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Abstract

Define

H(z) =
X

x,y∈Fp

„
xy(1− x)(1− y)(1− xyz)

p

«
where p is an odd prime,

“
a
p

”
is the Legendre symbol, and z ∈ Fp. Note

that H(z) is a normalized hypergeometric 3F2 over Fp. Let Gn and gn be
Ramanujan’s class invariants. Let Mn(x) be the minimal polynomial over
Q of G−24

n or −g−24
n , according as n is odd or even. Whenever there exists

a zero r of Mn(x) mod p, we evaluate H(r). This generalizes evaluations
of H(z) given by Ono.

1 Introduction

In 1984, the systematic study of general hypergeometric series over finite fields
was initiated by John Greene in his Ph.D thesis [Gre84]. Prior to that however,
work had already been done on specific hypergeometric functions. The main
concern of this paper is a function which we shall define as follows.

H(z) =
∑

x,y∈Fp

(
xy(1− x)(1− y)(1− xyz)

p

)

where p is an odd prime,
(

a
p

)
is the Legendre symbol, and z ∈ Fp. In 1981,

Ron Evans proved an evaluation of H(1) for all odd primes [Eva81]. In that
same year, Evans, Pulham, and Sheehan conjectured a similar evaluation for
H(−1) [EPS81] which was proved in 1986 by Stanton and Greene [GS86]. The
proofs used ideas analogous to those used to prove evaluations of classical hy-
pergeometric functions over the reals. In 1998, Ono extended these evaluations
by using elliptic curves [Ono98] to answer a question posed in 1992 by Koike
about H( 1

4 ) [Koi92]. In recent years these ideas have been applied in the study
of Apéry numbers [AO00], the trace of the Hecke operator [FOP04], and Paley
graphs [Wag06].

The primary purpose of this paper is to prove the following new result, which
evaluates H(z) for infinitely many z, extending the result of Ono.
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Theorem 1.1 Let n be an integer greater than 1, and p be an odd prime that
does not divide n. If r is defined to be

r =
{

G−24
n , if n is odd

−g−24
n , if n is even

where Gn and gn are Ramanujan’s class invariants, then assuming r mod p
exists and r /∈ {0, 1},

H(r) =

{
(−1)y(4x2 − p) , if p = x2 + ny2

−
(

1−r
p

)
p , otherwise

where x and y are taken to be positive integers.

The existence of r mod p will be discussed in Theorem 3.1. Theorem 1.1,
our main result, provides evaluations of H(r) for all n > 1. Previously H(r) had
been evaluated only for n = 2, 3, 4, 7; in these cases, r = −1, 1/4,−1/8, 1/64, re-
spectively. The proof of this theorem involves a combination of class field theory
and elliptic curves which we shall discuss in the following section. Some of the
discussion has been motivated by Cohn [Coh85], Miller [Mil98], and Osserman
[Oss05].

2 Background

The study of class field theory was born in the nineteenth century from two pri-
mary motivations. Both Fermat’s Last Theorem and Gauss’s theory of quadratic
forms require the imbedding of fields in larger fields to expand upon ideal theory
and the factorization of primes. In relating class field theory to elliptic curves,
a new set of tools can be applied to classical problems providing insight on
modern problems.

2.1 Class Field Theory

For the rest of the paper, we will let k denote the quadratic field Q(
√
−n) with

discriminant dk where

dk =
{
−n , if n = 3 mod 4
−4n , otherwise.

We will begin our discussion of class field theory with the notion of an order
of k. An order O in a quadratic field k is a subring of the ring of integers of k
and a free Z-module of rank 2. Using the notation [w1, w2] = Zw1 + Zw2, we
can explicitly write

O =
[
1, t

(
dk +

√
dk

2

)]
where t denotes the conductor of O. Note that when t = 1, O is the ring
of integers in k, which we shall denote Ok. Furthermore, it is the maximal
order of k, meaning if O is an order in k, then O ⊆ Ok. We will be primarily
concerned with the particular order Z[

√
−n]. A key invariant of an order is the

discriminant, which in our case, can be calculated to be D = −4n. From this,
we can easily calculate the conductor from −4n = t2dk.
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A proper fractional ideal a of O is a Z-module of rank 2 where

O = {β ∈ k : βa ⊆ a}.

Let I(O) denote the set of all proper fractional O-ideals and P (O) denote the
set of all principal ideals in I(O), that is, all ideals of the form αO, α ∈ k∗.
Taking the quotient

C(O) = I(O)/P (O)

gives us the ideal class group of O. When dealing with the maximal order Ok,
we will use the notation Ik = I(Ok) and Pk = P (Ok).

