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Abstract

We study the effect of a secondary covariate with non-proportional hazards on the estimation
of the regression effect of a primary covariate in the Cox model. This is motivated by
epidemiologic studies where estimation of the effect of primary exposure often needs to take
into account confounders. The question is whether the simple proportional hazards modelling
of the confounders might be sufficient. This is done for two cases: when both covariates are
binary and when the primary covariate is binary and the secondary covariate is uniformly
distributed. The sign and magnitude of the bias of the primary hazard ratio depends on
the non-proportional hazards of the secondary covariate, the strength of the regression effect
of the primary covariate itself, and censoring. We summarize the results obtained through
both numerical calculations and simulations.
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Chapter 1

Introduction

Scope of Survival Analysis

In survival analysis, interest centers on time to event data. It involves a group (or groups) of
subjects for which there is a well-defined point event, often called failure, occurring after a
length of time called the failure time. The random variable involved, failure time, is always
non-negative and failure can only occur once for any subject. Examples include the time to
death after diagnosis of breast cancer, the lifetimes of machine components or the duration
of unemployment.

General Features of Survival Data

To define a failure time random variable, three requirements must be fulfilled: a well-defined
time origin, a scale for measuring time and a definition of the event. There are three common
features of survival data. The first is that individuals do not enter the study at the same
time. For example, in a clinical trial comparing the effectiveness of different treatments of
cancer, the time origin might be the time of diagnosis, which occurs at various times for
different patients. This feature is referred to as staggered entry. The second feature is that
when a study closes, some individuals have not experienced failure yet. This might occur
when a clinical trial ends after a designated time. The last feature occurs when subjects
drop out in the middle of the study. In clinical trials, patients might be lost to follow-up or
in other cases, some patients might die from other causes besides the one under study. The
second and third features are known as censoring.

Censoring

There are three main types of censoring mechanisms - right censoring, left censoring and
interval censoring. Consider a random sample of n subjects with survival times T1, T2, ..., Tn

and censoring times C1, C2, ..., Cn for the individuals i = 1, 2, ..., n. Right censoring occurs
when the true unobserved event is to the right of our censoring time. That is, all one knows
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is that the event has yet to occur at the end of the study. Thus one observes the random
variable Xi = min(Ci, Ti). Left censoring occurs when the true unobserved event is to the
left of the censoring time. The random variable observed is Gi = max(Ci, Ti). For example,
in a study of age at which African children learn a task, some already knew the task (left-
censored), some learned during the study (exact) and some had not yet learned by the end
of the study (right-censored). Interval censoring occurs when the failure time is only known
to occur within some interval. One observes (Li, Ri) where Ti ∈ (Li, Ri). Right censoring is
the most common mechanism and this thesis will focus only on right censoring.

Additionally, for right (and also left) censoring, there are three types of censoring times:
Type I, Type II and random. For a sample of n subjects, Type I censoring occurs when all
the Ci’s are the same. Type II censoring occurs when Ci = T(r), that is the study is termi-
nated at the failure time of the rth subject. In a clinical trial, r has to be pre-determined.
Random censoring occurs when Ci’s are random variables. One can additionally define an
event indicator δi = I(Ti ≤ Ci) and an at risk indicator Yi(t) = I(Xi ≥ t). In this thesis,
only random censoring will be considered.

Describing Survival Data

There are many ways to describe survival data: using the density function f(t), cumulative
distribution function F (t), the survival function S(t), the hazard function λ(t) or the cumu-
lative hazard function Λ(t). The definitions of these functions will be given for a continuous
random variable.

f(t) = lim∆t→0
P (t < T < t + ∆t)

∆t
(1.1)

F (t) = P (T < t) (1.2)

S(t) = P (T ≥ t) =

∫ ∞

t

f(u)du (1.3)

λ(t) = lim∆t→0
P (t < T < t + ∆t|T ≥ t)

∆t
=

f(t)

S(t)
(1.4)

Λ(t) =

∫ t

0

λ(u)du (1.5)

It can be shown that all of these formulations are equivalent; given any one of them, one
can easily obtain the rest. Of these five definitions, the first three should be familiar from
classical statistical theory. The last two require some explanation. The hazard function gives
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the instantaneous hazard rate. It describes the conditional probability rate that a subject
will fail in the next interval ∆t, given that it has not failed at time t. The cumulative hazard
function is analogous to the cumulative distribution function.

The survival function S(t) can be estimated using various nonparametric methods, like
Kaplan-Meier (1958) or Life-table estimator. While the survival function gives a much
clearer interpretation to the data concerned, there are good reasons why the consideration
of the hazard function is a good idea (Cox and Oakes, 1984):

1. It makes more physical sense to consider the instantaneous risk of an individual known
to be alive at a certain time.

2. Comparisons of groups of individuals are sometimes made more incisively using the
hazard function.

3. It is convenient to model using the hazard function when there is censoring or multiple
failures.

4. Comparison made using the exponential distribution is simple as the hazard function
is a constant.
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Chapter 2

Cox proportional hazards model

In modeling the regression of survival data, a model must accomplish two goals: it must
describe the underlying survival time distribution (error component) as well as model how
adequately the distribution changes with the covariates (systematic component) (Hosmer
and Lemeshow, 1999). The Cox proportional hazards model (Cox 1972, 1975) gives a simple
relationship between the hazard function λ(t) and a vector of covariates Z:

λ(t|Z) = λ0(t) exp(β′Z) (2.1)

λ0(t), the baseline hazard function, is an arbitrary non-negative function of time and is the
hazard for subjects with all covariates equal to zero. In the modeling of survival data, it is
usually treated as a nuisance function as one of the greatest advantage of the Cox model
is that the parameters β can be estimated without having to estimate λ0(t). The term
proportional hazards refers to the fact that the ratio of the hazard functions for any two
subjects remain proportional over time due to the multiplicative relationship in the model.
This model is semi-parametric as it assumes that β is time independent. If a form for λ0(t)
is specified, then the model becomes fully parametric. The proportional hazards assumption
is a strong one and the motivation for this thesis comes from its violation.

