

Decomposing Hackenbush
A Project in Combinatorial Game Theory

Joey Hammer
University of California, San Diego

http://cgt.calculusfairy.com

Decomposing Hackenbush 2

Table of Contents

Contributors to the Project 5

Early Observations 6
 “Back of the Napkin” Calculations
 Decomposition Details

Research Timeline 7

Project Software 8
 Early Calculators
 Visual Hackenbush

Introduction to the Project 10
 Assumptions & Conventions
 Notation and Abbreviations
 Methods of Proof

Combinatorial Game: Defined 14

Conditions for Analysis
 Rules of Play

The Players

Combinatorial Game Theory Fundamentals 18

Definition Zero
Definition of a Number

 Zero is a Number
Option-Value Relation for a Number

 Simplicity Rule

Hackenbush Definitions 21
 Hackenbush Stick
 Hackenbush Trunk
 Hackenbush Tree
 Hackenbush Stalk
 Instance of Branching

Trunk Stalk
 Purity
 Impediment
 Highest Stick

Decomposing Hackenbush 3

Table of Contents

Rules of Red-Blue Hackenbush 23
 Whose Game?
 Hackenbush Gameplay
 Hackenbush is Hard

Hackenbush Theorems 25
 Tweedle-Dum and Tweedle-Dee Strategy

Fundamental Theorem of Hackenbush (FTOH)
 Stalk Reduction Principle (SRP)
 Corollary 1

Combinatorial Game Values for Hackenbush 31
 Game Theoretic Values
 Zero
 Integer-Valued Games
 Notation and Values
 Fractional-Valued Games

Beyond Values

Hackenbush Stalks 38
 Significance of Stalks

Evaluating Stalks
 Stalks Algorithm
 Implementation

Hackenbush Trees 41
 Trouble with Trees

Ordinal Sums
 Algorithm for Trees
 Implementation

Decomposing Hackenbush 4

Table of Contents

Hammerian Trees 45
 Introduction
 Hammerian Domain
 Definition: Hammerian Tree
 Hammerian Classification
 Method of Decomposition
 Other Observations

Joshua Trees 51
 Definition: Joshua Tree

Joshua Classification
 Other Observations

Conclusions 53
 Summary
 Future of Hammerian Research

Appendix A: 55
 Hackenbush Game Tree Example

Appendix B: 62
 Visual Hackenbush 1.1 Documentation

Software 89

References 90

Decomposing Hackenbush 5

Contributors to the Project

Research and Programming:

Hammer, Joey

Research Associates:

Lee, Jason
Trotter, Jeremy

Research Supervisor:

Haff, Leonard

Inspiration:

The inspiration for this project stemmed from the Combinatorial Game Theory
class taken at UC San Diego and taught by Professor Haff and Jason Lee.
Inside one of the homework assignments was a problem which concerned finding
the values of some Childish Hackenbush Trees. It soon became clear that there
had to be a faster way to calculate the values to such trees (and other trees for
different Hackenbush variations). The idea for writing an algorithm and
assembling a program was born.

Decomposing Hackenbush 6

Early Observations

“Back of the Napkin” Calculations

In the Spring of 2003, my research associate, Jeremy Trotter, and I were enrolled in an
experimental course based on Combinatorial Game Theory: Math 168A. Our discovery
for the topic of research outlined in this paper was made while working on a homework
assignment involving Red-Blue Hackenbush at Pick Up Stix®. The idea struck when I
happened to see two sets of Hackenbush games: the first was a single Red-Blue
Hackenbush Tree and the second was a pair of Red-Blue Hackenbush Stalks, both of
which had the same combinatorial game value.

This sparked more than year’s worth of extensive undergraduate research and intensive
software programming in the game of Hackenbush to seek out the parameters for and
the logic behind this interesting decomposition.

Decomposition Details

Hammerian Trees (details analyzed later)

A Hammerian Tree is any Red-Blue Hackenbush Tree whose combinatorial
game value is the same as the sum of the decomposed branches and its trunk.

Joshua Trees (details analyzed later)

A Joshua Tree is a Hammerian Trees whose combinatorial game value is the
same as its trunk.

Decomposing Hackenbush 7

Research Timeline

Spring 2003: Math 168A: course in Combinatorial Game Theory
 Pick Up Stix®: discovery of possibilities for tree decomposition

Summer 2003: Parameter Research: 200 trees calculated by hand
 Programming: Stalks Algorithm and Binary Tree Calculator

Winter 2004: Parameter Research: Hammerian parameters solidified
 Programming: Hackenbush Applet (Visual Hackenbush 1.0)

Summer 2004: Programming: Visual Hackenbush 1.1
 Completion of Visual Hackenbush 1.1

Fall 2004: Continued research

Winter 2005: Formalization of theorems and proofs

Spring 2005: Results compiled and documented

Decomposing Hackenbush 8

Project Software

Early Calculators

Undoubtedly, the most rewarding part of this project has been the opportunity to see the
implementation of the Project Software. When I first signed on to start this project,
Professor Haff and I originally spoke of the “intensive algorithmic programming” desired
to help in the manifestation of the ideas for which my proposal had potential. Little did I
know that it would take over a year to finally develop a useful package to assist in the
calculations required for the project to progress.

Before the creation of the current package, there were two programs which were
designed to perform simple computations:

• C Stalks Calculator (CSC)
• Hammerian Trees Algorithm

Both were command line driven programs written in C during the summer of 2003 and
were used mainly to check the computations I was doing on my whiteboard: an arsenal
of 200 Red-Blue Hackenbush Trees.

In December 2003, I had the chance to begin working on my real dream: a Hackenbush
Applet, in which the user could draw any desired Hackenbush Tree and retrieve its
Combinatorial Game Value. A month later, the graphical user interface had taken form
and the computational backbone from the Stalks Algorithm had been properly adapted.
However, I will reemphasize that it was far from my ambitions to have a package which
allowed the user to draw any tree. In fact, such an achievement would not be fully
realized until six months later.

A photo of an early phase in the project.

Decomposing Hackenbush 9

Visual Hackenbush

During the beginning of the Spring Quarter of 2004 I finally reached the chapter on
Hackenbush in ONAG (On Numbers and Games, Conway). There is in fact a complete
algorithm for Red-Blue Hackenbush Trees laid out on page 88 of this text. With this
development, the entire project could be refocused. It was no longer about working out
a step-by-step process to calculate the Combinatorial Game Value of Red-Blue
Hackenbush Trees, rather it became centered about my ideas for Hackenbush Tree
classification and decomposition. Hence began the development of Visual Hackenbush.

The Visual Hackenbush package turned out to be everything I had dreamed for—and a
whole lot more. Features such as the capabilities to save and open (*.hat) files and a
fully operational log panel (not in the original plans) were integrated, enhancing the
overall power of the software package.

Version 1.1 marked a huge milestone in this project’s development, offering to the user
the ability to calculate trees as fast as they could draw them into the interface, limited
only by their imaginations within the realm of Red-Blue Hackenbush.

Visual Hackenbush 1.1 – PreRelease Screenshot.

See Appendix B for extensive documentation on Visual Hackenbush.

Decomposing Hackenbush 10

Introduction to the Project

Assumptions & Conventions

I have written this document to be as clear and precise as possible. So many times
have I read papers and been totally confused over a single line simply because of the
fancy/ technical wording utilized in describing a fairly intuitive concept and I want to
avoid that even at the cost of the inflated length of this document.

I will assume that my readers have a firm understanding of the principles presented in
higher mathematics. Mathematical Reasoning is certainly the foundation from which all
conclusions of this document derive. However, I do not assume that my readers have
any extended experience with such subjects as Real or Complex Analysis.

Furthermore, there is a simple fact that must be faced: Combinatorial Game Theory
(CGT) is a branch of mathematics which is still in its infancy in comparison to most
others such as Algebra or Combinatorics. As a result, I will not assume that my readers
have any experience with CGT. It is highly recommended (for both knowledge and fun)
that my readers pick up a copy of Winning Ways (WW) as a reference.

Most of what I will be dealing with here falls more along the lines of the heavier theory
within the game of Red-Blue Hackenbush. Quite a bit was established in John
Conway’s On Numbers and Games, and so I strive for this document to supplement his
thorough pioneer work.

From hereon, the reader should assume that we are dealing strictly with Red-Blue
Hackenbush. Therefore if it is not explicitly stated as “Red-Blue Hackenbush,” it should
still be assumed. I’m positive that there are quite a few things presented in this
document which can be applied to other variations of Hackenbush, yet in this document
they are neither stated nor implied.

By convention, we refer to our two players as Left and Right and designate them with
different genders in hopes to keep track of which one we are referring to throughout
their gameplay. Left is female and Right is male. It should also be noted that since this
paper is focused solely on the game of Red-Blue Hackenbush that we designate Left to
be bLue and Right to be Red. Furthermore, we say that Left likes positive values and
Right likes negative values. A more formal and detailed introduction to these players is
certainly in order as we will be playing with them from hereon (see The Players section
in Combinatorial Game: Defined).

Quite a few people have asked me why I sign the end of my proofs with “GS!” The
answer is that it stands for “Game Solved!” since most of the proofs in CGT involve
playing out the game in order to prove a conjecture or determine the game value.

Decomposing Hackenbush 11

Notation & Abbreviations

CGV() – Combinatorial Game Value; “game theoretic value”, or just “value”
 If we need to distinguish this from another type of value,

we will do so explicitly.

branches b – the set of all branches from a single branching node which have an

initial stick color blue.

branches r – the set of all branches from a single branching node which have an

initial stick color red.

CGT – Combinatorial Game Theory

FTOH – Fundamental Theorem of Hackenbush

SRP – Stalk Reduction Principle

Notation Basics
Any game G = { GL | GR }, where GL = { A, B, C, ... } and GR = { D, E, F, ... }.
In other words, for any game G, we have two sets of options, one for Left and one for
Right (notated respectively with a | between them). Within each set of options are sub-
games in the game tree. When a player takes a turn, they send the game G to one of
the sub-games enumerated in their set of options. This sub-game then becomes the
current game and the process is repeated. Also, one should think of GL as a generic
symbol that takes on any A, B, C, ..., and similarly for GR.

Abuse to Notation: G = { A, B, C, ... | D, E, F, ... }.
I put this in here because the notation used in CGT can get very confusing due to its
recursive nature. Above, we can see that we have omitted the set braces around the
set of Left options as well as the set of Right options. This is common practice and is
used regularly throughout this paper.

Notating Options of Options
We notate the options of a game option in the following manner: GL = { GLL | GLR }, since
the position GL is made of options for both players. Similarly, GR = { GRL | GRR }.

More Abuse to Notation:
Again, since enumerating the game tree options in CGT can get very wooly very
quickly, we introduce another shorthand notation. G = { GL | GR } can be simply written
without the set braces: G = GL | GR. In this paper, I try to stay with the braced notation
since it is easier to distinguish the games and their options.

Decomposing Hackenbush 12

Methods of Proof

There are several methods of proof which we will need to employ in order to analyze
Hackenbush and game theory fundamentals. In general they do not differ too much
from those used in higher mathematics. I have outlined those with the significant
changes below.

Gameset Proof

For the most part, to analyze games in CGT we generalize the game and its options
and classify them and play them out until a verdict is reached. This paper utilizes this
technique more than any other so it is important to understand what is happening right
away. There are some simple, grounding examples given in the Combinatorial Game
Fundamentals section after a few of the important concepts of CGT have been defined.

Proof by Induction

Due to the recursive nature of games and their notation, it becomes necessary to
outline a method for Proof by Induction that is useful within the context of our analysis.
Professor Haff outlined this in his text for Math 168A very clearly:

At this point we need the style of induction put forth in ONAG. Let P(x)
be a proposition whose truth or falsehood depends upon x = { xL | xR }.
Now assume all statements of the kind P(xL) and P(xR) are true (this is
our inductive hypothesis). If this implies the truth of P(x), then we
conclude that P is true for all numbers.

Now, let P(x, y) be a proposition whose truth or falsehood depends on x
and y. If the truth of P(x, y) can be inferred from the truth of all statements
of the kind:

 P(x, yL) and P(x, yR) for each fixed x and all values of yL and yR, and
 P(xL, y) and P(xR, y) for each fixed y and all values of xL and xR.

Then we conclude that P(x, y) is true for all numbers x and y.

Decomposing Hackenbush 13

Proof by Gameplay

CGT is a very visually oriented branch of mathematics. Hence, we will use pictures or
a series of pictures to show the gameplay of a game to prove that something is true or
false. Moreover, using pictures helps save words since describing a game and its sub-
options can become unnecessarily verbose.

The following is a proof to show that the Red-Blue Hackenbush game in which there is a
single Blue stick connected to the ground and a single Red stick connected to the Blue
stick has a combinatorial game value of 2

1 . It is done by adding a second copy of the
game in question as well as a stalk with a value negative of the sum of the copies so
that the entire sum of the stalks is equal to zero (later defined as a second player win).

Example a Typical Gameplay Proof in CGT:

Proof of the first fractional value in Hackenbush.

