one-to-one correspondence between

edges of G and edges of G∗, by construction. For convenience, if e ∈ E

then we denote by e∗ the unique edge of G∗ corresponding to e, and if L is

a set of edges let L∗ = {e∗ : e ∈ L}. Similarly if f is a face of G, let f ∗

denote the vertex of G∗ corresponding to f , and if U is a set of faces of G,

let U∗ = {f ∗ : f ∈ U}. If C is a cycle in a plane embedding G, then we let
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int(C) denote the set of faces in the interior of C and let ext(C) denote the

set of faces in the exterior of C. The following result is straightforward.

Proposition 4.2 Let G be a plane embedding and G∗ a combinatorial dual

of G. Then

1. A set L of edges of G is a bond if and only if L∗ spans a cycle in G∗

2. If C is a cycle in G, then int(C)∗ and ext(C)∗ induce connected sub-

graphs of G

3. If no vertex of G is in the interior of C, then int(C∗) induces a tree in

G∗.

Proof. First we prove the second statement. Let I = int(C) and let F

be the subgraph of G∗ induced by I. Suppose F has distinct components

F1 and F2 and let f be the common infinite face of F1 and F2. Then f ∗

is a vertex of G in the interior of C. If f1, f2, . . . , fk are the faces with f ∗

on their boundary in G, then f ∗1 , f
∗
2 , . . . , f

∗
k are vertices of a closed walk in

F . However, that closed walk then contains vertices of F1 and vertices of

F2, contradicting that F1 and F2 are different components. Therefore F is

connected. Similarly ext(C)∗ induces a connected subgraph of G∗, and the

proof of the second statement is finished. The proof of the remaining two

statements are similar. �

5 Induced forests of planar graphs

We prove Theorem 1.1 in this section.
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5.1 Lemmas

We rely on the following result of Thomassen [20], building on an earlier

theorem of Tutte [22], on paths in planar graphs. More recently, the result

has been slightly strengthened by Sanders [19].

Lemma 5.1 Let G be a 2-connected planar graph and let x, y ∈ V (G) and

e ∈ E(G). Then there exists a path P ⊆ G with endpoints x and y such that

e ∈ E(P ) and for each component K of G− V (P ), |Γ(K) ∩ V (P )| ≤ 3.

This result clearly implies that any two vertices in a 4-connected planar

graph are connected by a hamiltonian path. For our particular application,

we need Lemma 5.1 in the case of planar graphs which have no non-trivial

three-edge cuts: such graphs are called cyclically 4-edge connected. Specif-

ically, a graph G is cyclically 4-edge connected if for any set E of at most

three edges of G, some component of G−E is acyclic. Notice that if a cubic

graph is cyclically 4-edge connected, then every 3-edge cut consists of three

edges containing some vertex of G. A dominating cycle in a graph G is a

cycle C such that every component of G − V (C) is an isolated vertex. An

easy consequence of Lemma 5.1 is the following:

Lemma 5.2 Let G be a cyclically 4-edge connected cubic planar graph and

let e, f be distinct edges of G. Then G contains a dominating cycle C such

that e, f ∈ E(C).

Proof. Suppose f = {x, y} and let P be a path as in Lemma 5.1 from x to

y and containing e. Then P together with f forms a cycle. Since G is cubic,
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every component of G− V (C) is an isolated vertex, as required. �

A corollary of Lemma 5.2 is a proof of a stronger statement than Theorem

1.1 in the case of 4-connected planar graphs. First we need a structural

lemma:

Lemma 5.3 Let G be a connected graph containing no cycles of length at

least four. Then G is a pseudotree.

Proof. It is well-known that if a graph has no even cycles, then every vertex

of degree at least three is a cutvertex. This means that every block of G is

either a cycle or a complete graph of order two, and since G has no cycles

of length more than three, every block has at most three vertices. It follows

that G is a pseudotree. �

5.2 Proof of Theorem 1.2

We add edges to G until G is a triangulation and in such a way that ∂ is the

boundary of a triangle. Let G∗ be the combinatorial dual of G. Then G∗ is a

cubic planar graph. If G has a non-trivial bond E (non-trivial meaning not

just consisting of the edges around one vertex), then the edges of G dual to

the edges of E form a cycle by Proposition 4.2. However this cycle is then a

separating cycle in G, and since G is 4-connected, |E| ≥ 4. It follows that

G∗ is cyclically 4-edge connected. By Lemma 5.2, G∗ contains a dominating

cycle C∗. Furthermore, if e and f are the edges dual to the edges of ∂

containing x, then by Lemma 5.2 we can ensure that C∗ contains both e and
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f . Suppose G∗ is embedded in the plane without crossings. Let A denote the

set of vertices of G dual to the faces of G∗ which are in the interior of C∗,

and let B be the set of vertices of G dual to the faces of G∗ which are in the

exterior of C∗. Clearly V (G) = A∪B and furthermore we either have x ∈ A

and ∂\{x} ⊂ B or the reverse. We claim that A and B contain no cycles of

length at least four, which will imply that A and B induced pseudoforests in

G, by Lemma 5.3 and Proposition 4.2. In fact if G is a triangulation then

these pseudoforests are actually pseudotrees by Proposition 4.2. Suppose C

is a cycle of length at least four in G consisting of vertices in A. If E∗ is

the edge set dual edges to the edges of C, then E∗ forms an edge-cut in

G∗. Let F be the set of faces of G in the interior of C. Since C has length

at least four, |F | ≥ 2 and the vertices of G∗ dual to F induce a connected

subgraph of G∗ in the interior of C∗. However this contradicts the fact that

every connected subgraph of G∗ in the interior of C∗ is an isolated vertex.

Therefore every cycle in G through vertices of A or through vertices of B is

a triangle. This completes the proof. �

5.3 Proof of Theorem 1.1

Theorem 1.1 will be derived from Theorem 1.2. It is enough to prove the

theorem for 2-connected graphs, since we may then apply the 2-connected

case to every block of G. Since G is 2-connected, we may draw G so that

each face of G is bounded by a cycle. Into each face f of G with boundary

walk v1v2 . . . , vrv1, add vertices u1, u2, . . . , ur, u and edges {ui, vi}, {ui, vi+1}

22



for 1 ≤ i ≤ r−1 as well as the edge {ur, vr}, {ur, v1} and all the edges {u, ui}

for 1 ≤ i ≤ r. Note that the resulting graph G+ is a triangulation. This is

shown in the figure below, where the new vertices are in blue.

Figure : Proof of Theorem 1.1

Let T be a triangle in G+. If V (T ) ⊂ V (G+)\V (G), then it is straight-

forward to check that G+ − V (T ) is 2-connected, so T cannot be a separat-

ing triangle. Similarly, if |V (T ) ∩ V (G)| = 1, then since G is 2-connected

G+−V (T ) is connected, so again T cannot be a separating triangle. Since G

is triangle-free, T 6⊂ G and therefore we consider the case |V (T )∩V (G)| = 2.

Suppose V (T )∩V (G) = {u, v} and V (T )∩V (G+) = {w}. Then w is adjacent

to u and v in G+, which implies u and v are consecutive on the boundary

walk of the face of G containing w. It follows that T has empty interior,

and therefore T cannot be a separating triangle. We have shown that no

triangle T in G+ is separating, and therefore G+ may be partitioned into two
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induced pseudoforests P1 and P2 by Theorem 1.2. Removing all the vertices

of V (G+)\V (G), we obtain a partition of G into induced graphs P ′1 ⊂ P1 and

P ′2 ⊂ P2. Since G has no triangles, P ′1 and P ′2 are both induced forests, as

required. �
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