An ideal a is said to be prime to the conductor t of O, if a + tO = O. This
will allow us to talk about an order O and its corresponding O-ideals in terms
of Ok and Ok-ideals.

Proposition 2.1 Given an order O of conductor t in Ok,

C(O) = I(O)/P (O) ' I(O, t)/P (O, t) ' Ik(t)/Pk,Z(t)

where I(O, t), P (O, t), and Ik(t) denote the group of ideals prime to t in I(O),
P (O), and Ik respectively and Pk,Z(t) denotes the subgroup of Ik(t) generated
by principal ideals of the form αOk, where α ∈ Ok and α ≡ a mod tOk for some
a ∈ Z relatively prime to t.

Proof See [Cox89, Prop. 7.19, 7.20, 7.22]

�

We can now define Ik(t)/Pk,Z(t) to be the ring class group of the order O of
conductor t. There is a unique Abelian extension Ωt of k such that

C(O) ' Ik(t)/Pk,Z(t) ' Gal(Ωt/k)

which we shall call the ring class field modulo t over k [Sch02, p. 328]. Using
the modular j-invariant, we can generate the ring class field of any order.

Theorem 2.2 Let O be an order with conductor t and a be a proper fractional
O-ideal. Then j(a) is an algebraic integer and k(j(a)) = Ωt.

Proof See [Cox89, Thm. 11.1].

�

Of particular interest is when O = Z[
√
−n]. By definition of the j-invariant,

we have that j(
√
−n) = j(a) where a = [1,

√
−n]. Thus, the associated ring

class field can be described Ωt = k(j(
√
−n)).

Theorem 2.3 Let n be a positive integer and p be an odd prime. If p - n, then

p = x2 + ny2 ⇐⇒
(
−n

p

)
= 1 and fn(x) ≡ 0 mod p has an integer solution

where fn(x) is the minimal polynomial of an algebraic integer α for which k(α) =
Ωt, the ring class field of the order Z[

√
−n] with conductor t.
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Proof See [Cox89, Thm. 9.2].

�

We complete the section on class field theory with the notion of a prime
ideal p in k splitting completely in Ωt. By this, we mean that if g = [Ωt : k],
then p = B1...Bg where Bi is prime in Ωt.

Theorem 2.4 An ideal p splits completely in the ring class field Ωt if and only
if it is a principal prime ideal in Pk,Z(t).

Proof See [Cox89, p. 182].

�

2.2 Elliptic Curves and Complex Multiplication

We will begin this section with the definition of an elliptic function. A function
f(z) on C is an elliptic function provided that it is all of the following:

(i) doubly periodic,

(ii) analytic, except at the poles,

(iii) and has no singularities other than poles in the finite part of the
complex plane.

A function f is periodic if there is some constant w1 ∈ C∗ such that f(z) =
f(z + w1). It is doubly periodic if f(z) = f(z + w1) = f(z + w2) for another
constant w2 ∈ C∗ assuming that the ratio w1

w2
is not real. The values w1 and w2

generate a lattice
L = {nw1 + mw2 : n, m ∈ Z}

which stretches across the complex plane C. A lattice corresponding to an
elliptic function is called nondegenerate because the ratio w1

w2
is not real. The

constants w1 and w2 are called fundamental if there is no point w within a
parallelogram of C with corners at z, z + w1, z + w2, z + w1 + w2 such that
f(w) = f(z). We will assume that when we mention lattices, they are both
nondegenerate and have fundamental periods w1 and w2.

We define the Weierstrass ℘ function to be

℘(z) =
1
z2

+
∑

0 6=w∈L

1
(z − w)2

− 1
w2

which converges absolutely and uniformly on compact subsets of C− L so that
℘ can be differentiated term by term to get

℘′(z) = −2
∑

0 6=w∈L

1
(z − w)3

which converges on the same compact subsets. Given the Eisenstein series of
weight 2k defined to be

G2k(L) =
∑

0 6=w∈L

w−2k,
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it can be shown that any elliptic function can be written in terms of ℘ and ℘′

[Apo97, p. 11], which satisfy

℘′2(z) = 4℘3(z)− 60G4℘(z)− 140G6.

Letting y = ℘′, x = ℘, g2 = 60G4, and g3 = 140G6 gives

E : y2 = 4x3 − g2x− g3

which is an elliptic curve written in Weierstrass normal form. The definition
of an elliptic curve also requires that the cubic polynomial in x has 3 distinct
zeros. Note that this means any lattice has a corresponding elliptic curve. The
discriminant of E can be written as

∆E = g3
2 − 27g2

3 .

This allows us to define the j-invariant of an elliptic curve to be

jE =
(12g2)3

∆E
.

