
HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF
NUMERICAL INTEGRATORS

KATHRYN FARRELL

Department of Mathematics, University of California, San Diego
9500 Gilman Drive, Dept. 0112, La Jolla, CA 92093-0112 USA

Email: mholst@math.ucsd.edu

Abstract. Introductory courses on differential equations cover integration
techniques for integrable differential equations. However, most systems of
ordinary differential equations are too complicated to be integrated exactly.
Therefore, mathematicians have developed ways through which we can ap-
proximate such systems. These numerical integrators solve systems of differ-
ential equations to within a certain error. The complexity and cost of such
integrators grows with their precision. Numerical analysts are always looking
for new integration schemes that have low error and low cost. In this paper,
we discuss the derivation of numerical integrators as well as their benefits and
disadvantages.

Contents

1. Introduction 2
2. Dynamics 2
2.1. Hamiltonian Dynamics 2
2.2. Constrained Mechanics 4
3. One-step methods 5
3.1. Euler’s method 6
3.2. Local Error 8
3.3. Taylor methods 8
3.4. Runge-Kutta Methods 9
4. Multistep Methods 12
5. Partitioned Runge-Kutta methods 13
6. Direct Discretization 14
6.1. SHAKE 15
6.2. RATTLE 16
6.3. The Multipliers 17
6.4. Symplecticity 20
7. Higher Order Methods 24
7.1. Notation 25
7.2. The Coefficients 26
7.3. Composition Methods of Even Order 27
8. Conclusion 29
Acknowledgements 29
References 29

Date: June 1, 2009.

1

2 KATHRYN FARRELL

1. Introduction

This paper is concerned with systems of ordinary differential equations (Ordinary
Differential Equations). More specifically, it is concerned with systems of ODEs
that conserve energry and angular momentum, which are called conservative systems.
Even more specifically, this paper is concerned with conservative Hamiltonian sys-
tems.

Most systems are too complicated to integrate directly and exactly. These are
the cases with which this paper is concerned. In these cases, the equations are
discretized, that is, approximations are made at several points in time over the
interval of integration rather than using the continuous, or exact, solution. These
methods have numerous applications, from Kepler’s laws of motion which describe
gravitational dynamics to molecular models which are described by the laws of
classical mechanics. The details and formulation of the theory behind mechanical
systems will be discussed in the first section of the paper.

After a basic understanding of unconstrained and constrained dynamics is es-
tablished, we will begin to develop the theory behind numerical integration. As
the paper progresses, so does the complexity and accuracy of these integrators. We
begin with Taylor’s Theorem and how it gives rise to one-step methods of arbitrary
order p. We will specifically look at Euler’s method to demonstrate basic analy-
sis techniques that can be applied to most numerical methods. Then we develop
Runge-Kutta methods, which use Taylor methods to produce high-order methods
without the complication of computation and evalutation of derivatives that we see
in Taylor methods. Then we begin to discuss integrators that were created specifi-
cally for systems of ODEs, rather than just dealing with one differential equation.
Partitioned Runge-Kutta methods use different sets of quadrature rules for each set
of variables and give rise to direct discretization schemes. Specifically, we will look
at SHAKE and RATTLE, two numerical integrators that preserve certain proper-
ties of conservative Hamiltonian systems. Finally, we will look at a method that
produces high-order integrators by composition of lower-order integrators while
preserving their symplecticity.

2. Dynamics

One of the most common applications of numerical analysis is to physical prob-
lems. The most common example is the dynamics of a pendulum, but numerical
integration is also useful in multi-particle systems, as in molecular dynamics. In this
section, we first introduce various theory and notation of Hamiltonian mechanics.
Then we discuss constrained mechanics and their Hamiltonian formulation.

2.1. Hamiltonian Dynamics. Hamitonian dynamics is a special formulation of
Newtonian mechanics. Certain properties of Hamiltonian systems will be discussed
in this section and throughout the paper. First, let us clarify notation. For an

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS3

N -body system, the matrix M ∈ R3N×3N is the diagonal mass matrix of the form

m1 0 0 0 0 0 . . .
0 m1 0 0 0 0 . . .
0 0 m1 0 0 0 . . .
0 0 0 m2 0 0 . . .
0 0 0 0 m2 0 . . .
0 0 0 0 0 m2 . . .
...

...
...

...
...

...
. . .


such that

Mv = (m1v1,m2v2, . . . ,mNvN)T

. We also denote the particle coordinates in vector form:

q := (q1,q2, . . . ,qN),qk := (q(1)
k , q

(2)
k , q

(3)
k).

This same notation is used for velocity vectors. Note also that we can express the
force F as the negative gradient of the potential energy function with respect to
the particle positions:

F(q) := −∇qV (q).

From Newtonian mechanics, we have the equations of motion

d

dt
qi = vi

mi
d

dt
vi = Fi

The Hamiltonian formulation of this system relies on linear momenta p ∈ R3N ,
which is defined as

p := Mq̇.

With this definition, we can write the equations of motion in their Hamiltonian
formulation:

d

dt
q = M−1p

d

dt
p = −∇qV (q).

This Hamiltonian system has Hamiltonian (energy)

(1) H(q,p) :=
pT M−1p

2
+ V (q).

The phase space of an N -body problem is the set of all possible positions and
velocities of the particles. Given a phase space Rd × Rd of even dimension 2d ≥ 2
and a smooth H : Rd × Rd → R, we can write the system of equations in their
canonical form:

d

dt
q = +∇pH(q,p)

d

dt
p = −∇qH(q,p).

4 KATHRYN FARRELL

2.2. Constrained Mechanics. Some mechanical systems operate in some con-
strained space. A system is constrained when the distance between two bodies in
an N -body sytem is fixed. These rigid length constraints are of the form

‖q1 − q2‖
2 = L2

Sometimes a system may have several constraints, thereby making the entire group
of particles into a single rigid body.

We can extend Newton’s equations of motion to the constrained case. Consider
first the motion of a single particle. At any point in time, there are two types
of forces acting on a moving particle: the applied forces that are defined by the
potential energy fuction V , and the constraint forces that keep the particle on the
constraint surface. The principle of d’Alembert states that the constraint force acts
along the normal direction to the constraint surface, i.e. it acts along the direction
of the gradient to the function g. The constraint force acts at the point of contact.
Therefore, if we denote the constraint forces by Fg, we have

Fg = λ∇qg(q),

where λ ∈ R. Now we can rewrite the equations of motion using Newton’s second
law:

mv̇ = −∇qV (q) + λ∇qg(q)(2)
q̇ = v(3)

g(q) = 0.(4)

The parameter λ is a parameter that is determined by the condition that q(t)
satisfies (4) and is unique to each dynamic system.

There are numerous types of constraints, each of which has its own formulation of
the equations of motion and produces certain properties of the solution. To narrow
the discussion, we will concentrate only on systems that have holonomic constraints.

Definition 1. A constraint that can be described by algebraic relations among the
position variables of the system are called holonomic constraints. These con-
straints are defined by the equations of the form

gi(q) = 0, i = 1, 2, . . . ,m

for the smooth functions gi.

Given m holonomic constraints, gi(q) = 0, i = 1, 2, . . . ,m, on a multiparticle
system, each constraint has its own constraint force that acts in the normal direction
to the constraint surface. Then we have the following form of the equations of
motion:

d

dt
q = v

M
d

dt
v = −∇qV (q)−

m∑
i=1

∇qgi(q)λi

0 = gi(q).

Typically we assume that the gradients of the constraint functions, ∇qgi(q), form
a linearly independent set. Here we can introduce the vector function

g(q) = (gi(q), . . . , gm(q))T ,

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS5

which has Jacobian matrix

G(q) = gq(q), or G(g)T = ∇qg(q),

and the vector of multipliers
→
λ= (λ1, . . . , λm)T . Then we can write the above

system in a more compact form

d

dt
q = v

M
d

dt
v = −∇qV (q)−G(q)T

→
λ

0 = g(q)

By introducing momentum p = Mq̇, we can rewrite these equations as

d

dt
q = M−1p(5)

d

dt
p = −∇qV (q)−G(q)T

→
λ(6)

0 = g(p)(7)

Note that Hamiltonian 1 can be augmented to include the forces of the con-
straints:

H̃ =
pT Mp

2
+ V (q) + g(q)T

→
λ,

which can be expressed as

H̃(q,p) = H(q,p) + g(q)T
→
λ .