Inferences for the proportional hazards model

The full likelihood function is given by

L(β) =
n∏

i=1

λi(Xi)
δiSi(Xi) (2.2)

Multiplying and dividing by
[∑n

j=1 Yj(Xi)λj(Xi)
]δi

gives

L(β) =
n∏

i=1

[
λi(Xi)∑n

j=1 Yj(Xi)λj(Xi)

]δi
[

n∑
j=1

Yj(Xi)λj(Xi)

]δi

Si(Xi) (2.3)
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The first term in the product is known as the partial likelihood function and Cox argued
that it contains all the information about the parameter of interest and conjectured that
the resulting parameter estimators would have the same properties as maximum likelihood
estimators. This conjecture was later proved to be valid (Tsiatis 1981, Anderson and Gill
1982). Keeping only the first term and using the proportional hazards assumption gives

L(β) =
n∏

i=1

[
λi(Xi)∑n

j=1 Yj(Xi)λj(Xi)

]δi

=
n∏

i=1

[
λ0(Xi) exp(β′Zi(Xi))∑n

j=1 Yj(Xi)λ0(Xi) exp(β′Zj(Xi))

]δi

=
n∏

i=1

[
exp(β′Zi(Xi))∑n

j=1 Yj(Xi) exp(β′Zj(Xi))

]δi

(2.4)

The log partial likelihood is given by

l(β) = log

 n∏
i=1

[
exp(β′Zi(Xi))∑n

j=1 Yj(Xi) exp(β′Zj(Xi))

]δi


=

n∑
i=1

δi

[
β′Zi(Xi)− log

[
n∑

j=1

Yj(Xi) exp(β′Zj(Xi))

]]

=
n∑

i=1

li(β) (2.5)

In general, the estimator for β is obtained by taking the partial derivative with respect to β
and setting it to zero. In the case of k covariates, one would obtain a system of k equations
which would have to be solved simultaneously. For simplicity, we will consider the case of a
single covariate. The partial likelihood score equation is

U(β) =
∂

∂β
l(β)

=
n∑

i=1

δi

[
Zi(Xi)−

∑n
j=1 Yj(Xi)Zj(Xi) exp(βZj(Xi))∑n

j=1 Yj(Xi) exp(βZj(Xi))

]

=
n∑

i=1

δi

[
Zi(Xi)− Z̄i(Xi)

]
(2.6)

Z̄i(Xi) is the weighted average of the covariate Z over all the subjects that are at risk at time
Xi, and the weights are the conditional probabilities that contribute to the partial likelihood
function. The maximum partial likelihood estimator is found by solving

U(β) = 0 (2.7)
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The observed information is given by the negative of the second partial derivative of the log
partial likelihood.

I(β) = −∂2l(β)

∂β2
(2.8)

The variance of β̂ is found by inverting the observed information. An estimator of the
variance of β̂ is thus given by

V̂ ar(β̂) = I(β̂)−1 (2.9)

The above discussion assumes that there are no tied times. In the event of ties, there are
a few methods to modify the partial likelihood to adjust for ties, the details of which will
not be discussed. There are three ways where inferences can be made about β. The first
approach is the Wald test that uses the fact that β̂ is asymptotically normally distributed
with mean β and variance I(β̂)−1. Inferences can also be made by using the partial likelihood
ratio test or the score test.

Assessing Model Adequacy

• Assessing general fit of Cox Model
To assess the fit of the Cox model, Cox-Snell, Schoenfield (scaled or unscaled) or
Martingale residuals can be used. The Cox-Snell residual is defined as

Λ̂i(Xi) = − log
[
Ŝ(Xi|Zi)

]
(2.10)

If the survival time of the ith individual Ti has survival function Si(t), then the random
variable Si(Ti) is uniformly distributed on (0, 1) and Λi(Ti) = − log[S(Ti)] is expo-
nentially distributed with mean 1. Thus the fit of the model is assessed by checking
whether the Cox-Snell residuals are exponentially distributed with mean 1.

The Schoenfeld residuals are defined as

ri = Zi(Xi)− Z̄i(Xi) (2.11)

The Schoenfield residuals are only defined for uncensored observations. Under the
assumption of the Cox model, the Schoenfeld residuals are asymptotically uncorrelated
and have expectation zero. The adequacy of the Cox model is therefore checked by
visually verifying that the plot of the residuals against survival time is centered around
zero and shows no trend over time. The scaled Schoenfeld residuals are defined as

rw
i = mV̂ ar(β̂)ri (2.12)
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where m is the observed number of uncensored survival times. The scaled Schoenfeld
residuals are used in a similar way as the unscaled residuals except that it has greater
diagnostic power than the unscaled residuals (Grambsch and Therneau, 1994).

The Martingale residual for the ith individual is defined as

Mi = δi − Λ̂i(Xi) (2.13)

It has the interpretation of being the difference between the observed number of deaths
and the expected number of deaths based on the fitted model for individual i in the
time between 0 and Xi. The Martingale residuals have expectation zero and are ap-
proximately uncorrelated in large samples.

• Assessing Proportional Hazards assumption
Under the proportional hazards assumption, we have

S(t|Z) = exp [−Λ(t|Z)]

= exp

[
−
∫ t

0

λ(u|Z)du

]
= exp

[
−
∫ t

0

λ0(u) exp(β′Z)du

]
=

[
−
∫ t

0

λ0(u)du

]exp(β′Z)

= [S0(t)]
exp(β′Z) (2.14)

Thus

log [− log [S(t|Z)]] = log [− log [S0(t)]] + β′Z (2.15)

Hence, one could obtain the Kaplan-Meier curves for the survival functions and plot
log [− log [S(t|Z)]] against time for the different values of the covariates. In the case of
a continuous covariate, the covariate can be split into categories. If the proportional
hazards assumption is not violated, the graphs should be parallel.

An alternative method uses the scaled Schoenfeld residuals. Taking the log of the
Cox model gives

log [λ(t|Z)] = log [λ0(t)] + β′Z (2.16)

If instead the model has time varying coefficients of the form

βj(t) = βj + γjgj(t) (2.17)
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where gj(t) is a specified function of time, Grambsch and Therneau (1994) showed that
for the jth covariate,

E
[
rw
j

]
= γjgj(t) (2.18)

Thus a plot of the scaled Schoenfeld residuals will give an indication as to whether γj is
zero and if it is not zero, an indication of the form for gj(t). For the a given functional
form such as gj(t) = ln(t), it is possible to test the hypothesis γj = 0 using the Wald
test, partial likelihood ratio test or score test by adding the interaction term Zj ln(t)
to the Cox model. The advantage of this method is that it can easily be done using
the same software that fits a proportional hazards model.
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Chapter 3

Non-proportional hazards model

The Cox proportional hazards model described in the previous chapter has wide applications.
One of the main assumptions is that the coefficients of regression β remains constant with
time. When this assumption is violated, the partial likelihood estimator ceases to have a
clear interpretation. In this thesis, we consider a non-proportional hazards model of the form

λ (t|Z(t)) = λ0(t) exp (β(t)′Z(t)) (3.1)

Definition 1.

