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1 Introduction 
 
This paper involves the analysis and study of multilevel iterative methods, otherwise 
known as Multigrid.  Multigrid is generally used to approximate the solution of elliptic 
partial differential equations.  The definition of a partial differential equation (PDE) is the 
�relations involving an unknown function of several independent variables and its partial 
derivatives with respect to those variables.� [6]  An elliptic PDE is a specific branch of 
PDEs which will be described in the following section.  While there are many methods 
that can directly solve PDEs (i.e. integral transform, separation of variables, and Green�s 
function), real life problems are often too complex to be solved directly.  Thus 
approximation methods such as SSOR, ILU, Conjugate Gradients, and Multigrid are 
used.  In this paper, we discuss various aspects of Multigrid.  We will look at the 
advantages of Multigrid (as opposed to the other approximation methods), break down 
the various components that make up Multigrid, describe the Multigrid algorithm as a 
whole, do some experimentation, and then examine Algebraic Multigrid, a more complex 
variation of the basic Multigrid. 
 
2 Background  
 
2.1 Multigrid foundations 
 
Multigrid is an iterative method that can be used to solve  
 

Au = f      (2.1) 
 
A is a square matrix, f is a vector termed the right hand side, and u is a vector for which 
we are trying to solve. 
 
An iterative method is defined as �a method that attempts to solve a problem by finding 
successive approximations to the solution starting from an initial guess.� [6]  Multigrid is 
primarily used to solve elliptic partial differential equations.  This branch of problems can 
be represented in general terms as: 
 

 
 

where 02 <− acb , and Ω  (the domain) and Ω∂  (the boundaries) are provided. 
 
There are other iterative methods used to solve elliptic PDEs but the rate of convergence 
and cost of Multigrid is what makes the algorithm significant.  Below is a chart that 
depicts the various approximation methods and their respective spectral radius (which 
measures the rate of convergence) and cost. 
 
 
 
 

),(),(),(),(),(),(2),( yxfuyxguyxeuyxduyxcuyxbuyxa yxyyxyxx =+++++
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Method Cost Spectral radius 
Jacobi NNN d log/2⋅  21 ch−  

SOR/SSOR/ILU NNN d log/1⋅  ch−1  
Jacobi-CG NNN d log/1⋅  ----- 

SSOR-CG/ILU-CG NNN d log2/1⋅  ----- 
Multigrid N  1<c  

 
Fig. 2.1 

 
where d is the number of dimensions of the problem, N represents the size of the 
problem, c is a constant which varies by method, and h=1/N (length of each step size). 
 
2.2 Multigrid Algorithm 
 
There exist several key components of Multigrid.  These are: smoothing, restriction, and 
prolongation.  Prior to implementing the Multigrid algorithm, it is necessary to discretize 
the problem first.  The discretization of elliptic partial differential equations leads to 
solving a problem of the form (2.1).  This matrix problem is what Multigrid will be 
implemented on.  So the very first thing we will discuss is how to discretize a problem.   
 
Discretization: 
 
Discretization by definition is �the process of transferring continuous models and 
equations into discrete counterparts.� [6]  While discretization takes away from the 
continuity of the problem, the idea behind it is that the initial problem is well-posed: 
 
Conditions to being well-posed: 

1. A solution exists 
2. The solution is unique 
3. If the data are changed only slightly, then the resulting solution changes only 

slightly (continuous dependence of solution on data). 
 
When using a numerical algorithm to approximate a solution for a problem it is important 
to determine if a problem is well-posed.  First, if no solution exists then there is no point 
in applying the algorithm to the problem.  Second, if multiple solutions exists, one must 
determine which computed solution is of interest.  Third, if the first two conditions are 
satisfied but the solution does not depend continuously on the data, then the 
approximation to the exact solution will most likely be of no value.  This is because in 
approximation techniques, the computations involved do not involve directly solving the 
problem, but instead a problem that has been slightly altered.  The modified problem may 
have one solution but that solution may be significantly different than the true solution of 
the original problem if it does not depend continuously on the data. 
 