Recall that Theorem 2.2 required the argument of j to be a proper fractional
O-ideal a that can be written [α, β] where α, β ∈ O. A central notion in complex
multiplication is that α and β correspond directly to w1 and w2, the underlying
generators of a lattice L for a class of elliptic curves. Explicitly speaking, if
jE = j(a), then we say that E has complex multiplication by the order O. This
implies that if a and b are in the same ideal class, then j(a) = j(b).

We are interested in elliptic curves over a finite field Fp where p is prime. We
will write Ē to denote the nondegenerate reduction of E by p, that is Ē remains
an elliptic curve. There are two types of elliptic curves over a finite field, namely
ordinary and supersingular. For our purposes, we will use the following result
as our distinguishing criterion.

Theorem 2.5 Let E be an elliptic curve with complex multiplication by an
order O of an imaginary quadratic field k. Let Ē be a nondegenerate reduction
of E by a prime p. The curve Ē is supersingular if and only if p has only one
prime above it in k, that is, either p is inert or ramified in k. Furthermore, Ē
has p + 1 points mod p

Proof See [Lan73, Sec. 13.4, Thm. 12].

�

By a point on E, we mean a solution (x, y) ∈ (Fp, Fp) ∪ (∞,∞). We may
now look at the other case, when E is ordinary.

Theorem 2.6 Let E be an elliptic curve over a finite field Fp with complex
multiplication by an order O of an imaginary quadratic field k. That is, E is
ordinary. If p = ππ̄ where π ∈ O, then there are p + 1− (π + π̄) points on E.

Proof See [Sil94, Chapter V, Exercise 5.10] and [Cox89, Thm. 14.16].

�
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3 Proof of Theorem 1.1

We will begin this section by looking at the existence of r mod p. Following, we
will relate the parity of y and value of the Legendre symbol

(
1−r

p

)
. Along with

the results of §2.2, we will be able to prove our main result.
Our first theorem examines the relationship between r and p.

Theorem 3.1 Let p be an odd prime and x, y, and n be positive integers.
Define

r =
{

G−24
n , if n is odd

−g−24
n , if n is even

where Gn and gn are Ramanujan’s class invariants. Then r generates the ring
class field k(j(

√
−n)). Additionally, the following hold:

(i) If p = x2 + ny2, then r mod p exists.

(ii) If
(
−n
p

)
= 1 but p 6= x2 + ny2, then r mod p does not exist.

(iii) If p is inert from Q to k, then r mod p conditionally exists.

We provide a conjecture about the existence of r in the third case.

Conjecture 3.2 If p is inert from Q to k, then r mod p exists if and only if
−p is a square mod n.

Proof (Theorem 3.1) We may write the Ramanujan class invariants raised to
the −24th power in terms of Weber functions so that we can conclude that r
generates the ring class field k(j(

√
−n)) [Sch02]. By Theorem 2.2, we know that

k(j(
√
−n)) corresponds to the order Z[

√
−n] so that r generates the ring class

field of the order Z[
√
−n].

First consider the case where
(
−n
p

)
= 1 and p = x2 + ny2. By Theorems

2.2 and 2.3, it is clear that Mn(z) = 0, where Mn is taken to be the minimal
polynomial of r, has integer solutions mod p so that r exists mod p.

Now we consider the case that
(
−n
p

)
= 1 but p 6= x2 + ny2. By Theorem

2.3, it follows that Mn(z) = 0 has no integer solutions mod p so r does not exist
mod p in this case.

Finally, we consider the case that p is inert from Q to k. It follows that pO
is a prime ideal which splits completely in k(r) by Theorem 2.4. This implies
that Mn splits completely over O/(p) ' Fp2 [Nar73, p. 161]. Since r is real, it
follows that Mn is defined over Q so it implies that Mn splits into linear factors
in Fp2 . Therefore, r mod p exists when there are zeros of Mn in Fp ⊂ Fp2 .

�

Lemma 3.3 j(
√

1− r) generates Ω2t, the ring class field of conductor 2t.

Proof Consider k(j(
√
−n)) which we know by Theorem 3.1 is generated by

r = −g−24
n in the case that n is even. Replacing n by 4n implies that k(j(

√
−4n))
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is generated by −g−24
4n for all n. By identities of Ramanujan class invariants

[Ber97, p.187], we have that

g4n =


21/8gn

(
g8

n +
√

g16
n + g−8

n

) 1
8

, if n is even

21/8Gn

(
G8

n +
√

G16
n −G−8

n

) 1
8

, if n is odd

so g24
4n =

8
r2

(4− 3r + (4− r)
√

1− r)

Thus, we have that k(j(
√
−4n)) = k(

√
1− r). Applying Theorem 2.2, it is

clear that k(
√

1− r) = Ω2t.

�

Theorem 3.4 If p = x2 + ny2, then
(

1−r
p

)
= (−1)y.

