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the values of some Childish Hackenbush Trees.  It soon became clear that there 
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Early Observations 
 
“Back of the Napkin” Calculations 
 
In the Spring of 2003, my research associate, Jeremy Trotter, and I were enrolled in an 
experimental course based on Combinatorial Game Theory: Math 168A.  Our discovery 
for the topic of research outlined in this paper was made while working on a homework 
assignment involving Red-Blue Hackenbush at Pick Up Stix®.  The idea struck when I 
happened to see two sets of Hackenbush games: the first was a single Red-Blue 
Hackenbush Tree and the second was a pair of Red-Blue Hackenbush Stalks, both of 
which had the same combinatorial game value. 
 
This sparked more than year’s worth of extensive undergraduate research and intensive 
software programming in the game of Hackenbush to seek out the parameters for and 
the logic behind this interesting decomposition. 

 
 
Decomposition Details 
 
Hammerian Trees  (details analyzed later) 

A Hammerian Tree is any Red-Blue Hackenbush Tree whose combinatorial 
game value is the same as the sum of the decomposed branches and its trunk. 

 
 
Joshua Trees  (details analyzed later) 

A Joshua Tree is a Hammerian Trees whose combinatorial game value is the 
same as its trunk. 

 
 



Decomposing Hackenbush 7 

Research Timeline 
 
Spring 2003: Math 168A: course in Combinatorial Game Theory 
   Pick Up Stix®: discovery of possibilities for tree decomposition 
 
Summer 2003: Parameter Research: 200 trees calculated by hand 
   Programming: Stalks Algorithm and Binary Tree Calculator 
 
Winter 2004:  Parameter Research: Hammerian parameters solidified 
   Programming: Hackenbush Applet (Visual Hackenbush 1.0) 
 
Summer 2004: Programming: Visual Hackenbush 1.1 
   Completion of Visual Hackenbush 1.1 
 
Fall 2004:  Continued research 
 
Winter 2005:  Formalization of theorems and proofs 
 
Spring 2005: Results compiled and documented 
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Project Software 
 
Early Calculators 
 
Undoubtedly, the most rewarding part of this project has been the opportunity to see the 
implementation of the Project Software.  When I first signed on to start this project, 
Professor Haff and I originally spoke of the “intensive algorithmic programming” desired 
to help in the manifestation of the ideas for which my proposal had potential.  Little did I 
know that it would take over a year to finally develop a useful package to assist in the 
calculations required for the project to progress. 
 
Before the creation of the current package, there were two programs which were 
designed to perform simple computations: 

• C Stalks Calculator (CSC) 
• Hammerian Trees Algorithm 

Both were command line driven programs written in C during the summer of 2003 and 
were used mainly to check the computations I was doing on my whiteboard: an arsenal 
of 200 Red-Blue Hackenbush Trees.  
 
In December 2003, I had the chance to begin working on my real dream: a Hackenbush 
Applet, in which the user could draw any desired Hackenbush Tree and retrieve its 
Combinatorial Game Value.  A month later, the graphical user interface had taken form 
and the computational backbone from the Stalks Algorithm had been properly adapted.  
However, I will reemphasize that it was far from my ambitions to have a package which 
allowed the user to draw any tree.  In fact, such an achievement would not be fully 
realized until six months later. 
 

 
 

A photo of an early phase in the project. 
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Visual Hackenbush 
 
During the beginning of the Spring Quarter of 2004 I finally reached the chapter on 
Hackenbush in ONAG (On Numbers and Games, Conway).  There is in fact a complete 
algorithm for Red-Blue Hackenbush Trees laid out on page 88 of this text.  With this 
development, the entire project could be refocused.  It was no longer about working out 
a step-by-step process to calculate the Combinatorial Game Value of Red-Blue 
Hackenbush Trees, rather it became centered about my ideas for Hackenbush Tree 
classification and decomposition. Hence began the development of Visual Hackenbush. 
 
The Visual Hackenbush package turned out to be everything I had dreamed for—and a 
whole lot more.  Features such as the capabilities to save and open (*.hat) files and a 
fully operational log panel (not in the original plans) were integrated, enhancing the 
overall power of the software package. 
 
Version 1.1 marked a huge milestone in this project’s development, offering to the user 
the ability to calculate trees as fast as they could draw them into the interface, limited 
only by their imaginations within the realm of Red-Blue Hackenbush. 
 
 
 

 
 

Visual Hackenbush 1.1 – PreRelease Screenshot. 
 
See Appendix B for extensive documentation on Visual Hackenbush.
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Introduction to the Project 
 
Assumptions & Conventions 
 
I have written this document to be as clear and precise as possible.  So many times 
have I read papers and been totally confused over a single line simply because of the 
fancy/ technical wording utilized in describing a fairly intuitive concept and I want to 
avoid that even at the cost of the inflated length of this document. 
 
I will assume that my readers have a firm understanding of the principles presented in 
higher mathematics.  Mathematical Reasoning is certainly the foundation from which all 
conclusions of this document derive.  However, I do not assume that my readers have 
any extended experience with such subjects as Real or Complex Analysis. 
 
Furthermore, there is a simple fact that must be faced: Combinatorial Game Theory 
(CGT) is a branch of mathematics which is still in its infancy in comparison to most 
others such as Algebra or Combinatorics.  As a result, I will not assume that my readers 
have any experience with CGT.  It is highly recommended (for both knowledge and fun) 
that my readers pick up a copy of Winning Ways (WW) as a reference. 
 
Most of what I will be dealing with here falls more along the lines of the heavier theory 
within the game of Red-Blue Hackenbush.  Quite a bit was established in John 
Conway’s On Numbers and Games, and so I strive for this document to supplement his 
thorough pioneer work. 
 
From hereon, the reader should assume that we are dealing strictly with Red-Blue 
Hackenbush.  Therefore if it is not explicitly stated as “Red-Blue Hackenbush,” it should 
still be assumed.  I’m positive that there are quite a few things presented in this 
document which can be applied to other variations of Hackenbush, yet in this document 
they are neither stated nor implied. 
 
By convention, we refer to our two players as Left and Right and designate them with 
different genders in hopes to keep track of which one we are referring to throughout 
their gameplay.  Left is female and Right is male.  It should also be noted that since this 
paper is focused solely on the game of Red-Blue Hackenbush that we designate Left to 
be bLue and Right to be Red.  Furthermore, we say that Left likes positive values and 
Right likes negative values.  A more formal and detailed introduction to these players is 
certainly in order as we will be playing with them from hereon (see The Players section 
in Combinatorial Game: Defined). 
 
Quite a few people have asked me why I sign the end of my proofs with “GS!”  The 
answer is that it stands for “Game Solved!” since most of the proofs in CGT involve 
playing out the game in order to prove a conjecture or determine the game value. 
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Notation & Abbreviations 
 
CGV()  –  Combinatorial Game Value; “game theoretic value”, or just “value” 
   If we need to distinguish this from another type of value, 

we will do so explicitly. 
 
branches b  –  the set of all branches from a single branching node which have an  

initial stick color blue. 
 
branches r  –  the set of all branches from a single branching node which have an  

initial stick color red. 
 
CGT  –  Combinatorial Game Theory 
 
FTOH  –  Fundamental Theorem of Hackenbush 
 
SRP  –  Stalk Reduction Principle  
 
 
Notation Basics 
Any game G = { GL | GR }, where GL = { A, B, C, ... } and GR = { D, E, F, ... }.  
In other words, for any game G, we have two sets of options, one for Left and one for 
Right (notated respectively with a | between them).  Within each set of options are sub-
games in the game tree.  When a player takes a turn, they send the game G to one of 
the sub-games enumerated in their set of options.  This sub-game then becomes the 
current game and the process is repeated.   Also, one should think of GL as a generic 
symbol that takes on any A, B, C, ..., and similarly for GR.  
 
 
Abuse to Notation: G = { A, B, C, ... | D, E, F, ... }.  
I put this in here because the notation used in CGT can get very confusing due to its 
recursive nature.  Above, we can see that we have omitted the set braces around the 
set of Left options as well as the set of Right options.  This is common practice and is 
used regularly throughout this paper. 
 
 
Notating Options of Options 
We notate the options of a game option in the following manner: GL = { GLL | GLR }, since 
the position GL is made of options for both players.  Similarly, GR = { GRL | GRR }.  
 