Decomposing Hackenbush 14

Combinatorial Game: Defined

Conditions for Analysis

There is a certain set of game attributes a game must have in order to be classified as a
combinatorial game. We require these specifications for the sake of analysis; otherwise
we would have to take a lot more information into account such as probabilities and
various types of valid endgames. We recognize that this would be so much information,
in fact, that it would simply be impossible to complete any in-depth investigations
without these limitations. Therefore, the following restrictions/ conditions are necessary
to simplify the set of games so that we may carry out our analysis:

Two Players

In essence, Combinatorial Game Theory is study of two-person games.
Strategies and methods presented in CGT can certainly be applied to games with
more players, but this will obviously complicate the investigation. As you may or
may not already know, gameplay structure breaks down into the form of a binary
tree (like one would see in a data structures computer science course), which
after a few levels of play can quickly get out of hand. Needless to say that adding
another player would only make this situation even more difficult to handle.

No Chance

Combinatorial games do not allow dice, the shuffling of cards, or any other
devices which lead to the need for probabilities and distributions. Otherwise, the
outcome from each turn would be heavily dependent upon the factors of chance
rather than the abilities of the players and the nature of the game itself—if we
were interested in that, we'd really just be doing statistical analysis and not game
theory.

Perfect Information

All combinatorial games require for all game data to be accessible to both
players. That is to say that there is nothing hidden from a player's opponent.
Everything pertinent to the current game being played is completely laid out on
the game board for both players to see.

Turn-Based Gameplay

Players make moves by taking turns one at a time. This ensures that speed is
NOT a factor that would also need to be included in our analysis. And surely it
prevents the game play from dissolving into complete chaos!

Decomposing Hackenbush 15

Outcome Condition
In every combinatorial game, there must be an absolute winner: the first player to
fulfill the winning condition (described below). This means that there is no
possibility for a Tie or a Draw. It also prevents the allowances for player
resignations or any other sort of premature game termination.

Victory Condition

In most combinatorial games, the winning condition is simple: the last player to
make a valid move wins. However, there is another side of combinatorial game
theory based around "Misère" play, in which the opposite condition is set in
place. We will not address "Misère" play since it requires a completely different
strategy, which, in fact, is much harder to analyze.

Rules of Play

Below I have included a few other important pieces of information with an emphasis on
parts that usually lead to confusion.

• We cannot quantify a game unless we know what is in it for both players since a
value of a game position is INDEPENDENT of the order of players taking turns
(first or second). In other words, all the options for both players must be
enumerated in order to quantify the game.

• "______ player CAN win" means that there is a strategy for that player to be

victorious despite their opponent's moves.

• The names “First” and “Second” are NOT a part of the game analysis; that is, it is
not given in the rules or positions of the game. These are adjectives we append
to the players once we begin to play and analyze.

• Remember that we only make value judgments upon the optimal moves.

Decomposing Hackenbush 16

The Players

Introducing Left and Right
I’d like to introduce you to our two players: Left and Right.

Genders
As mentioned before, Left is female and Right is male for clarity in reference. So when
speaking in terms of “she” and “her”, we are most certainly referring to Left. Likewise,
when using the terms “he” and “him”, we are referring to Right.

Colors
In the game of Red-Blue Hackenbush, we utilize colors to also help distinguish whose
stick is whose. As a convention, we designate Left to be bLue and Right to be Red.
Keep in mind that the colors also become nicknames for our players so it is not unusual
to see a phrase like “when Blue makes her move” as a reference to Left inside our
proofs and analysis.

Decomposing Hackenbush 17

Values
One of the core components to our analysis focuses on assigning game theoretic
values to Hackenbush games. Both ONAG and Winning Ways jump right into assigning
and using values without much of an introductory discourse, so we will try our best to
address this here.

To start, we say that Left likes positive values and Right likes negative values. That is,
a game with a positive value indicates that Left can win; similarly, a game with a
negative value indicates that Right can win.

This leaves only infinitesimals and zero. As we will soon prove, all Red-Blue
Hackenbush games evaluate to numbers, so we will not have to take infinitesimals into
consideration at all in this paper even though they are a fundamental component to
Combinatorial Game Theory. The value zero is special and will be defined as a basis
for many other definitions including the definition of a number. This investigation is
featured in the next section.

Player Summary

LEFT
Female
Blue
Positive

RIGHT
Male
Red
Negative

This concludes our introduction to the conventions and rules of play in Combinatorial
Games. Now we embark into the more mathematical side of CGT starting with some
fundamental definitions, concepts, and proofs. Once we have completed this
groundwork, we can begin to analyze the game of Hackenbush!

Decomposing Hackenbush 18

Combinatorial Game Theory
Fundamentals

Definition of Zero

Any game G in which the second player can always win has a game
theoretic value of 0. This is called a zero game.

More explicitly: no matter who plays first, Left or Right, the second player will
always have a winning strategy. This does not imply that the game ends after
the second move of the game; however, it does imply that if the second player
makes no mistakes, they are guaranteed to be the player who makes the final
move of the game.

Definition of a Number

A game G is a number if all options of G (for both Left and Right) are
numbers, and no left option is greater than or equal to any right option.

It should be noted that there are all sorts of games out there which are not
numbers; however, we shall prove later that all games of Red-Blue Hackenbush
have a numerical game theoretic value. (See the FTOH).

Decomposing Hackenbush 19

Zero is a Number

The game G = { | } = 0 is a number.

Proof:
On the contrary, assume G is not a number. Then some option of G is not a
number or some left option of G is greater than or equal to some right option.
But in the first instance we have a contradiction because G has no options. The
second one is also contradictory. We can have no inequalities of this kind
because G has no options. Thus G is a number.

GS!

Option-Value Relation for a Number

For any number x = {xL | xR} we have xL < x < xR.

Proof:
To show that xL < x, we first look at xL ≥/ x, which is to say: xL + {-xR | -xL} ≥/ 0.
If Right plays first in xL + {-xR | -xL} then he wins since he will send the difference
to xL + (-xL) = 0 (so Left loses). Then, we note that xL ≥/ x is equivalent to xL < x.
Thus, xL < x.

To show that x < xR, we first look at xR ≤/ x, which is to say: xR + {-xR | -xL} ≤/ 0.
If Left plays first in xR + {-xR | -xL} then she wins since she will send the difference
to xR + (-xR) = 0 (so Right loses). Then, we note that xR ≤/ x is equivalent to
x < xR. Thus, x < xR.

GS!

Decomposing Hackenbush 20

Simplicity Rule

Suppose for x = {xL | xR} that some number z satisfies xL < z < xR for all
xL and xR, but no option of z satisfies the same condition. Then x = z.

Prove x ≥ z:
For the sake of contradiction, assume that x < z so that x – z < 0:

{xL | xR} + {-zR | -zL} < 0

This means that Right has a winning move in one of the two components
xR or -zL. So either xR + (-z) < 0 for some xR OR x + (-zL) < 0 for some -zL.
Keeping in mind that x and z are in canonical form, we can conclude that xR – z
cannot be less than zero since x < z. Then Right must have a winning strategy in
the move to -zL:

x + (-zL) < 0, that is to say: x < zL.

But now xL < x < zL < z < xR which yields xL < zL < xR, a contradiction since no
option of z satisfies these inequalities.

Prove x ≤ z:
Now assume for the sake of contradiction that x > z so that x – z > 0:

{xL | xR} + {-zR | -zL} > 0
.

This means that Left has a winning move in one of the two components xL or -zR.
So either xL + (-z) > 0 for some xL OR x + (-zR) > 0 for some -zR. Keeping in mind
that x and z are in canonical form, we can conclude that xL – z cannot be greater
than zero since x > z. Then Left must have a winning strategy in the move to -zR:

x – zR > 0, that is to say: zR < x.

But now xL < z < zR < x < xR which yields xL < zR < xR, a contradiction since no
option of z satisfies these inequalities.

GS!

“The most important game-theoretical property of numbers is that given by the
simplicity rule: if all the options GL and GR of some game G are known to be
numbers, and each GL is strictly less than each GR, then G is itself a number,
namely the simplest number x greater than every GL and less than every GR.”

— Theorem 11, Chapter 2, ONAG

Decomposing Hackenbush 21

Hackenbush Definitions

Hackenbush Stick

A Hackenbush Stick (we will just say “stick” from hereon) is the base component in any
Red-Blue Hackenbush game. In game play, each stick counts as a move for either
player provided it is their color. NOTE: a “move” or “turn” is not the same as a value.

For our analysis, we must clarify that a Hackenbush Stick is composed of the following:
 Color: [Red, Blue] (one or the other)
 Source: a set of sticks from which this stick stems (cannot be empty)
 Branches: a set of sticks which stem from this stick (can be empty)

Hackenbush Trunk

A Hackenbush Trunk (we will just say “trunk” from hereon) is a special type of stick
whose source is the ground of the game rather than another stick.

Therefore, by definition, a trunk is composed of the following:
 Color: [Red, Blue] (one or the other)
 Source: the ground
 Branches: a set of sticks which stem from this stick (can be empty)

We also note that the color of the trunk determines the sign of the entire game
extending from this trunk. (Proof – derives from the FTOH)

Hackenbush Tree

A Hackenbush Tree (we will just say “tree” from hereon) is a Red-Blue Hackenbush
game in which there exists only one connecting stick to the ground (trunk) and each
stick has a maximum of one source (parent) stick, excluding the trunk whose parent is
the ground.

Hackenbush Stalk

A Hackenbush Stalk (we will just say “stalk” from hereon) is a special type of tree in
which there may only be a maximum of one branching (child) stick.

Decomposing Hackenbush 22

Instance of Branching

We say that there is an instance of branching when the number of sticks stemming from
a source is greater than one.

It should be noted that a Hackenbush Stalk cannot have any instances of branching.

Trunk Stalk

A Hackenbush Trunk Stalk (we will just say “trunk stalk” from hereon) is the set of sticks
between the ground and the first instance of branching within a Hackenbush Tree.

Important Note:
This is not to be confused with the trunk itself. Even though the trunk is a part of the
trunk stalk, the trunk itself is significant within and of itself.

Purity

We say that a Hackenbush Stalk is “pure” if it is completely composed of sticks of the
same color.

Important Note:
Recall that these definitions (like all games in CGT) are recursive in nature, meaning
that a stalk may be pure up to a certain stick—which makes analysis easier to split the
stalk into the game below and the game above.
Look at sticks/ stalks/ trees which stem from any stick as a game itself.

Impediment

An impediment is the first stick to break a line of purity in a Hackenbush Stalk. In other
words, it is the first stick with a color differing from the color of the pure stalk.

As a result:
A stalk with an impediment will always have a combinatorial game value less than a
pure stalk of the same height (which is to say: has the same number of sticks).

Highest Stick

The “highest” stick is that which is the furthest from the ground by way of the number of
sticks along the path connecting it to the ground.

Decomposing Hackenbush 23

Rules of Red-Blue Hackenbush

Whose Game?

Players
You already met the players in a previous section which explained all the conventions
we may use with them in our analysis, but I have outlined them here for completeness.

 Left = Blue Right = Red

Hackenbush Gameplay

Game Format
The game board is created by arranging any sort of combination of red and blue sticks
that extend from the ground or another stick. Before playing, the players must decide
who will play Blue (Left) and who will play Red (Right) as well as who is to make the first
move—it should be noted that these decisions do not have any affect upon the
computations that are to follow.

A typical “game board” is similar to the figure below:

Hackenbush is a turn-based game such that each player takes one move at a time until
one of the players can no longer move (that is to say that they are defeated).

Decomposing Hackenbush 24

Taking a Turn
A player moves by “hacking” a single stick from the game board of their own designated
color. Remember that if any stick becomes disconnected from the ground, it too must
be removed from the game board.

Winning the Game
A player wins the game when their opponent has no more moves remaining. While at
first this may seem arbitrary and only dependent upon the number of sticks each player
has, we reemphasize that every stick must be connected to the ground to still be
playable and thus allows players to eliminate their opponent’s moves from the game
board as well.

Hackenbush is Hard

“HACKENBUSH IS HARD!”

— Chapter 7: Hackenbush, Winning Ways

Conway et al. confess in Chapter 7 of Winning Ways that Red-Blue Hackenbush is
difficult. “Although the values are ordinary numbers, it may be hard to work out exactly
which ordinary number is the answer” (Winning Ways 211).

They go on to explain that from a “good” algorithm to determine the values of Red-Blue
Hackenbush trees one could derive a “good” algorithm for finding the minimum
spanning tree of a bipartite graph. They also argue that if such an algorithm for finding
the values of a Red-Blue Hackenbush tree had a polynomial runtime, then the
aforementioned algorithm for finding the minimum spanning tree could also be bounded
by a polynomial runtime function. However, it has been previously determined that the
algorithm for finding the minimum spanning tree is NP-complete. Therefore, the
problem for evaluating Red-Blue Hackenbush positions is NP-hard. (Winning Ways 224)

To be sure, it should not be mistaken that I have found such an algorithm—nevertheless
I will reveal some new tactics to breaking down these problems into smaller, simpler
ones. But first let’s take a look at some theorems which directly involve Hackenbush.