With this formulation, we can see that (5) is the gradient of H̃ with respect to
p and (6) is the negative gradient with respect to q, and

→
λ is a vector of constants.

this means that the canonical Hamiltonian equations of motion for a holonomic
system are

d

dt
q = ∇pH(q,p)

d

dt
p = −∇qH(q,p)−G(q)T

→
λ

0 = g(q)

It must be noted that the introduction of constraints into a dynamic system also
introduces new challenges in numerical discretization. For example, error propa-
gation in numerical algorithms for constrained systems is more complicated than
that of unconstrained systems. Therefore, the constraints should be resolved at
each timestep. Two integration methods which we will discuss later, SHAKE and
RATTLE, make sure that this happens with each iteration. However, before we can
derive these two methods, we must derive the theory behind numerical integration.
We begin with one-step methods.

3. One-step methods

One-step methods are low-order approximation methods that need only an initial
point from which to start. That is, one-step methods approximate zn+1 using only
zn. To begin, we need Taylor’s Theorem.

6 KATHRYN FARRELL

Theorem 1. Suppose f ∈ Cn [a, b], that f(p+1) exists on [a, b], and x0 ∈ [a, b].
For every x ∈ [a, b], there exists a number ξ (x) between x0 and x with f (x) =
Pp (x) + Rp (x), where

Pp (x) = f (x0) + f′ (x0) (x− x0) + f′′(x0)
2 (x− x0)

2 + · · ·+ f(p)(x0)
p! (x− x0)

p

=
∑p

k=0
f(k)(x0)

k! (x− x0)
k

and

Rp (x) =
f(p+1) (ξ (x))

(p + 1)!
(x− x0)

p+1
.

3.1. Euler’s method. Suppose we are given the initial value problem

(8) ẏ = f(t,y), a ≤ t ≤ b, y(a) = α.

We want to approximate the solution to this initial value problem over the inter-
val [a, b] with N− 1 equal intervals. The points at which approximations are taken
are called mesh points, which are defined by

tn = a + n∆t, n = 0, 1, 2, . . .N.

Here, ∆t is the stepsize and is given by ∆t = (b-a) /N = tn+1 − tn. Now suppose
that y (t) is the exact solution to (8) and that it has two continuous derivatives on
the interval [a, b]. Then using Taylor’s Theorem, for each n = 0, 1, 2, . . . ,N− 1, we
have

y (tn+1) = y (tn) + (tn+1 − tn) ẏ (ti) +
(tn+1 − tn)2

2
ÿ (ξn) ,

where ξn is some number in the interval (tn, tn+1). Using the definition of ∆t,

y (tn+1) = y (tn) + ∆tẏ (tn) +
∆t2

2
ÿ (ξn) .

Since we know that y (t) is a solution to (8), we have

y (tn+1) = y (tn) + ∆tf (tn,y (tn)) +
∆t2

2
ÿ (ξn) .

We can approximate zn ≈ y (tn) for every n = 1, 2, . . . ,N by deleting the re-
mainder term in the Taylor expansion. Therefore, we are left with Euler’s method:

z0 = αzn+1 = zn + ∆tf (tn, zn) , n = 0, 1, 2, . . . ,N− 1.

There is one question that remains: does this algorithm approximates the exact
solution with a bounded error after n iterations? In order to answer this question,
we first need the definition of a Lipschitz condition.

Definition 2. A function f (t,y) satisfies a Lipschitz condition in y on a set D ⊂
R2 with Lipschitz constantL if there exists an L > 0 such that

‖f(t,y1)− f (t,y2)‖ ≤ L ‖y1 − y2‖ ,

whenever (t,y1), (t,y2) ∈ D.

Now we state the boundedness of Euler’s method in the following theorem.

Theorem 2. Suppose f is continuous and satisfies a Lipschitz condition with Lip-
schitz constant L on D = {(t,y)|a ≤ t ≤ b,−∞ ≤ y ≤ ∞}. Suppose also that there
exists an M such that ‖ÿ(t)‖ ≤ M , for all t ∈ [a, b]. Let y(t) be the exact solution

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS7

to the initial value problem, as before, and z(t) denote the approximation given by
Euler’s method. Then the error for Euler’s method has a bound of the form

‖y(tn)− zn‖

To prove the boundedness of Euler’s method, we also need the following lemma

Lemma 1. For every x ≤ −1 and any positive m, we have 0 ≤ (1 + x)m ≤ emx.

Proof. Here we apply Taylor’s Theorem to f (x) = ex with x0 = 0, and n = 1 to
get

ex = 1 + x +
1
2
x2eξ,

where ξ ∈ [x, 0]. We know

0 ≤ 1 + x ≤ 1 + x +
1
2
x2eξ,

and since (1 + x) ≥ 0
0 ≤ (1 + x)m ≤ (ex)m = emx

�

Theorem 3. Suppose f is continuous and satisfies a Lipschitz condition with con-
stant L and that the exact solution y is twice continuously differentiable. Then the
error for Euler’s method admits a bound of the form

‖y(tn)− zn‖ ≤ K(etnL − 1)∆t n = 1, 2, . . . , N

where K is independent of the stepsize ∆t.

Proof. First construct a recurrence relation for numerical error e = y(tn) − zn.
Now we expand both of these terms into their Taylor polynomials:

en+1 = (y(tn) + ∆tẏ(tn) +
1
2
∆t2z̈(τ))− (zn + ∆tf(zn))

Since ẏ = f(y(tn)),

en+1 = (y(tn) + ∆tf(y(tn)) +
1
2
∆t2z̈(τ))− (zn + ∆tf(zn))

= (y(tn)− zn) + ∆t(f(y(tn))− f(zn)) +
1
2
∆t2ÿ(τ),

where τ ∈ [tn, tn+1]. Using the triangle inequality and the Lipschitz condition,

‖en+1‖ ≤ ‖y(tn)− zn‖+ ∆t ‖f(y(tn))− f(zn‖+ 1
2∆t2 ‖ÿ(τ))‖

≤ (1 + ∆tL) ‖en‖+ 1
2∆t2 ‖ÿ(τ)‖

Since the solution is twice continuously differentiable, we may ÿ on [0, T] by a
constant M . Note that a linear recurrence relation of the form

an+1 ≤ Can + D

satisfies the bound

an ≤ Cna0 +
Cn − 1
C − 1

D

By setting an = ‖en‖,

‖en+1‖ ≤ (1 + ∆tL)an ≤ (1 + ∆tL)(Cna0 +
Cn − 1
C − 1

D).

8 KATHRYN FARRELL

Furthermore, since C = 1 + ∆tL, D = ∆t2M
2 and a0 = 0

‖en+1‖ ≤
(1 + ∆tLn+1)− (1 + ∆tL)

∆tL

∆t2M

2

Finally, by setting K = M
2L and from Lemma 3.1, we know that (1+∆tL)n ≤ en∆tL,

we can obtain the result:

‖en+1‖ ≤ (etn+1L − 1)∆tK

�

This theorem allows us to claim that Euler’s method produces a bounded ap-
proximation for the exact solution y after n iterations. This claim can be proved
to be true for other numerical methods by using a similar argument.

3.2. Local Error. When we compare the accuracy of different numerical methods,
we look at their local error and their global error. The local error of a method is the
error that is associated with one step from zn to zn+1 for each n = 0, 1, . . . , N − 1.
This error depends on the numerical method, ∆t, and n. The global error is taken
over the entire interval of integration, [a, b].

Definition 3. The numerical method

z0 = α
zn+1 = zn + ∆tφ(tn, zn), n = 0, 1, . . . N − 1

has local truncation error

τn+1(∆t) =
yn+1 − (yn + ∆tφ(tn,yn))

∆t
=

yn+1 − yn

∆t
− φ(tn,yn)

for all n = 0, 1, . . . , N − 1.