 
More Abuse to Notation: 
Again, since enumerating the game tree options in CGT can get very wooly very 
quickly, we introduce another shorthand notation.  G = { GL | GR } can be simply written 
without the set braces: G = GL | GR.  In this paper, I try to stay with the braced notation 
since it is easier to distinguish the games and their options. 
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Methods of Proof 
 
There are several methods of proof which we will need to employ in order to analyze 
Hackenbush and game theory fundamentals.  In general they do not differ too much 
from those used in higher mathematics.  I have outlined those with the significant 
changes below. 
 
 
Gameset Proof 
 
For the most part, to analyze games in CGT we generalize the game and its options 
and classify them and play them out until a verdict is reached.  This paper utilizes this 
technique more than any other so it is important to understand what is happening right 
away.  There are some simple, grounding examples given in the Combinatorial Game 
Fundamentals section after a few of the important concepts of CGT have been defined. 
 
 
 
Proof by Induction 
 
Due to the recursive nature of games and their notation, it becomes necessary to 
outline a method for Proof by Induction that is useful within the context of our analysis.  
Professor Haff outlined this in his text for Math 168A very clearly: 
 

At this point we need the style of induction put forth in ONAG.  Let P(x) 
be a proposition whose truth or falsehood depends upon x = { xL | xR }.  
Now assume all statements of the kind P(xL) and P(xR) are true (this is  
our inductive hypothesis).  If this implies the truth of P(x), then we 
conclude that P is true for all numbers. 
 
Now, let P(x, y) be a proposition whose truth or falsehood depends on x 
and y.  If the truth of P(x, y) can be inferred from the truth of all statements 
of the kind: 
 
 P(x, yL) and P(x, yR) for each fixed x and all values of yL and yR, and 
 P(xL, y) and P(xR, y) for each fixed y and all values of xL and xR. 
 
Then we conclude that P(x, y) is true for all numbers x and y. 
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Proof by Gameplay 
 
CGT is a very visually oriented branch of mathematics.  Hence, we will use pictures or 
a series of pictures to show the gameplay of a game to prove that something is true or 
false.  Moreover, using pictures helps save words since describing a game and its sub-
options can become unnecessarily verbose. 
 
The following is a proof to show that the Red-Blue Hackenbush game in which there is a 
single Blue stick connected to the ground and a single Red stick connected to the Blue 
stick has a combinatorial game value of 2

1 .  It is done by adding a second copy of the 
game in question as well as a stalk with a value negative of the sum of the copies so 
that the entire sum of the stalks is equal to zero (later defined as a second player win). 
 
 
Example a Typical Gameplay Proof in CGT: 
 

 
 

Proof of the first fractional value in Hackenbush. 
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Combinatorial Game: Defined 
 
Conditions for Analysis 
 
There is a certain set of game attributes a game must have in order to be classified as a 
combinatorial game. We require these specifications for the sake of analysis; otherwise 
we would have to take a lot more information into account such as probabilities and 
various types of valid endgames. We recognize that this would be so much information, 
in fact, that it would simply be impossible to complete any in-depth investigations 
without these limitations. Therefore, the following restrictions/ conditions are necessary 
to simplify the set of games so that we may carry out our analysis:  
 
 
Two Players 

In essence, Combinatorial Game Theory is study of two-person games. 
Strategies and methods presented in CGT can certainly be applied to games with 
more players, but this will obviously complicate the investigation. As you may or 
may not already know, gameplay structure breaks down into the form of a binary 
tree (like one would see in a data structures computer science course), which 
after a few levels of play can quickly get out of hand. Needless to say that adding 
another player would only make this situation even more difficult to handle.  

 
 
No Chance 

Combinatorial games do not allow dice, the shuffling of cards, or any other 
devices which lead to the need for probabilities and distributions. Otherwise, the 
outcome from each turn would be heavily dependent upon the factors of chance 
rather than the abilities of the players and the nature of the game itself—if we 
were interested in that, we'd really just be doing statistical analysis and not game 
theory. 

 
 
Perfect Information 

All combinatorial games require for all game data to be accessible to both 
players. That is to say that there is nothing hidden from a player's opponent. 
Everything pertinent to the current game being played is completely laid out on 
the game board for both players to see. 

 
 
Turn-Based Gameplay 

Players make moves by taking turns one at a time. This ensures that speed is 
NOT a factor that would also need to be included in our analysis. And surely it 
prevents the game play from dissolving into complete chaos! 
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Outcome Condition 
In every combinatorial game, there must be an absolute winner: the first player to 
fulfill the winning condition (described below). This means that there is no 
possibility for a Tie or a Draw. It also prevents the allowances for player 
resignations or any other sort of premature game termination. 

 
 
Victory Condition 

In most combinatorial games, the winning condition is simple: the last player to 
make a valid move wins. However, there is another side of combinatorial game 
theory based around "Misère" play, in which the opposite condition is set in 
place. We will not address "Misère" play since it requires a completely different 
strategy, which, in fact, is much harder to analyze. 

 
 
Rules of Play 
 
Below I have included a few other important pieces of information with an emphasis on 
parts that usually lead to confusion. 
 

• We cannot quantify a game unless we know what is in it for both players since a 
value of a game position is INDEPENDENT of the order of players taking turns 
(first or second).  In other words, all the options for both players must be 
enumerated in order to quantify the game. 

 
• "______ player CAN win" means that there is a strategy for that player to be 

victorious despite their opponent's moves.  
 

• The names “First” and “Second” are NOT a part of the game analysis; that is, it is 
not given in the rules or positions of the game. These are adjectives we append 
to the players once we begin to play and analyze.  

 
• Remember that we only make value judgments upon the optimal moves. 
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The Players 
 
Introducing Left and Right 
I’d like to introduce you to our two players: Left and Right. 
 

 
 
 
Genders 
As mentioned before, Left is female and Right is male for clarity in reference.  So when 
speaking in terms of “she” and “her”, we are most certainly referring to Left.  Likewise, 
when using the terms “he” and “him”, we are referring to Right. 
 
 
Colors 
In the game of Red-Blue Hackenbush, we utilize colors to also help distinguish whose 
stick is whose.   As a convention, we designate Left to be bLue and Right to be Red.  
Keep in mind that the colors also become nicknames for our players so it is not unusual 
to see a phrase like “when Blue makes her move” as a reference to Left inside our 
proofs and analysis. 
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Values 
One of the core components to our analysis focuses on assigning game theoretic 
values to Hackenbush games.  Both ONAG and Winning Ways jump right into assigning 
and using values without much of an introductory discourse, so we will try our best to 
address this here. 
 
To start, we say that Left likes positive values and Right likes negative values.  That is, 
a game with a positive value indicates that Left can win; similarly, a game with a 
negative value indicates that Right can win. 
 
This leaves only infinitesimals and zero.  As we will soon prove, all Red-Blue 
Hackenbush games evaluate to numbers, so we will not have to take infinitesimals into 
consideration at all in this paper even though they are a fundamental component to 
Combinatorial Game Theory.  The value zero is special and will be defined as a basis 
for many other definitions including the definition of a number.  This investigation is 
featured in the next section. 
 

 
 
 
 
Player Summary 
 

LEFT 
Female 
Blue 
Positive 

 

RIGHT 
Male 
Red 
Negative 

 
 
 
This concludes our introduction to the conventions and rules of play in Combinatorial 
Games.  Now we embark into the more mathematical side of CGT starting with some 
fundamental definitions, concepts, and proofs.  Once we have completed this 
groundwork, we can begin to analyze the game of Hackenbush! 
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Combinatorial Game Theory 
Fundamentals 

 
Definition of Zero 
 

Any game G in which the second player can always win has a game 
theoretic value of 0.  This is called a zero game. 

 
More explicitly: no matter who plays first, Left or Right, the second player will 
always have a winning strategy.  This does not imply that the game ends after 
the second move of the game; however, it does imply that if the second player 
makes no mistakes, they are guaranteed to be the player who makes the final 
move of the game. 

 
 
Definition of a Number 
 

A game G is a number if all options of G (for both Left and Right) are 
numbers, and no left option is greater than or equal to any right option. 

 
It should be noted that there are all sorts of games out there which are not 
numbers; however, we shall prove later that all games of Red-Blue Hackenbush 
have a numerical game theoretic value. (See the FTOH). 
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Zero is a Number 
 

The game G = { | } = 0 is a number. 
 

Proof: 
On the contrary, assume G is not a number.  Then some option of G is not a 
number or some left option of G is greater than or equal to some right option.  
But in the first instance we have a contradiction because G has no options.  The 
second one is also contradictory.  We can have no inequalities of this kind 
because G has no options.  Thus G is a number. 

GS! 
 
 
 
 
Option-Value Relation for a Number 
 

For any number x = {xL | xR} we have xL < x < xR. 
 