There are various methods of discretizing a PDE.  Some of the more common techniques 
include: 
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1. Finite differences 
2. Finite volumes 
3. Finite elements 

 
It would be too much to go into every single method of discretization, so instead, below 
is an example of how to discretize a problem using finite differences.  Also included are 
visualizations of a problem using finite discretization. 
 
Example: Finite differences discretization 
 
We first introduce the following notation: 
 

Ω  is the domain in which we are working on. 
 

),( jiij yxP =  is a collection of grid points for integer values of i and j with  
 

ihxx oi += , jkyy oj +=  
 
where ),( oo yx  is a chosen specific point and the stepsizes xh ∆= and yk ∆=  are fixed 
mesh widths.  (note: ∆  does not denote the Laplacian but instead a chosen stepsize for 
both the x and y direction respectively)  The discrete point set 
 

{ jkyyihxxyxP ojoijiijkh +=+===Ω ,),(,  for all integers i,j with }Ω∈ijP  
 
provides a discrete representation of Ω . 
 
Let ),( jiij yxuu =  for khji yx ,),( Ω∈  
 
For a smooth function ),( yxuu = and for any small number x∆ , take the Taylor 
expansion with respect to x to get: 
 

))((),()(
!3

1),()(
2
1),(),(),( 432 xyxuxyxuxxyxuyxuyxxu xxxxxx ∆+∆+∆+∆+=∆+ ϑ   

where ))(( 4x∆ϑ  refers to a bounded quantity: 
 

hch ≤)(ϑ  
 
where c is a constant and in this case, )( xh ∆= . )(hϑ is termed the truncation error. 
By moving term�s of the Taylor expansion around to get the first derivative of u with 
respect to x isolated, we get the following: 
 

2)(),(
2
1)],(),([1),( xxyxuyxuyxxu

x
yxu xxx ∆+∆−−∆+

∆
= ϑ  
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or in grid notation with xh ∆=  
 

2
,,1 )(

2
][1),( huhuu

h
yxu xxjijijix ϑ+−−= +     (2.2) 

 
and replacing x∆  by x∆− we can get 
 

2
,1, )(

2
][1),( huhuu

h
yxu xxjijijix ϑ++−= −     (2.3) 

 
Subtracting formulas (2.2) from (2.3) and isolating xxu : 
 

)(]2[1),( 2
,1,,12 huuu

h
yxu jijijijixx ϑ++−= −+    (2.4) 

 
and using a common stepsize h=k, a corresponding discretization with respect to y : 
 

)(]2[1),( 2
1,,1,2 huuu

h
yxu jijijijiyy ϑ++−= −+    (2.5) 

 
Visual example: Finite differences discretization of ),(),( jiyyjixx yxuyxu +  
 
Using the resulting equations (2.4) and (2.5) and adding them together we can get the 
following: 
 

)(]4[1),(),( 2
,1,1,,1,12 huuuuu

h
yxuyxu jijijijijijiyyjixx ϑ+−+++=+ −+−+  

 
 
In the following figure,  
 

jiua ,1+=  

jiub ,1−=  

1, += jiuc  

1, −= jiud  

jiue ,=  
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Fig. 2.2 
 
As shown in Figure 2.2, utilizing finite discretization, in order to get a better 
approximation of u at point e for the problem ),(),( jiyyjixx yxuyxu +  using any initial 
guess, it is necessary to multiply that point by -4 and add it to the four surrounding values 
around it. 
 