S(r)(β(t), t) =
1

n

n∑
i=1

Yi(t) exp(β(t)′Z(t))Zi(t)
⊗r (3.2)

s(r)(β(t), t) = E
[
S(r)(β(t), t)

]
(3.3)

for r = 0, 1, 2 and the expectations are taken with respect to the true distribution of (T,C, Z).

Xu and O’Quigley (2000) also showed that s(1)(β, t)/s(0)(β, t) = E [Z(t)|T = t]. For
proportional hazards, one will then replace β(t) by β. The following theorem was proved by
Struthers and Kalbfleisch (1986):

Theorem 1. The maximum partial likelihood estimator β̂PL is a consistent estimator of β∗

where β∗ is the unique solution to the equation∫ τ

0

(
s(1)(β(t), t)− s(1)(β, t)

s(0)(β, t)
s(0)(β(t), t)

)
λ0(t)dt = 0 (3.4)

provided that the following two conditions hold:
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Condition 1

There exists a neighbourhood B of β∗ such that for each t < ∞

sup
x∈[0,t],β∈B

|S(0)(β, x)− s(0)(β, x)| → 0

in probability as n → ∞, s(0)(β, x) is bounded away from zero on B × [0, t], and s(0)(β, x)
and s(1)(β, x) are bounded on B × [0, t].

Condition 2

For each t < ∞,
∫∞

0
s(2)(β, x)dx < ∞.

The solution β∗ depends on the unknown censoring mechanism through the term s(0)(β(t), t)
in (3.4) and hence does not have a clear interpretation under non-proportional hazards. In
contrast, Xu and O’Quigley (2000) proposed an alternative estimator which does not de-
pend on the censoring mechanism and thus has a well-defined interpretation even for non-
proportional hazards. This estimator can be viewed as an average regression effect and is
essentially a weighted average of β(t) over time. They also proposed a simple method to
estimate this quantity.

Many others have also studied the effects of a misspecified proportional hazards model.
Struthers and Kalbfleisch (1986) looked at a two-covariate proportional hazards model and
found that if one covariate was missing in the fitted model, the resulting partial likelihood
estimator will always underestimate the regression parameter in absolute value in the true
model (biased towards 0). Bretagnolle and Huber-Carol (1988) generalized this result to the
case when there are more than one covariate remaining and showed that the underestimation
still holds for each of the remaining covariates up until some fixed time, which is reasonably
long in most practical cases. Ford et al. suggested that the converse may be true, that is the
inclusion of a covariate which is not in the true model may bias the regression effect away
from zero (1995).
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Chapter 4

Theoretical Results

Problem and Methodology

λ(t|Z(1), Z(2)) = λ0(t) exp(β1Z
(1) + β2(t)Z

(2)) (4.1)

Consider model (4.1) which is a special case of the model in (3.1) where we have two time-
independent covariates Z(1) and Z(2) that are mutually independent, with corresponding
regression coefficients β1 and β2(t). The regression coefficient of Z(1) is time-independent
while that of Z(2) is time-dependent. Given the non-proportional hazards of the second
covariate, we are concerned with how this will affect the estimation of β1 when a proportional
hazards model of the form

λ(t|Z(1), Z(2)) = λ0(t) exp(β1Z
(1) + β2Z

(2)) (4.2)

is fitted. This problem is motivated by epidemiologic studies where estimation of the re-
gression effect of primary exposure often needs to take into account confounders which may
follow non-proportional hazards. The exact solutions of the regression coefficients of the
Cox model (4.2), β∗1 and β∗2 were obtained by solving (3.4) numerically. Additionally, simu-
lations were run to compare the partial likelihood estimators β̂1 and β̂2, which are obtained
by solving (2.7), with the exact solutions. In the remainder of this chapter, we state the
assumptions, theorems and corollaries that will be used to solve (3.4). The proofs of the
theorems are given in the Appendix.
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Assumptions

(A1) Ti, Ci and Zi for i = 1, 2, ..., n are independent and identically distibuted with distri-
butions FT , FC and FZ respectively.

(A2) λ0(t) = 1

(A3) β2(t) = k1 for t ≤ t0 and β2(t) = k2 for t > t0

(A4) Z is time independent.

(A5) Censoring random variable C is independent of Z and T .

(A6) C ∼Uniform(0, τ)

Theorem 2. Under assumptions (A1-4) and model (4.1), the cumulative density function
of T , condition on Z is given by

FT |Z(t) =

{
1− exp (−ω1t) , t ≤ t0
1− exp (−ω1t0 − ω2 (t− t0)) , t > t0

(4.3)

where

Z =

(
Z(1)

Z(2)

)
(4.4)

ω1 = exp
(
β1Z

(1) + k1Z
(2)
)

(4.5)

ω2 = exp
(
β1Z

(1) + k2Z
(2)
)

(4.6)

Theorem 3. Under (A1),(A4)-(A6), the expectation of the at-risk indicator Y (t), condition
on Z is given by

E[Y (t)|Z] =

(
1− t

τ

)(
1− FT |Z(t)

)
(4.7)

Theorem 4. Under (A1)-(A6) and model (4.1), the quantities s(0)(β(t), t) and s(1)(β(t), t)
are given by

s(0)(β(t), t) =

{
EZ

[
ω1

(
1− t

τ

)
exp (−tω1)

]
, t ≤ t0

EZ

[
ω2

(
1− t

τ

)
exp (−t0ω1 − (t− t0) ω2)

]
, t > t0

(4.8)

s
(1)
1 (β(t), t) =

{
EZ

[
Z(1)ω1

(
1− t

τ

)
exp (−tω1)

]
, t ≤ t0

EZ

[
Z(1)ω2

(
1− t

τ

)
exp (−t0ω1 − (t− t0) ω2)

]
, t > t0

(4.9)
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s
(1)
2 (β(t), t) =

{
EZ

[
Z(2)ω1

(
1− t

τ

)
exp (−tω1)

]
, t ≤ t0

EZ

[
Z(2)ω2

(
1− t

τ

)
exp (−t0ω1 − (t− t0) ω2)