Decomposing Hackenbush 25

Hackenbush Theorems

Section A

Here we prove the Fundamental Theorem of Hackenbush (FTOH). All other
theorems stem from this foundation. The theorem is found on page 88 of On Numbers
and Games, yet the proof is supplied from the course notes of Math 168A. It should be
noted that nowhere have I found a “true” title to this theorem, yet its importance
demands one for both significance and ease of reference. I have dubbed it the
Fundamental Theorem of Hackenbush for those exact reasons.

However, before we can properly prove the FTOH we must introduce a strategy of
gameplay called “Tweedle-Dum and Tweedle-Dee” after the characters from Lewis
Carroll’s tales of Alice in Through the Looking Glass. This strategy will serve as a
Lemma to the Fundamental Theorem of Hackenbush.

A Typical Red-Blue Hackenbush Game.

Decomposing Hackenbush 26

Tweedle-Dum and Tweedle-Dee Strategy

In select game positions in which the moves of either player are matched
with equivalent options, one should reply to their opponent’s moves with
an equal and corresponding move. Such a strategy is called Tweedle-Dum
and Tweedle-Dee.

All right, I have to admit that there’s not a whole lot of proof going on here, but the
Tweedle-Dum and Tweedle-Dee Strategy shows its use many times throughout our
analysis. Basically, the Tweedle Strategy is a method for keeping control throughout
gameplay. If your opponent does one thing, you mirror their move until they no longer
have any options, leaving you as the victor.

Employing the Tweedle-Dum and Tweedle-Dee Strategy guarantees a second player
win by the nature of the method of gameplay. It should be clear that the players will
play out the game and whoever began mirroring their opponent’s moves will always
have a move to respond with. Hence, it is the opponent who will run out of options first.

Important Note:
Tweedle-Dum and Tweedle-Dee cannot just be arbitrarily applied at any point in any
game. The initial condition of a game with matching and equivalent options for both
players must be met exactly.

CGT Note:
The definition given above is sufficient for our purposes. However, in the scope of all
combinatorial games there are two classifications: partisan games and impartial games.
Hackenbush is a partisan game and the Tweedle Strategy above is worded to hold
tightly to partisan games. There is a more general way of expressing Tweedle-Dum
and Tweedle-Dee so that it encompasses both classes of games but there is no need to
address it here.

Decomposing Hackenbush 27

Fundamental Theorem of Hackenbush

(i) When a blue edge in a Red-Blue Hackenbush diagram is erased,
the value strictly decreases. Similarly, when a red edge is erased,
it strictly increases.

(ii) Every Red-Blue Hackenbush diagram is equal to a number.

Proof:
Suppose we start with a Hackenbush game position G = {GL | GR} that has a
value x. Now, suppose some blue stick b is erased, and denote the resulting
game by GL and its corresponding value by xL. We need to argue that the value
of the new position GL is less than the value of original position G. To do this we
set up a difference game D and show that Left can always win; mathematically:
D = G – GL > 0.

Left plays first:
If Left plays first in D, then she will play in the G component and send it to GL
which renders the difference game value as zero.

Right plays first:
If Right is first, then there are two possibilities:

1. Remove any red stick connected to the ground via a path of sticks
which includes the stick b; or

2. Remove a red stick whose connection to the ground is independent
of the stick b.

In the first case, Left will respond by removing b, which brings the
difference game to GL – GL = 0. In the second case, she will respond with
a Tweedle-Dum and Tweedle-Dee Strategy.

In either case, Left can win.

If some red stick r is removed from the starting position G, then denote the result
by GR and its corresponding value by xR. From symmetry, we argue that the
value of the new position GR is greater than the value of original position G. To
do this we set up a difference game D and show that Right can always win;
mathematically: D = G – GR < 0.

In conclusion, we have xR > x and x > xL which implies xR > xL.
This last inequality implies that x is a number.

GS!

Decomposing Hackenbush 28

Section B

Here we first prove the Stalk Reduction Principle as a basis for the rest of the
corollaries to follow.

The Stalk Reduction Principle is quite an intuitive concept and can be easily
understood by the “common sense” realization that if a player has a stick further away
from the ground than the stick they are choosing to hack, they are essentially
squandering their resources (i.e.: wasting a playable move) and is therefore detrimental
since we hold to the rule that the last player to make a move wins the game.

However, when applied to Hackenbush Trees in general, this concept loses its
intuitiveness, yet grows to become an even more powerful tool. Its case tree grows
exponentially with each new level of branching. Therefore, the method of proof adopted
is similar to that which was presented in ONAG. Refer back to the section on Methods
of Proof for a more general discussion.

A Set of Red-Blue Hackenbush Stalks.

Decomposing Hackenbush 29

Stalk Reduction Principle

For any Red-Blue Hackenbush Stalk, the “best” move for either player is
always the highest valid move in the stalk.

 Proof:
 Suppose we start with a Hackenbush Stalk S = {SL | SR} that has a value x.

Now suppose that Left removes the highest blue stick in the stalk, resulting in the
position SL.

We now apply the Fundamental Theorem of Hackenbush where the original
game position is given by G = SL. This implies that: G = {GL | GR} = {SLL | SLR}.
It follows that the value of G is greater than the value of GL. In consequence,
SL > SLL. More explicitly, the position SL has a greater game theoretic value than
any other position SLL to which Left could send the original game S.

Similarly, by symmetry we reason that SR < SRR, where SR is the position to
which Right sends the original game S by removing the highest red stick.

GS!

Decomposing Hackenbush 30

Corollary 1

There is no good reason to cut a stick in the “trunk stalk” if a player can
make a cut elsewhere (that is, in a branch somewhere else in the tree).

Game Setup:
Let G be a Red-Blue Hackenbush Tree. In game notation, G = {A, B … | X, Y …}.
In G, there are two “best” moves (one in each set of options):

GL for Left and GR for Right. Therefore, G = {GL | GR}.

WTP:
Let T be the best option for Left, wherein Left hacks a blue stick in the trunk (it
should be clear from the Stalk Reduction Principle that “best” simply means the
highest blue stick in the trunk stalk). Let S be the option for Left, wherein Left
hacks a blue stick not in the trunk (i.e.: somewhere in a branch higher in the
tree). We wish to prove that the best move for Left cannot lie in the trunk stalk,
provided there exists a different option in which Left does not hack a stick in the
trunk stalk. Mathematically, GL≠ T, if ∃ S. Then, similarly for GR.

Proof:
By the Stalk Reduction Principle, an option that is the result of hacking a stick in
the trunk stalk cannot be greater than an option for which Left hacks a stick in a
branch somewhere else in the tree. Therefore, since Left has an option that will
result in a more positive game value in a branch somewhere else in the tree, she
will not hack a stick in the trunk stalk.

Similarly, by the Stalk Reduction Principle, an option that is the result of hacking
a stick in the trunk stalk cannot be less than an option for which Right hacks a
stick in a branch somewhere else in the tree. Therefore, since Right has an
option that will result in a more negative game value in a branch somewhere else
in the tree, he will not hack a stick in the trunk stalk.

Hence, we have shown for both players that there is no good reason to cut a
stick in the trunk stalk if they can make a cut elsewhere in the game.

GS!

Decomposing Hackenbush 31

Combinatorial Game Values
for Hackenbush

Game Theoretic Values

Until now, we have continued to speak of and use values of games in an abstract
manner. But games are not abstract in practice—after all, all of this theory is supposed
to help you play a better game of Hackenbush! In this section we will focus on concrete
game theoretic values for Hackenbush to supplement the theory and proofs in the
previous sections and provide a basis for the discourse to follow.

This section contains the foundational methods for evaluating game values upon which
CGT is taught. It strives to show how we can attain a correspondence between games
and their values. The subject of Numbers as Conway would describe is beyond the
scope of this paper and should be sought in ONAG’s Zeroth Part: On Numbers. There,
Conway proves his Numbers are a field and shows many other properties in detail. For
our purposes, we will attempt to highlight only the facets needed for the analysis to
come and concentrate on the derived gameplay.

Zero

Already, we have been introduced to a very important game value: zero. A zero game
was defined as a Second player win. Consequently, there are infinitely many different
game representations for the value zero in Hackenbush. A few of these games are
shown below:

Decomposing Hackenbush 32

Each of the games above is a Second player win. Let’s examine each of them:

In the first case, we can determine that whoever goes first does not have a move to
make and therefore loses the game.

In the second example, if Left goes first and takes the Blue stick, then Right will respond
by taking the Red stick. Now it is Left’s turn, but there are no more Blue sticks! Right
(who went Second) wins. When we examine the game where Right goes first, we find
that Left is the victor by a similar series of events. Thus, after examining both
gameplay paths, we have determined that the Second player will always win. Therefore
the second game is a zero game.

The third game looks far more complex, but there is a shortcut! As you may have
already noticed, the secret to creating (and winning!) a zero game lies in the strategy we
labeled Tweedle-Dum and Tweedle-Dee. Hence, we can say that by Tweedle-Dum and
Tweedle-Dee, the third example is a Second player win.

Before moving on let’s take another look at the second example. Notice that during the
course of the game (at the end) the players have played the game out to be exactly the
game in the first example. This is what we mean by “sending” one game to another.
The players have played out moves from one game state to one of its sub-games,
which, in turn, becomes the current game to be played.

Integer-Valued Games

Let’s start defining some other numbers for Hackenbush games. It seems reasonable
to evaluate game positions in terms of the number of moves a player can make. For
example, if there is one Blue stick then this is worth one move for Left; we could argue
the same for a single Red stick for Right.

If we recall the axes presented when we introduced the Players, we said that Left is
favored by positive numbers and Right is favored by negative numbers. Therefore, it
stands to reason that we may define a single Blue stick as having a value of positive
one; and a single Red stick as having a value of negative one. Furthermore, this
coincides with our previous example where a single Blue stick and a single Red stick
made up a game we determined to be a Second player win. It must follow:

1 + (-1) = 0.

Naturally, such a statement comes at no surprise.

Decomposing Hackenbush 33

Continuing further into the integers, we ask the question of what does a pair of Blue
sticks evaluate to?

Intuitively, this game has two moves for Left and no moves
for Right, which by the same reasoning as above, should
evaluate to positive two. Again, this follows mathematically:

1 + 1 = 2.

This also seems quite natural and should come at no surprise.

However, let us investigate what happens when we stack the two sticks on top of each
other so that only one is attached to the ground.

Once again, this game has two moves for Left and no moves
for Right, which by the same reasoning as above, should
evaluate to positive two. But wait! Certainly, the stalk shown
here and the pair of stalks in the previous example cannot be
the same game!

True. They are not the same game, yet they still have the same value. This makes
sense since there are still two moves available for Left. Obviously, if Left chose to hack
the trunk of the stalk then she would be squandering an available resource in the upper
stick since this too is hacked with the bottom stick. By cutting the top stick, Left still has
a stick remaining and is victorious, winning with a remaining value of positive one. Such
a victory is better than winning without any left over resources and is therefore more
desirable, making the top stick the optimal move.

Since we play with optimal players when performing our analysis, we will only consider
the optimal moves. This makes sense in our notation too. So far we have ignored our
notation throughout this discussion on values so that we might concentrate on the
intuitive aspect of how these games and numerical values correspond.

Decomposing Hackenbush 34

Notation and Values

After our definition of a zero game, we proved that zero was a number and labeled it
with the following gameset notation:

0 = { | },

which says that there are no options for Left and that there are no options for Right.
This corresponds exactly to the first representation of a zero game we examined, but
what about the others? They certainly have options!

In fact, if we apply our “common-sense” evaluations to the notation, we find that we get
the exact same end result! In the case of the second zero game example, we have one
move for Left valued at negative one and we have one move for Right valued at positive
one. To clarify, remember that we are talking about the sub-game values which are the
game options produced after a player has taken their turn. Mathematically:

{-1 | 1} = 0.

Our result is a number since all the options are numbers and no Left option is greater
than any of the Right options and the actual value is a product of the Simplicity Rule,
through which we would say that 0 is the simplest number between the Left and Right
options -1 and 1, respectively. Thus, the statement {-1 | 1} = 0 is true and follows from
our definitions and notation properly.

When we employ the gameset notation on the pair of Blue sticks, which we defined as
having the value of positive two, we obtain the following gameplay breakdown:

 Left: Left can take one of the Blue sticks (which one does not matter since

the result is identical in either case), resulting in a sub-game with a single
Blue stick, which we determined as having the value positive one.

Right: Right has no move.

The gameset options are filled as follows: G = {1 | } = 2.

Decomposing Hackenbush 35

Now we will apply this same process to our stacked example. In this game, we have
two options for Left:

A. Left takes the top stick, resulting in a sub-game with a single Blue stick,
which we determined to be valued at positive one. [optimal]

B. Left takes the trunk, resulting in the sub-game with no sticks,
which we determined to be a zero game.

In our gameset notation, we write: G = {1, 0 | }.

We know that 0 is not an option that Left would chose in the light of her other option 1.
Therefore we may reduce the representation to:

G = {1 | },

which is the exact same representation we obtained for a game of value positive two!
Hence, our intuition has served us right in our previous explanation.

Decomposing Hackenbush 36

Fractional-Valued Games

Now we ask a much harder question to evaluate by mere
“common-sense.” What is the value of a game with a Blue
trunk and a Red stick stacked on top of it?

Even though the title may have already given it away,
let’s reason it out before looking at the proof.