Proof: 
To show that xL < x, we first look at xL ≥/  x, which is to say: xL + {-xR | -xL} ≥/  0. 
If Right plays first in xL + {-xR | -xL} then he wins since he will send the difference 
to xL + (-xL) = 0  (so Left loses).  Then, we note that xL ≥/  x is equivalent to xL < x. 
Thus, xL < x. 
 
 
To show that x < xR, we first look at xR ≤/  x, which is to say: xR + {-xR | -xL} ≤/  0. 
If Left plays first in xR + {-xR | -xL} then she wins since she will send the difference 
to xR + (-xR) = 0  (so Right loses). Then, we note that xR ≤/  x is equivalent to 
x < xR.  Thus, x < xR. 

GS! 
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Simplicity Rule 
 

Suppose for x = {xL | xR}  that some number z satisfies xL < z < xR for all 
xL and xR, but no option of z satisfies the same condition.  Then x = z. 

 
Prove x ≥  z: 
For the sake of contradiction, assume that x < z so that x – z < 0: 

{xL | xR} + {-zR | -zL} < 0 
 
This means that Right has a winning move in one of the two components 
xR or -zL.  So either xR + (-z) < 0 for some xR OR x + (-zL) < 0 for some -zL.  
Keeping in mind that x and z are in canonical form, we can conclude that xR – z 
cannot be less than zero since x < z.  Then Right must have a winning strategy in 
the move to -zL:  

x + (-zL) < 0, that is to say: x < zL. 
 
But now xL < x < zL < z < xR which yields xL < zL < xR, a contradiction since no 
option of z satisfies these inequalities. 

 
 

Prove x ≤  z: 
Now assume for the sake of contradiction that x > z so that x – z > 0: 

{xL | xR} + {-zR | -zL} > 0 
. 

 
This means that Left has a winning move in one of the two components xL or -zR. 
So either xL + (-z) > 0 for some xL OR x + (-zR) > 0 for some -zR.  Keeping in mind 
that x and z are in canonical form, we can conclude that xL – z cannot be greater 
than zero since x > z.  Then Left must have a winning strategy in the move to -zR:  

x – zR > 0, that is to say: zR < x. 
 
But now xL < z < zR < x < xR which yields xL < zR < xR, a contradiction since no 
option of z satisfies these inequalities. 

GS! 
 
 
 
 
 
 
“The most important game-theoretical property of numbers is that given by the 
simplicity rule: if all the options GL and GR of some game G are known to be 
numbers, and each GL is strictly less than each GR, then G is itself a number, 
namely the simplest number x greater than every GL and less than every GR.”  

— Theorem 11, Chapter 2, ONAG 
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Hackenbush Definitions 
 
Hackenbush Stick 
 
A Hackenbush Stick (we will just say “stick” from hereon) is the base component in any 
Red-Blue Hackenbush game.  In game play, each stick counts as a move for either 
player provided it is their color.  NOTE: a “move” or “turn” is not the same as a value. 
 
For our analysis, we must clarify that a Hackenbush Stick is composed of the following: 
 Color:  [Red, Blue]      (one or the other) 
 Source: a set of sticks from which this stick stems (cannot be empty) 
 Branches: a set of sticks which stem from this stick  (can be empty) 
 
 
Hackenbush Trunk 
 
A Hackenbush Trunk (we will just say “trunk” from hereon) is a special type of stick 
whose source is the ground of the game rather than another stick. 
 
Therefore, by definition, a trunk is composed of the following: 
 Color:  [Red, Blue]      (one or the other) 
 Source: the ground 
 Branches: a set of sticks which stem from this stick  (can be empty) 
 
We also note that the color of the trunk determines the sign of the entire game 
extending from this trunk. (Proof – derives from the FTOH) 
 
 
Hackenbush Tree 
 
A Hackenbush Tree (we will just say “tree” from hereon) is a Red-Blue Hackenbush 
game in which there exists only one connecting stick to the ground (trunk) and each 
stick has a maximum of one source (parent) stick, excluding the trunk whose parent is 
the ground. 
 
 
Hackenbush Stalk 
 
A Hackenbush Stalk (we will just say “stalk” from hereon) is a special type of tree in 
which there may only be a maximum of one branching (child) stick. 
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Instance of Branching 
 
We say that there is an instance of branching when the number of sticks stemming from 
a source is greater than one. 
 
It should be noted that a Hackenbush Stalk cannot have any instances of branching. 
 
 
Trunk Stalk 
 
A Hackenbush Trunk Stalk (we will just say “trunk stalk” from hereon) is the set of sticks 
between the ground and the first instance of branching within a Hackenbush Tree. 
 
Important Note: 
This is not to be confused with the trunk itself.  Even though the trunk is a part of the 
trunk stalk, the trunk itself is significant within and of itself. 
 
 
Purity 
 
We say that a Hackenbush Stalk is “pure” if it is completely composed of sticks of the 
same color. 
 
Important Note: 
Recall that these definitions (like all games in CGT) are recursive in nature, meaning 
that a stalk may be pure up to a certain stick—which makes analysis easier to split the 
stalk into the game below and the game above. 
Look at sticks/ stalks/ trees which stem from any stick as a game itself. 
 
 
Impediment 
 
An impediment is the first stick to break a line of purity in a Hackenbush Stalk.  In other 
words, it is the first stick with a color differing from the color of the pure stalk. 
 
As a result: 
A stalk with an impediment will always have a combinatorial game value less than a 
pure stalk of the same height (which is to say: has the same number of sticks). 
 
 
Highest Stick 
 
The “highest” stick is that which is the furthest from the ground by way of the number of 
sticks along the path connecting it to the ground. 
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Rules of Red-Blue Hackenbush 
 
 
Whose Game? 
 
Players 
You already met the players in a previous section which explained all the conventions 
we may use with them in our analysis, but I have outlined them here for completeness. 

 
   Left = Blue Right = Red  

 
 
Hackenbush Gameplay 
 
Game Format 
The game board is created by arranging any sort of combination of red and blue sticks 
that extend from the ground or another stick.  Before playing, the players must decide 
who will play Blue (Left) and who will play Red (Right) as well as who is to make the first 
move—it should be noted that these decisions do not have any affect upon the 
computations that are to follow. 
 
A typical “game board” is similar to the figure below: 
 
 

 
 
 
Hackenbush is a turn-based game such that each player takes one move at a time until 
one of the players can no longer move (that is to say that they are defeated). 
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Taking a Turn 
A player moves by “hacking” a single stick from the game board of their own designated 
color.  Remember that if any stick becomes disconnected from the ground, it too must 
be removed from the game board. 
 
 
Winning the Game 
A player wins the game when their opponent has no more moves remaining.  While at 
first this may seem arbitrary and only dependent upon the number of sticks each player 
has, we reemphasize that every stick must be connected to the ground to still be 
playable and thus allows players to eliminate their opponent’s moves from the game 
board as well. 
 
 
Hackenbush is Hard 
 
“HACKENBUSH IS HARD!”  

— Chapter 7: Hackenbush, Winning Ways 
 
Conway et al. confess in Chapter 7 of Winning Ways that Red-Blue Hackenbush is 
difficult.  “Although the values are ordinary numbers, it may be hard to work out exactly 
which ordinary number is the answer” (Winning Ways 211). 
 
They go on to explain that from a “good” algorithm to determine the values of Red-Blue 
Hackenbush trees one could derive a “good” algorithm for finding the minimum 
spanning tree of a bipartite graph.  They also argue that if such an algorithm for finding 
the values of a Red-Blue Hackenbush tree had a polynomial runtime, then the 
aforementioned algorithm for finding the minimum spanning tree could also be bounded 
by a polynomial runtime function.  However, it has been previously determined that the 
algorithm for finding the minimum spanning tree is NP-complete.  Therefore, the 
problem for evaluating Red-Blue Hackenbush positions is NP-hard. (Winning Ways 224) 
 
To be sure, it should not be mistaken that I have found such an algorithm—nevertheless 
I will reveal some new tactics to breaking down these problems into smaller, simpler 
ones.  But first let’s take a look at some theorems which directly involve Hackenbush. 
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Hackenbush Theorems 
 
 
Section A 
 
Here we prove the Fundamental Theorem of Hackenbush (FTOH).  All other 
theorems stem from this foundation.  The theorem is found on page 88 of On Numbers 
and Games, yet the proof is supplied from the course notes of Math 168A.  It should be 
noted that nowhere have I found a “true” title to this theorem, yet its importance 
demands one for both significance and ease of reference.  I have dubbed it the 
Fundamental Theorem of Hackenbush for those exact reasons. 
 