Smoothing/Relaxation Process: 
 
Upon discretizing the initial problem, the problem then becomes one of solving a 
question of the form (2.1).  This can be shown by the following:  
 
Let�s examine  
    fyxu jixx =),(  
 
From 2.4, 
 

)()(]2[1),( 2
,1,,12 jjijijijixx xfhuuu

h
yxu =++−= −+ ϑ  
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For convenience, we will drop off the 2

1
h

and )( 2hϑ  terms, so the problem now 

becomes:  
)(]2[),( ,1,,1 jjijijijixx xfuuuyxu =+−= −+  

 
Furthermore, in this problem, we are only working in one-dimension (x) so for further 
simplicity, we can drop out the y terms and its corresponding j values: 
 

)(]2[)( 11 jiiiixx xfuuuxu =+−= −+     (2.6) 
 
(2.6) only refers to one isolated value, ix , on the grid.  So to represent 
 

)(]2[)( 11 jiiiixx xfuuuxu =+−= −+  where ni ≤≤1  
 
meaning there are n grid points, we get the following system of linear equations (in 
matrix form): 
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Notice that for the first and last equations, the first term and last term respectively are 
dropped off.  This is because data points on those corresponding values are out of the 
bounds of the problems.  In this case, in (2.1) the matrix A is the tridiagonal matrix 
shown above, and the vectors u and f correspond to the u and f vectors. 
 
We begin by talking about the first part of the Multigrid algorithm termed relaxation.   
 
Let us term are current approximation as 0u .  Let�s also pretend that we have the real 
solution u .  These two values lead to the following relationship: 
 

     0uuerror −=       
 
 (Note: we will only be using 0u  when discussing the Multigrid algorithm, u  (the exact 
solution) and the error are only assumed to be known in order to be utilized as a 
foundation for comparison) 
 
As a visual example to help explain the smoothing process, let�s say our error takes on 
the following visual form: 
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The big thing that should be noticed is that there are two types of oscillations in this error, 
high frequency error and low frequency error.  The smoothing process helps get rid of the 
high frequency error using the following technique. 
 
With 0u  (which we are hoping will eventually approximate u  in (2.1)), smoothing 
involves the following iterative process: 
 

          

11

11

11

−−

−−

−−

+=
=

−=

kkk

kk

kk

uu
rB

Aubr

δ
δ  

 
 
where A and f are from (2.1) and B  is a simplified factorization of A  termed the 
smoother (note: the terms for the smoothing and relaxation are synonymous).   
 
The number of iterations used in the smoothing process is up to the user, but generally 1-
4 smoothing processes are adequate (this will be discussed later). 
 
Examples of various smoothers: 
 
! APPUDDDLB t≈++= − )()( 1  
! DB =  

 
L,D,U represent the lower triangular matrix, diagonal, and upper triangular matrix of A 
respectively.  P represents a permutation matrix. 
 
Visual example of the smoothing/relaxation process � The following represents the error 
before and after smoothing.  Figure 2.3 is the initial error, while Figure 2.4 represents the 
error after the initial guess has been updated within the smoothing process. 
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Fig. 2.3 
 
Notice that most of the high frequency oscillations in the top figure are gone in bottom 
figure (after smoothing).  The bottom figure is essentially �smoother�.  But now, the 
question arises as to how to get rid of the low frequency oscillations. 
 
Restriction: 
 
Multigrid, much like its name, deals with multiple grids.  How are these grids related?  
The idea behind Multigrid is that through each successive grid, the error is magnified so 
you are able to identify and remove it at a faster rate.  Note: This will only work when 
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dealing with low frequency, but keep in mind, the smoothing process is extremely 
effective in dealing with the high frequency error. 
 
Three main questions arise in dealing with the �multiple grid� aspect of Multigrid: 

1. What are the different types of grids? 
2. How do you get from one grid to another (i.e. what are their relationships)? 
3. How does this get rid of the low frequency error? 

 
We will first deal with questions 1 & 2 and then use visual examples to explain question 
3. 
 
Let�s begin by defining certain terminology used in dealing with the different �classes� of 
grids.  In Multigrid, the discretization grids either have more grid points or less grid 
points.  No two successive grids will have the same number of grid points (note: the key 
word is successive).  A grid is termed to be more fine if it has more grid points.  
Likewise, the coarser grids have less grid points.  The interpolation matrix called the 
restriction matrix helps turn a fine grid into a coarser grid.  The interpolating matrix that 
brings the coarse grid back into the fine grid again is called the prolongation matrix. 
 