The gameplay is as follows:

 Left: Left can take the Blue stick, which is the trunk of the stalk, resulting
 in a sub-game with no sticks, which is a zero game.

Right: Right can take the Red stick at the top of the stalk, resulting in a
 sub-game with a single Blue stick, which has a value of positive one.

We fill in the gameset options and obtain: G = {0 | 1}.

With some further analysis, we can determine that this strange creature is in fact a
number and by the Simplicity Rule we may determine that the value of G must be the
simplest number between the Left option, zero, and the Right option, positive one. As
of yet, we have not given any parameters on how to determine this “simplest” number,
we have only proven that such a number exists.

For our purposes we look no further than the dyadic rational numbers. There is far
more significance and theory behind why this is involving the birthdays of numbers and
the ordering given to numbers by their birthdays. Since we will not be utilizing the
concept of birthdays beyond this point, this further discussion is omitted but can be
referenced in all three of the combinatorial game texts referenced (for a clear overview,
I highly recommend reading Haff’s text first: pages 30-55).

In general, we say that the smaller a number’s denominator is, the simpler it is. This
allows us to classify the integers as the simplest of numbers. We then proceed into the
dyadic rational numbers (rational numbers with denominators that are powers of two)
and determine that 2

n family is next in line, followed by the 4
n family, etc.

Proceeding along this path, we can now quantify our game in question with the simplest
number between 0 and 1: 2

1 . Therefore:

G = {0 | 1} = ½.

Decomposing Hackenbush 37

Maybe this is starting to sound a little suspicious without any proof. Not to worry!
What follows is a proof that our game in question is in fact equivalent to the value of half
of a move. To do this, we simply play out the sum of games which we will hypothesize
to be a zero game. In our case, we wish to construct a game that includes two copies
of the game in question and a lone Red stick to send the value back to zero.
Mathematically,

() 0 12
1

2
1 =−++ .

We certainly hope so! Here’s the proof:

Fantastic!

Beyond Values

There is much, much more beyond these simple value calculations that we have yet to
touch upon. Considering the ground we have covered thusfar, we can calculate simple
constructions in Hackenbush, yet must do so using the method of proof shown above
which requires a complete delineation of the gameplay in order to attain the results.
What if the Hackenbush game was a stalk 17 sticks high? Or even higher!? Such a
fundamental problem must have a more general solution, and that is what we will look
into next: the calculations of Hackenbush stalks.

Decomposing Hackenbush 38

Hackenbush Stalks

Significance of Stalks

Stalks are simple. They range from a single stick to a tall series of sticks stacked as
high as the clouds, and come in various color patterns. More importantly, stalks are
easy to calculate values for and are a good starting point for introducing the concept of
evaluating Hackenbush games in a more general way than the methods shown in the
previous section.

Notably, the primary goal behind this project was to determine if there was a method by
which Hackenbush trees could be decomposed into a group of stalks. If possible,
complicated trees could be quickly calculated by a much simpler means.

Evaluating Stalks

The first step toward calculating the values of complicated Hackenbush Tree structures
is to determine how to calculate a simple case/type of tree. As alluded to earlier, a stalk
is a special type of tree: a tree with no branching. This is an important factor and will
immensely simplify the process required to calculate stalks in general.

It should be noted that there are a couple different ways by which to calculate the value
of a stalk in Red-Blue Hackenbush. For a method utilizing binary strings to represent
the sticks of the stalk, refer to Elwyn Berlekamp’s Rule for Hackenbush Strings in
Winning Ways (77-78). Another method, presented by Thea van Roode, says to start
from the trunk and give each edge a value of 1 or -1 (depending upon the color) until
there is a color change. Then halve each succeeding value and change the sign
according to the color (WW 78). We shall examine van Roode’s method in the
algorithm below since it was the one I implemented in CSC.

Decomposing Hackenbush 39

Stalks Algorithm

Here we examine a complete block of pseudo-code outlining van Roode’s method for
calculating the values of Red-Blue Hackenbush Stalks.

1) Start at the base stick (trunk) and work upwards:
If trunk is red: Value = -1,
If trunk is blue: Value = 1.

2) Proceed to the next stick above and evaluate the following:
Repeat while the stick color is same as trunk
 If trunk is red: Value = Value -1
 If trunk is blue: Value = Value + 1
 If no more sticks: DONE

3) Now that we have hit a change in color,
start halving and adding according to color:

Loop until there are no more sticks to evaluate

If trunk is red: Value = 







⋅
−⋅

den2
1num2 ,

If trunk is blue: Value = 







⋅
+⋅

den2
1num2 ,

where num is the numerator of the current dyadic rational and
where den is the denominator of the current dyadic rational.

If we look closer at Step 3 and break the formula up, the process seems clearer:

Value red trunk =
den2
1

den
num

den2
1num2

⋅
−=

⋅
−⋅ .

Value blue trunk =
den2
1

den
num

den2
1num2

⋅
+=

⋅
+⋅ .

Intuitively, this makes sense since if we add a stick of a color different than the trunk of
the stalk the value should diminish (for the player who owns the trunk) since the
opponent now has another move that they can make (we saw this in depth when
calculating the value 2

1). However, this extra move does not alter who will win the stalk
game. In other words, by appending another stick to the stalk, the signage of the stalk
game value will not change. We can argue this mathematically since we are continually
halving the values we are appending to our running sum, which is similar to the

argument that ∑
=

n

1i
i2

1 does not equal 1 for any finite number n.

Decomposing Hackenbush 40

As an example, if we started with a Blue stick and then appended any finite number of
red sticks above it, the value of the game will stay positive even though the value of the
game will become smaller with each addition of a move for Red.

This observation is truly significant and puts a lot of value (pun intended) into the trunk
of the Hackenbush stalk (or tree). Of course, in the algorithm above, each step is
entirely dependant upon the color of the trunk of the stalk.

Implementation

During the summer of 2003, I implemented the van Roode’s algorithm in C and used it
as a mechanism to check my work as I began to search for the parameters for
decomposing a general Red-Blue Hackenbush Tree. I originally chose van Roode’s
algorithm over Berlekamp’s Rule because I more naturally think in fractions rather than
in binary and van Roode’s algorithm was much closer to how I would formulate
solutions to Hackenbush problems in general. It later became clear that van Roode’s
algorithm provided support for computing the values in a fractional form, which made it
even more appealing since we almost never speak of Hackenbush games in decimal
values in CGT.

The program is called C Stalks Calculator (CSC). However, it is no longer available for
download from my CGT site since I have implemented a Java applet which is interfaced
with a graphically-based drawing panel (precursor to Visual Hackenbush) rather than
CSC’s command-line interface.

If you wish to use the applet, please visit: http://cgt.calculusfairy.com/Software/
Then again, development for the applet has currently been suspended in the interest of
the more complete tool: Visual Hackenbush, which can be downloaded for installation at
the same URL. Stalks can be calculated in the current release of Visual Hackenbush
through a graphical interface similar to that of the applet’s, and the process is well
documented in supplied User’s Guide.

Decomposing Hackenbush 41

Hackenbush Trees

Trouble with Trees

The trouble with trees is that they have at least one instance of branching. When
examining stalks, we were guaranteed that only a single stick would stem from our
current position as we made our way up the stalk. This constraint simplified the
calculation of the value of the stalk. In this section we remove this restriction and find
how hard it actually is to calculate the values for these trees without any guidance. We
will then utilize a technique presented in ONAG as the key component to Conway’s
complete theory for trees.

Before we reveal this key component, I would like to draw your attention to how
extensive a game tree may become. In Appendix A, I have included a complete game
tree to a sum of two Red-Blue Hackenbush trees. It should not come to a surprise that
in order to arrive at such a solution takes a good amount of time and effort. What’s
more is that the question prompts for just gameplay and a winner without calculation,
which would add another layer of complexity to the final solution, requiring the
calculation of all of the intermediate values to build up the lists of options and their sub-
options, and so on and so forth.

Thankfully, there is another way which is paved with the concept of Ordinal Sums.

Ordinal Sums

For a real number x, we say that the number 1:x has the first value from the sequence:

K,
16

5x,
8

4x,
4

3x,
2

2x,
1

1x
2

nx
1n

+++++
=

+
−

for which the numerator (x + n) is greater than 1. We call such a number 1:x the Ordinal
Sum of 1 and x.

Similarly, for a real number x, we say that the number (-1):x has the first value from the
sequence:

K,
16

5x,
8

4x,
4

3x,
2

2x,
1

1x
2

nx
1n

−−−−−
=

−
−

for which the numerator (x – n) is less than -1.

Conway explains the relationship between the Ordinal Sum and Red-Blue Hackenbush
trees in ONAG on page 88.

Decomposing Hackenbush 42

In essence, we find that for a Red-Blue Hackenbush tree that the value of the entire tree
is dependent only on the value of the game position above the trunk. The reasoning
behind this argument is simple and directly follows from Corollary 1. With this in mind,
we can proceed to construct the gameset in a more general manner:

Without loss of generality, we have enumerated the options for a Red-Blue Hackenbush
tree in the same spirit as previously discussed. The gameset G = {GL | GR} is
representative of all but one of the options available to the players in our generalization
above; what is missing is the move for Left to hack the trunk, which is either a trivial
option to take into account if there are no other moves for Left in the tree or we default
to Corollary 1. In either case, the resulting gameplay is short and self-explanatory.
Thus, we shall continue to concentrate on the much more interesting component to this
generalization.

By the aforementioned method of proof by induction, we can apply the Ordinal Sum
function to the gameset notation to reveal the following result:

1:x = {0, 1:xL | 1:xR}

Here we should recall the FTOH which says that all Red-Blue Hackenbush positions are
numbers, and that by definition each of the Ordinal Sum components in the gameset
above must also be numbers. Furthermore, notice that since zero is an option for Left,
the Right option 1:xR must be positive. In fact, this Ordinal Sum function is a mapping
from all numbers onto the positive numbers in order of simplicity as outlined in the
previous sections. As to be expected, this coincides with our intuition about games with
Blue trunks since they guarantee the game’s value to be positive despite what may be
found further up the tree.

More can be said about the Ordinal Sum 1:x and its applications in CGT, but this is
sufficient for our purposes in this paper. For more details, see ONAG, Chapter 15: Ups,
Downs, and Bynumbers.

Decomposing Hackenbush 43

Algorithm for Trees

Here we examine a complete block of pseudo-code outlining a recursive implementation
for Conway’s method for calculating the values of Red-Blue Hackenbush Trees.

 CalculateTreeValue(currentValue, sourcePositionInTree)

{
// Initialize values
stickValue = 0

 branchSum = 0
 branchVal = 0
 currentStickId = 0
 branches = number of branches in sourcePositionInTree

 // Branch values (according to branch trunk color)
 blueBranchValue = 0
 redBranchValue = 0

 /* If there are NO branches extending from the current position
 * (size of branch array = 0): then we cannot traverse any higher
 * Thus: simply return the current value */
 if(branches == 0)
 return(currentValue)

 /* Loop over the branches (at this point guaranteed at least 1)
 * and recursively traverse up the tree to find the value */
 for(branchIndex = 0; branchIndex < branches; branchIndex++)
 {
 currentStickId = id of branchIndex in sourcePositionInTree

 if(Color of currentStickId == RED)

stickValue = -1
else

stickValue = 1

 // invoke recursion
 branchVal = calcTreeValue(stickValue, currentStickId)

 // Determine the stick color and add subtree value to it
 if(Color of currentStickId == RED)
 redBranchValue += branchVal
 else
 blueBranchValue += branchVal

 branchSum += branchVal
 }

 // Tree value is computed using an Ordinal Sum Algorithm
 value = CalculateOrdinalSum(currentValue, branchSum)
 return(value)

} // end CalculateTreeValue()

Decomposing Hackenbush 44

The main idea in this implementation is to use the instance of branching as a
mechanism to promote the recursive nature to Conway’s mathematics. Essentially, the
function sets out to calculate the tree stemming from its current position without any
other knowledge of where exactly in the tree at which it is being called. The only other
data it receives is the value of the stick on top of which it is processing its calculations,
which is also an indication of whether the stick is Red or Blue.

The function loops over all of the branches stemming from the current position. At each
base stick to a branch, the stick value of 1 or -1 is assigned and then the function is
recursively called to proceed up the branch until no more branches stem from the
current position. A running sum of the branches is calculated and then, once the value
of the tree above the current position is known, an Ordinal Sum can be run on this
subtree. This result is returned so that other stacked recursive calls can be completed
until there are no more to complete—at which point we will have calculated the value for
the entire tree.

This algorithm handles both stalks and trees alike (since by definition stalks are a
special type of tree with a maximum of one branching stick), which made it an excellent
candidate to be the definitive calculation method in Visual Hackenbush.

Implementation

The trees algorithm was not implemented until Summer 2004, an entire year after the
initial CGT value calculators, in one of my proudest achievements: Visual Hackenbush.
It had been a top priority to assure that the user could draw the tree interactively and
see the quantified results immediately and the trees algorithm was one which could
cater to such a particular demand. Moreover, most of my previous analyses had been
in binary trees, which are only a small class of Red-Blue Hackenbush trees, but the
trees algorithm works for all trees no matter how many instances of branching the user
decides to throw at it.