However, before we can properly prove the FTOH we must introduce a strategy of 
gameplay called “Tweedle-Dum and Tweedle-Dee” after the characters from Lewis 
Carroll’s tales of Alice in Through the Looking Glass.  This strategy will serve as a 
Lemma to the Fundamental Theorem of Hackenbush. 
 
 
 
 
 
 
 

 
 

A Typical Red-Blue Hackenbush Game. 
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Tweedle-Dum and Tweedle-Dee Strategy 
 

In select game positions in which the moves of either player are matched 
with equivalent options, one should reply to their opponent’s moves with 
an equal and corresponding move.  Such a strategy is called Tweedle-Dum 
and Tweedle-Dee.  

 
 

 
 
 
All right, I have to admit that there’s not a whole lot of proof going on here, but the 
Tweedle-Dum and Tweedle-Dee Strategy shows its use many times throughout our 
analysis.  Basically, the Tweedle Strategy is a method for keeping control throughout 
gameplay.  If your opponent does one thing, you mirror their move until they no longer 
have any options, leaving you as the victor. 
 
Employing the Tweedle-Dum and Tweedle-Dee Strategy guarantees a second player 
win by the nature of the method of gameplay.  It should be clear that the players will 
play out the game and whoever began mirroring their opponent’s moves will always 
have a move to respond with.  Hence, it is the opponent who will run out of options first. 
 
Important Note: 
Tweedle-Dum and Tweedle-Dee cannot just be arbitrarily applied at any point in any 
game.  The initial condition of a game with matching and equivalent options for both 
players must be met exactly. 
 
CGT Note: 
The definition given above is sufficient for our purposes.  However, in the scope of all 
combinatorial games there are two classifications: partisan games and impartial games.  
Hackenbush is a partisan game and the Tweedle Strategy above is worded to hold 
tightly to partisan games.  There is a more general way of expressing Tweedle-Dum 
and Tweedle-Dee so that it encompasses both classes of games but there is no need to 
address it here. 
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Fundamental Theorem of Hackenbush 
 

(i) When a blue edge in a Red-Blue Hackenbush diagram is erased, 
the value strictly decreases.  Similarly, when a red edge is erased, 
it strictly increases. 

(ii) Every Red-Blue Hackenbush diagram is equal to a number. 
 

 
Proof: 
Suppose we start with a Hackenbush game position G = {GL | GR} that has a 
value x.  Now, suppose some blue stick b is erased, and denote the resulting 
game by GL and its corresponding value by xL.  We need to argue that the value 
of the new position GL is less than the value of original position G.  To do this we 
set up a difference game D and show that Left can always win; mathematically: 
D = G – GL > 0. 

 
Left plays first: 
If Left plays first in D, then she will play in the G component and send it to GL 
which renders the difference game value as zero. 
 
Right plays first: 
If Right is first, then there are two possibilities: 

1. Remove any red stick connected to the ground via a path of sticks 
which includes the stick b; or 

2. Remove a red stick whose connection to the ground is independent 
of the stick b. 

 
In the first case, Left will respond by removing b, which brings the 
difference game to GL – GL = 0.  In the second case, she will respond with 
a Tweedle-Dum and Tweedle-Dee Strategy. 

 
In either case, Left can win. 

 
If some red stick r is removed from the starting position G, then denote the result 
by GR and its corresponding value by xR.  From symmetry, we argue that the 
value of the new position GR is greater than the value of original position G.  To 
do this we set up a difference game D and show that Right can always win; 
mathematically: D = G – GR < 0. 
 
In conclusion, we have xR > x and x > xL which implies xR > xL. 
This last inequality implies that x is a number. 

GS! 
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Section B 
 
Here we first prove the Stalk Reduction Principle as a basis for the rest of the 
corollaries to follow. 
 
The Stalk Reduction Principle is quite an intuitive concept and can be easily 
understood by the “common sense” realization that if a player has a stick further away 
from the ground than the stick they are choosing to hack, they are essentially 
squandering their resources (i.e.: wasting a playable move) and is therefore detrimental 
since we hold to the rule that the last player to make a move wins the game. 
 
However, when applied to Hackenbush Trees in general, this concept loses its 
intuitiveness, yet grows to become an even more powerful tool.  Its case tree grows 
exponentially with each new level of branching.  Therefore, the method of proof adopted 
is similar to that which was presented in ONAG.  Refer back to the section on Methods 
of Proof for a more general discussion. 
 
 
 
 
 
 
 
 
 
 
 

 
 

A Set of Red-Blue Hackenbush Stalks. 
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Stalk Reduction Principle 
 

For any Red-Blue Hackenbush Stalk, the “best” move for either player is 
always the highest valid move in the stalk. 

 
 
 Proof: 
 Suppose we start with a Hackenbush Stalk S = {SL | SR} that has a value x. 

Now suppose that Left removes the highest blue stick in the stalk, resulting in the 
position SL. 
 
We now apply the Fundamental Theorem of Hackenbush where the original 
game position is given by G = SL.  This implies that: G = {GL | GR} = {SLL | SLR}. 
It follows that the value of G is greater than the value of GL.  In consequence, 
SL > SLL.  More explicitly, the position SL has a greater game theoretic value than 
any other position SLL to which Left could send the original game S. 
 
Similarly, by symmetry we reason that SR < SRR, where SR is the position to 
which Right sends the original game S by removing the highest red stick. 

GS! 
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Corollary 1 
 

There is no good reason to cut a stick in the “trunk stalk” if a player can 
make a cut elsewhere (that is, in a branch somewhere else in the tree).  

 
Game Setup: 
Let G be a Red-Blue Hackenbush Tree. In game notation, G = {A, B … | X, Y …}. 
In G, there are two “best” moves (one in each set of options): 

GL for Left and GR for Right.  Therefore, G = {GL | GR}. 
 

WTP: 
Let T be the best option for Left, wherein Left hacks a blue stick in the trunk (it 
should be clear from the Stalk Reduction Principle that “best” simply means the 
highest blue stick in the trunk stalk).  Let S be the option for Left, wherein Left 
hacks a blue stick not in the trunk (i.e.: somewhere in a branch higher in the 
tree).  We wish to prove that the best move for Left cannot lie in the trunk stalk, 
provided there exists a different option in which Left does not hack a stick in the 
trunk stalk.  Mathematically, GL≠ T, if ∃  S. Then, similarly for GR. 

 
 

Proof: 
By the Stalk Reduction Principle, an option that is the result of hacking a stick in 
the trunk stalk cannot be greater than an option for which Left hacks a stick in a 
branch somewhere else in the tree.  Therefore, since Left has an option that will 
result in a more positive game value in a branch somewhere else in the tree, she 
will not hack a stick in the trunk stalk. 
 
Similarly, by the Stalk Reduction Principle, an option that is the result of hacking 
a stick in the trunk stalk cannot be less than an option for which Right hacks a 
stick in a branch somewhere else in the tree.  Therefore, since Right has an 
option that will result in a more negative game value in a branch somewhere else 
in the tree, he will not hack a stick in the trunk stalk. 
 
Hence, we have shown for both players that there is no good reason to cut a 
stick in the trunk stalk if they can make a cut elsewhere in the game. 

GS! 
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Combinatorial Game Values 
for Hackenbush 
 
 
Game Theoretic Values 
 
Until now, we have continued to speak of and use values of games in an abstract 
manner.  But games are not abstract in practice—after all, all of this theory is supposed 
to help you play a better game of Hackenbush!  In this section we will focus on concrete 
game theoretic values for Hackenbush to supplement the theory and proofs in the 
previous sections and provide a basis for the discourse to follow. 
 
This section contains the foundational methods for evaluating game values upon which 
CGT is taught.  It strives to show how we can attain a correspondence between games 
and their values.  The subject of Numbers as Conway would describe is beyond the 
scope of this paper and should be sought in ONAG’s Zeroth Part: On Numbers.  There, 
Conway proves his Numbers are a field and shows many other properties in detail.  For 
our purposes, we will attempt to highlight only the facets needed for the analysis to 
come and concentrate on the derived gameplay. 
 
 
Zero 
 
Already, we have been introduced to a very important game value: zero.  A zero game 
was defined as a Second player win.  Consequently, there are infinitely many different 
game representations for the value zero in Hackenbush.  A few of these games are 
shown below: 
 
 

 
 
 



Decomposing Hackenbush 32 

Each of the games above is a Second player win.  Let’s examine each of them: 
 
In the first case, we can determine that whoever goes first does not have a move to 
make and therefore loses the game. 
 