For example, for Euler’s method we have

τn+1(∆t) = (y(tn)+∆tf(tn,y(tn))+∆t2
2 ÿ(ξn))−yn

∆t − f(tn, yn)
= ∆t

2 ÿ(ξn).

Since ÿ(ξn) is bounded by M on [a, b],

|τn+1(∆t)| ≤ ∆t

2
M.

This implies that the local truncation error for Euler’s method is O(∆t), i.e. first
order.

If the local truncation error for a certain numerical method has order p + 1 at
all t and y considered. Then the global error is order p.

3.3. Taylor methods. Recall that Euler’s method was derived by using Taylor’s
Theorem with p = 1 and that it has order O(∆t). If we let p > 1 then we can
derive numerical methods of higher order and obtain a better approximation of the
exact solution y. Methods that are derived in this way are called Taylor methods.

Suppose we have the initial value problem

ẏ = f(t,y), a ≤ t ≤ b, y(a) = α.

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS9

where y(t) ∈ C(p+1)[a, b]. Then using Taylor’s Theorem, we can expand y(t) about
tn to its pth Taylor polynomial. Evaluating at tn+1, we have

y(tn+1) = y(tn) + ∆ty′(tn) +
∆t2

2
y′′(tn) + . . . +

∆tp

p!
y(p)(tn) +

∆tp+1

(p + 1)!
y(p+1)(ξn),

with ξn ∈ (tn, tn+1). We know

y′(t) = f(t,y(t)), y′′(t) = f′(t,y(t)), . . . , y(k)(t) = f(k−1)(t,y(t)),

so we can write

y(tn+1) = y(tn) + ∆tf(tn,y(tn)) + ∆t2

2 f′(tn,y(tn)) + . . . + ∆t(p)

p! f(p−1)(tn,y(tn))

+ ∆t(p+1)

(p+1)! f(p)(ξn,y(ξn)).

Therefore, by deleting the remainder term, ∆t(p+1)

(p+1)! f(p)(ξn,y(ξn)), we obtain a Taylor
polynomial of order p:

z0 = α
zn+1 = zn + ∆tT (p)(tn, zn),

where

T (p)(tn, zn) = f(tn, zn) +
∆t

2
f′(tn, zn) + . . . +

∆tp−1

(p− 1)!
f(p−1)(tn, zn).

Note that if the (p + 1)th derivative of y(t) is bounded by M on [a, b], this method
has local truncation error

|τn+1| =
∆tp

(p + 1)!
M.

3.4. Runge-Kutta Methods. Although Taylor methods have high-order local
truncation error, they require computing and evaluating the derivatives of f(t,y).
This process is not only time-consuming, it can be complicated. There is another
family of numerical methods, however, that have the advantages of a high-order
local truncation error without the disadvantage of the computation and evaluation
of the derivatives of f(t,y). These methods are Runge-Kutta methods. In order to
derive these methods, we need the following theorem.

Theorem 4. Suppose that f(t, y) and all of its partial derivatives of order less
than or equal to p + 1 are continuous on D = {(t, y)|a ≤ t ≤ b, c ≤ y ≤ d}, and let
(t0, y0) be a point in D. Then for all (t, y) ∈ D, there exists a value ξ ∈ (t, t0) and
µ ∈ (y, y0) such that

f(t, y) = Pp(t, y) + Rp(t, y)

where

Pp(t, y) = f(t0, y0) + [(t− t0)∂f
∂t (t0, y0) + (y − y0)∂f

∂y (t0, y0)] + [(t−t0)
2

2
∂2f
∂t2 (t0, y0)

+ (t− t0)(y − y0) ∂2f
∂t∂y (t0, y0) + (y−y0)

2

2
∂2f
∂y2 (t0, y0)]+

. . . +
[

1
p!

∑p
j=0

(
p

j

)
(t− t0)p−j(y − y0)j ∂pf

∂tp−j∂yj (t0, y0)
]

and

Rp(tp, yp) =
1

(p + 1)!

p+1∑
j=0

(
p+1

j

)
(t− t0)p+1−j(y − y0)j ∂p+1f

∂tp+1−j∂yj
(ξ, µ).

10 KATHRYN FARRELL

The function Pp(t, y) is called the pth Taylor polynomial in two variables for the
function f about (t0, y0) and Rp(t, y) is the remainder term associated with Pp(t, y).

Proof. For this proof, we reduce the Taylor polynomial in two variables down to
the single variable case. Suppose we have the straight line

t = a + tx, y = b + kx, x ∈ [0, 1]

where h = (t− t0) and k = (y − y0). Then f(t, y) is a function of a sinle variable,
x, whose sth order derivative is given by(

d

dx

)s

f(x, y) =

 p∑
j=0

(
s
j

)
hs−jkj ∂sf

∂ts−j∂yj

 f(x, y).

When x = 0, this becomes s∑
j=1

(
s
j

)
hs−jkj ∂sf

∂ts−j∂yj

 (t0, y0).

By theorem (3), the Taylor expansion of f(x, y) in powers of x is

f(x, y) = f(t0, y0) +
p−1∑
s=1

xs

s!

 s∑
j=1

(
s
j

)
hs−jkj ∂sf

∂ts−j∂yj

 (t0, y0) + Rp,

where

Rp =
p−1∑
s=1

xp

p!

 s∑
j=1

(
s
j

)
hs−jkj ∂sf

∂ts−j∂yj

 (ξ, µ),

with ξ = t0 + ∆tθx, µ = y0 + ∆tθx, and θ is between 0 and 1. When x = 1, we
have the desired result. �

Now we will derive a Runge-Kutta method using T 2(t, y) = f(t, y) + ∆t
2 f ′(t, y).

We need to determine values for a1, α1, and β1 such that a1f(t + α1, y + β1)
approximates T (2) with error of order two. We know

f ′(t, y) =
df

dt
(t, y) =

∂f

∂t
(t, y) +

∂f

∂y
· y′(t)

and
y′(t) = f(t, y).

This implies

(9) T (2)(t, y) = f(t, y) +
∆t

2
∂f

∂t
(t, y) +

∆t

2
∂f

∂y
(t, y) · f(t, y)

If we expand a1f(t + α1, y + β1) into its Taylor polynomial of degree one about
(t, y), we get
(10)

a1f(t+α1, y+β1) = a1f(t, y)+a1α1
∂f

∂t
(t, y)+a1β1

∂f

∂y
(t, y)+a1 ·R1(t+α1, y+β1),

where

R1(t + α1, y + β1) =
α2

1

2
∂2f

∂t2
(ξ, µ) + α1β1

∂2f

∂y∂t
(ξ, µ) +

β2
1

2
∂2f

∂y2
(ξ, µ)

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS11

with ξ ∈ (t, t + α1), µ ∈ (y, y + β1). By comparing (9) and (10), we can deduce the
following:

f(t, y) : a1 = 1
∂f

∂t
(t, y) : a1α1 =

∆t

2
∂f

∂y
(t, y) : a1β1 =

∆t

2
f(t, y).

Therefore a1 = 1, α1 = ∆t
2 , and β1 = ∆t

2 f(t, y), which yields the approximation

T (2)(t, y) = f(t +
∆t

2
, y +

∆t

2
f(t, y))−R1(t +

∆t

2
, y +

∆t

2
f(t, y)),

where

R1(t +
∆t

2
, y +

∆t

2
f(t, y)) =

∆t2

8
∂2f

∂t2
(ξ, µ) +

∆t2

4
f(t, y)

∂2f

∂y∂t
(ξ, µ)

+
∆t2

8
(f(t, y))2

∂2f

∂y2
(ξ, µ).

Furthermore, if all of the second partial derivatives of f are bounded, then R1 is
O(∆t). Note that the error that results from the approximation of T (2) increases
the error, but it does not increase the order of the error. By approximating
T (2)(t, y) with f(t + α1, y + β1), we have produced the Runge-Kutta method called
the Midpoint Method:

z0 = α
zn+1 = zn + ∆tf(tn + ∆t

2 , zn + f(tn, zn)), n = 0, 1, . . . , N − 1.