The restriction process (from fine to coarse) takes on the following generalized method 
(restriction/prolongation can be very difficult to explain so the use of examples, both 
visually and computationally, will be demonstrated following its introduction).  
 
Let�s say the current approximation to u  you have is termed r , where in this case, r  is a 
vector.  First it must be determined what points will be coarse points and what points will 
be fine points.  Coarse points are data points whose current values are values that you 
want to keep in the next grid.  The fine points are points in the current grid that you want 
to somehow interpolate into the coarse points so that their values are vaguely represented 
in the coarse points.  In other words, to get a coarser grid while maintaining similar 
properties, fine point values will be combined into coarse values.  Let fr  refer to the 
determined fine-grid points and cr  refer to the coarse grid points. So, 
 









=

c

f

r
r

r      (2.7) 

 
(Keep in mind, 2.7 is not to be taken literally in that the coarse points are the bottom 
portion of the vector and the fine points are just the top part of the vector.  2.7 is used to 
represent that values in x  can be divided into coarse points and fine points.) 
 
The restriction matrix takes on the block form:  
 

( )Itω      (2.8) 
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Where tω  is an interpolant that will somehow transfer values of fine-grid points into the 
coarse grid.  Applying the restriction matrix to the original fine grid r , the problem 
becomes:  
 

( ) c
c

ft r
r
r

I �=







⋅ω  

 
where cr�  represents the newly created coarse grid that immediate proceeds the fine grid 
r .  This preceding explanation may be a bit vague, so hopefully, the following examples 
will help clarify the concepts behind restriction. 
 
Example: 1-D restriction to a generic vector of length 7 
 
Let�s say we want to restrict the vector r  defined below. 
 

r  = 
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Applying the restriction matrix:  
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Notice that now, instead of having 7 points in our vector, we now have a coarser 3 point 
vector.   
 
Prolongation: 
 
Prolongation is essentially the opposite of restriction; it brings the coarse grid back to the 
fine grid.  Since the prolongation matrix and the restriction matrix are not inverses we do 
not get back the same grid point values, instead what we are getting back is the original 
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grid points.  The prolongation process simply takes the transpose of the restriction matrix 
multiplied by a constant to get: 
 









⋅

I
c

ω
 

If you are currently on the coarse grid cu� , applying the coarse grid with the prolongation 
matrix gets: 
 





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


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



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u
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I
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where c  is a real constant which is dependent on the restriction scheme that has been 
used. (Mathematicians have already chosen, for many problems, optimal restriction 
matrices and their corresponding prolongation matrix.) 
 
Prolongation essentially pulls out the fine-point data from the coarse-grid data while 
maintaining the essential values of the coarse points. 
 
Example: 1-D prolongation of a length 3 vector 
 
Let�s say we want to prolongate the vector cu�  defined below: 

cu�  = 

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Applying the prolongation matrix:  
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Notice that we started with only 3 points in our vector but after prolongation, the result 
was a vector of 7 points.  
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The following figures give a pictorial description of the prolongation and restriction 
processes in both 1-D and 2-D: 
 
 

   1-D  

             

                 
 

Fig. 2.5 
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2-D  
 

 
 
 

Fig. 2.6 
 
 
We have now answered the questions of the different types of grids and how to get from 
one grid to another, but what�s the point of all this?  The question that still remains is 
how this gets rid of the low frequency error.  We will explain this using a verbal 
explanation and a visual explanation. 
 
 
Verbal explanation:  
 
By coarsening the fine grid, the low frequency error on the fine grid has been 
strategically interpolated into high frequency error on the coarse grid.  The key to dealing 
with high frequency error is utilizing the smoothing process.  Since high frequency error 
will continually arise in the following coarse grid upon interpolating each grid, you need 
to apply the smoothing process.  After smoothing on the final coarse grid, prolongation 
then takes place in order to get back to the original grid size. 
 