In the second example, if Left goes first and takes the Blue stick, then Right will respond 
by taking the Red stick.  Now it is Left’s turn, but there are no more Blue sticks!  Right 
(who went Second) wins.  When we examine the game where Right goes first, we find 
that Left is the victor by a similar series of events.  Thus, after examining both 
gameplay paths, we have determined that the Second player will always win.  Therefore 
the second game is a zero game. 
 
The third game looks far more complex, but there is a shortcut!  As you may have 
already noticed, the secret to creating (and winning!) a zero game lies in the strategy we 
labeled Tweedle-Dum and Tweedle-Dee.  Hence, we can say that by Tweedle-Dum and 
Tweedle-Dee, the third example is a Second player win. 
 
Before moving on let’s take another look at the second example.  Notice that during the 
course of the game (at the end) the players have played the game out to be exactly the 
game in the first example.  This is what we mean by “sending” one game to another.  
The players have played out moves from one game state to one of its sub-games, 
which, in turn, becomes the current game to be played. 
 
 
Integer-Valued Games 
 
Let’s start defining some other numbers for Hackenbush games.  It seems reasonable 
to evaluate game positions in terms of the number of moves a player can make.  For 
example, if there is one Blue stick then this is worth one move for Left; we could argue 
the same for a single Red stick for Right. 
 
If we recall the axes presented when we introduced the Players, we said that Left is 
favored by positive numbers and Right is favored by negative numbers.  Therefore, it 
stands to reason that we may define a single Blue stick as having a value of positive 
one; and a single Red stick as having a value of negative one.  Furthermore, this 
coincides with our previous example where a single Blue stick and a single Red stick 
made up a game we determined to be a Second player win.  It must follow: 
 

1 + (-1) = 0. 
 
Naturally, such a statement comes at no surprise. 
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Continuing further into the integers, we ask the question of what does a pair of Blue 
sticks evaluate to? 
 
Intuitively, this game has two moves for Left and no moves 
for Right, which by the same reasoning as above, should 
evaluate to positive two.  Again, this follows mathematically: 
 

1 + 1 = 2. 
 

 
This also seems quite natural and should come at no surprise. 
 
However, let us investigate what happens when we stack the two sticks on top of each 
other so that only one is attached to the ground. 
 
Once again, this game has two moves for Left and no moves 
for Right, which by the same reasoning as above, should 
evaluate to positive two.  But wait!  Certainly, the stalk shown 
here and the pair of stalks in the previous example cannot be 
the same game!   

 
 
True.  They are not the same game, yet they still have the same value.  This makes 
sense since there are still two moves available for Left.  Obviously, if Left chose to hack 
the trunk of the stalk then she would be squandering an available resource in the upper 
stick since this too is hacked with the bottom stick.  By cutting the top stick, Left still has 
a stick remaining and is victorious, winning with a remaining value of positive one.  Such 
a victory is better than winning without any left over resources and is therefore more 
desirable, making the top stick the optimal move. 
 
Since we play with optimal players when performing our analysis, we will only consider 
the optimal moves.  This makes sense in our notation too.  So far we have ignored our 
notation throughout this discussion on values so that we might concentrate on the 
intuitive aspect of how these games and numerical values correspond. 
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Notation and Values 
 
After our definition of a zero game, we proved that zero was a number and labeled it 
with the following gameset notation: 

 
0 = { | }, 

 
which says that there are no options for Left and that there are no options for Right.  
This corresponds exactly to the first representation of a zero game we examined, but 
what about the others?  They certainly have options! 
 
In fact, if we apply our “common-sense” evaluations to the notation, we find that we get 
the exact same end result!  In the case of the second zero game example, we have one 
move for Left valued at negative one and we have one move for Right valued at positive 
one.  To clarify, remember that we are talking about the sub-game values which are the 
game options produced after a player has taken their turn.  Mathematically: 

 
{-1 | 1} = 0. 

 
Our result is a number since all the options are numbers and no Left option is greater 
than any of the Right options and the actual value is a product of the Simplicity Rule, 
through which we would say that 0 is the simplest number between the Left and Right 
options -1 and 1, respectively.  Thus, the statement {-1 | 1} = 0 is true and follows from 
our definitions and notation properly. 
 
When we employ the gameset notation on the pair of Blue sticks, which we defined as 
having the value of positive two, we obtain the following gameplay breakdown: 
 
 Left: Left can take one of the Blue sticks (which one does not matter since 

the result is identical in either case), resulting in a sub-game with a single 
Blue stick, which we determined as having the value positive one. 

 
Right: Right has no move. 

 
The gameset options are filled as follows: G = {1 | } = 2. 
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Now we will apply this same process to our stacked example.  In this game, we have 
two options for Left: 
 

 
 
 

A. Left takes the top stick, resulting in a sub-game with a single Blue stick, 
which we determined to be valued at positive one. [optimal] 
 

B. Left takes the trunk, resulting in the sub-game with no sticks, 
which we determined to be a zero game. 

 
In our gameset notation, we write:  G = {1, 0 | }. 
 
We know that 0 is not an option that Left would chose in the light of her other option 1.  
Therefore we may reduce the representation to: 
 

G = {1 | }, 
 
which is the exact same representation we obtained for a game of value positive two! 
Hence, our intuition has served us right in our previous explanation. 
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Fractional-Valued Games 
 
Now we ask a much harder question to evaluate by mere 
“common-sense.”  What is the value of a game with a Blue 
trunk and a Red stick stacked on top of it? 
 
Even though the title may have already given it away, 
let’s reason it out before looking at the proof. 
 

 

 
The gameplay is as follows: 
 
 Left: Left can take the Blue stick, which is the trunk of the stalk, resulting 
  in a sub-game with no sticks, which is a zero game. 
 

Right: Right can take the Red stick at the top of the stalk, resulting in a 
 sub-game with a single Blue stick, which has a value of positive one. 

 
We fill in the gameset options and obtain: G = {0 | 1}. 
 
With some further analysis, we can determine that this strange creature is in fact a 
number and by the Simplicity Rule we may determine that the value of G must be the 
simplest number between the Left option, zero, and the Right option, positive one.  As 
of yet, we have not given any parameters on how to determine this “simplest” number, 
we have only proven that such a number exists. 
 
For our purposes we look no further than the dyadic rational numbers.  There is far 
more significance and theory behind why this is involving the birthdays of numbers and 
the ordering given to numbers by their birthdays.  Since we will not be utilizing the 
concept of birthdays beyond this point, this further discussion is omitted but can be 
referenced in all three of the combinatorial game texts referenced (for a clear overview, 
I highly recommend reading Haff’s text first: pages 30-55). 
 
In general, we say that the smaller a number’s denominator is, the simpler it is.  This 
allows us to classify the integers as the simplest of numbers.  We then proceed into the 
dyadic rational numbers (rational numbers with denominators that are powers of two) 
and determine that 2

n  family is next in line, followed by the 4
n  family, etc. 

 
Proceeding along this path, we can now quantify our game in question with the simplest 
number between 0 and 1: 2

1 .  Therefore: 
 

G = {0 | 1} = ½. 
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Maybe this is starting to sound a little suspicious without any proof.  Not to worry! 
What follows is a proof that our game in question is in fact equivalent to the value of half 
of a move.  To do this, we simply play out the sum of games which we will hypothesize 
to be a zero game.  In our case, we wish to construct a game that includes two copies 
of the game in question and a lone Red stick to send the value back to zero.  
Mathematically, 
 

( ) 0 12
1

2
1 =−++ . 

 
We certainly hope so!  Here’s the proof: 
 
 

 
 
 
Fantastic! 
 
 
Beyond Values 
 
There is much, much more beyond these simple value calculations that we have yet to 
touch upon.  Considering the ground we have covered thusfar, we can calculate simple 
constructions in Hackenbush, yet must do so using the method of proof shown above 
which requires a complete delineation of the gameplay in order to attain the results.  
What if the Hackenbush game was a stalk 17 sticks high?  Or even higher!?  Such a 
fundamental problem must have a more general solution, and that is what we will look 
into next: the calculations of Hackenbush stalks. 



Decomposing Hackenbush 38 

Hackenbush Stalks 
 
 
Significance of Stalks 
 
Stalks are simple.  They range from a single stick to a tall series of sticks stacked as 
high as the clouds, and come in various color patterns.  More importantly, stalks are 
easy to calculate values for and are a good starting point for introducing the concept of 
evaluating Hackenbush games in a more general way than the methods shown in the 
previous section. 
 
Notably, the primary goal behind this project was to determine if there was a method by 
which Hackenbush trees could be decomposed into a group of stalks.  If possible, 
complicated trees could be quickly calculated by a much simpler means. 
 