]
, t > t0

(4.10)

where EZ [·] is the expectation taken with respect to Z and

s(1)(β(t), t) =

(
s
(1)
1 (β(t), t)

s
(1)
2 (β(t), t)

)
(4.11)

Corollary 1. If Z(1) has a multinomial distribution with values ai occuring with probabilities
pi for 1 ≤ i ≤ m and Z(2) follows a multinomial distribution with values γj occuring with

probabilities qj for 1 ≤ j ≤ l, where
∑m

i=1 pi = 1 and
∑l

j=1 qj = 1, and the two variables are

independent, then the quantities s(0)(β(t), t) and s(1)(β(t), t) are given by

s(0)(β(t), t) =


∑l

j=1

∑m
i=1 piqj exp (β1ai + k1γj)

(
1− t

τ

)
exp (−t exp (β1ai + k1γj)) , t ≤ t0∑l

j=1

∑m
i=1 piqj exp (β1ai + k2γj)

(
1− t

τ

)
×

exp (−t0 exp (β1ai + k1γj)− (t− t0) exp (β1ai + k2γj)) , t > t0

s
(1)
1 (β(t), t) =


∑l

j=1

∑m
i=1 aipiqj exp (β1ai + k1γj)

(
1− t

τ

)
exp (−t exp (β1ai + k1γj)) , t ≤ t0∑l

j=1

∑m
i=1 aipiqj exp (β1ai + k2γj)

(
1− t

τ

)
×

exp (−t0 exp (β1ai + k1γj)− (t− t0) exp (β1ai + k2γj)) , t > t0

s
(1)
2 (β(t), t) =


∑l

j=1

∑m
i=1 γjpiqj exp (β1ai + k1γj)

(
1− t

τ

)
exp (−t exp (β1ai + k1γj)) , t ≤ t0∑l

j=1

∑m
i=1 γjpiqj exp (β1ai + k2γj)

(
1− t

τ

)
×

exp (−t0 exp (β1ai + k1γj)− (t− t0) exp (β1ai + k2γj)) , t > t0

Furthermore, the quantities s(0)(β∗, t) and s(1)(β∗, t) are given by

s(0)(β∗, t) =


∑l

j=1

∑m
i=1 piqj exp (β∗1ai + β∗2γj)

(
1− t

τ

)
exp (−t exp (β1ai + k1γj)) , t ≤ t0∑l

j=1

∑m
i=1 piqj exp (β∗1ai + β∗2γj)

(
1− t

τ

)
×

exp (−t0 exp (β1ai + k1γj)− (t− t0) exp (β1ai + k2γj)) , t > t0

s
(1)
1 (β∗, t) =


∑l

j=1

∑m
i=1 aipiqj exp (β∗1ai + β∗2γj)

(
1− t

τ

)
exp (−t exp (β1ai + k1γj)) , t ≤ t0∑l

j=1

∑m
i=1 aipiqj exp (β∗1ai + β∗2γj)

(
1− t

τ

)
×

exp (−t0 exp (β1ai + k1γj)− (t− t0) exp (β1ai + k2γj)) , t > t0

s
(1)
2 (β∗, t) =


∑l

j=1

∑m
i=1 γjpiqj exp (β∗1ai + β∗2γj)

(
1− t

τ

)
exp (−t exp (β1ai + k1γj)) , t ≤ t0∑l

j=1

∑m
i=1 γjpiqj exp (β∗1ai + β∗2γj)

(
1− t

τ

)
×

exp (−t0 exp (β1ai + k1γj)− (t− t0) exp (β1ai + k2γj)) , t > t0

where

β∗ =

(
β∗1
β∗2

)
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Corollary 2. If Z(1) has a multinomial distribution with values ai occuring with probabilities
pi for 1 ≤ i ≤ m, where

∑m
i=1 pi = 1, and Z(2) is uniformly distributed on (0,1), and the two

variables are independent, then the quantities s(0)(β(t), t) and s(1)(β(t), t) are given by

s(0)(β(t), t) =


∫ 1

0

∑m
i=1 pi exp

(
β1ai + k1Z

(2)
) (

1− t
τ

)
×

exp
(
−t exp

(
β1ai + k1Z

(2)
))

dZ(2) , t ≤ t0∫ 1

0

∑m
i=1 pi exp

(
β1ai + k2Z

(2)
) (

1− t
τ

)
×

exp
(
−t0 exp

(
β1ai + k1Z

(2)
)
− (t− t0) exp

(
β1ai + k2Z

(2)
))

dZ(2) , t > t0

s
(1)
1 (β(t), t) =


∫ 1

0

∑m
i=1 aipi exp

(
β1ai + k1Z

(2)
) (

1− t
τ

)
×

exp
(
−t exp

(
β1ai + k1Z

(2)
))

dZ(2) , t ≤ t0∫ 1

0

∑m
i=1 aipi exp

(
β1ai + k2Z

(2)
) (

1− t
τ

)
×

exp
(
−t0 exp

(
β1ai + k1Z

(2)
)
− (t− t0) exp

(
β1ai + k2Z

(2)
))

dZ(2) , t > t0

s
(1)
2 (β(t), t) =


∫ 1

0

∑m
i=1 Z(2)pi exp

(
β1ai + k1Z

(2)
) (

1− t
τ

)
×

exp
(
−t exp

(
β1ai + k1Z

(2)
))

dZ(2) , t ≤ t0∫ 1

0

∑m
i=1 Z(2)pi exp

(
β1ai + k2Z

(2)
) (

1− t
τ

)
×

exp
(
−t0 exp

(
β1ai + k1Z

(2)
)
− (t− t0) exp

(
β1ai + k2Z

(2)
))

dZ(2) , t > t0

Furthermore, the quantities s(0)(β∗, t) and s(1)(β∗, t) are given by

s(0)(β∗, t) =


∫ 1

0

∑m
i=1 pi exp

(
β∗1ai + β∗2Z

(2)
) (

1− t
τ

)
×

exp
(
−t exp

(
β1ai + k1Z

(2)
))

dZ(2) , t ≤ t0∫ 1

0

∑m
i=1 pi exp

(
β∗1ai + β∗2Z

(2)
) (

1− t
τ

)
×

exp
(
−t0 exp

(
β1ai + k1Z

(2)
)
− (t− t0) exp

(
β1ai + k2Z

(2)
))

dZ(2) , t > t0

s
(1)
1 (β∗, t) =


∫ 1

0

∑m
i=1 aipi exp

(
β∗1ai + β∗2Z

(2)
) (

1− t
τ

)
×

exp
(
−t exp

(
β1ai + k1Z

(2)
))