Visual explanation: 
 
Referring to Figure 2.5, the top picture represents some arbitrary error in a fine grid.  The 
bottom picture represents the corresponding coarse grid after interpolation.  Notice that 



 16

there are now only half as many points in the coarse grid, so the error is now in a higher 
frequency, which can be dealt with by utilizing the smoothing process. 
 
Various Multigrid Schemes: 
 
There exist multiple schemes in which Multigrid can be implemented.  These 
combinations involve variations in the number of restriction and prolongation phases 
desired and the pattern they take on.  What this means is that you can choose if you 
wanted to restrict, restrict again, restrict again,� and once you are at the desired coarse 
grid, you prolongate, prolongate again, prolongate again� until you get back to the 
original grid size.  There are also other patterns of restriction and prolongation.  You can 
choose to restrict once and prolongate once, then restrict twice and prolongate twice, �  
(note: Remember that following each restriction, smoothing takes place in order to get rid 
of the high frequency error) 
 
There are three main types of Multigrid cycles: V-cycle, W-cycle, and Full Multigrid 
scheme.  While the number of levels is an individual�s preference, the essential patterns 
lie as follows: 
 
V-cycle: 
 

         
 

Fig. 2.8 
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W-cycle: 
 
 

 
 

Fig 2.9 
 
FMG-cycle: 
 

 
 

Fig. 2.10 
 
Now that we�ve discussed all the elements of Multigrid, let�s look at some problems. 
 
 
 
 
 
 
 



 18

3 Problem 
 
Upon understanding how Multigrid works, I studied the following problem: 
 

One-dimensional Poisson�s equation with Dirichlet boundary conditions 
 
   fuxx =  in Ω =(0,n); 0)()0( == nuu  
 
I took on this problem in two different fashions: 

1. A direct approach � examining convergence directly (programming the 
algorithm into Matlab) 

2. An analytical approach � examining convergence by proof. 
 

 
Approach 1: 
 
Using Matlab, I programmed a 2-level V-cycle using the finite differences discretization 
scheme.  My initial guess was a vector of length n made up only of zeros and exact 
solution is defined as follows (both initial guess and exact solutions were chosen 
randomly): 
 

)
1

sin()1()(
+

−=
n
xxxu x π  where x=1,�,n 

 
Since, fuxx =  (the problem we are solving), the value of f used in the problem can be 
computed by taking the 2nd derivative of u with respect to x. 
 
I used n=300, meaning the problem had 300 steps where each step was of size 1. 
 
The smoother used was defined as: 
 

IB 4=  
     
 
I did 4 different experiments.  In the first, I used one smoothing step per cycle, in the 
second experiment, I used two smoothing steps per cycle, in the third, three smoothing 
steps per cycle, and in the forth, four smoothing steps per cycle.  I did 5 cycles for each 
experiment.  The chart on the following page shows the results I received.  Since I cannot 
write out the resulting approximate solution for each step of each experiment, I took the 
2-norm of the resulting vector of each cycle.  The 2-norm is a single number 
representation of the overall error.  Next to the error is the convergence rate (�the speed 
at which a convergent sequence approaches its limit�, in this case, the limit of the error 
should always be 0) of each step. [6] 
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Cycle 2-norm of 

the error 
Convergence 

factor 
1 0.1031 ---- 
2 0.0521 0.4990 
3 0.026 0.4990 
4 0.013 0.500 
5 0.0065 0.500 

 
(a) 

 
 

Cycle 2-norm of the 
error 

Convergence 
factor 

1 0.0016 ---- 
2 0.0002 0.1250 
3 0.00002508 0.1254 
4 0.0000031325 0.1249 
5 0.0000003916 0.1250 

 
(c) 