 
Evaluating Stalks 
 
The first step toward calculating the values of complicated Hackenbush Tree structures 
is to determine how to calculate a simple case/type of tree.  As alluded to earlier, a stalk 
is a special type of tree: a tree with no branching.  This is an important factor and will 
immensely simplify the process required to calculate stalks in general. 
 
It should be noted that there are a couple different ways by which to calculate the value 
of a stalk in Red-Blue Hackenbush.  For a method utilizing binary strings to represent 
the sticks of the stalk, refer to Elwyn Berlekamp’s Rule for Hackenbush Strings in 
Winning Ways (77-78).  Another method, presented by Thea van Roode, says to start 
from the trunk and give each edge a value of 1 or -1 (depending upon the color) until 
there is a color change.  Then halve each succeeding value and change the sign 
according to the color (WW 78).  We shall examine van Roode’s method in the 
algorithm below since it was the one I implemented in CSC. 
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Stalks Algorithm 
 
Here we examine a complete block of pseudo-code outlining van Roode’s method for 
calculating the values of Red-Blue Hackenbush Stalks. 
 

1) Start at the base stick (trunk) and work upwards: 
If trunk is red:   Value = -1, 
If trunk is blue:  Value = 1. 
 

2) Proceed to the next stick above and evaluate the following: 
Repeat while the stick color is same as trunk 
 If trunk is red: Value = Value -1 
 If trunk is blue: Value = Value + 1 
 If no more sticks: DONE 
 

3) Now that we have hit a change in color, 
start halving and adding according to color: 

Loop until there are no more sticks to evaluate 

If trunk is red:  Value = 







⋅
−⋅

den2
1num2 , 

If trunk is blue: Value = 







⋅
+⋅

den2
1num2 , 

where num is the numerator of the current dyadic rational and 
where den is the denominator of the current dyadic rational. 

 
 
If we look closer at Step 3 and break the formula up, the process seems clearer: 

 

Value red  trunk = 
den2
1

den
num

den2
1num2

⋅
−=

⋅
−⋅ . 

 

Value blue trunk = 
den2
1

den
num

den2
1num2

⋅
+=

⋅
+⋅ . 

 
Intuitively, this makes sense since if we add a stick of a color different than the trunk of 
the stalk the value should diminish (for the player who owns the trunk) since the 
opponent now has another move that they can make (we saw this in depth when 
calculating the value 2

1 ).  However, this extra move does not alter who will win the stalk 
game.  In other words, by appending another stick to the stalk, the signage of the stalk 
game value will not change.  We can argue this mathematically since we are continually 
halving the values we are appending to our running sum, which is similar to the 

argument that ∑
=

n

1i
i2

1  does not equal 1 for any finite number n. 
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As an example, if we started with a Blue stick and then appended any finite number of 
red sticks above it, the value of the game will stay positive even though the value of the 
game will become smaller with each addition of a move for Red. 
 
This observation is truly significant and puts a lot of value (pun intended) into the trunk 
of the Hackenbush stalk (or tree).  Of course, in the algorithm above, each step is 
entirely dependant upon the color of the trunk of the stalk. 
 
 
Implementation 
 
During the summer of 2003, I implemented the van Roode’s algorithm in C and used it 
as a mechanism to check my work as I began to search for the parameters for 
decomposing a general Red-Blue Hackenbush Tree.  I originally chose van Roode’s 
algorithm over Berlekamp’s Rule because I more naturally think in fractions rather than 
in binary and van Roode’s algorithm was much closer to how I would formulate 
solutions to Hackenbush problems in general.  It later became clear that van Roode’s 
algorithm provided support for computing the values in a fractional form, which made it 
even more appealing since we almost never speak of Hackenbush games in decimal 
values in CGT. 
 
 

 
 
 
The program is called C Stalks Calculator (CSC).  However, it is no longer available for 
download from my CGT site since I have implemented a Java applet which is interfaced 
with a graphically-based drawing panel (precursor to Visual Hackenbush) rather than 
CSC’s command-line interface. 
 
If you wish to use the applet, please visit: http://cgt.calculusfairy.com/Software/ 
Then again, development for the applet has currently been suspended in the interest of 
the more complete tool: Visual Hackenbush, which can be downloaded for installation at 
the same URL.  Stalks can be calculated in the current release of Visual Hackenbush 
through a graphical interface similar to that of the applet’s, and the process is well 
documented in supplied User’s Guide. 
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Hackenbush Trees 

 
Trouble with Trees 
 
The trouble with trees is that they have at least one instance of branching.  When 
examining stalks, we were guaranteed that only a single stick would stem from our 
current position as we made our way up the stalk.  This constraint simplified the 
calculation of the value of the stalk.  In this section we remove this restriction and find 
how hard it actually is to calculate the values for these trees without any guidance.  We 
will then utilize a technique presented in ONAG as the key component to Conway’s 
complete theory for trees. 
 
Before we reveal this key component, I would like to draw your attention to how 
extensive a game tree may become.  In Appendix A, I have included a complete game 
tree to a sum of two Red-Blue Hackenbush trees.  It should not come to a surprise that 
in order to arrive at such a solution takes a good amount of time and effort.  What’s 
more is that the question prompts for just gameplay and a winner without calculation, 
which would add another layer of complexity to the final solution, requiring the 
calculation of all of the intermediate values to build up the lists of options and their sub-
options, and so on and so forth. 
 
Thankfully, there is another way which is paved with the concept of Ordinal Sums. 
 
 
Ordinal Sums 
 
For a real number x, we say that the number 1:x has the first value from the sequence: 

 

K,
16

5x,
8

4x,
4

3x,
2

2x,
1

1x
2

nx
1n

+++++
=

+
−  

 
for which the numerator (x + n) is greater than 1.  We call such a number 1:x the Ordinal 
Sum of 1 and x. 
 
Similarly, for a real number x, we say that the number (-1):x has the first value from the 
sequence: 
 

K,
16

5x,
8

4x,
4

3x,
2

2x,
1

1x
2

nx
1n

−−−−−
=

−
−  

 
for which the numerator (x – n) is less than -1. 
 
Conway explains the relationship between the Ordinal Sum and Red-Blue Hackenbush 
trees in ONAG on page 88. 
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In essence, we find that for a Red-Blue Hackenbush tree that the value of the entire tree 
is dependent only on the value of the game position above the trunk.  The reasoning 
behind this argument is simple and directly follows from Corollary 1.  With this in mind, 
we can proceed to construct the gameset in a more general manner: 
 

 
 
Without loss of generality, we have enumerated the options for a Red-Blue Hackenbush 
tree in the same spirit as previously discussed.  The gameset G = {GL | GR} is 
representative of all but one of the options available to the players in our generalization 
above; what is missing is the move for Left to hack the trunk, which is either a trivial 
option to take into account if there are no other moves for Left in the tree or we default 
to Corollary 1.  In either case, the resulting gameplay is short and self-explanatory.  
Thus, we shall continue to concentrate on the much more interesting component to this 
generalization. 
 
By the aforementioned method of proof by induction, we can apply the Ordinal Sum 
function to the gameset notation to reveal the following result: 
 

1:x = {0, 1:xL | 1:xR} 
 
Here we should recall the FTOH which says that all Red-Blue Hackenbush positions are 
numbers, and that by definition each of the Ordinal Sum components in the gameset 
above must also be numbers.  Furthermore, notice that since zero is an option for Left, 
the Right option 1:xR must be positive.  In fact, this Ordinal Sum function is a mapping 
from all numbers onto the positive numbers in order of simplicity as outlined in the 
previous sections.  As to be expected, this coincides with our intuition about games with 
Blue trunks since they guarantee the game’s value to be positive despite what may be 
found further up the tree. 
 
More can be said about the Ordinal Sum 1:x and its applications in CGT, but this is 
sufficient for our purposes in this paper.  For more details, see ONAG, Chapter 15: Ups, 
Downs, and Bynumbers. 
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Algorithm for Trees 
 
Here we examine a complete block of pseudo-code outlining a recursive implementation 
for Conway’s method for calculating the values of Red-Blue Hackenbush Trees. 
 