dZ(2) , t ≤ t0∫ 1

0

∑m
i=1 aipi exp

(
β∗1ai + β∗2Z

(2)
) (

1− t
τ

)
×

exp
(
−t0 exp

(
β1ai + k1Z

(2)
)
− (t− t0) exp

(
β1ai + k2Z

(2)
))

dZ(2) , t > t0

s
(1)
2 (β∗, t) =


∫ 1

0

∑m
i=1 Z(2)pi exp

(
β∗1ai + β∗2Z

(2)
) (

1− t
τ

)
×

exp
(
−t exp

(
β1ai + k1Z

(2)
))

dZ(2) , t ≤ t0∫ 1

0

∑m
i=1 Z(2)pi exp

(
β∗1ai + β∗2Z

(2)
) (

1− t
τ

)
×

exp
(
−t0 exp

(
β1ai + k1Z

(2)
)
− (t− t0) exp

(
β1ai + k2Z

(2)
))

dZ(2) , t > t0

The proofs of Corollary 1 and 2 follow trivially from Theorem 4 and will not be presented.
The first part of Corollary 1 and 2 can be easily obtained by taking the expectation with
respect to Z. The second part can be obtained from the first part with the replacements
β1 → β∗1 , k1 → β∗2 , k2 → β∗2 only for the first exponential term. The replacement is not
done for the other terms as the expectation is taken with respect to the true distribution of
(T,C, Z).
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Solution to (3.4) using Newton-Raphson

The exact solutions of the regression coefficients β∗ = (β∗1 , β
∗
1)

′
of the Cox model (4.2), with

baseline hazard 1, are found by solving the system of two equations∫ τ

0

(
s
(1)
1 (β(t), t)− s

(1)
1 (β∗, t)

s(0)(β∗, t)
s(0)(β(t), t)

)
dt = 0 (4.12)

∫ τ

0

(
s
(1)
2 (β(t), t)− s

(1)
2 (β∗, t)

s(0)(β∗, t)
s(0)(β(t), t)

)
dt = 0 (4.13)

We consider two special cases:

A. Z(1), Z(2) take on values 0 or 1 with probability 1
2

each.

B. Z(1) as above and Z(2) is a continuous random variable, uniformly distributed on (0,1).

The expressions for s(0)(β(t), t), s(0)(β∗, t), s(1)(β(t), t) and s(1)(β∗, t) are given by Corollary
1 and 2 for cases A and B respectively. For case A, the system of equations (4.12) and
(4.13) was solved numerically using the Newton-Raphson method, of which the existence
and uniqueness of the solution is guaranteed by Theorem 1. These results are then compared
to the partial likelihood estimators from simulations. For case B, the system of equations
could not be solved using Newton-Raphson and so only simulations were run to study the
effect of non-proportional hazards on the estimation of β1. The partial likelihood estimators
were obtained by averaging over 1000 simulations, with a sample size of 1000 each.
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Chapter 5

Numerical and Simulation Results

In this chapter, we summarize both the numerical and simulation results obtained when
model (4.2) is fitted when the true model is (4.1).

Case A. Z(1),Z(2) binary 0 or 1

The results of the simulations and numerical solutions obtained by Newton-Raphson for case
A are shown in Figures 5.1-5.5 and Tables 5.1-5.4. In Figures 5.1-5.3 and 5.5, the dotted
horizontal line shows the true value of β1 (in absolute value for cases where β1 < 0), the solid
line shows the value of β∗1 obtained by solving (4.12) and (4.13) using Newton-Raphson and
the points are the average of the partial likelihood estimators from 1000 simulations (sample
size n=1000). In Figure 5.5, the absolute value is shown. The value of k1 is indicated by
the vertical dotted line. Clearly when k1 = k2, the proportional hazards assumption is not
violated and we would have β∗1 = β1. This corresponds to the common intersection point of
the solid line, the dotted horizontal line and the dotted vertical line. For the same values
of β1, k1, t0 and τ , k2 was increased from -2 to 2 in step size of 0.1. This change in k2

causes the censoring to change and we report the range of levels of censoring for each of the
graphs in Figures 5.1-5.3 and 5.5. The lower and upper limits for the reported range always
correspond to the cases when k2 = 2 and k2 = −2 respectively.

Weak to moderate positive regression effect of Z(1) (β1 = 0.5,1.0)

For cases where the regression effect was weak or moderate positive (i.e. β1 = 0.5, 1.0 > 0),
and when k1 and k2 have the same sign (non-crossing hazards) for the covariate Z(2), three
observations can be made from Figure 5.1 and Table 5.1-5.2:

• If k2 > k1 ≥ 0, then β∗1 < β1. That is, if β2(t) increases over time, then the partial
likelihood estimator underestimates β1.
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• If 0 ≤ k2 < k1, then β∗1 > β1. That is, if β2(t) decreases over time, then the partial
likelihood estimator overestimates β1.

• The absolute value of the bias increases as the absolute difference between k1 and k2

increases.

The case where k1 and k2 have different signs (crossing hazards) is more complex. As can be
seen from Figure 5.1, it is possible for β∗1 to always underestimate or always over-estimate
β1 or do a combination of both, depending on the values of k1, k2, β1 and censoring.

Strong positive regression effect of Z(1) (β1 = 2)

The results for cases where the regression effect of Z(1) is strong and positive (i.e. β1 = 2 > 0)
can be seen from Figure 5.2 and Table 5.3. For the cases where k1 and k2 have different signs
(crossing hazards), the bias is typically negative (β∗1 < β1). For non-crossing hazards, if the
regression coefficient of Z(2) decreases (0 ≤ k2 < k1), the bias is typically negative (β∗1 < β1).
In the few cases where positive bias was observed, the bias was very small. However, if
the regression coefficient of Z(2) increases (0 ≤ k1 < k2), the bias can be either positive or
negative or both.

Special case: k1 = 0

In the case when k1 = 0, that is when the covariate Z(2) has no effect on the hazard up until
time t0, regardless of the values of k2, β1 and censoring, β∗1 always underestimates the true
value of β1. This is illustrated in Figure 5.3.