To be sure, the trees algorithm is far more powerful a tool than the simple stalks
calculators; however, for an individual processing a series of stalks calculations is far
simpler a task than tackling the bookkeeping issues which reside in the trees algorithm.
Thus, it was still viable to search for a way in which a tree might be decomposed into
several individual stalks, which is what we will examine next.

Decomposing Hackenbush 45

Hammerian Trees

Introduction

Here we are at the threshold of the crux of the project: Hammerian Trees. With the
aforementioned definitions and techniques, we are finally able to accurately describe
and examine the first set of trees in Red-Blue Hackenbush that can be decomposed.

In this section, we define what it means for a tree to be Hammerian and the properties
that can then be attributed to this classification. Also, we will characterize the process
for decomposing a tree into its components so that it retains its game theoretic value.

Hammerian Domain

Before we go into extensive detail about what parameters define a tree as class
Hammerian, it seems appropriate for us to place this class of trees in relation to the rest
of Red-Blue Hackenbush games.

Hammerian Trees in the domain of all Red-Blue Hackenbush.

As shown in the diagram, Hammerian Trees are a subset of Red-Blue Hackenbush
Trees, which are (not surprisingly) a subset of all Red-Blue Hackenbush Games.

Decomposing Hackenbush 46

Definition: Hammerian Tree

A Hammerian Tree is a Red-Blue Hackenbush game in which the branches may
be severed from the full tree and planted separately without altering the
combinatorial game value of the original game.

Examples of Hammerian Trees.

Hammerian Classification

In order for a Red-Blue Hackenbush Tree to be classified as Hammerian it must fulfill
the following requirement:

If the trunk of the tree is pure Blue, () ()∑∑ ≥ rb branchesCGVbranchesCGV ,
where ()bbranchesCGV is the combinatorial game value of a branch whose
lowest stick is colored Blue, and ()rbranchesCGV is the combinatorial game
value of a branch whose lowest stick is colored Red. Similarly, if the trunk
of the tree is pure Red, then () ()∑∑ ≤ rb branchesCGVbranchesCGV .

Otherwise, it can be proven that the tree cannot be decomposed.

In other words, the value of the tree is equal to the value of its decomposed
components. However, one should be cautioned that the process of decomposition
does not allow just any branch or stick to be cut from the tree and planted. Before
proceeding too much further, this last statement requires further examination and so we
shall look at the proper method by which trees can be decomposed.

Decomposing Hackenbush 47

Method of Decomposition

We will investigate the process of decomposing a Red-Blue Hackenbush Tree through a
short series of examples.

Example 1:

First, we apply the definition to ensure that the tree above is in fact Hammerian. Since
the trunk of the tree is pure Blue, we must check that the given inequality holds:

() ()∑∑ ≥ rb branchesCGVbranchesCGV .

In our case, we must check that the absolute value of the branch on the left (with the
Blue base stick) is greater than or equal to the absolute value of the branch on the right
(with the Red base stick). We recall our previous calculations of the individual branch
stalks, rendering:

() () 2
12 ≥=≥ ∑∑ rb branchesCGVbranchesCGV .

Thus, the tree above is Hammerian and is therefore able to be decomposed.

The decomposition, as shown above, is performed in the following manner: we remove
all of the branches at the instance of branching and plant them in the ground as
separate trees. This results in the following template:

Decomposing Hackenbush 48

IMPORTANT NOTE:
However, it should be noted that we must perform the decomposition upon the instance
of branching in question. Otherwise, the resulting sum of subtrees is not guaranteed to
be equal to the game theoretic value of the original tree. See example below:

Example 2:

Here we have the same original tree, yet with a “decomposition” differing from that
exemplified in Example 1. Despite the fact that the tree has already been classified as
Hammerian, the actual decomposition was performed incorrectly.

From the labeled values it is obvious that something is wrong since 122

5 +≠ . Of
course, such an observation cannot always be easily made since the extent of the tree
and the number of instances of branching may be very large. Thus, it is of the utmost
importance that this point be made clear.

The Blue stick of the right branch was severed and planted. This is in violation to our
Hammerian classification parameter since the trunk of the right branch subtree is Red.
The following condition must be satisfied by the branches within that subtree in order to
be decomposed:

() ()∑∑ ≤ rb branchesCGVbranchesCGV .

In this case, we find that we do not satisfy the conditions since:

() () 01 ≤⇒≤ ∑∑ rb branchesCGVbranchesCGV

which is certainly a false statement.

Decomposing Hackenbush 49

Other Observations

Recursive Definition
The Hammerian classification parameter is truly recursive under the condition that the
tree branching below the branching node in question is Hammerian.

As exemplified by the decomposition above, we initially decompose the tree at the first
instance of branching. This renders us with the first result: the trunk, the left branch
stalk, the middle branch stalk, and the right branch subtree. Since the subtree is also
Hammerian, it too can be decomposed.

Most importantly, we observe that throughout the process the value of the original tree
was always equal to the sum of the decomposed components. This property is
essentially an extension to the fact that trees are governed by their relationship with
Ordinal Sums, which allows for the classification to percolate up the tree until there is an
instance of branching that renders the tree (or subtree) non-Hammerian.

By the same logic, it can be argued that no instance of branching stemming after a non-
Hammerian instance of branching is Hammerian. In other words, while working our way
up the tree, if we reach an instance of branching that fails to meet the criteria required to
be classified as Hammerian, then there cannot be an instance of branching further up
that subtree that can be decomposed.

Decomposing Hackenbush 50

Multi-Branching and Solid-Color Branching
It is important to notice that the Hammerian classification parameter makes no
specifications to the number of branches for either side of the inequality. So far, each of
the dissected examples have dealt with binary trees, yet the classification stands for
trees with any number of branches stemming from one single node.

This means that it also applies at instances in Red-Blue Hackenbush Trees where all of
the branches begin with the same color:

() () 0branchesCGVbranchesCGV rb =≥ ∑∑ , no branches which begin with Red,

and

() ()∑∑ ≤= rb branchesCGV0branchesCGV , no branches which begin with Blue.

Such a case is shown below:

Decomposing Hackenbush 51

Joshua Trees

Definition: Joshua Tree

A Joshua Tree is a Red-Blue Hackenbush game in which the combinatorial game
value of the tree itself is the same as the combinatorial game value of the trunk.

Examples of Joshua Trees.

Joshua Classification

In order for a Red-Blue Hackenbush Tree to be classified as a Joshua Tree it must fulfill
the following requirement:

() 0branchesCGV =∑ ,

where ()branchesCGV is the combinatorial game value of each branch.

In other words, the combinatorial game value of the tree itself is the same as the
combinatorial game value of the trunk. This also implies that the absolute value of
branches b is equivalent to the absolute value of branches r . That is:

() ()∑∑ = rb branchesCGVbranchesCGV .

Decomposing Hackenbush 52

Other Observations

The easiest way to simulate a Joshua Tree is by creating the branches in the same
fashion as Tweedle-Dum and Tweedle-Dee. Essentially, this means that each subtree
(branch) is constructed to have a combinatorial game value of zero; leading us to play
out the game until all that remains is the trunk—confirming our intuition that the
combinatorial game value should be the same as the trunk alone.

Also, it should be noted that the examples above may seem a little misleading since
they all have a trunk stalk of size one. To be sure, the trunk stalk can be any size when
considering the conditions for being a Joshua Tree.

Actually, there’s not much more to say about Joshua Trees as they are simply
Hammerian Trees that have the same value as their trunk and we just completed a
relatively involved discussion on Hammerian Trees in the last section. In any case,
Joshua Trees seemed to show up so often throughout my research that I needed to
give them a name for ease of reference.

Decomposing Hackenbush 53

Conclusions

Summary

We have finally come to the end of our discourse on Hackenbush. Throughout this
paper we have examined the game of Red-Blue Hackenbush with an introduction to the
fundamentals of Combinatorial Game Theory and an in-depth analysis of the tree
structures within the game. After establishing several precise definitions concerning
trees and their components, we were able to prove a few general theorems about
Hackenbush before jumping into the topics of Stalks, Trees and their relationship with
the Ordinal Sum function. Finally, we examined the findings of my research by defining
two classifications: Hammerian Trees and Joshua Trees, as well as the constraints
required to decompose them into component parts which sum to be the same game
theoretic value as the original tree.

This is by no means a completion to all the analysis for Hackenbush—which is to say
that there is much, much more to be researched and documented. Here I have shown
my perspective on solving Hackenbush through the technique of decomposition and
problem reduction. Though these methods are only proven to be applicable on trees,
there may very well be use for decomposition in the general case of all Red-Blue
Hackenbush games. Furthermore, there still remains the question of non-Hammerian
Trees and exactly why the decomposition does not apply to them in the same manner.
It may be possible that there is a different sort of decomposition that governs their
breakdown into easier to compute components. But alas, such theories have yet to
grounded and examined, and must wait as they are dependent upon the future of
Hammerian research.

Future of Hammerian Research

I honestly can’t say what the future of these classifications are since up to this point I
have not found any other practical use for them with the exception of having the ability
to calculate complicated trees into simpler structures. Problem reduction certainly is an
important topic in both Mathematics and Computer Science, and I hope that one day
this will be the lifeblood for my methods presented here.

On the other hand, the future of the standalone application Visual Hackenbush has a
very promising future as it has already been in use for almost a full year. In fact, just
recently, I received an email from Aaron Siegel, author of one of the most widespread
Combinatorial Games computer applications: CG Suite, concerning the integration of
the Visual Hackenbush Drawing Canvas into the CG Suite environment!

I certainly hope to continue my work and research in Red-Blue Hackenbush throughout
my graduate studies.

Decomposing Hackenbush 54

Decomposing Hackenbush 55

Appendix A:

Hackenbush Game Tree Example

Preface

The following game tree is a complete solution to one of the homework problems given
out in Math 168A. This particular solution was turned in by one of my top-students
during the Winter 2004 course offering: Erik Hill. Erik graduated with a Bachelor’s in
Mathematics- Computer Science in June of 2004 and is currently in the CSE Master’s
program at UC San Diego. Erik and I have kept in contact with each other and now
both work in the Experimental Game Lab as programmers under the direction of
Sheldon Brown. This example is printed here with his permission.

Problem 1.5.2

Show that the following figure is a winning position for Right:

Do this by playing out the game.

Decomposing Hackenbush 56

Erik Hill’s Solution

Let Right go first:

However,
Left can win
by taking the
stick
connected to
the ground,
so Right will
not make this
move!

These 2 moves can be considered the
same, since the resulting positions are
the same.

However, Right can
win by taking the
stick connected to
the ground, so Left
will not make this
move! This move is

not optimal
since this
blue stick
was not in
danger and 4
other blue
sticks are in
danger. So
Left will not
make this
move!

However,
Right can
win by
taking the
stick
connected
to the
ground,
so Left
will not
make this
move!

This move is not optimal
since this blue stick was
not in danger and 4 other
blue sticks are in danger.
So Left will not make
this move!

These 2 moves can be
considered the same, since the
resulting positions are the
same.

These 2 moves can be
considered the same, since the
resulting positions are the
same.

However, Left
can win by
taking the stick
connected to the
ground, so Right
will not make
this move!

This is not
an optimal
move since
Right
destroys
two Red
sticks in
one move,
so Right
will not
make this
move!

However,
Left can
win by
taking the
stick
connected
to the
ground, so
Right will
not make
this move!

These 2 positions can
be considered the same.
As long as Right does
not eliminate 2 red
sticks in one move on
the right side tree
which would be stupid. However,

Right can
win by
taking the
stick
connected
to the
ground, so
Left will
not make
this move!

These 2 moves can
be considered the
same, since the
resulting positions
are the same.

However,
Right can
win by
taking the
stick
connected
to the
ground, so
Left will
not make
this move!

However,
Left can
win by
taking the
stick
connected
to the
ground, so
Right will
not make
this move!

This move is not
optimal since this
red stick was not in
danger and did not
eliminate a blue
stick. There were
moves available that
would save a red in
danger, or eliminate
a blue at the same
time. So Left will
not make this move!

However,
Left can
win by
taking the
stick
connected
to the
ground, so
Right will
not make
this move!

However,
Left can
win by
taking the
stick
connected
to the
ground, so
Right will
not make
this move!

This position is analyzed off the
leftmost branch of the 2nd
branch from the left of the
leftmost branch at this level

This move is not optimal.
The blue stick removed is
not in immediate danger.
If Right tries to eliminate
it on the next turn, Right
will lose. So, Left should
eliminate one of its blue
sticks in more immediate
danger.

These 2 moves can be
considered the same,
since the resulting
positions are the same.

This position has been
analyzed at the bottom
level of 30. Right wins!

Decomposing Hackenbush 57

 The position of the game is
 2 + (-3) = -1 so Right will win!

The position of the game is
 1 + (-2) = -1 so Right will win!

The only optimal move
for Left is to save its blue
that is in danger, Left’s 2
other moves can always
be made later since they
are not in danger.

However,
Right can
win by
taking the
stick
connected
to the
ground, so
Left will
not make
this move!

The only optimal
move for Right is to
save its red stick that
is in danger, Right’s
2 other moves can
always be made later
since they are not in
danger.