 
 
 
a � 1 smoothing step 
b � 2 smoothing steps 
c � 3 smoothing steps 
d � 4 smoothing steps 
 
 
 
 
 
 
 
 
 

 
Cycle 2-norm of 

the error 
Convergence 

factor 
1 0.0037 ---- 
2 0.000940 0.2541 
3 0.0002346 0.2495 
4 0.0000586 0.2500 
5 0.0000146 0.2498 

 
(b) 

 
 

Cycle 2-norm of the 
error 

Convergence 
factor 

1 0.0011 ---- 
2 0.0000686 0.0624 
3 0.00000405 0.0590 
4 0.000000252 0.0622 
5 0.0000000157 0.0625 

 
(d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

One interesting observation is that for (a), the convergence rate was roughly around a 
factor of 0.5.  (b) had a convergence rate roughly around 0.25.  (c) had a convergence rate 
roughly around 0.125.  (d) had a convergence rate roughly around 0.625.  Approach 2 
takes on a more analytical approach to this problem and will prove that those values are 
in fact the convergence rates for the corresponding number of smoothing steps. 
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Approach 2: 
 
Following the results from Approach 1, I took a more analytical approach in determining 
the convergence of the same problem: 
 

One-dimensional Poisson�s equation with Dirichlet boundary conditions 
 
   fu =′′  in Ω =(0,n); 0)()0( == nuu     (3.1) 
 
The reason this problem is significant is that it can be completely analyzed, meaning that 
it is able to completely represent how Multigrid works (barring computational error).   
 
After discretization, let 
 

12)1( 1
1 −⋅+= −j

j NN  for some 11 ≥N  and set 1)1( −+= jj Nh . 
 
In words, jN  refers to the size of the discretized problem whereas jh  represents the 
corresponding stepsize.  We also use an arbitrary j  and 1N   in order to show that this 
problem can be completely analyzed meaning that the results that we obtain represent the 
solution for all (3.1) regardless of size, initial guess, and true solution. 
 
Next, we get that the matrix A in (2.1) can be represented as: 
 
    ]1,2,1[1 −−= −

jj hA  
 
and the smoother being used is the damped Jacobi scheme 
 
    IhB jj

14 −=  
 
We find that the eigenvalues and eigenvectors of jA  are 
 

))cos(1(2 1
jjj hih πλ −= −  and )sin()2()( 2/1

jjki ihkh πψ =  respectively. 
 
With respect to the eigenvector basis, we look for the transformed matrices 
A� (transformed matrix representing the discretization), B� (transformed smoothing 
matrix), R� (restriction matrix), S� (error propagation matrix for the smoothing process), 
and C�  (projector for the coarse grid correction).  Here are the following results: 
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where 2/))cos(1( ji hix π−=  
 
After computing 2/2/ ��� m

ii
m
i SCS  (the matrix representing the overall error of a 2-level 

scheme), we examine its spectral radius )���( 2/2/ m
ii

m
i SCSρ  to get an idea of its convergence 

rate.  m  represents the number of desired smoothing steps. 
 
 

Number of smoothing steps )���( 2/2/ m
ii

m
i SCSρ  

1 ½ 
2 ¼ 
3 1/8 
4 1/16 

 
 
 
4 Algebraic Multigrid (AMG) 
 
4.1 Introduction to AMG 
 
One problem that consistently arises from geometric Multigrid (the type explained in 
section 2) is that it has certain restrictions when solving elliptic PDEs.  The key problem 
to the geometric case is that in order to implement Multigrid, the grid needs to be known.  
The question then arises, what if the grid is relatively unknown?  Algebraic Multigrid 
(AMG) takes on the same essential concepts as the geometric case described above in 
regards to the need for initialization, smoothing, prolongation, and restriction.  The key 
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difference comes with knowledge of the grid.  In the case of AMG, the grid is relatively 
unknown.  Instead of having a set grid, the data points come in a random model as will be 
shown later.  The relationships among the unknowns are similar to that of the geometric 
case, but the locations are unknown.  Because of this variation, there are essentially 2 key 
components to AMG: 
 

1. defining the MG components (what is the restriction matrix, prolongation 
matrix,�) 

2. performing MG cycles (doing the actual Multigrid) 
 
Let�s pretend we want to solve an elliptic PDE with the domain represented in fig. (4.1).  
Notice that the grid is basically random, but the relationships between points are known. 
 