Proof Write π = x + y
√
−n. We will prove the following equivalences where p

is a prime ideal above π in k(r) and Ω2t is the ring class field of conductor 2t.(
1− r

p

)
= 1 ⇔ 1− r mod p is a square in k(r) (1)

⇔ x2 − (1− r) mod p splits into linear factors (2)
⇔ p splits in Ω2t (3)
⇔ y even (4)
⇔ (−1)y = 1 (5)

For the first equivalence, since p | p in k(r), it is clear that
(

1−r
p

)
= 1 implies

that 1 − r is a square mod p. It remains to show that when 1 − r is a square
mod p, then it is a square mod p. In order to do this, it suffices to show
Z/(p) ' {integers in Ωt}/(p). Since p splits completely, p has degree 1 over p
so that the previous statement holds and the first equivalence follows.

The second and last equivalences are clear.
Note that x2− (1− r) is the minimal polynomial of

√
1− r which generates

Ω2t from k by Lemma 3.3. Since this polynomial splits mod p, p will split in
Ω2t [Nar73, p. 161] so that (2)⇔(3).

Finally, since p splits completely in Ω2t, it is in the principal ring class
Pk,Z(2t) by Theorem 2.4 so that (3)⇔(4) follows. Therefore, the theorem holds.

�

We are now ready to prove our main result.

Proof (Theorem 1.1)
Let E be the following elliptic curve.

y2 = (x− 1)
(

x2 − 1
1− s

)
By mapping (x, y) → (x + 1

3 , y
2 ), we can write E in Weierstrass form,

y2 = 4x3 − g2x− g3
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which we will denote as E′ where g2 = 4
3 + 4

1−s and g3 = 8
27 −

8
3(1−s) . We can

calculate the discriminant and j-invariant as follows.

∆E′ =
64s2

(1− s)3

jE′ =
(12g2)3

∆E′
=

64(4− s)3

s2

Setting jE′ = j(
√
−n) gives E complex multiplication by Z[

√
−n]. This gives

the cubic equation

64s3 + (j(
√
−n)− 768)s2 + 3072s− 4096 = 0

and substituting the well-known equality

j(
√
−n) =

256(1− k2
n + k4

n)3

(k2
n − k4

n)2

where kn is an elliptic modulus [BB98, Thm. 4.4] and solving for s gives three
solutions, namely

s1 = 4k2
n(1− k2

n) = G−24
n

s2 = − 4k2
n

(1− k2
n)2

= −g−24
n

s3 = −4(1− k2
n)

k4
n

= −g−24
4n .

The rightmost equalities result from [Ber97, p. 185] where Gn and gn are called
Ramanujan class invariants. We can thus define E such that s = s1 when n is
odd and s = s2 when n is even so that we may replace s with r.

When p is inert, Ē is supersingular by Theorem 2.5, so Ē has p + 1 points
over Fp. Suppose now that p splits, so p = x2 +ny2 = ππ̄ with π = x+y

√
−n ∈

Z[
√
−n]. Then by Theorem 2.6, Ē has p + 1± 2x points.
Now consider the transformation of E by (x, y) → ( x

λ2 , y
λ3 ) where λ = 4(r−1)

r
which gives the curve

y2 = x3 − λ2x2 + (4λ3 − λ4)x + (λ6 − 4λ5).

In [Ono03, p. 190], Ono calculates that if the above curve has p + 1− a(p)
points over Fp, then

H

(
4

4− λ

)
=
(

λ2 − 4λ

p

)
(a(p)2 − p)

This new curve is isomorphic to E so it has p + 1 or p + 1± 2x according as E
is supersingular or not.

By substituting λ = 4(r−1)
r in the above, we can see that when E is super-

singular and r exists mod p, a(p) = 0 so

H(r) = −
(

1− r

p

)
p.
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When E is ordinary, a(p) = ±2x so

H(r) = (−1)y(4x2 − p.)

Therefore, using Theorem 3.4, the main result is proven.

�

4 Example

For n = 58 and p = 67, p = x2 + 58y2 = 67 so we have x = 3 and y = 1. At
n = 58,

r = −g−24
58

= −

2−
1
4 eπ

√
58/24

∞∏
k=1,3,5,..

(
1− e−kπ

√
58/24

)−24

[Ber97, p. 183]

= −

(√
29− 5

2

)12

[Ber97, p. 201]

which evaluates to r = 5 or 27 mod 67. Taking r = 5 (arbitrarily), this gives
the elliptic curve

y2 = (x− 1)
(

x2 − 1
1− 5

)
mod 67

which has 67+1±6 points mod 67. It follows that H(5) = (−1)1(4(3)2−67) =
31.
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