 CalculateTreeValue(currentValue, sourcePositionInTree) 

{ 
// Initialize values 
stickValue      = 0 

  branchSum       = 0 
  branchVal       = 0 
  currentStickId  = 0 
  branches = number of branches in sourcePositionInTree 
   
  // Branch values (according to branch trunk color) 
  blueBranchValue = 0 
  redBranchValue  = 0 
   
  /* If there are NO branches extending from the current position 
   * (size of branch array = 0): then we cannot traverse any higher 
   * Thus: simply return the current value */ 
  if(branches == 0) 
   return(currentValue) 
   
  /* Loop over the branches (at this point guaranteed at least 1) 
   * and recursively traverse up the tree to find the value */ 
  for(branchIndex = 0; branchIndex < branches; branchIndex++) 
  { 
   currentStickId = id of branchIndex in sourcePositionInTree 
 
   if(Color of currentStickId == RED) 

stickValue = -1 
else 

stickValue =  1 
 
   // invoke recursion 
   branchVal = calcTreeValue(stickValue, currentStickId) 
    
   // Determine the stick color and add subtree value to it 
   if(Color of currentStickId == RED) 
    redBranchValue  += branchVal 
   else 
    blueBranchValue += branchVal 
    
   branchSum += branchVal 
  } 
   
   
  // Tree value is computed using an Ordinal Sum Algorithm 
  value = CalculateOrdinalSum(currentValue, branchSum) 
  return(value) 

 
} // end CalculateTreeValue() 
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The main idea in this implementation is to use the instance of branching as a 
mechanism to promote the recursive nature to Conway’s mathematics.  Essentially, the 
function sets out to calculate the tree stemming from its current position without any 
other knowledge of where exactly in the tree at which it is being called.  The only other 
data it receives is the value of the stick on top of which it is processing its calculations, 
which is also an indication of whether the stick is Red or Blue. 
 
The function loops over all of the branches stemming from the current position.  At each 
base stick to a branch, the stick value of 1 or -1 is assigned and then the function is 
recursively called to proceed up the branch until no more branches stem from the 
current position.  A running sum of the branches is calculated and then, once the value 
of the tree above the current position is known, an Ordinal Sum can be run on this 
subtree.  This result is returned so that other stacked recursive calls can be completed 
until there are no more to complete—at which point we will have calculated the value for 
the entire tree. 
 
This algorithm handles both stalks and trees alike (since by definition stalks are a 
special type of tree with a maximum of one branching stick), which made it an excellent 
candidate to be the definitive calculation method in Visual Hackenbush. 
 
 
Implementation 
 
The trees algorithm was not implemented until Summer 2004, an entire year after the 
initial CGT value calculators, in one of my proudest achievements: Visual Hackenbush. 
It had been a top priority to assure that the user could draw the tree interactively and 
see the quantified results immediately and the trees algorithm was one which could 
cater to such a particular demand.  Moreover, most of my previous analyses had been 
in binary trees, which are only a small class of Red-Blue Hackenbush trees, but the 
trees algorithm works for all trees no matter how many instances of branching the user 
decides to throw at it. 
 
To be sure, the trees algorithm is far more powerful a tool than the simple stalks 
calculators; however, for an individual processing a series of stalks calculations is far 
simpler a task than tackling the bookkeeping issues which reside in the trees algorithm.  
Thus, it was still viable to search for a way in which a tree might be decomposed into 
several individual stalks, which is what we will examine next. 
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Hammerian Trees 

 
Introduction 
 
Here we are at the threshold of the crux of the project: Hammerian Trees.  With the 
aforementioned definitions and techniques, we are finally able to accurately describe 
and examine the first set of trees in Red-Blue Hackenbush that can be decomposed. 
 
In this section, we define what it means for a tree to be Hammerian and the properties 
that can then be attributed to this classification.  Also, we will characterize the process 
for decomposing a tree into its components so that it retains its game theoretic value. 
 
 
Hammerian Domain 
 
Before we go into extensive detail about what parameters define a tree as class 
Hammerian, it seems appropriate for us to place this class of trees in relation to the rest 
of Red-Blue Hackenbush games. 
 

 
Hammerian Trees in the domain of all Red-Blue Hackenbush. 

 
As shown in the diagram, Hammerian Trees are a subset of Red-Blue Hackenbush 
Trees, which are (not surprisingly) a subset of all Red-Blue Hackenbush Games. 
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Definition: Hammerian Tree 
 
A Hammerian Tree is a Red-Blue Hackenbush game in which the branches may 
be severed from the full tree and planted separately without altering the 
combinatorial game value of the original game. 
 
 

 
 

Examples of Hammerian Trees. 
 

 
Hammerian Classification 
 
In order for a Red-Blue Hackenbush Tree to be classified as Hammerian it must fulfill 
the following requirement: 
 

If the trunk of the tree is pure Blue, ( ) ( )∑∑ ≥ rb branchesCGVbranchesCGV , 
where ( )bbranchesCGV  is the combinatorial game value of a branch whose 
lowest stick is colored Blue, and ( )rbranchesCGV  is the combinatorial game 
value of a branch whose lowest stick is colored Red.  Similarly, if the trunk 
of the tree is pure Red, then ( ) ( )∑∑ ≤ rb branchesCGVbranchesCGV . 

 
Otherwise, it can be proven that the tree cannot be decomposed. 
 
In other words, the value of the tree is equal to the value of its decomposed 
components.  However, one should be cautioned that the process of decomposition 
does not allow just any branch or stick to be cut from the tree and planted.  Before 
proceeding too much further, this last statement requires further examination and so we 
shall look at the proper method by which trees can be decomposed. 
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Method of Decomposition 
 
We will investigate the process of decomposing a Red-Blue Hackenbush Tree through a 
short series of examples. 
 
Example 1: 
 

 
 
 
First, we apply the definition to ensure that the tree above is in fact Hammerian.  Since 
the trunk of the tree is pure Blue, we must check that the given inequality holds: 
 

( ) ( )∑∑ ≥ rb branchesCGVbranchesCGV . 
 
In our case, we must check that the absolute value of the branch on the left (with the 
Blue base stick) is greater than or equal to the absolute value of the branch on the right 
(with the Red base stick).  We recall our previous calculations of the individual branch 
stalks, rendering: 
 

( ) ( ) 2
12 ≥=≥ ∑∑ rb branchesCGVbranchesCGV . 

 
Thus, the tree above is Hammerian and is therefore able to be decomposed. 
 
The decomposition, as shown above, is performed in the following manner: we remove 
all of the branches at the instance of branching and plant them in the ground as 
separate trees.  This results in the following template: 
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IMPORTANT NOTE: 
However, it should be noted that we must perform the decomposition upon the instance 
of branching in question.  Otherwise, the resulting sum of subtrees is not guaranteed to 
be equal to the game theoretic value of the original tree.  See example below: 
 
Example 2: 
 

 
 
 
Here we have the same original tree, yet with a “decomposition” differing from that 
exemplified in Example 1.  Despite the fact that the tree has already been classified as 
Hammerian, the actual decomposition was performed incorrectly. 
 
From the labeled values it is obvious that something is wrong since 122

5 +≠ .  Of 
course, such an observation cannot always be easily made since the extent of the tree 
and the number of instances of branching may be very large.  Thus, it is of the utmost 
importance that this point be made clear. 
 
The Blue stick of the right branch was severed and planted.  This is in violation to our 
Hammerian classification parameter since the trunk of the right branch subtree is Red.   
The following condition must be satisfied by the branches within that subtree in order to 
be decomposed: 
 

( ) ( )∑∑ ≤ rb branchesCGVbranchesCGV . 
 
In this case, we find that we do not satisfy the conditions since: 
 

( ) ( ) 01 ≤⇒≤ ∑∑ rb branchesCGVbranchesCGV  
 
which is certainly a false statement. 
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Other Observations 
 
Recursive Definition 
The Hammerian classification parameter is truly recursive under the condition that the 
tree branching below the branching node in question is Hammerian. 
 
 

 
 
 
As exemplified by the decomposition above, we initially decompose the tree at the first 
instance of branching.  This renders us with the first result: the trunk, the left branch 
stalk, the middle branch stalk, and the right branch subtree.  Since the subtree is also 
Hammerian, it too can be decomposed. 
 
Most importantly, we observe that throughout the process the value of the original tree 
was always equal to the sum of the decomposed components.  This property is 
essentially an extension to the fact that trees are governed by their relationship with 
Ordinal Sums, which allows for the classification to percolate up the tree until there is an 
instance of branching that renders the tree (or subtree) non-Hammerian. 
 
By the same logic, it can be argued that no instance of branching stemming after a non-
Hammerian instance of branching is Hammerian.  In other words, while working our way 
up the tree, if we reach an instance of branching that fails to meet the criteria required to 
be classified as Hammerian, then there cannot be an instance of branching further up 
that subtree that can be decomposed. 
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Multi-Branching and Solid-Color Branching 
It is important to notice that the Hammerian classification parameter makes no 
specifications to the number of branches for either side of the inequality.  So far, each of 
the dissected examples have dealt with binary trees, yet the classification stands for 
trees with any number of branches stemming from one single node. 
 