We can compare other Taylor methods of order n to an approximation similar to
the one in the example given above to produce Runge-Kutta methods of higher
order.

In general, the class of s-stage Runge-Kutta methods for d
dtz = f(z) is given by:

zn+1 = zn + ∆t

s∑
j=1

bjf(Zj),

where

Zj = zn + ∆t

s∑
k=1

ajkf(Zk)

for j = 1, 2, . . . , s. Here, the coefficients {bj}, {ajk} are determined by T (n) and
its approximation. As example of a fourth-order Runge-Kutta method (RK4) is as
follows:

Z1 = zn

Z2 = zn +
∆t

2
f(Z1)

Z3 = zn +
∆t

2
f(Z2)

Z4 = zn +
∆t

2
f(Z3)

zn+1 = zn +
∆t

6
[f(Z1) + 2f(Z2) + 2f(Z3) + f(Z4)]

12 KATHRYN FARRELL

4. Multistep Methods

One-step methods use information from only one previous timestep and accu-
mulate error with each new zn. Therefore, usuing the more accurate data from
other previous timesteps would lead to a numerical method that has less error.
These types of methods are called multistep methods. Note that the majority of
the methods discussed from here on out will be multistep methods.

Definition 4. Given the initial value problem

ẏ = f(t,y), a ≤ t ≤ b, y(a) = α

and starting values

z0 = α, w1 = α1, w2 = α2, . . . , zm−1 = αm−1

an approximation zn+1 at tn+1 can be found using an m-step multistep method,
where m is an integer greater than 1, given by

zn+1 = am−1zn + am−2zn−1 + ∆t[bmf(tn+1, zn+1) + bm−1f(tn, zn)+
. . . + b0f(tn+1−m, zn+1−m)],

where n = m − 1,m, . . . , N − 1, ∆t = (b−a)
N , and a0, . . . , am−1 and b0, . . . , bm are

constants.

Note that when bm = 0, the approximation zn+1 is defined strictly in terms of
previously determined values. In this case, the method is called explicit. When
bm 6= 0, zn+1 apears in its own definition and the method is called implicit.

Before we can set up a method by which multistep methods are derived, we need
the following definition.

Definition 5. Suppose we are given distinct points x0, x1, . . . , xn for which we have
values of a given function f . Then a unique polynomial of at most degree n, called
the interpolating polynomial, exists such that

f(xk) = P (xk), k = 0, 1, . . . , n.

, and is given by

P (x) = f(x0)Ln,0(x) + . . . + f(xn)Ln,n(x) =
n∑

k=0

f(xk)Ln,k(x),

where
Ln,k(x) = (x−x0)(x−x1)...(x−xk−1)(x−xk+1)...(x−xn)

(xk−x0)(xk−x1)...(xk−xk−1)(xk−xk+1)...(xk−xn)

=
∏n

i=0,i 6=k
(x−xi)
(xk−xi)

k = 0, 1, . . . , n.

Now we present a method for the derivation of multistep methods. Consider the
initial value problem given in the definition above. If integrated over the interval
[tn, tn+1], then

y(tn+1)− y(tn) =
∫ tn+1

tn

ẏ(t)dt =
∫ tn+1

tn

f(t,y(t))dt,

or

y(tn+1) = y(tn) +
∫ tn+1

tn

f(t,y(t))dt.

Note that we cannot integrate f(t,y(t)) directly since we do not know the solution
y(t). Instead, we integrate an interpolating polynomial, P (t), that is determined by

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS13

some of its previously determined data points (t0, z0), (t1, z1), . . . , (tn, zn). Because
we can assume y(tn) ≈ zn, we have

y(tn+1) ≈ zn +
∫ tn+1

tn

P (t)dt.

Any interpolating polynomial can be used to derive a multistep method.
Note: We will not go into as much detail about the derivation of multistep

methods as we did for one-step methods. The definition of a multistep method is
sufficient for the understanding of this paper; however, a full background in the
development of the Runge-Kutta methods is essential for the understanding of the
next and following sections.

5. Partitioned Runge-Kutta methods

As we have seen, some canonical Hamiltonian systems admit a natural dichoto-
moy between positions and momenta. For these types of systems, which can be writ-
ten in the form d

dtu = g(u,v), d
dtv = h(u,v), we can use different quadrature rules

for each set of variables. These methods, called s-stage Partitioned Runge-Kutta methods,
use two sets of coefficients (

{
b̄j

}
, {ājk}) and (

{
b̃j

}
, {ãjk}):

un+1 = un + ∆t

s∑
j=1

b̄jg(Uj ,Vj)

vn+1 = un + ∆t

s∑
j=1

b̃jh(Uj ,Vj)

where

Uj = un + ∆t

s∑
k=1

ājkg(Uk,Vk)

Vj = vn + ∆t

s∑
k=1

ãjkh(Uk,Vk)

for n = 1, 2, . . . , s. Note that in Hamiltonian dynamics,

u = q, v =
d

dt
q

Consider a system of second order differential equations

q̈ = f(q),

where f(q) does not depend on q̇. Then if we have ∆t and points in time tn =
t0 + n∆t for n = 0, 1, . . . , N as before, using second order forward differencing, we
have

(11) f(qn) =
qn+1 − 2qn + qn−1

∆t2
.

This equation can be rewritten and coupled with another equation to produce the
Verlet scheme

qn+1 = −qn=1 + 2qn + ∆t2f(qn) +O(∆t4)(12)

q̇n =
qn+1 − qn−1

2∆t
+O(∆t2)(13)

14 KATHRYN FARRELL

By introducing velocity, q̇ = v, we can have the first order system

q̇ = v, v̇ = f(q).

We can introduce the discrete approximations:

vn =
qn+1 − qn−1

2∆t

vn−1/2 =
qn − qn−1

∆t

qn−1/2 =
qn + qn−1

2
,

where the first two approximations make use of first order central differencing and
the third equation is an average of the neighboring whole steps. The evaluation of
vn−1/2 on a ”staggered grid” to preserve second-order and symmetry. By plugging
each of these three equations into (11), we get the following group of equations:

vn+1/2 = vn +
∆t

2
f(qn)

vn+1 = vn+1/2 +
∆t

2
f(qn+1)

qn+1 = qn + ∆tvn+1/2.

Then since we have Newton’s equations

q̇ = v, Mv̇ = −∇qV (q),

we can reformulate the above equations into what is known as the velocity version
of the Verlet method, or the Störmer-Verlet method:

qn+1 = qn + ∆tvn+1/2

Mvn+1/2 = Mvn −
∆t

2
∇qV (qn)

Mvn+1 = Mvn+1/2 −
∆t

2
∇qV (qn+1).

For further discretization, this system can be solved in terms of half-step velocities:

qn+1 = qn + ∆tvn+1/2

Mvn+1/2 = Mvn−1/2 −∆t∇qV (qn).

This method is called the Leapfrog method. Both Leapfrog and Störmer-Verlet are
O(∆t2).

6. Direct Discretization

The integration schemes we have discussed until now were developed for uncon-
strained dynamic systems. However, these methods can be generalized to develop
integration schemes for constrained systems. These generalizations lead to a direct
discretization of the equations of motion.

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS15

6.1. SHAKE. In 1976, Ryckaert, et al., created an integration scheme aimed at
performing molecular dynamics calculations with the Cartesian equations of mo-
tion. In their algorithm, they started with the Verlet algorithm, (12)− (13). They
noted that a position, q, can be written as the sum of two contributions:

q = q′ + δq,

where q′ is independent of
→
λ and δq is linear in

→
λ . In this case, for each body in

the system,

q′n+1 = −qn−1 + 2qn −
∆t2

m
∇qV (q)

δqn+1 =
∆t2

m

l∑
j=1

→
λ ∇qg(q).