Censoring

We also studied the effect of censoring on the estimation of β1. This was done by varying
the values of t0 and τ while holding the ratio of t0 to τ fixed at 0.5. An alternative way
to vary censoring would have been to hold t0 fixed and vary τ ; this was not done, however,
because if t0 was held fixed and τ increased, we would have expected the bias to increase as
there would have been more observations that lie in the region t > t0. Thus, we varied both
t0 and τ simultaneously while holding the ratio of t0 to τ fixed to rule out this effect, so
that the change in bias can be attributed to censoring alone. The first two graphs in Figure
5.4 show the case where β1 = 1 while the two graphs below it show the case where β1 = 2.
In the first two graphs the bias is either always positive or always negative, while in the
last two graphs, the bias changes sign. In all cases, when censoring decreases, the absolute
value of the bias increases until a maximum where it then starts to decrease. In cases where
the absolute value of bias decreases to zero at some point, further decrease in censoring will
cause the absolute bias to increase (this usually happens when the bias changes sign).
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Negative regression effect of Z(1) (β1 < 0)

For comparison with the cases of positive regression effect, we also studied cases where the
regression effect of Z(1) is negative (for β1 = −0.5,−1.0,−2.0 < 0) and the results are plotted
in Figure 5.5. The same results as described in the weak to moderate positive regression
effect of Z(1) section hold in absolute value for cases where the regression effect is negative,
regardless of whether the regression effect is weak, moderate or strong. The results that are
described for strong positive regression effect of Z(1) was not observed when the regression
effect was negative. In Table 5.4, we compare a few cases where the percentage bias is about
the same, but the CI was significantly different. The results show that even when the bias
is only around -10%, the CI can drop to as low as 0.371.

Case B. Z(1) binary 0 or 1, Z(2) uniform (0,1)

For comparison, the simulation results for the case where Z(1) is binary 0,1 and Z(2) is
uniform (0,1) are shown in Figures 5.6-5.9 and Tables 5.5-5.7. In Figures 5.6-5.9, the dotted
line shows the true value of β1 (in absolute value for cases where β1 < 0) while the results
from simulation are shown as dots and are joined by lines. In Figure 5.9, the absolute value
is shown. Figure 5.6 and Tables 5.5-5.6 show the case where the regression effect of Z(1)

is weak or moderate positive; Figure 5.7 and Table 5.7 show the case where the regression
effect of Z(1) is strong positive; Figure 5.8 shows the special case where k1 = 0; Figure 5.9
shows the case where the regression effect of Z(1) is negative. A comparison between Figures
5.1 and 5.6, 5.2 and 5.7, 5.3 and 5.8, 5.5 and 5.9 shows that the trend observed in Case A
(both covariates binary 0,1) is also present in Case B (Z(1) binary, Z(2) continuous).
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Table 5.1: Weak positive regression effect of Z(1) (Z(2) binary)

β1 k1 k2 %cens β∗1 β∗2 β̂1 β̂2 CI %bias SE
0.5 1 0.1 0 0.5146 0.7010 0.514 (0.068) 0.707 (0.071) 0.938 2.93 0.065

1.9 0 0.4766 1.2066 0.477 (0.063) 1.208 (0.070) 0.946 -4.68 0.065
-0.8 0 0.4992 0.4331 0.502 (0.069) 0.439 (0.070) 0.930 -0.16 0.065

0.1 2.0 24 0.4511 0.7393 0.452 (0.070) 0.739 (0.079) 0.909 -9.79 0.074
1.2 -0.3 23 0.5175 0.9415 0.523 (0.078) 0.951 (0.082) 0.913 3.49 0.073
1 0.1 43 0.5056 0.9284 0.507 (0.086) 0.936 (0.085) 0.949 1.11 0.085

1.9 41 0.4863 1.1017 0.487 (0.080) 1.104 (0.089) 0.952 -2.74 0.084
-0.8 44 0.5071 0.8918 0.507 (0.087) 0.900 (0.090) 0.943 1.42 0.086

Table 5.2: Moderate positive regression effect of Z(1) (Z(2) binary)

β1 k1 k2 %cens β∗1 β∗2 β̂1 β̂2 CI %bias SE
1 1 0.1 0 1.0144 0.7624 1.021 (0.072) 0.773 (0.073) 0.935 1.44 0.071

1.9 0 0.9680 1.1571 0.967 (0.067) 1.162 (0.070) 0.920 -3.20 0.069
-0.8 0 1.0007 0.5530 1.001 (0.070) 0.556 (0.068) 0.955 0.07 0.071

0.1 2 21 0.9177 0.5974 0.921 (0.072) 0.595 (0.074) 0.817 -8.23 0.075
1.2 -0.6 19 1.0216 0.9818 1.018 (0.075) 0.985 (0.080) 0.941 2.16 0.076
1 0.1 37 1.0097 0.9487 1.013 (0.083) 0.952 (0.087) 0.953 0.97 0.085

1.9 35 0.9808 1.0725 0.984 (0.082) 1.074 (0.083) 0.960 -1.92 0.083
-0.8 38 1.0130 0.9221 1.017 (0.087) 0.931 (0.088) 0.943 1.30 0.085

Tables 5.1-5.4: λ0(t) = 1, β2(t) = k1 for t ≤ t0 and k2 otherwise, Z(1), Z(2) independent binary 0,1 with
probability 1

2 each, uniform (0, τ) censoring, t0 = 0.5. Empirical standard errors from simulations are
shown in parentheses. Sample size 1000 with 1000 simulations each. CI represents the proportion of 95%
confidence intervals (computed based on proportional hazards assumption) of β̂1 that contains β1. %bias
computed using %bias= β∗1−β1

β1
∗ 100. SE gives the average over the standard errors associated with the

estimation of β̂1 based on the Cox model.
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Table 5.3: Strong positive regression effect of Z(1) (Z(2) binary)

β1 k1 k2 %cens β∗1 β∗2 β̂1 β̂2 CI %bias SE
2 1 0.1 0 1.9516 0.7968 1.953 (0.076) 0.802 (0.068) 0.935 -2.42 0.085

1.9 0 2.0186 1.1279 2.024 (0.089) 1.130 (0.070) 0.937 0.93 0.085
-0.8 0 1.9071 0.6216 1.911 (0.076) 0.627 (0.066) 0.844 -4.64 0.085
0.1 30 1.9961 0.9663 2.001 (0.088) 0.968 (0.078) 0.964 -0.20 0.093
1.9 28 2.0045 1.0523 2.013 (0.090) 1.056 (0.082) 0.952 0.23 0.093
-0.8 30 1.9940 0.9500 1.998 (0.092) 0.953 (0.080) 0.948 -0.30 0.093