 
Fig. 4.1 
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The first thing we need to do is translate this grid into a matrix format that can be solved.  
Figure 4.2 defines the corresponding matrix.  The way to obtain the matrix is to mark the 
values touching the point in question.  So for figure 4.1, point 1 is touching points 2 and 
10, so on line 1 (representing point 1) of the matrix, values at 1, 2, and 10 are marked.  
Point 2 is touching 1, 3, and 10, so line 2 (which representing point 2) of the matrix, 
values at 1, 2, 3, and 10 are marked.  Continue working on this process until all points 
have been marked. 
 
 
Corresponding matrix: 
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Fig. 4.2 
 
(Note: when doing the real problem, each x  represents some number; x  are only used 
for simplicity of explaining AMG) 
 
There is little theory in the field of Algebraic Multigrid due to the complexity of the grid.  
The key to Multigrid as was described in section 2, is smoothing, determining the coarse 
points/coarse grids, determining how to get to the coarse grids, and then how to get back 
to the original grid.   Initial fine grids, such as the ones in figure (2.5) & (2.6) have coarse 
grids that can easily be determined, but since the key to AMG is that the grid is relatively 
free in design, there is no set way of finding a proper coarse grid.   
 
Determining the coarse-grid points is quite open-ended.  One method of determining the 
coarse-grid points utilizes a concept called �strong connections.�  A second method is 
called �Maximal Independent Set.�  There are other methods, all based on the users 
preference, but only these two will be discussed. 
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Method 1: �Strong Connections� 
 
Note: I did not study this method (I only used method 2).  The purpose of putting this in 
is to show that there are multiple methods in determining the coarse grid but neither can 
be proved to be more advantageous than the other (reinforcing the reasoning as to why 
there is little theory behind AMG) 
 
A strong connection is defined as: 
 

}max:{ ijijiji aajS −>−=
≠

θ  where 10 ≤<θ  

 
When basing the coarse-grid correction on these strong connections, there are 2 main 
criteria: 

1. For each Fi ∈ , each point iSj ∈  should either be in C  or should be strongly 
connected to at least one point in iC . 

2. C should be a maximal subset with the property that no two C -points are strongly 
connected to each other. 

 
C  refers to the coarse-grid variables, F refers to the fine-grid variables, and iC refers to 
the set of interpolatory coarse-grid variables used to interpolate fine-grid values. 
 
In this case, sometimes both enforcing both criteria is impossible so criteria #1 is more 
important than criteria #2. 
 
Method 2: �Maximal Independent Set� 
 
Maximal Independent Set requires the satisfaction of the following 2 criteria: 

1. No two coarse points are adjacent to each other 
2. The set of coarse points are adjacent to all points in the given domain. 

 
We now use Method 2 (Maximal Independent Set) to determine the coarse points on 
figure (4.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 



 25

Example: Using Maximal Independent Set on figure (4.1) 
 
 

 
Fig. 4.3 

 
 
 
Once coarse-grid points are determined the matrix A is re-ordered with permutation 
matrices so that all coarse grid points are blocked together as shown: 
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the restriction matrix and prolongation matrix are now: 
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respectively.  ω  acts much like ω  in (2.8).  A requirement is for ω  and fcA  to have the 
same sparsity pattern (note: sparsity means �a matrix populated primarily with zeros�, 
such as a diagonal  matrix, tridiagonal matrix,�).  [6] 
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4.2 Implementing AMG 
 
Following the determination of all the required components, AMG is essentially the same 
as the geometric case of Multigrid. 
 