Therefore, Ryckaert, et al., produced the new discretization scheme, called SHAKE:

q = q′ + δq

0 = g(q),

which can be rewritten in the form

M
qn+1 − 2qn + qn−1

∆t2
= −∇qV (qn)−G(qn)T

→
λn(14)

0 = g(qn+1).(15)

Note that this form can also be derived by adopting the leapfrog method from the
previous section to the constrained case.

To implement this scheme, solve (14) for qn+1 and insert it into (15). this
will yield a system of equations with m equations and m unknown Lagrangian
multipliers

0 = g̃(
→
λn) := g(q̄n+1 −∆t2M−1G(qn)T

→
λn,

where
q̄n+1 := 2qn − qn−1 −∆t2M−1∇qV (qn)

is attained using an unconstrained step attained from one step of the leapfrog
method.

We can reformulate this discretization scheme into a position-velocity form, de-
spite the fact that the scheme integrates only position over time. To do this, we
can use the same method as we did for Störmer-Verlet to set

vn+1/2 =
qn+1 − qn

∆t
, vn =

vn−1/2 + vn+1/2

2
.

This yields the position-velocity form of SHAKE:

qn+1 = qn + ∆tvn+1/2

Mvn+1/2 = Mvn−1/2 −∆t∇qV (qn)−∆tG(qn)T
→
λn

0 = g(qn+1)

vn =
1
2
vn+1/2 + vn−1/2

The symplecticity and error of this method will be discussed later on.

16 KATHRYN FARRELL

6.2. RATTLE. In order to compare SHAKE with the method to be derived in
this section, we will need the following definitions.

Definition 6. A configuration manifold M is the space of all positions subject
to the position constraints

M =
{
q ∈ Rd|gj(q) = 0, j = 1, . . . ,m

}
.

Suppose q ∈M. Each parameterization curve q(t) that contains q̄ = q(t0) and
lies in M has a velocity vector v at t = t0, such that v̄ = q̇(t0). Note that since

gj(q(t)) ∀t

we can write
d

dt
gj(q(t)) = ∇qgj(q(t)) · q(t) = ∇qgj(q(t)) · v(t) = 0.

Definition 7. The tangent space of q is a linear vector space defined by the set
of all possible velocity vectors at the point q:

TqM =
{
v̄ ∈ Rd|∇qgj(q̄) · v = 0, j = 1, . . . ,m

}
Definition 8. The space of all pairs (q, v), where q ∈ M and v ∈ TqM is the
tangent bundle of M, and is denoted TM.

Because SHAKE approximates the only the projection of q, it is a mapping of
the configuration manifold M. The method discussed in this section, RATTLE,
defines a mapping of the tangent bundle, TM. The purpose of RATTLE is to
correct SHAKE so that its solution lies on TM through projection of vn+1 onto
the tangency constraint

∇qgj(q(t)) · v̄ = 0.

Hans C. Anderson introduced RATTLE in 1982 as a ”velocity version” of SHAKE.
The derivation of RATTLE is similar to that of SHAKE. However, instead of using
the Verlet algorithm, Anderson uses Störmer-Verlet (recall that this is the velocity
version of Verlet). We start by writing Störmer-Verlet in the following form:

qn+1 = qn + ∆tv(t)− ∆t2

2
∇qV (qn)

vn+1 = vn −
∆t

2
[
∇qV (qn) +∇qV (qn+1)

]
This implies that for constrained dynamics, we have

qn+1 = qn + ∆tv(t) +
∆t2

2

[
−∇qV (qn) + G(qn,vn)T

→
λ

]
(16)

vn+1 = vn +
∆t

2
[−∇qV (qn) + G(qn,vn)](17)

+
∆t

2
[∇qV (qn+1) + G(qn+1,vn+1)]

Note that in (16), we need to know v(t) before we can calculate GT
n and that

in (17), we need to know GT
n+1 before we can calculate vn+1. However, there is

no need to use the same approximation for GT in both the position and velocity
equations. Therefore, we can choose an approximation for the GT in (16) so that
qn+1 satisfies the constraints either exactly or to within a desired precision. We can

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS17

do the same for (17) by using a different approximation for GT . This procedure
yeilds

qn+1 = qn + ∆tvn +
∆t2

2

[
−∇qV (qn) + G(qn)T

→
λn

(r)

]
vn+1 = vn +

∆t

2

[
−∇qV (qn) + G(qn)T

→
λn

(r) −∇qV (qn+1) + G(qn+1)
T

→
λn

(v)

]
These equations define RATTLE. They can also be written in the form

qn+1 = qn + ∆tvn+1/2(18)

Mvn+1/2 = Mvn −
∆t

2
∇qV (qn)− ∆t

2
G(qn)T

→
λn

(r)(19)

0 = g(qn+1)(20)

Mvn+1 = Mvn+1/2 −
∆t

2
∇qV (qn+1)−

∆t

2
G(qn+1)

T
→
λ (v)n(21)

0 = G(qn+1)vn+1.(22)

The multipliers are chosen so that the position and velocity constraints are enforced.
Thus RATTLE requires that both position and velocity satisfy the constraints at
each timestep.

6.3. The Multipliers. To solve for the multipliers
→
λn, one has to solve the system

of constraints. If the constraints are linear, the system can be solved using a linear
solver. But in most cases, the system of constraints is nonlinear. These nonlinear
systems have the form

g(qn+1 −∆t2M−1
m∑

i=1

G(qn)T λn) = 0

where qn+1 represents an unconstrained step using leapfrog or Stormer-Verlet.

6.3.1. SHAKE iteration. The multipliers of SHAKE can be found by using a coor-
dinate resetting iteration that is basically a Gauss-Seidel iteration. One multiplier
is adjusted at each iteration. Here we will switch notation by putting the step of
the notation, n, into the superscript and the index of the components, i, in the
subscript. Let gi be the ith component of g. Then Gi = ∇qgi(q) is the ith row of
the constraint Jacobian matrix.

First set
Q := qn + ∆tvn−1/2 −∆t2M−1∇qV(qn)

This is equivalent to taking
→
λn equal to zero in the system of constraints above.

Next, cycle through the list of constraints and correct each one. Compute offset
∆Λi to satisfy the ith linearized constraint equation

∆Λi :=
gi(Q)

Gi(Q)M−1Gi(qn)

and update Q
Q := Q−M−1Gi(qn)T ∆Λi

Repeat this cycle until all constraint residuals are within some tolerance, i.e.
gi(Q) < tol. Then set qn+1 = Q

18 KATHRYN FARRELL

Given a good enough initial guess (or small enough stepsize) this iterative method
converges.

Now we talk about the True Newton iteration and quasi-Newton iteration. Both
of these methods (as well as others) rely on the vector of offesets ∆Λ = {∆Λi}

∆Λ := R−1g(Q)

For the true Newton iteration, R = G(Q)M−1G(qn)T , where Q is the updated
approximation from

Q := Q−M−1G(qn)T ∆Λ

For the quasi-Newton iteration, R = GM−1GT , where G = G(qk) for qk

computed at timestep tk. Here, G is updated as needed for convergence.

6.3.2. RATTLE iteration. RATTLE has two multipliers for each timestep: one
for correcting the position approximations and another for correcting the velocity
approximationss. One multiplier is adjusted at a time so that the constraints are
satisfied within some given tolerance, tol.