Table 5.4: Comparison with negative regression effect of Z(1) (Z(2) binary)

β1 k1 k2 %cens β∗1 β∗2 β̂1 β̂2 CI %bias SE
0.5 0.1 2.0 24 0.4511 0.7393 0.452 (0.070) 0.739 (0.079) 0.909 -9.79 0.074
-0.5 1 -1.8 0 -0.4518 -0.1439 -0.451 (0.065) -0.140 (0.070) 0.898 -9.63 0.065
-2 1 -1.6 0 -1.8118 -0.5199 -1.812 (0.084) -0.518 (0.073) 0.371 -9.41 0.082

Table 5.5: Weak positive regression effect of Z(1) (Z(2) continuous)

β1 k1 k2 %cens β̂1 β̂2 CI %bias SE
0.5 1 0.1 0 0.504 (0.066) 0.700 (0.119) 0.948 0.82 0.065

1.9 0 0.490 (0.064) 1.266 (0.116) 0.949 -2.08 0.065
-0.8 0 0.504 (0.067) 0.406 (0.113) 0.943 0.86 0.065

0.1 2 22 0.482 (0.072) 0.824 (0.125) 0.944 -3.63 0.073
1.2 -0.3 23 0.507 (0.076) 0.946 (0.128) 0.943 1.46 0.073
1 0.1 43 0.502 (0.087) 0.932 (0.145) 0.950 0.35 0.085

1.9 40 0.492 (0.086) 1.108 (0.139) 0.947 -1.68 0.083
-0.8 45 0.507 (0.086) 0.901 (0.146) 0.952 1.32 0.086

Tables 5.5-5.7: λ0(t) = 1, β2(t) = k1 for t ≤ t0 and k2 otherwise, Z(1) independent binary 0,1 with
probability 1

2 each, Z(2) uniform (0, 1), uniform (0, τ) censoring, t0 = 0.5. Empirical standard errors from
simulations are shown in parentheses. Sample size 1000 with 1000 simulations each. CI represents the
proportion of 95% confidence intervals (computed based on proportional hazards assumption) of β̂1 that
contains β1. %bias computed using %bias= β̂1−β1

β1
∗ 100. SE gives the average over the standard errors

associated with the estimation of β̂1 based on the Cox model.
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Table 5.6: Moderate positive regression effect of Z(1) (Z(2) continuous)

β1 k1 k2 %cens β̂1 β̂2 CI %bias SE
1 1 0.1 0 1.009 (0.070) 0.766 (0.116) 0.946 0.93 0.070

1.9 0 0.983 (0.069) 1.206 (0.115) 0.946 -1.68 0.069
-0.8 0 1.000 (0.073) 0.532 (0.118) 0.940 0.01 0.070

0.1 2 20 0.967 (0.077) 0.676 (0.129) 0.928 -3.32 0.076
1.2 -0.6 20 1.008 (0.078) 0.982 (0.125) 0.937 0.84 0.075
1 0.1 37 1.010 (0.086) 0.950 (0.142) 0.947 0.95 0.084

1.9 34 0.996 (0.083) 1.079 (0.137) 0.945 -0.37 0.083
-0.8 38 1.005 (0.085) 0.922 (0.138) 0.953 0.50 0.085

Table 5.7: Strong positive regression effect of Z(1) (Z(2) continuous)

β1 k1 k2 %cens β̂1 β̂2 CI %bias SE
2 1 0.1 0 1.985 (0.084) 0.811 (0.115) 0.950 -0.76 0.087

1.9 0 2.021 (0.090) 1.167 (0.115) 0.938 1.05 0.087
-0.8 0 1.968 (0.083) 0.617 (0.113) 0.945 -1.62 0.086
0.1 30 2.004 (0.090) 0.968 (0.135) 0.959 0.21 0.094
1.9 28 2.005 (0.093) 1.059 (0.133) 0.955 0.23 0.094
-0.8 30 2.002 (0.092) 0.959 (0.135) 0.959 0.08 0.094
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Figure 5.1: Estimation of β1 when regression effect of Z(1) is weak or moderate positive (Z(2)

binary).
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Figure 5.2: Estimation of β1 when regression effect of Z(1) is strong positive (Z(2) binary).
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Figure 5.3: Estimation of β1 for the case when k1 = 0 (Z(2) binary).
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Figure 5.5: Estimation of β1 when regression effect of Z(1) is negative (Z(2) binary).
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Figure 5.6: Estimation of β1 when regression effect of Z(1) is weak or moderate positive (Z(2)

continuous).
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Figure 5.7: Estimation of β1 when regression effect of Z(1) is strong positive (Z(2) continuous).
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Figure 5.8: Estimation of β1 for the case when k1 = 0 (Z(2) continuous).
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Figure 5.9: Estimation of β1 when regression effect of Z(1) is negative (Z(2) continuous).
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Appendix

Proof of Theorem 2. Under model (4.1) and assumptions (A1-4), the hazard function con-
dition on Z is given by

λ(t|Z) =

{
exp

(
β1Z

(1) + k1Z
(2)
)

, t ≤ t0
exp

(
β1Z

(1) + k2Z
(2)
)

, t > t0

The cumulative hazard function is then found by integrating over the hazard function:

Λ(t|Z) =

∫ t

0

λ(u|Z)du

For t ≤ t0,

Λ(t|Z) =

∫ t

0

exp
(
β1Z

(1) + k1Z
(2)
)
du

= exp
(
β1Z

(1) + k1Z
(2)
)
t

= ω1t

For t > t0,

Λ(t|Z) =

∫ t0

0

λ(u|Z)du +

∫ t

t0

λ(u|Z)du

=

∫ t0

0

exp
(
β1Z

(1) + k1Z
(2)
)
du +

∫ t

t0

exp
(
β1Z

(1) + k2Z
(2)
)
du

= exp
(
β1Z

(1) + k1Z
(2)
)
t0 + exp

(
β1Z

(1) + k2Z
(2)
)
(t− t0)

= ω1t0 + ω2 (t− t0)

Since

S(t) = exp (−Λ(t))

and

F (t) = 1− S(t)
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thus

FT |Z(t) = 1− exp (−Λ(t|Z))

=

{
1− exp (−ω1t) , t ≤ t0
1− exp (−ω1t0 − ω2 (t− t0)) , t > t0

Proof of Theorem 3. The at-risk indicator is defined as

Y (t) =

{
1 , X ≥ t
0 , X < t

E[Y (t)|Z] = 1× P (X ≥ t|Z) + 0× P (X < t|Z)