The position of the game
is ½ + (-1) = - ½ so
Right will win!

However,
Left can
win by
taking the
stick
connected
to the
ground, so
Right will
not make
this move!

The only
optimal move
for Left is to
save its blue
stick that is in
danger, Left’s
other move can
be made later
since it is not in
danger.

The position of the
game is 1 + (-2) = -1
so Right will win!

The position of the
game is ½ + (- ½) =
0 so the second
player will win and it
is Left’s turn so
Right will win! However,

Right can
win by
taking the
stick
connected
to the
ground, so
Left will
not make
this move!

The position of the
game is 1 + (-2) = -1
so Right will win!

Right will win!

The position of the game
is ¼ + (-1) = - ¼ so
Right will win!

However,
Right can
win by
taking the
stick
connected
to the
ground, so
Left will
not make
this move!

However,
Left can
win by
taking the
stick
connected
to the
ground, so
Right will
not make
this move!

The position of the game
is ½ + (-1) = - ½ so
Right will win! The position of the game is

½ + (-2) = -1.5 so Right
will win!

Right will win by
taking the stick
touching the ground

The only
optimal move
for Right is to
save its red stick
that is in danger,
Right’s other
moves can be
made later since
those sticks are
not in danger.

The position of the game is
2 + (-2) = 0 so the second player
will win and it is Left’s turn so
Right will win!

The position of the game
is ¼ + (-1) = - ¼ so
Right will win!

Right will win by
taking the stick
touching the ground Right will win

this position was
analyzed on
14’s right most
branch

Right will win
this position was
analyzed on
13’s right most
branch

However,
Left can
win by
taking the
stick
connected
to the
ground, so
Right will
not make
this move!

These 2 moves can be
considered the same, since the
resulting positions are the same.

Right will win by
taking the stick
touching the ground

These 2 are the
same

The only
optimal
move for
Right is to
take a red
stick that
will take a
blue stick
with it,
Right’s
other move
leads to a
loss.

Right would lose so
he will not make this
move. Blue’s only optimal

move is to take her
stick in danger, this
leaves the position as
1 + (-2) = -1 so
Right will win!

Right will win by
taking the stick
touching the ground

Right will win this
position was
analyzed on 14’s
middle branch’s
middle branch

However,
Left can
win by
taking the
stick
connected
to the
ground, so
Right will
not make
this move!

These 2 moves can be
considered the same, since the
resulting positions are the same.

Right will win by
taking the stick
touching the ground

Right will win this
position was
analyzed on 14’s
middle branch

Right’s only optimal
move is to save its stick
in danger. This leaves the
position 2 + (-2) = 0
which is a second player
win and since Left has
the next play, Right will
win!

Left’s only optimal move is to save
one of its sticks in danger. Left can
make her other moves in the future
since they are in no danger.

Right cannot win this position, Right’s best move is
to eliminate it’s highest red stick, but then the
position is 2 + (-1) = 1 which is a Left win. So, the
decision by Right at 11 to follow this path was a bad
one, so he will not take it!

However,
Right can
win by
taking the
stick
connected
to the
ground, so
Left will
not make
this move!

This position has already
been analyzed, it is the
same as the figure that
leads to 12 and 13, Right
will win!

This position has already
been analyzed, it is the
same as the figure that
leads to 16, Right will
win!

This position has already
been analyzed, it is the
same as the figure that
leads to 14 and 15, Right
will win!

Right will win by
taking the stick
touching the ground

However, Left can win by taking the
stick connected to the ground, so Right
will not make this move!

The position of the game is ½ + (- ½)
= 0 so the second player will win and
it is Left’s turn so Right will win! Both these positions have

value ¼ + (- ½) = -¼ so
Right will win!

However, Left can win by taking the
stick connected to the ground, so Right
will not make this move!

These positions should be considered the
same since Right is making optimal moves.
Left will take her stick not connected to the
ground on the next move, and then the
position of the game will be ¼ + (-1) = - ¾
so Right will win!

Decomposing Hackenbush 58

However,
Left can
win by
taking the
stick
connected
to the
ground, so
Right will
not make
this move!

This position
was already
analyzed as 11’s
leftmost
position. Right
will win!

Right will win by
taking the stick
touching the ground

However, Left can
win by taking the
stick connected to
the ground, so Right
will not make this
move!

These 2 moves can be
considered the same, as long as
red is not stupid. Left will take its

top blue stick
making the
position
½ + (-1) = - ½
so Red will win!

Right will win by
taking the stick
touching the ground

This position has value
¼ + (-1) = -¾ so Right
will win!

However, Left can
win by taking the
stick connected to
the ground, so Right
will not make this
move!

This position has value ½ +
(-1) = - ½ so Right will win!

However, Left can
win by taking the
stick connected to
the ground, so Right
will not make this
move!

However,
Right can
win by
taking the
stick
connected
to the
ground, so
Left will
not make
this move!

However,
Left can
win by
taking the
stick
connected
to the
ground, so
Right will
not make
this move!

These 2 moves can be
considered the same, as long as
red is not stupid.

Right will win by
taking the stick
touching the ground

Right will
win by
taking the
stick
touching
the ground

Right will win The
left stalk has value
1/2 and the right tree
has value less than –
½ and greater than –
2 so the position is
less than ½ – ½ = 0
so the position is
negative. Right will
win.

Right will win The
Right stalk has value
-2 and the left tree
has value greater
than 1/8 and less
than –2 so the
position is less than
2-2 = 0 so the
position is negative,
so Right will win.

Right will
win by
taking the
stick
touching
the ground

Right will win this
has been analyzed
already on 9’s
rightmost path

Right will win. Right’s optimal move
is to remove his red stick that will
eliminate a blue. After this, the tree on
the left will have a value less than 2
since there are 2 blue sticks and one
red. The stalk on the right has value –
2. So the position will have value less
than 2 + (-2) = 0. So the position will
be negative! Right will win.

Right will win. Right’s
optimal move is to
remove his red stick in
danger that will eliminate
a blue. After this, the
tree on the left will have
a value ½ . The stalk on
the right has value –1.5
(given on pg.23. So the
position will have value
less than 0.5 + (-1.5) = -
1. So the position will be
negative! Right will win.

Right will win by
taking the stick
touching the ground

This position
has value ¼ + (-
1) = -¾ so Right
will win!

Right will
win by
taking the
stick
touching
the ground

Right will win
this position is
equivalent to
one that has
been analyzed
already on 9’s
rightmost path

However, Left
can win by
taking the stick
connected to the
ground, so Right
will not make
this move!

This position has
value 1 + (-1. 5) = -
0.5 so Right will
win!

This position has value
3/4 + (-1. 5) = -3/4 so
Right will win!

This was
already analyzed
on the middle
path of 20.
Right will win

Right will win!
This position
has value ¼ + (-
½) = - ¼

However, Left can
win by taking the
stick connected to
the ground, so Right
will not make this
move!

Left will
take its top
blue stick
making the
position
½ + (-1) = -
½ so Red
will win!

Right will
win by
taking the
stick
touching
the ground

Right will win this has been analyzed
already on 24 (the middle path of the
middle path of the rightmost path)

Right will take its
highest stick in
danger, then blue
will take its stick not
connected to the
ground. The position
is then ½ + (-1) = -
½ so Right will
win!

Right will
take its
stick in
danger that
eliminates a
blue stick,
then the
position is
½ + (-1) = -
½ so Right
will win!

Right will either take its highest stick in
danger sending the position to ¾ + (-1) = -
¼ a Right win, or he will take his middle
red stick to eliminate another red and a
blue. This will send the position to 1 + (-1)
= 0 a second player win, since it is Left’s
turn , Right wins. So,Right will win!

Right will take its
highest stick in
danger, then the
position has been
analyzed. The
figure just below
24’s 2nd to the left
figure. Right will
win!

Right will either
take its highest stick
in danger sending
the position to ¾ + (-
1) = - ¼ a Right win,
or he will take his
middle red stick to
eliminate another
red and a blue. This
will send the
position to 1 + (-1) =
0 a second player
win, since it is Left’s
turn , Right wins.
So,Right will win!

This position
has value ½ +
(-.½) = 0, a 2nd
player win. It
is Left’s turn
so Right will
win!

Left will either take the
blue stick in danger on
the left sending the
position to ¼ + (- ½) = -
0.25 a Right win. Or,
Left will take the blue on
the right tree sending the
right tree to a value of –1.
The left tree is obviously
not greater than 1, so the
value of the position
would be negative(Right
wins) or Zero, a Right
win since he is the
second player. So Right
will win!

Left will either take the
blue in danger on the left
tree sending the position
to ¼ + (-0.5) = -0.25, a
Right win. Or, she will
take the blue on the right
stalk. Then the left tree
has value less than ¾ and
the right tree has value –
1 so This position has
value less than 0.75 + (-
1) = -0.25 so Right will

However, Left
can win by
taking the stick
connected to the
ground, so Right
will not make
this move!

This position
has value ¾ +
(-2) = -1.25 so
Right will win!

The left tree has
value ½ and the
right tree has
value less than –
½ This position
has value less
than ½ + (-0.
5) = 0. So the
value is
negative. Right
will win!

This position
has been
analyzed in 24
the 2nd to the left
path’s 2nd to the
left. Right will
win!

Right will
win by
taking the
stick
touching
the ground

Left will save her blue stick
in danger, Right will then
send it to a 2 + (-2) = 0
game. A second player win,
since Left is next, Right will
win!

This is obviously
a zero game. Left
has the next play,
so Right will win!

The left tree has
value ½ and the right
tree has value less
than –1/2. This
position has value
less than 0.5 + (-0. 5)
= 0 so the value is
negative. Right will
win!

Right will
win by
taking the
stick
touching
the ground

Left will take either the blue in the left
tree which sends the position to ¼ + (-
1/2) = -1/4, and Right would win. Or,
Left will take the blue in the right tree
to make the right tree have value –1.
Right would take the top red in the left
tree. Left would follow by taking the
blue in the left tree sending the left tree
to a value of ½. This position has value
½ + (-1) = -0.5 so in all cases Right
will win!

This is
obviously a zero
game. The left
tree is the same
tree as right with
the colors
switched. It is
Left’s turn so
Right is the
second player,
and Right wins!

Right’s other
moves are not
optimal.

Right’s other
moves are not
optimal.

Decomposing Hackenbush 59

This position has
value ¾ + (-1. 5) =
-0.75 so Right will
win!

However, Left
can win by
taking the stick
connected to the
ground, so Right
will not make
this move!

The left tree has
value ½ . On Right’s
next move he will
take his red that will
eliminate one blue.
The value of the
right tree will then
be less than – ½ .
This position has
value less than ½ +
(-0. 5) = 0 so the
position has negative
value, Right will
win!

Right will
win by
taking the
stick
touching
the ground

Right will take the
red in the right tree
that will eliminate a
blue, this makes the
value of the right
tree –2. The left tree
has a value
obviously less than 2
since it has 2 blue
sticks and one red
stick. This position
has value less than 2
+ (-2) = 0 so the
game has a negative
value. So, Right will
win!

Right will take its only stick in danger
on his move. Left will counter by taking
her last stick in danger. This leaves the
position with value 2 + (-3) = -1 so
Right will win!

Right will
win by
taking the
stick
touching
the ground

This position
has been
analyzed
before. It is the
figure that
leads to 15 and
16 Right will
win!

This was
already analyzed
on the middle
path of 20.
Right will win

Right will
win by
taking the
stick
touching
the ground

However, Left
can win by
taking the stick
connected to the
ground, so Right
will not make
this move!

This is obviously a
zero game. The left
tree is the same tree
as right with the
colors switched. It is
Left’s turn so Right
is the second player,
and Right wins!

Right’s only optimal
move is to take his stick
on the left tree. This
eliminates a blue stick.
Left will respond by
taking his only stick
that is in danger. The
resulting position has
value 2 + (-3) = -1 so
Right will win! These moves are not optimal for

Right. He should take the Red stick
that eliminates a blue at the same
time. His other moves he can make
later.

However, Left
can win by
taking the stick
connected to the
ground, so Right
will not make
this move!

This
position
has value
¾ + (-2) =
-0.25 so
Right will
win!

Left will take its
only stick in
danger which
sends the
position to 2 + (-
3) = -1 so Right
will win!

Right will
win by
taking the
stick
touching
the ground

Right will take its only
stick in danger which
will send the game to 2
+ (-2)=0, a second
player win. Since Left
has the next turn, Right
will win!

Right will win by
taking the stick
touching the ground

Right will take its
only stick in danger
which will eliminate
a blue stick. This
leads to a position of
value 2 + (-2) = 0 a
second player win.
Since Left has the
next turn, Right is
the second player, so
Right will win!

However, Left can
win by taking the
stick connected to
the ground, so Right
will not make this
move!

This position has value 2
+ (-1. 5) = -0.5 so Right
will win!

Left will take its
blue not
connected to the
ground. This
leads to the
position with
value 0.5 + (-1)
= -0.5 so Right
will win!

However, Left
can win by
taking the stick
connected to the
ground, so Right
will not make
this move!

Left will take its
blue in the right
tree. This leads to a
position with value
1 + (-2) = -1 so
Right will win!