The Anderson provided an iteration for the solution of the multipliers in the
introductory paper of RATTLE. In a general constrained system, let i and j be
two particles or point masses such that there is a constraint gij between them,
i, j = 1, 2, ...N . First, recall that

Fn
i = −∇qi

V (qn
1 ,qn

2 , . . . ,qn
N)

and define
hij = ∆t

→
λ

n

(r)ij

kij = ∆t
→
λ

n+1

(v)ij

Then (19) becomes

vn+1/2
i = vn

i +
∆t

2mi
Fn

i −
hij

2mi
G(qn

i)

and (21) becomes

vn+1
i = vn+1/2

i − ∆t

2mi
Fn+1

i − kij

2mi
G(qn+1

i)

To start iteration, let

vn+1/2
i = vn +

∆t

2mi
Fn

i

The iterative loop begins here. Since the constraints can be solved in any order,
pick one that involves point masses i and j. Define

s = qn
i + ∆tvn+1/2

i − qn
j −∆tvn+1/2

j

This is the approximation of the vector displacement of point masses i and j. In
most cases, the constraints are distances, so let dij be the distance between point
masses i and j. If

|s|2 − d2
ij < tol

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS19

then the constraint is solved within the acceptable tolerace, so pick a new constraint
and continue the process. Otherwise, vn+1/2

i and vn+1/2
j need to be corrected by

amounts proportional to h. Update the position vectors by

qt
i = qn

i + ∆t

[
vn+1/2

i − h

mi
qij

]
and

qt
j = qn

j + ∆t

[
vn+1/2

j +
h

mj
qij

]
where qn

ij = qn
i −qn

j . Let these be the new values for qn+1
i and qn+1

j , respectively.
Note that the goal is to choose h so that |qt

i − qt
j |2 = d2

ij . That is, we want their
difference to be within the given tolerance. Solving for h we have

h =
|s|2 − d2

ij

2∆t
[
s · qn

ij

]
(m−1

i + m−1
j)

where the new values for qt
i and qt

j are used to calculate s and the second order

terms in h are neglected. Once the correct h is found, update vn+1/2
i and vn+1/2

j

by

vn+1/2
i = vn

i +
∆t

2mi
Fn

i −
h

mi
qn

ij

and

vn+1/2
j = vn

j +
∆t

2mj
Fn

j +
h

mj
qn

ij

respectively. Then go to the beginning of the iterative loop, pick a new constraint,
and repeat the procedure. Note that these are the values to be used in the iterative
loop for the new constraint. This ensures that by the end of the iteration, all of
the constraints are satisfied, not just the latest one.

Now we have to solve for
→
λ

n+1

(v) . The procedure is similar to the previous iteration.
Start by letting

vn+1
i = vn+1/2

i +
∆t

2mi
Fn+1

i

Note that the vn+1/2
i that satisfies all of the position constraints due to the previous

iterative procedure for
→
λ

n

(r) is used here. The iterative loop begins. Again, the
constraints can be solved in any order so pick one that involves point masses i and
j. If

qn+1
ij · vn+1

ij < tol

where tol is some given tolerance, then this constraint is satisfied. Pick a new
constraint and begin the iterative loop. Otherwise, we need to correct vi and vj

by amounts proportional to k. Let

vt
i = vn+1

i − k

mi
qn+1

ij

and

vt
j = vn+1

j +
k

mj
qn+1

ij

20 KATHRYN FARRELL

be the new values for vn+1
i and vn+1

j , respectively. Note that the goal here is to
choose k so that vt

i−vt
j is perpendicular to qn+1

ij . That is, their dot product should
be zero, or within tol of zero. Thus we want

k =
qn+1

ij ·
[
vn+1

i − vn+1
j

]
d2

ij(m
−1
i + m−1

j)
.

Once the correct k is found, replace vn+1
i by vt

i and vn+1
j by vt

j . Pick a new
constraint and begin the iterative loop with these new values.

6.4. Symplecticity. In this section, we derive the definition of symplecticity and
discuss its implications. Then we will show that SHAKE and RATTLE are both
symplectic maps. We begin with a couple of definitions.

Definition 9. A smooth map Ψ : R2d → R2d on the phase space of a system
is called a symplectic map with respect to the constant and invertible structure
matrix J if its Jacobian Ψz(z) satisfies

[Ψz(z)]
T
J−1Ψz(z) = J−1

for all z in the domain of definition of Ψ.

Definition 10. The wedge product of two differentials df and dg is an operator
defined by

(df ∧ dg)(ξ, η) := dg(ξ)df(η)− df(ξ)dg(η)

If we have a location z, then we can apply a coordinate transformation Ψ : Rm →
Rm

ẑ = Ψ(z).
Note that this implies

dẑ = Ψz(z)dz.

Let z = (q,p) ∈ R2d. Then we have the transformation

q̂ = Ψ1(q,p)(23)
p̂ = Ψ2(q,p).(24)

Then we can write

(25) dq̂ ∧ dp̂ = dq ∧ dp,

where

dq̂ = Ψ1
q(q,p)dq + Ψ1

p(q,p)dp

dp̂ = Ψ2
q(q,p)dq + Ψ2

p(q,p)dp

Before we come up with a symplecticity condition using the wedge product, we
will need to know the properties of the wedge product. If da, db, dc are k-vectors of
differential one-forms on Rm, then the wedge product has the following properties:

(1) Skew-symmetry
da ∧ db = −db ∧ da

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS21

(2) Bilinearity

da ∧ (αdb + βdc) = αda ∧ db + βda ∧ dc

(3) Rule of matrix multiplication

da ∧ (Adb) = (AT da) ∧ db

is a consequence of property 2 and the definition, and holds for any k × k
matrix A.

Lemma 2. Let du be any arbitrary differential in Rn and let A be any n× n real
symmetric matrix. Then du ∧ (Adu) = 0.

Proof. Using the skew-symmetric property and the rule of matrix multiplication,
we have

du ∧ (Adu) = (AT du) ∧ du
= −du ∧ (AT)du
= −(Adu) ∧ du

The only way this is possible is if du ∧ (Adu) = 0. �

Now we can prove the following theorem.

Theorem 5. A transformation Ψ as defined above is symplectic if dq̂∧dp̂ = dq∧dp.

Proof. First note that by the definition of the wedge prduct,

(J−1dz) ∧ dz =
∑d

i−1 [dzi ∧ dzd+i − dzd+i ∧ dzi]
=

∑d
i=1 [dqi ∧ dpi − dpi ∧ dqi]

= 2dq ∧ dp

Then dq̂ ∧ dp̂− dq ∧ dp is equivalent to

(J−1dẑ) ∧ dẑ = (J−1dz) ∧ dz.

Since
dẑ−Ψz(z)dz,

we have
(J−1dẑ) ∧ dẑ = (J−1Ψz(z)dz) ∧ (Ψz(z)dz).

By property 3,
(J−1dẑ) ∧ dẑ = (Ψz(z)T J−1Ψz(z)dz) ∧ dz.

Therefore,
J−1 = Ψz(z)T J−1Ψz(z).

�

Here we switch back to our original notation, with the step, n, in the subscript.
Note that most numerical integrators preserve symplecticity up to a certain error.
A numerical method is called a symplectic integrator if the symplecticness condition

dqn+1 ∧ dpn+1 = dqn ∧ dpn

is preserved exactly.

22 KATHRYN FARRELL

Symplectic maps preserve certain properties of the dynamical system which they
are integrating. Energy, for example, can be preserved through the use of a sym-
plectic integrator. The symplecticness of SHAKE and RATTLE was analyzed by
Leimkuhler and Skeel in 1994. They derive what they call velocity-level SHAKE
for the one-dimenstional case in the following way.

If the SHAKE algorithm is iterated to convergence, then we have

qn+1 = 2qn − qn−1 −∆t2∇qV (qn) + ∆t2g′(qn)T λn

g(qn+1) = 0

Set pn+1/2 = (qn+1 − qn)/∆t to obtain the leapfrog form that has error of order
three

qn+1 = qn + ∆tpn+1/2

pn+1/2 = pn−1/2 −∆t∇qV (qn) + ∆tg′(qn)T λn

g(qn+1) = 0

Define further pn = (qn+1 − qn−1)/(2∆t) to get

qn+1 = qn + ∆tpn+1/2

pn+1/2 = pn −
∆t

2
∇qV (qn) +

∆t

2
g′(qn)T λn

g(qn+1) = 0

pn+1 = pn+1/2 −
∆t

2
∇qV (qn+1) +

∆t

2
g′(qn+1)T λn+1

This system of equations is called velocity-level SHAKE (VS). Note that this cannot
be a symplectic method as defined here. Although g(qn) = 0 at every grid point,
the hidden constraint g′(qn)M−1pn = 0 will typically fail to be satisfied. We can
therefore only show that VS preserves the wedge product.