= P (X ≥ t|Z)

= P (min(C, T ) ≥ t|Z)

= P (C ≥ t, T ≥ t|Z)

= P (C ≥ t|Z)P (T ≥ t|Z)

=
(
1− FC|Z(t)

) (
1− FT |Z(t)

)
where we have used (A5), the independence of C and T to obtain the second last line. Under
(A5) and (A6), since C is uniformly distributed on (0, τ) and independent of Z,

FC|Z(t) = FC(t) =
t

τ

Thus,

E[Y (t)|Z] =

(
1− t

τ

)(
1− FT |Z(t)

)

Proof of Theorem 4. From Definition 1 and assumption (A4), we have

S(0)(β(t), t) =
1

n

n∑
i=1

Yi(t) exp
(
β1(t)Z

(1)
i + β2(t)Z

(2)
i

)

S(1)(β(t), t) =

(
S

(1)
1 (β(t), t)

S
(1)
2 (β(t), t)

)

=

 1
n

∑n
i=1 Yi(t) exp

(
β1(t)Z

(1)
i + β2(t)Z

(2)
i

)
Z

(1)
i

1
n

∑n
i=1 Yi(t) exp

(
β1(t)Z

(1)
i + β2(t)Z

(2)
i

)
Z

(2)
i


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s(0)(β(t), t) = E
[
S(0)(β(t), t)

]

s(1)(β(t), t) = E
[
S(1)(β(t), t)

]
=

 E
[
S

(1)
1 (β(t), t)

]
E
[
S

(1)
2 (β(t), t)

] 
Using (A1), since the random sample is independent and identically distributed

E
[
S(0)(β(t), t)|Z

]
= E

[
1

n

n∑
i=1

Yi(t) exp
(
β1(t)Z

(1)
i + β2(t)Z

(2)
i

)
|Z

]
= exp

(
β1(t)Z

(1) + β2(t)Z
(2)
)
E [Y (t)|Z]

E
[
S(1)(β(t), t)|Z

]
=

 E
[

1
n

∑n
i=1 Yi(t) exp

(
β1(t)Z

(1)
i + β2(t)Z

(2)
i

)
Z

(1)
i |Z

]
E
[

1
n

∑n
i=1 Yi(t) exp

(
β1(t)Z

(1)
i + β2(t)Z

(2)
i

)
Z

(2)
i |Z

] 
=

(
exp

(
β1(t)Z

(1) + β2(t)Z
(2)
)
Z(1)E [Y (t)|Z]

exp
(
β1(t)Z

(1) + β2(t)Z
(2)
)
Z(2)E [Y (t)|Z]

)
Under (A1), (A4)-(A6), we can use the result from Theorem 3:

E
[
S(0)(β(t), t)|Z

]
= exp

(
β1(t)Z

(1) + β2(t)Z
(2)
)
E [Y (t)|Z]

= exp
(
β1(t)Z

(1) + β2(t)Z
(2)
)(

1− t

τ

)(
1− FT |Z(t)

)

E
[
S(1)(β(t), t)|Z

]
=

(
exp

(
β1(t)Z

(1) + β2(t)Z
(2)
)
Z(1)(E [Y (t)|Z]

exp
(
β1(t)Z

(1) + β2(t)Z
(2)
)
Z(2)E [Y (t)|Z]

)
=

(
exp

(
β1(t)Z

(1) + β2(t)Z
(2)
)
Z(1)

(
1− t

τ

) (
1− FT |Z(t)

)
exp

(
β1(t)Z

(1) + β2(t)Z
(2)
)
Z(2)

(
1− t

τ

) (
1− FT |Z(t)

) )
This result can be simplified further by using the result from Theorem 2, which holds under
(A1)-(A4) and model (4.1).

E
[
S(0)(β(t), t)|Z

]
= exp

(
β1Z

(1) + β2(t)Z
(2)
)(

1− t

τ

)(
1− FT |Z(t)

)
=

{
ω1

(
1− t

τ

)
exp (−tω1) , t ≤ t0

ω2

(
1− t

τ

)
exp (−t0ω1 − (t− t0) ω2) , t > t0

E
[
S

(1)
1 (β(t), t)|Z

]
= exp

(
β1Z

(1) + β2(t)Z
(2)
)(

1− t

τ

)
Z(1)

(
1− FT |Z(t)

)
=

{
Z(1)ω1

(
1− t

τ

)
exp (−tω1) , t ≤ t0

Z(1)ω2

(
1− t

τ

)
exp (−t0ω1 − (t− t0) ω2) , t > t0
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E
[
S

(1)
2 (β(t), t)|Z

]
= exp

(
β1Z

(1) + β2(t)Z
(2)
)(

1− t

τ

)
Z(2)

(
1− FT |Z(t)

)
=

{
Z(2)ω1

(
1− t

τ

)
exp (−tω1) , t ≤ t0

Z(2)ω2

(
1− t

τ

)
exp (−t0ω1 − (t− t0) ω2) , t > t0

The unconditional expectation of S(0) and S(1) is then given by

s(0)(β(t), t) = E
[
S(0)(β(t), t)

]
= EZ

[
E
[
S(0)(β(t), t)|Z

]]
=

{
EZ

[
ω1

(
1− t

τ

)
exp (−tω1)

]
, t ≤ t0

EZ

[
ω2

(
1− t

τ

)
exp (−t0ω1 − (t− t0) ω2)

]
, t > t0

s
(1)
1 (β(t), t) = E

[
S

(1)
1 (β(t), t)

]
= EZ

[
E
[
S

(1)
1 (β(t), t)|Z

]]
=

{
EZ

[
Z(1)ω1

(
1− t

τ

)
exp (−tω1)

]
, t ≤ t0

EZ

[
Z(1)ω2

(
1− t

τ

)
exp (−t0ω1 − (t− t0) ω2)

]
, t > t0

s
(1)
2 (β(t), t) = E

[
S

(1)
2 (β(t), t)

]
= EZ

[
E
[
S

(1)
2 (β(t), t)|Z

]]
=

{
EZ

[
Z(2)ω1

(
1− t

τ

)
exp (−tω1)

]
, t ≤ t0

EZ

[
Z(2)ω2

(
1− t

τ

)
exp (−t0ω1 − (t− t0) ω2)

]
, t > t0
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