This position has
been analyzed on
27’s 2nd to the
right branch Right
will win!

This position has
been analyzed already
on 21’s left branch’s
middle branch. Right
will win!

This position
has value ¼ + (-
0. 5) = -0.25 so
Right will win!

Right will
win by
taking the
stick
touching
the ground

Right will take the stick in the left
tree that eliminates a blue. This
leads to a zero game since the left
tree is the same as the right with
the colors switched. It is now
Left’s turn, so Right is Second and
therefore Right will win!

This position has
value ¾ + (-1. 5)
= -0.75 so Right
will win!

This position has value ¾ + (-1.
5) = -0.75 so Right will win!

However, Left
can win by
taking the stick
connected to the
ground, so Right
will not make
this move!

Left will take its blue
stick at the top of the tree
on the right. The tree on
the right will then have a
value less than –1 and the
left tree has value 1. This
position has value less
than 1 + (-1) = 0 so the
position is negative.
Right will win!

Right will win by
taking the stick
touching the ground

Right will take its stick in the left tree.
Right will respond by taking its stick in
the right tree. This leads to a position
with value 1 + (-2) = -1 so Right will
win!

Right will take his stick
that takes one blue stick
with it. This leads to the
position with value ½ +
(-0. 5) = 0. This is a 2nd
player win, Since it is
now Left’s turn, Right
will win!

Right will
win by
taking the
stick
touching
the ground

Right will take the
stick in the left tree
that eliminates a blue
also. This leads to a
position with value
1.5 + (-1. 5) = 0, a
2nd player win. Since
it is now Left’s turn,
Right will win!

This move is not optimal, Right should
take a red that will take a blue with it.
Red has 2 better plays. Right will not
make this move.

However, Left can win by taking
the stick connected to the ground,
so Right will not make this move!

However, Left can win by taking
the stick connected to the ground,
so Right will not make this move!

These 2 moves can
be considered the
same, since the
resulting positions
are the same.

Left will
take its
stick on the
left tree in
danger.
Red will
take a stick
on the left
tree and
then the
position
will be ½ +
(- ½) = 0, a
second
player win,
since it is
Left’s turn,
Right wins!

Right will
win by
taking the
stick
touching
the ground

This position
has value ¼ + (-
0. 5) = -0.25 so
Right will win!

Right will take a
stick from the left
tree. Left will
counter by taking its
stick not connected
to the ground. This
leaves the position ½
+ (-1) =-0.5 so Right
wins!

This is not an optimal move. This
stick was in no danger from a
optimal Left player. Right should
take a red stick that eliminates a
blue stick at the same time. This
move can be made later in the
game since the stick is in no
danger, so Right should make a
different move!

Decomposing Hackenbush 60

Now let Left go first:

Since Right won the position he can win this position using the same winning strategy. He can pretend that the blue stick missing is
still there and follow his winning strategy from the previous pages. If Right can win with one more blue stick present, then Right can win when
the blue stick is not present. This is due to the fact that the blue stick adds some positive factor to the value of the position. Since Right was the
first player and won in the previous case, the starting position must have a negative value by Definition 1.3.1(iv).

The position without the blue stick has a smaller value than the position with the blue stick, so these positions all have a value smaller than the
negative value of .

So, all of these positions are negative. This implies Right will win all of these positions!!!

Note: This argument would not have worked if one of Left’s move had eliminated any red sticks!

However, Right
can win by
taking the stick
connected to the
ground, so Left
will not make
this move!

These 2 moves can be
considered the same, since the
resulting positions are the
same.

Decomposing Hackenbush 61

Decomposing Hackenbush 62

Visual Hackenbush
Version 1.1

Decomposing Hackenbush 63

Welcome to the

Visual Hackenbush Documentation

Visual Hackenbush v1.1
©2003-2004 Joey Hammer

Joey Hammer
University of California, San Diego

http://cgt.calculusfairy.com

Decomposing Hackenbush 64

Table of Contents

Introduction 5
Introduction to the Package
About the Developer

Installation 6
 System Requirements
 JRE 1.4 Installation
 Visual Hackenbush Installation

Hackenbush Tree Calculation Studio 7
 Know Your Environment
 Visual Hackenbush Development
 Version 1.1 Capabilities

Menus 9
 Toolbar
 File Menu
 View Menu
 Game Menu
 Project Menu
 Help Menu

Studio Main Frame 12
 Project Control Display Panel
 Drawing Control
 Drawing Canvas
 Decomposition Canvas [currently unavailable]

Display Options Frame 15
 Size Adjustment Sliders
 Color Adjustment ComboBoxes

Decomposing Hackenbush 65

Table of Contents

Project Settings Frame 17
 Calculation Settings
 Log Options
 Other Options

Visual Hackenbush Log Frame 19
 Log Overview
 Log Tools

Visual Hackenbush Functionality 21
 Drawing Canvas Revisited

Moving Vertices
 Adding Sticks to the Tree
 Modifying Stick Colors
 Removing Sticks from the Tree

Credits 27

Decomposing Hackenbush 66

Introduction

Introduction to the Package

Visual Hackenbush is a free Hackenbush Tree calculation environment. Its only
requirement is the Java Runtime Environment, which can be freely downloaded
from Sun Microsystems’ website at http://java.sun.com.

Visual Hackenbush is still being developed at the time of this current release so
there are potential bugs. Therefore, please send feedback (positive and negative
welcome) to the web address below.

Visual Hackenbush
Version: 1.1

© 2003-2004 Joey Hammer
http://cgt.calculusfairy.com

Java Runtime Environment
Version: 1.4.1

© 2002 Sun Microsystems, Inc.
http://java.sun.com

About the Developer

Joey Hammer completed his degree in Mathematics-Computer Science at the
University of California, San Diego. His current research is conducted in the field
of Combinatorial Game Theory, primarily focused in the game of Hackenbush.

Joey first became interested in Combinatorial Games in the Fall of 2000. He
later became one of the first students to enroll in an experimental course on CGT
in the Spring of 2003: Math 168A taught by Professor Len Haff and Jason Lee.
During the following year, Hammer served as Haff’s Teaching Assistant for the
Math 168A course for two quarters before graduating.

Hammer has also developed a web resource guide for Combinatorial Games,
which can be found at: http://cgt.calculusfairy.com.

Decomposing Hackenbush 67

Installation

System Requirements:

Basically, just about any system should be able to handle Visual Hackenbush.
However, in order to run it, you must have the Java Runtime Environment (JRE)
installed on your system.

Note for Network Users:
In order to save Visual Hackenbush Trees (*.hat) files to your system, you must
have write access privileges.

JRE 1.4 Installation:

1. Download the jre-1.4.2 installation package from:
Sun Microsystems’ website http://java.sun.com or
Math 168A Course Site http://cgt.calculusfairy.com/Software/jre.exe

2. Double-click on the jre.exe and follow the instructions.

Visual Hackenbush Installation:

1. Download the Visual_Hackenbush_1.1-Setup.exe installation setup
from http://cgt.calculusfairy.com/Software/VisualHackenbush/.

2. Double-click on the installer and follow the instructions.
3. Simply double-click on the shortcut under CGT/Visual Hackenbush and you’re

ready to start drawing some trees!

Decomposing Hackenbush 68

Hackenbush Tree Calculation Studio

Know Your Environment:

Visual Hackenbush is a windowed environment, composed of four separate
window frames:

• Visual Hackenbush Main Window Frame
• Display Options Window Frame
• Project Options Window Frame
• Visual Hackenbush Log Window Frame

We will go through each frame in-depth and explain their features and
functionality in the sections to follow. In this section, we will keep to introducing
the capabilities of the overall application itself.

Decomposing Hackenbush 69

Hackenbush Tree Calculation Studio [Continued]

Visual Hackenbush Development:

Essentially, Visual Hackenbush was developed to be a personal tool for my
research in the area of Hackenbush Tree Decomposition. I had initially wanted
an applet that provided the user with a graphical interface inside of which they
could draw the trees they wanted to analyze. To assist with the analysis, I
wanted the program to have the ability to calculate the value of what had been
directly drawn into the interface. This turned into an extensive project to say the
least, but I’m proud to say that version 1.1 is the first real landmark for my hopes
and dreams in the development of this software.

Furthermore, I have implemented several additional features to Visual
Hackenbush since its conception, including a play-by-play log, adjustable display
settings, and the ability to read and write Visual Hackenbush Trees (*.hat) files to
name a few. In fact, the file input/ output option was so important that it required
almost a complete overhaul to the software’s backbone—including the constraint
that the program be written as an application rather than an applet.

The final thing I should reemphasize is that most of Visual Hackenbush’s
functionality is solely based upon the tools I needed for my research. This is the
reason why there is an entire panel dedicated to Hackenbush Tree
Decomposition and a gamut of other tools which factor into labeling a tree as
either Hammerian or Non-Hammerian. Whether these tools would be of value to
other users was not one of my top priorities when developing this software;
nevertheless, they are still available to those who may have a need for them or
are interested in experimenting with their extended capabilities.

Version 1.1 Capabilities:

Upon completion, Visual Hackenbush will be able to calculate the combinatorial
game value of any type of Hackenbush Tree you can throw at it (well, draw in it).

But since that day has not yet come, it is somewhat limited in its calculation
capabilities. In 1.1 version release, Visual Hackenbush has the ability to
calculate any tree governed by the rules of Red-Blue Hackenbush alone.

Support for other games types, such as Red-Blue-Green Hackenbush, Childish
Red-Blue Hackenbush, and Green Hackenbush, is in development and will be
released as soon as they can be properly devised, written, and tested.

Decomposing Hackenbush 70

Menus

Toolbar:

Just like any other windowed program, Visual Hackenbush has a toolbar from
which you can choose various options. I have also included key-bindings to most
of the options found in the menus of the toolbar for quick access.

We now outline each of the menus:

File Menu:

 New: CTRL + N

Selecting this option will clear the current Hackenbush Tree in the Drawing
Canvas and reset the controls to their default settings.

 Open: -- --
Selecting this option will bring up the “Open Dialog” window so that a previously
saved (*.hat) file can be opened. The game type and button settings stored in
the (*.hat) file will be automatically applied when a file is opened.

 Save: CTRL + S

Depending upon the situation, selecting this option will either bring up the “Save
As Dialog” window so that you can name and save your file in the location of
choice, or it will simply save the currently active (*.hat) file without a prompt. If
you do not wish to overwrite your currently active (*.hat) file, you should use the
Save As menu option instead.

 Save As: -- --

Selecting this option will bring up the Save As Dialog window so that you may
name and save your (*.hat) file in the location of your choosing.

 Exit: CTRL + X

Selecting this option will exit Visual Hackenbush. While this is equivalent to
clicking the ‘X’ in the upper right-hand corner of the main window frame,
choosing “Exit” does provide a safety net for your project: prompting you to save
your current work before you exit.

Decomposing Hackenbush 71

Menus [Continued]

View Menu:

 Drawing Canvas: C

Selecting this option will change the right-hand panel to the Drawing Canvas if it
is not already visible.

 Decomposition Canvas: D
Selecting this option will change the right-hand panel to the Decomposition
Canvas if it is not already visible.

 View Log: `

Selecting this option will make the Visual Hackenbush Log visible.

Game Menu:

 Red-Blue Hackenbush: 1

Selecting this option will create a new game and change the Hackenbush game
type to Red-Blue Hackenbush. In consequence, the Green Stick and Trunk
buttons in the Drawing Control Panel will be disabled.

 Red-Blue-Green Hackenbush: 2
Selecting this option will create a new game and change the Hackenbush game
type to Red-Blue-Green Hackenbush.

 Childish Red-Blue Hackenbush: 3

Selecting this option will create a new game and change the Hackenbush game
type to Childish Red-Blue Hackenbush. In consequence, the Green Stick and
Trunk buttons in the Drawing Control Panel will be disabled.

 Green Hackenbush: 4

Selecting this option will create a new game and change the Hackenbush game
type to Green Hackenbush. In consequence, the Red and Blue Stick and Trunk
buttons in the Drawing Control Panel will be disabled.

Decomposing Hackenbush 72

Menus [Continued]

Project Menu:

 Calculate Value: ENTER

Selecting this option will initiate a recalculation of the combinatorial game value
of the tree currently visible in the Drawing Canvas. If the Auto-Calculate option
is activated in the Project Settings Window, this option will be disabled since
Visual Hackenbush will recalculate the tree value each time the tree is
structurally modified (by this I mean that moving the vertices do NOT initiate a
recalculation, however: the options of adding, subtracting, or changing the color
of one or more sticks will most certainly initiate a recalculation).

 Tighten Display: T
Selecting this option will change the position of the vertices in the Drawing
Canvas so that the structure of the resulting Hackenbush Tree is more clear.
Visual Hackenbush will try its best to make the lengths of each stick as uniform
as possible, and space the vertex positions far enough apart so that they are
visually recognizable. [1.1– somewhat unpredictable results]*

 Display Options: O

Selecting this option will make the Display Options window frame visible.
This window frame is described in detail later.

 Project Settings: S

Selecting this option will make the Project Settings window frame visible.
This window frame is described in detail later.

Help Menu:

 Contents: -- --

Selecting this option will display a link to the location of the Visual Hackenbush
Documentation.