VS can be viewed as a one-step mapping, where the differentials obey

(26) dqn+1 = dqn + ∆tdpn+1/2

dpn+1/2 = dpn −
∆t

2
d∇qV (qn) +

∆t

2
d(g′(qn)T λn+1)

g′(qn+1)dqn+1 = 0

dpn+1 = dpn+1/2 −
∆t

2
d∇qV (qn+1) +

∆t

2
d(g′(qn+1)T λn+1)

It remains to be shown that VS preserves the wedge product. To prove this we
will need the following lemma.

Lemma 3. dqn ∧ d(q′(qn)T λn) = 0

Proof.

dqn ∧ d(g′(qn)T λn) = dqn ∧ g′(qn)T dλn +
m∑

i=0

λi
ndqn ∧ Γi

ndqn

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS23

where λn has been indexed by a superscript and Γi
n is the Hessian of the ith

constraint function. We know g(qn) = 0, which implies g(qn)dqn = 0. So

dqn ∧ g′(qn)T dλn = g′(qn)dqn ∧ dλn = 0

. Thus the first term equals zero. All of the terms of the summation can be
eliminated by 2 �

Now we can show that VS preserves the wedge product. Let V ′′ be the Hessian
of V. So d∇qV (qn) = V ′′(qn)dqn. Then we have

dqn+1 ∧ dpn+1

= dqn+1 ∧ (dpn+1/2 − ∆t
2 V ′′(qn+1)dqn+1)

= dqn+1 ∧ dpn+1/2 − ∆t
2 dqn+1 ∧ V ′′(qn+1)dqn+1+

∆t
2 dqn+1 ∧ d(g′(qT

n+1λn+1)

The second and third terms in this equation can be eliminated by use of Lemma 2
and Lemma 3, respectively. So we have

dqn+1 ∧ dpn+1 = dqn+1 ∧ dpn+1/2

From (26) we have

dqn+1 ∧ dpn+1 = (dqn + ∆tdpn+1/2) ∧ dpn+1/2

= dqn ∧ dpn+1/2

= dqn ∧ (dpn − ∆t
2 d∇qV (qn) + ∆td(g′(qn)T λn))

Here, again, the second and third terms can be eliminated by Lemma 2 and Lemma
3, respectively. So we have

dqn+1 ∧ dpn+1 = dqn ∧ dpn

which means VS preserves the wedge product.

We know that SHAKE and RATTLE are equal, but RATTLE satisifies both
the position and velocity constraints at discretization points. Since symplecticness
is directly related to the wedge product, the proof that RATTLE is symplectic is
similar to the proof that SHAKE preserves the wedge product.

The converged RATTLE algorithm can be expressed as

qn+1 = qn + ∆tpn+1/2

pn+1/2 = pn −
∆t

2
∇qV (qn) +

∆t

2
g′(qn)T λn

(r)

pn+1 = pn−1/2 −
∆t

2
∇qV (qn+1) +

∆t

2
g′(qn+1)T λn+1

(v)

This set of equations is called a VR step that satisfies constraints

g(qn+1) = 0

g′(qn+1)pn+1 = 0
.

If we write
qn+1 = qn + ∆tpn+1/2

24 KATHRYN FARRELL

then

pn+1/2 = pn−1/2 −∆t∇qV (qn) +
∆t

2
g′(qn)T (λn

(r) + λn
(v)).

So we have

dqn+1 ∧ dpn+1 = dqn+1 ∧ dpn+1/2 − ∆t
2 dqn+1 ∧ d∇qV (qn+1)

+∆t
2 dqn+1 ∧ dg′(qn+1)T λn+1

(v)

The second and third terms in this equation can be eliminated by Lemma 2 and
Lemma 3, respectively. Then we have

dqn+1 ∧ dpn+1 = dqn ∧ dpn−1/2

= dqn ∧ dpn+1/2 + ∆tdqn ∧ d∇qV (qn)− ∆t
2 dqn ∧ dg′(qn)T (λ(r)

n + λ
(v)
n)

The second term is eliminated by Lemma 2 and the two last terms are eliminated
by Lemma 3. So we are left with

dqn+1 ∧ dpn+1 = dqn ∧ dpn+1/2

= dqn ∧ dpn − ∆t
2 dqn ∧ d∇qV (qn) + ∆t

2 dqn ∧ dg′(qn)T λn

Here, again, the second and third terms are eliminated by Lemma 2 and Lemma 3,
respectively. Thus we have

dqn+1 ∧ dpn+1 = dqn ∧ dpn

so VR is a symplectic mapping.

7. Higher Order Methods

High-order methods can be obtained, of course, by using Taylor and Runge-
Kutta methods. However, high-order Taylor methods have drawbacks which we
have already discussed and high-order Runge-Kutta methods are usually implicit
and are therefore more expensive computationally. A cheaper way to obtain higher-
order symplectic methods is through composition. There are two methods by which
one can form a computation method: first, by splitting the Hamiltonian into two
or more subproblems, and second, by using a symmetric second-order symplectic
approximation. Another benefit is that these types of higher-order methods pre-
serve certain geometric properties of the problem being analyzed. Before we begin,
we need to define what it means for a Hamiltonian system to be separable.

Defintion 11. A Hamiltonian is separable if it can be written as a sum of kinetic
and potential energy in the form

H(q,p) = T (p) + V (q)

The corresponding systems of equations is written

d

dt
q = ∇pT (p)

d

dt
p = −∇qV (q).

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS25

Note that this can be written as two Hamiltonian subsystems

d

dt
q = 0

d

dt
p = −∇qV (q)

and

d

dt
q = ∇pT (p)

d

dt
p = 0.

7.1. Notation. The purpose of this section is to clarify the meanin of the notation
that will appear in the following sections. We will introduce the notatation for
linear systems of differential equations and then extend it to the nonlinear systems
to ensure complete understanding.

Given the linear differential equation

d

dt
z = Az

the flow map can be written
Φt,A(z) = etAz,

where the matrix exponential is defined as

etA = Ik + tA +
t2

2
A2 +

t3

3!
A3 +

Note that
etAetB = et(A+B)

is only true if A and B are commutable matrices.

Now consider the nonlinear differential equation

d

dt
z = f(z)

if this system is Hamiltonian, where z = (q,p), then we can write

ż = {z,H(z)} ,

where the braces represent the Poisson bracket

{F,G} = FqGp − FpGq.

We can introduce the differential operator DG by

DGF := {F,G}

which implies
ż = DHz.

26 KATHRYN FARRELL

The goal of composition methods is to find coefficients (weightfactors) {ci}i=0,...,s

and {di}i=0,...,s for a given order p so that

(27) exp[∆t(A + B)] =
k∏

i=1

exp(ci∆tA)exp(di∆tB) +O(∆tp+1)

where A = ∇pT (p) and B = ∇qV (q).

Now if we look at the flow of z(t) from t = 0 to t = ∆t, we have

Φt,H = z(∆t) = [exp(∆tDH)]z(0).

Note that for separable Hamiltonians,

DH = DT + DV

so
Φt,H = z(∆t) = [exp(∆t(A + B))]z(0),

where A := DT and B := DV .

Now suppose we have found such {ci} and {di} for some given p. Then a mapping
from z = z(0) to z′ = z(∆t) is given by

Φ = (
k∏

i=1

exp(ci∆tA)exp(di∆tB))z.

This mapping is a product, i.e. composition, of symplectic mappings and is there-
fore symplectic. From this map we can define an pth order symplectic integrator

qi = qi−1 + ∆tci
∂T

∂p
(pi−1)

pi = pi−1 + ∆tdi
∂V

∂q
(qi),

where z = z(0) = (q0,p0) and z′ = z(∆t) = (qk,pk.

7.2. The Coefficients. If we expand the left side of equation (27) in powers of
∆t, we can compare the coefficients between terms with equal powers of ∆t. This
ields a nonlinear set of equations for {ci} and {di}. For example, when p = 2, we
get three equations. From the coefficients in front of A, we have

c1 + c2 + . . . + ck = 1.

Similarly, from the coefficients in front of B, we have

d1 + d2 + . . . + ck = 1.