The smoothing process takes on the same form as the geometric Multigrid.  But, in this 
case, A  is the permutated matrix defined in (4.1). 
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−−

−−

+=
=

−=

kkk

kk

kk

xx
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δ
δ      (4.13) 

 
Again, B is some kind of factorization of A.  Since A is generally sparse, the use of the 
incomplete LU factorization is popular.  But other techniques may used such as 
symmetric Gauss-Seidel. 
 
Following the smoothing step, AMG takes on the same concepts as the geometric case of 
Multigrid, but instead it is using the AMG components discussed in section 4.1. 
 
For most problems involving AMG, the determination of all the components necessary in 
Multigrid is what generally takes the most amount of work.  This is largely in part 
because there is no set formula/theory for determining the coarse grid and the 
corresponding interpolating matrices. 
 
 
 
 
4.3 Experimentation 
 
Prof. Randolph Bank developed Multigraph [1], which computes the solutions for elliptic 
PDEs using AMG.  Multigraph utilizes the Maximal Independent Set for determining 
coarse grid points.  At this point, I am currently using Multigraph to study various PDEs 
with the goal of trying to understand trends, rates of convergence, accuracy,� using 
AMG combined with a number of various options (choosing the factorization for the 
smoother B in (4.13), choosing the discretization method,�)  The following are some 
examples of the use of AMG on various problems, with brief commentary: 
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          Figure 4.4 
 
 

 
 
                     Figure 4.5 
 
Figure 4.4 and 4.5 represent the results of the problem: 
 

1001. =−− yyxx uu  
 
with a domain that looks like the shape of Texas (boundary conditions).  On the left side, 
Figure 4.4 shows the matrix solution prior to being redistributed to the original Texas 
grid (the domain of Texas as opposed to the matrix solution is analogous to the 
relationship between fig. 4.1 & 4.2).  The top right shows the various numerical values (a 
legend) for the matrix and the bottom right shows the top-down view of the matrix on the 
left.   
 
Figure 4.5 is what has more significance.  The left hand figure represents the norm of the 
error (the values on the left of the graph are based on the logarithmic scale).  Each 
iteration is represented by the individual point, so in this case, the problem required 3 
iterations.  The top right chart represents the sparsity of the restriction/prolongation 
matrices (yellow), the current grid (cyan), and their ratio (purple).  This implicitly 
represents the number of levels being used; since there are 5 sections, this means that 5 
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levels were used.  (Note: because there are 5 levels, only 4 restriction/prolongation 
matrices were required so notice that the very left hand side bar only has the sparsity of 
the current grid.)  The bottom right pie chart represents the amount of time required to 
assemble all the necessary components (red) and the amount of time actually needed to 
compute the solution (blue).  While this pie chart is dependent on the computer processor 
that is being used, it is significant when being compared to other problems solved on the 
same computer.   
 
This problem was solved using an incomplete LU-factorization for B (the smoother) and 
used a 7-point star discretization scheme (this is a variation of the finite differences 
scheme).  
 
 

 
 
        Figure 4.6 
 

 
 
           Figure 4.7 
 
Figure 4.6 & 4.7 took on the same problem as 4.4 & 4.5 but this time it was solved in a 
different manner.  The factorization for B was the symmetric Gauss-Seidel scheme and 
the discretization scheme was an absolute value applied onto the 5-point star method 
(another variation of the finite differences scheme).   
 
Notice that this time, 5 iterations were required for convergence but more iterations were 
necessary largely in part because only 3 levels were used (as opposed to the 5 levels used 
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in the previous experiment).  Also notice that in Figure 4.6, the solution appears to be 
much less complex than the solution in Figure 4.4.  While they are essentially the same 
solutions, there are subtle differences (that are magnified due to the various colors used).  
At this point, this is what I have been studying; I have been trying to get acquainted with 
all the variations that can be used in AMG and in the process, trying to figure out what 
produces the optimal solution. 
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