 About: -- --

Selecting this option will display the copyright and version information for the
release of Visual Hackenbush currently in use.

*Tighten Display: may place connection nodes on top of each other resulting in two or more sticks being drawn on top of each

other. These “hidden” sticks could lead to confusion, it is suggested you check for overlapping nodes after
using this functionality until this situation is remedied and updated.

Decomposing Hackenbush 73

Studio Main Frame

Project Control Display Panel:

This is Visual Hackenbush’s information and calculation results display. At
current release, it displays the following data:

• Hackenbush Game Type
• Combinatorial Game Value
• Height of the Current Tree
• Number of Sticks (which compose the current tree)

Additionally, to supplement my own personal research, the panel also displays
whether or not the current tree is considered Hammerian.

Certainly as the functionality and algorithmic capabilities in later releases of
Visual Hackenbush progress, There are plans for displaying more information
about the trees constructed via the Drawing Canvas (hence the reason for the
unused space at the bottom of the panel).

Decomposing Hackenbush 74

Studio Main Frame [Continued]

Drawing Control Panel:

This is Visual Hackenbush’s drawing control center. Its main purpose is to
control parameters of the Drawing Canvas in the right panel. At current release,
the user has the following options to adjust:

• Stick Drawing Color
• Trunk Color
• Game Negation
• Show the Game Decomposition Panel [1.1- not functional]

Of course, both the Stick Drawing Color and Trunk Color buttons will adjust as
the user changes the overall Hackenbush game type.

It should be noted that the Trunk Color buttons are the only way to adjust the
trunk of the current tree in the Drawing Canvas since there is no special popup
menu which handles the trunk. This prevents the user from removing the trunk,
leaving them with nothing to work with: a trivial zero game.

Decomposing Hackenbush 75

Studio Main Frame [Continued]

Drawing Canvas:

This is the essence of Visual Hackenbush. The Drawing Canvas is where 90%
of the action is, so let’s properly examine its components in detail.
NOTE: We explain the functionality in a later section.

Vertices:
Vertices are the connections between sticks (shown in yellow above). Each one
has an identification number which can be displayed by activating the option in
the Project Settings window frame.

Trunk:
The trunk is a very special stick—it is the only stick directly connected to the
ground (this may change in later versions of Visual Hackenbush). It cannot be
removed. Its corresponding vertex is labeled as 0. Its color can only be adjusted
via the Drawing Control Center.

Sticks:
Sticks are the components which make up any Hackenbush Tree you can
imagine. The user may add, remove, and change the colors of any stick in the
tree (with the aforementioned restriction of the trunk, which cannot be added or
removed). Their visual lengths do NOT affect the combinatorial game value.

Decomposing Hackenbush 76

Display Options Frame

Size Adjustment Sliders:

Stick Size:
Allows the user to uniformly adjust the thickness of the sticks displayed in the
Drawing Canvas. Also affects the sticks drawn after adjustment.

Default Size: 1.
Range: [0, 5].

Vertex Size:
Allows the user to uniformly adjust all the radii of the vertices displayed in the
Drawing Canvas. Also affects the vertices drawn after adjustment.

Default Size: 1.
Range: [0, 5].

Decomposing Hackenbush 77

Display Options Frame [Continued]

Color Adjustment ComboBoxes:

Background Color:
Allows the user to adjust the background color displayed in the Drawing Canvas.

Default Color: Black.
Choices: [Black, White].

Vertex Color:
Allows the user to adjust the color of each of the vertices displayed in the
Drawing Canvas. Also affects the vertices drawn after adjustment.

Default Color: Yellow.
Choices: [Gray, White, Yellow].

Ground Color:
Allows the user to adjust the ground color displayed in the Drawing Canvas.

Default Color: Brown.
Choices: [Black, Brown, Gray, White].

Decomposing Hackenbush 78

Project Settings Frame

Calculation Settings:

Auto-Calculate Stalk and Tree Values:
Toggles the option for Visual Hackenbush to automatically calculate the
combinatorial game value for the tree being constructed in the Drawing Canvas.

Default Value: ON.

Test for Hammerian:
Toggles the option for Visual Hackenbush to automatically test and calculate
whether the tree being constructed in the Drawing Canvas fulfills the parameters
to be classified as Hammerian or Non-Hammerian.

Default Value: ON.

Decomposing Hackenbush 79

Project Settings Frame [Continued]

Log Options:

Enable Log:
Toggles the option for Visual Hackenbush to keep a log of the actions done
within the Drawing Canvas and Hackenbush Project.

Default Value: ON.

Log Filename:
Allows the user to specify the name of the log file to be used when the log is
saved via the “Save Log” button on the Log Frame. It should be noted that this
filename cannot be changed if the log is disabled.

Default Filename: HackLog.log.

Other Options:

Allow Tree Decomposition:
Toggles the option for Visual Hackenbush to calculate the Hammerian
Decomposition of Hackenbush Trees so that the user may examine the results
on the Decomposition Canvas. [1.1- not available]

Default Value: ON.

Display Vertex Ids:
Toggles the option for Visual Hackenbush to label each vertex as it is added to
the tree in the Drawing Canvas.

Default Value: OFF.

Decomposing Hackenbush 80

Visual Hackenbush Log

Log Overview:

The Visual Hackenbush Log is a very important tool to creating trees. It stores to
a text file all the commands and processes in the order in which the user
performs them upon the Drawing Canvas. The fact that this can be saved and
reopened in a simple Text Editor (such as Notepad) means that the user can
recreate a tree or pattern via a readable plaintext. This is quite different from the
Hackenbush Tree files (*.hat) which are structured for space optimization,
making them much more cryptic to read. Additionally, the (*.hat) files are simply
a snapshot of the Hackenbush Tree structure at the time it was saved and does
not record the steps leading up to the saved product.

Furthermore, the log records very detailed information which cannot be found in
the Project Control Display Panel, such as a stick’s source ID, a stick’s tree level,
and even the identification numbers from the sticks removed.

Decomposing Hackenbush 81

Visual Hackenbush Log [Continued]

Log Tools:

Mark:
Allows the user to insert a separator line and a numbered “mark” in the log,
complete with timestamp. This particular feature comes in handy if the user
wishes to examine the log from a particular point in their project work in the
Drawing Canvas. This is better than simply clearing the log since all previous
entries remain in the log.

Save Log:
Allows the user to save the log to a file. The name of the log file is retrieved from
the “Filename” text field found in the Project Settings Frame.

Clear:
Allows the user to clear the current log. Note that this cannot be undone!

Decomposing Hackenbush 82

Visual Hackenbush Functionality

Drawing Canvas Revisited:

The Drawing Canvas is equipped with MouseEvent Listeners, which means that
any mouse movement, click, or dragging performed over the panel is recorded
and tested to determine if the user is attempting to modify the tree.

In fact, mouse clicks and dragging are the main methods by which the user can
construct a Hackenbush Tree in the Drawing Canvas, as well as the feature
which sets Visual Hackenbush apart from other Combinatorial Games Software.

Since this is the most essential part of understanding Visual Hackenbush, a
simple, tutorial-like description is provided below to introduce each piece of the
Drawing Canvas Graphical User Interface.

Decomposing Hackenbush 83

Visual Hackenbush Functionality [Continued]

Moving Vertices:

The Drawing Canvas can easily get cluttered with vertices and although it does
not alter the value or underlying structure of the Hackenbush Tree the user has
the option of adjusting the position of the stick connection vertices.

LEFT MOUSE CLICK on the desired connection vertex and
DRAG the cursor (and vertex) to a new position.

You should notice that the sticks will stay connected to the vertices as they are
moved around. Sticks may be stretched or shrunk at the user’s whim, yet these
actions will not modify the combinatorial game value of the tree.

CAUTION: It is possible to drag a connection vertex on top of another connection
vertex, which means that the tree may look connected at that one vertex when it
really is not. A quick way to double check the integrity of a vertex is by simply
“wiggling” it by dragging it back and forth to reconfirm that the sticks that appear
connected to it are actually connected. One could also activate the Display
Vertex Ids option in the Project Settings window to be extra cautious.

Another complexity which may result in careless vertex positioning is the
instance where two (or more) sticks lie on top of each other and as a result are
disguised as a single stick. If you become unsure of your display and suspect
multiplicity in your sticks, you should first count the sticks displayed and compare
this with the Stick Count in the Project Control Display Panel or activate the
Display Vertex Ids option in the Project Settings window rather than manually
checking each connection vertex.

Decomposing Hackenbush 84

Visual Hackenbush Functionality [Continued]

Adding Sticks to the Tree:

Drawing a Hackenbush Tree on a piece of paper or a whiteboard may appear as
simple as drawing a bunch of connected lines, yet, in reality, there is quite a bit of
data required to properly construct any tree-like structure. Imagine attempting to
describe a particular Hackenbush Tree to someone without the use of any visual
aids. Take it one step further: ask them to calculate its value based on the
description you just gave them. For any tree larger than a few sticks, this can
prove to be quite a difficult task! Thankfully, Visual Hackenbush is the solution!

In fact, thanks to its graphical interface adding a new stick to the Hackenbush
Tree is quite easy:

RIGHT MOUSE CLICK on any connection vertex and
DRAG the cursor (and vertex) to a desired position.

By this action, Visual Hackenbush will create a new connection vertex on top of
the original and position it where the user releases the right mouse button. You
will notice that the new stick will appear as you drag the new connection vertex
away from the original. Also notice that the color of this new stick is the currently
selected Stick Drawing Color in the Drawing Control Panel.

SPECIAL NOTE: All of the details concerning the creation of the new stick are
recorded in the Visual Hackenbush Log (provided that it is enabled).

Decomposing Hackenbush 85

Visual Hackenbush Functionality [Continued]

CAUTION: It is possible to create a connection vertex by accident! This occurs if
the user performs a right click and releases on top of the original vertex position,
resulting in a stick length which is obstructed by its connection vertex. Thus, the
graphical user interface will process this as the command to create a new stick.
To avoid this scenario, the user should always drag out the connection vertex to
a reasonable distance away from the original.

If you do in fact create an unwanted stick: don’t panic, you can always remove it
to resume the previous tree structure. See the section on “Removing Sticks from
the Tree” for details.

Decomposing Hackenbush 86

Visual Hackenbush Functionality [Continued]

Modifying Stick Colors:

Of course, your Hackenbush Tree would be quite boring if you only drew red
sticks on top of that blue trunk. After all, the game is Red-Blue Hackenbush.
There are two ways in which the user may change stick colors:

1) Adjust the Stick Drawing Color BEFORE drawing the stick in the
Drawing Control Panel.

2) Modify the stick color AFTER it is already drawn by the method below.

The former is pretty self-explanatory so we examine the latter in consequence.
To change the color of a stick that has already been grafted into the current tree:

RIGHT MOUSE CLICK on the desired stick and
SELECT the new color for the stick from the popup menu.

This action will not only change the appearance of the stick of the tree in the
Drawing Canvas, but also the combinatorial game value of the tree. If the
Auto-Calculate option is active the value displayed in the Project Controls
Display Panel will change automatically to compensate for the modification.

SPECIAL NOTE: Only the colors available to the game type will be available to
choose from in the popup menu. This prevents an unknown stick color from
entering into a game where its character is unknown.

IMPORTANT: There is no popup menu for the trunk of the tree. You must use
the Drawing Controls Panel to modify the trunk color.

Decomposing Hackenbush 87

Visual Hackenbush Functionality [Continued]

Removing Sticks from the Tree:

Finally, there is the issue of removing any unwanted sticks or subtrees from the
current tree drawn in the Drawing Canvas. You may wish to do this because you
accidentally added a stick where you did not want to, or maybe want to calculate
the value of tree if a player decides to hack a particular stick.

For whatever reason you may have for its use, the method by which you remove
a stick is similar to the way you would modify the color:

RIGHT MOUSE CLICK on the desired stick and
SELECT REMOVE from the popup menu.

Take note of the following bullets:

• There is NO UNDO feature as of version 1.1, so make sure the stick you
are selecting to remove is really the stick you want to remove!

• Removing a stick obeys the same rules laid out in Hackenbush:
“If a stick is no longer (indirectly) connected to the ground
 after the removal of a stick, it too must fall away.”

Therefore, if the stick you are about to remove is the parent to a subtree
then the subtree will also be removed as a result of the removal.

NOTE: If you wish to examine which sticks were removed, you can always
consult the log (provided it was active at the time of the removal).

IMPORTANT: You CANNOT remove the trunk of the tree.

Decomposing Hackenbush 88

Decomposing Hackenbush 89

Software

Combinatorial Games Suite (CG Suite). Aaron Siegel, 2003.

C Stalks Calculator (CSC). Joey Hammer, 2003.

Hammerian Trees Algorithm (HTA). Joey Hammer, 2003.

Hackenbush Applet. Joey Hammer, 2004.

Visual Hackenbush 1.1. Joey Hammer, 2004.

Decomposing Hackenbush 90

References

Carroll, Lewis. Through the Looking Glass.

Conway, J. On Numbers and Games. Second Edition.

Conway, J. Berlekamp, E., Guy, R. Winning Ways. Vol. 1.

Haff, L. R. Course Notes for Math 168A: Combinatorial Game Theory.