In addition, we have an equation that comes from the coefficients in front of AB

c1(d1 + d2 + . . . + dk) + c2(d2 + . . . + dk) + . . . + ckdk =
1
2
.

In this case, the simplest solution is k = 2, c1 = c2 = 1
2 , d1 = 1.

However, the complexity of finding values for k, {ci}, and {di} increases as n
increases. Therefore, we introduce another method by which higher order compo-
sition methods can be derived.

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS27

7.3. Composition Methods of Even Order. First note that (27) is equivalent
to

(28) S(∆t) :=
k∏

i=1

exp(ci∆tA)exp(di∆tB) = exp[∆t(A + B) +O(∆tp+1)]

Note also that any symmetric operator has even order and time reversibility:

S(∆t)S(−∆t) = S(∆t)S(∆t) = identity.

One advantage to using symmetric methods is the fact that the order conditions
simplify due to the fact that the odd power terms in the Taylor expansion of the
local error vanish.

Suppose that we have the second order integrator from the brief example in the
previous section:

S2nd(∆t) := exp(
1
2
∆tA)exp(∆tB)exp(

1
2
∆tA).

Then we can obtain a 4th order symplectic integrator by a symmetric composition

(29) S4th(∆t) := S2nd(x1∆t)S2nd(x0∆t)S2nd(x1∆t),

where x0 and x1 are two real numbers that have yet to be determined. In order to
continue the analysis of this new integrator, we will need the following formula.

Definition 12. For any non-commutative operators X and Y , the product of the
two exponential functions, exp(X) and exp(Y), can be expressed as a single expo-
nential function:

exp(X)exp(Y) = exp(Z),
where
Z = X + Y + 1

2 [X, Y] + 1
12 ([X, X, Y] + [Y, Y,X]) + 1

24 [X, Y, Y,X]− 1
720 ([Y, Y, Y, Y,X]

+ [X, X, X,X, Y]) + 1
360 ([Y, X,X,X, Y] + [X, Y, Y, Y, X]) + 1

120 ([X, X, Y, Y, X,]
+ [Y, Y,X,X, Y]) +

Here the brackets represent the commutator

[X, Y] := XY − Y X

and higher order commutators

[X, X, Y] := [X, [X, Y]].

This formula is called the Baker-Campbell-Hausdorff (BCH) formula. Re-
peated application of the BCH formula yields

exp(X)exp(Y)exp(X) = exp(W),

where
W = 2X + Y + 1

6 [Y, Y,X]− 1
6 [X, X, Y] + 7

360 [X, X, X,X, Y]− 1
360 [Y, Y, Y, Y,X]

+ 1
90 [X, Y, Y, Y, X] + 1

45 [Y, X,X,X,X, Y]− 1
60 [X, X, Y, Y, X,] + 1

30 [Y, Y,X,X, Y] +

This allows us to write

S2nd(x1∆t) = exp(∆tx1α1 + ∆t3x3
1α3 + ∆t5x5

1α
5 + . . .)

and
S2nd(x0∆t) = exp(∆tx0α1 + ∆t3x3

0α3 + ∆t5x5
0α

5 + . . .)

28 KATHRYN FARRELL

where

α1 −A + B, α3 =
1
12

[B,B,A]− 1
24

[A,A, B], α5 =
7

5760
[A,A, A,A, B] +

This yields the composition

S4th(∆t) = exp[∆t(x0 + 2x1)α1 + ∆t3(x3
0 + 2x3

1)α3 + ∆t5(x5
0 + 2x5

1)α5 + . . .].

In order for this to be a 4th order integrator, it must be of the form

S4th(∆t) = exp[∆t(A + B) +O(∆t5)].

Therefore, we will need two conditions:

x0 + 2x1 = 1, and x3
0 + 2x3

1 = 0.

This yields the unique solution

x0 =
−21/3

2− 21/3
, x1 =

1
2− 21/3

.

By comparing (28) with (29), the coefficients for (28) can be found:

d1 = d3 = x1, d2 = x0, c1 = c4 =
1
2
x1, c2 = c3 =

1
2
(x0 + x1).

This gives us the exact coefficients of a 4th order integrator.

Now we can find a 6th order integrator by the same process, using S4th:

S6th(∆t) := S4th(y1∆t)S4th(y0∆t)S4th(y1∆t),

which can also be written

S6th = S2nd(x1y1∆t)S2nd(x0y1∆t)S2nd(x1y1∆t)× S2nd(x1y0∆t)S2nd(x0y0∆t)S2nd(x1y0∆t)
× S2nd(x1y1∆t)S2nd(x0y1∆t)S2nd(x1y1∆t).

Through this process we can see two things

(1) If a symmetric integrator of order 2p, S2nd(∆t), is previously known, we
can produce an integrator of order (2p + 2) using the composition

S2p+2(∆t) := S2p(z1∆t)S2p(z0∆t)S2p(z1∆t),

where z0 and z1 satisfy

z0 =
−21/(2p+1)

2− 2(1/2p+1)
, z1 =

1
2− 21/(2p+1)

.

Note that

S2p+2(∆t) = exp[∆t(x0 + 2x1) +O(∆t2p+2)]

because the lower powers of ∆t are eliminated when developing the lower-
order integrators.

(2) To get a (2p)th order symplectic integrator, we have to compose S2nd with
itself 3p−1 times. Therefore, the number of steps k is k = 3p−1 + 1, which
obviously grows rapidly as p increases.

HAMILTONIAN MECHANICS AND THE CONSTRUCTION OF NUMERICAL INTEGRATORS29

8. Conclusion

As numerical techniques developed, certain advantages began to appear with the
use of specific schemes. Symplecticity, for example, is highly valued when work-
ing with dynamical systems, especially constrained systems. SHAKE preserves
the wedge product and its ”velocity” verson, RATTLE, is symplectic. These two
methods, however, have global error O(∆t2) since they are derived from globally
second-order methods. However, higher order symplectic integrators can be con-
structed using composition methods. However, it must be noted that the higher
the demanded order, the greater the complexity of its derivation. Therefore, it can
be seen that accuracy comes at a price. More accurate methods are usually more
costly than lower order methods, so the search continues for symplectic methods
that have minimal cost and high accuracy.

Acknowledgements

I’d like to thank Mike Holst for taking me on as an Undergraduate Researcher
last summer and for guiding me in my research efforts. His interest and support in
my academic life has helped me realize not only that I have potential, but also that
I can reach it. It is with his support that I have excelled in this my last year of my
undergraduate study at the University of California, San Diego and that I will be
able to excel next year as I start a Ph.D. program in the applied math program at
the University of Texas, Austin.

I’d also like to thank Nick Miller, my research partner and friend, for contributing
to my knowledge and for his continuous input, support, and humor.

References

[1] H.C. Anderson. Rattle: a ”velocity” version of the Shake algorithm for molecular dynamics
calculations. J. Comput. Phys., 52: 24-34, 1983.

[2] F. Bowman and F.A. Gerard. Higher Calculus. London: Cambridge University Press, 1967.
[3] K. Farrell, N. Miller, and M. Holst. Some notes on Hamiltonian mechanics and numerical

integrators. Department of Mathematics, University of California, San Diego, 2008.
[4] C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Engle-

wood Cliffs, NJ: Prentice-Hall, 1971.
[5] E. Hairer, Ch. Lubich, and G. Wanner. Geometric numerical integration illustrated by the

Störmer-Verlet method. Acta Numerica, 12: 399-450, 2003.
[6] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I, Nonstiff Problems.

Berlin Heidelberg: Springer-Verlag, 2nd edition, 1993.
[7] B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. New York: Cambridge Uni-

versity Press, 2004.
[8] B. Leimkuhler and R.D. Skeel. Symplectic numerical integrators in constrained Hamiltonian

systems. J. Comput. Phys., 112: 117-125, 1994.
[9] J.P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen. Numerical integration of the carte-

sian equations of motion of a system with constraints: molecular dynamics of n-alkanes.
J. Comput. Phys., 23:327-341, 1977.

[10] H. Yoshida. Construction of higher order symplectic integrators. Phys. Lett. A, 150: 262-268,
1990.