 

 
 
 
This means that it also applies at instances in Red-Blue Hackenbush Trees where all of 
the branches begin with the same color: 
 

( ) ( ) 0branchesCGVbranchesCGV rb =≥ ∑∑ , no branches which begin with Red, 
 

and 
 

( ) ( )∑∑ ≤= rb branchesCGV0branchesCGV , no branches which begin with Blue. 
 
 
Such a case is shown below: 
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Joshua Trees 
 
Definition: Joshua Tree 
 
A Joshua Tree is a Red-Blue Hackenbush game in which the combinatorial game 
value of the tree itself is the same as the combinatorial game value of the trunk. 
 
 

 
 

Examples of Joshua Trees. 
 

 
Joshua Classification 
 
In order for a Red-Blue Hackenbush Tree to be classified as a Joshua Tree it must fulfill 
the following requirement: 
 

( ) 0branchesCGV =∑ , 
 
where ( )branchesCGV  is the combinatorial game value of each branch. 
 
In other words, the combinatorial game value of the tree itself is the same as the 
combinatorial game value of the trunk.  This also implies that the absolute value of 
branches b  is equivalent to the absolute value of branches r .  That is: 
 

( ) ( )∑∑ = rb branchesCGVbranchesCGV . 
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Other Observations 
 
The easiest way to simulate a Joshua Tree is by creating the branches in the same 
fashion as Tweedle-Dum and Tweedle-Dee.  Essentially, this means that each subtree 
(branch) is constructed to have a combinatorial game value of zero; leading us to play 
out the game until all that remains is the trunk—confirming our intuition that the 
combinatorial game value should be the same as the trunk alone. 
 
Also, it should be noted that the examples above may seem a little misleading since 
they all have a trunk stalk of size one.  To be sure, the trunk stalk can be any size when 
considering the conditions for being a Joshua Tree. 
 
Actually, there’s not much more to say about Joshua Trees as they are simply 
Hammerian Trees that have the same value as their trunk and we just completed a 
relatively involved discussion on Hammerian Trees in the last section.  In any case, 
Joshua Trees seemed to show up so often throughout my research that I needed to 
give them a name for ease of reference. 
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Conclusions 

 
Summary 
 
We have finally come to the end of our discourse on Hackenbush.  Throughout this 
paper we have examined the game of Red-Blue Hackenbush with an introduction to the 
fundamentals of Combinatorial Game Theory and an in-depth analysis of the tree 
structures within the game.  After establishing several precise definitions concerning 
trees and their components, we were able to prove a few general theorems about 
Hackenbush before jumping into the topics of Stalks, Trees and their relationship with 
the Ordinal Sum function.  Finally, we examined the findings of my research by defining 
two classifications: Hammerian Trees and Joshua Trees, as well as the constraints 
required to decompose them into component parts which sum to be the same game 
theoretic value as the original tree. 
 
This is by no means a completion to all the analysis for Hackenbush—which is to say 
that there is much, much more to be researched and documented.  Here I have shown 
my perspective on solving Hackenbush through the technique of decomposition and 
problem reduction.  Though these methods are only proven to be applicable on trees, 
there may very well be use for decomposition in the general case of all Red-Blue 
Hackenbush games.  Furthermore, there still remains the question of non-Hammerian 
Trees and exactly why the decomposition does not apply to them in the same manner.  
It may be possible that there is a different sort of decomposition that governs their 
breakdown into easier to compute components.  But alas, such theories have yet to 
grounded and examined, and must wait as they are dependent upon the future of 
Hammerian research. 
  
 
Future of Hammerian Research 
 
I honestly can’t say what the future of these classifications are since up to this point I 
have not found any other practical use for them with the exception of having the ability 
to calculate complicated trees into simpler structures.  Problem reduction certainly is an 
important topic in both Mathematics and Computer Science, and I hope that one day 
this will be the lifeblood for my methods presented here. 
 
On the other hand, the future of the standalone application Visual Hackenbush has a 
very promising future as it has already been in use for almost a full year.  In fact, just 
recently, I received an email from Aaron Siegel, author of one of the most widespread 
Combinatorial Games computer applications: CG Suite, concerning the integration of 
the Visual Hackenbush Drawing Canvas into the CG Suite environment! 
 
I certainly hope to continue my work and research in Red-Blue Hackenbush throughout 
my graduate studies. 
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Appendix A: 

Hackenbush Game Tree Example 
 
Preface 
 
The following game tree is a complete solution to one of the homework problems given 
out in Math 168A.  This particular solution was turned in by one of my top-students 
during the Winter 2004 course offering: Erik Hill.  Erik graduated with a Bachelor’s in 
Mathematics- Computer Science in June of 2004 and is currently in the CSE Master’s 
program at UC San Diego.  Erik and I have kept in contact with each other and now 
both work in the Experimental Game Lab as programmers under the direction of 
Sheldon Brown.  This example is printed here with his permission. 
 
 
Problem 1.5.2 
 
Show that the following figure is a winning position for Right: 
 
 
 
 
 
 
 
Do this by playing out the game. 
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Erik Hill’s Solution 
 
 
 
Let Right go first:  
 
  
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

However, 
Left can win 
by taking the 
stick 
connected to 
the ground, 
so Right will 
not make this 
move! 

These 2 moves can be considered the 
same, since the resulting positions are 
the same. 

However, Right can 
win by taking the 
stick connected to 
the ground, so Left 
will not make this 
move! This move is 

not optimal 
since this 
blue stick 
was not in 
danger and 4 
other blue 
sticks are in 
danger. So 
Left will not 
make this 
move! 

However, 
Right can 
win by 
taking the 
stick 
connected 
to the 
ground, 
so Left 
will not 
make this 
move! 

This move is not optimal 
since this blue stick was 
not in danger and 4 other 
blue sticks are in danger. 
So Left will not make 
this move!

These 2 moves can be 
considered the same, since the 
resulting positions are the 
same. 

These 2 moves can be 
considered the same, since the 
resulting positions are the 
same. 

However, Left 
can win by 
taking the stick 
connected to the 
ground, so Right 
will not make 
this move! 

This is not 
an optimal 
move since 
Right 
destroys 
two Red 
sticks in 
one move, 
so Right 
will not 
make this 
move! 

However, 
Left can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Right will 
not make 
this move! 

These 2 positions can 
be considered the same.  
As long as Right does 
not eliminate 2 red 
sticks in one move on 
the right side tree 
which would be stupid. However, 

Right can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Left will 
not make 
this move! 

These 2 moves can 
be considered the 
same, since the 
resulting positions 
are the same. 

However, 
Right can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Left will 
not make 
this move! 

However, 
Left can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Right will 
not make 
this move! 

This move is not 
optimal since this 
red stick was not in 
danger and did not 
eliminate a blue 
stick. There were 
moves available that 
would save a red in 
danger, or eliminate 
a blue at the same 
time. So Left will 
not make this move! 

However, 
Left can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Right will 
not make 
this move! 

However, 
Left can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Right will 
not make 
this move! 

This position is analyzed off the 
leftmost branch of the 2nd 
branch from the left of the 
leftmost branch at this level 

This move is not optimal.  
The blue stick removed is 
not in immediate danger.  
If Right tries to eliminate 
it on the next turn, Right 
will lose. So, Left should 
eliminate one of its blue 
sticks in more immediate 
danger.   

These 2 moves can be 
considered the same, 
since the resulting 
positions are the same. 

This position has been 
analyzed at the bottom 
level of 30. Right wins!
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          The position of the game is  
          2 + (-3) = -1 so Right will win!       
 
 
 

The position of the game is  
             1 + (-2) = -1 so Right will win! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The only optimal move 
for Left is to save its blue 
that is in danger, Left’s 2 
other moves can always 
be made later since they 
are not in danger. 

However, 
Right can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Left will 
not make 
this move! 

The only optimal 
move for Right is to 
save its red stick that 
is in danger, Right’s 
2 other moves can 
always be made later 
since they are not in 
danger. 

The position of the game 
is ½ + (-1) = - ½  so 
Right will win!

However, 
Left can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Right will 
not make 
this move! 

The only 
optimal move 
for Left is to 
save its blue 
stick that is in 
danger, Left’s 
other move can 
be made later 
since it is not in 
danger. 

The position of the 
game is 1 + (-2) = -1  
so Right will win!

The position of the 
game is ½ + (- ½) = 
0  so the second 
player will win and it 
is Left’s turn so 
Right will win! However, 

Right can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Left will 
not make 
this move! 

The position of the 
game is 1 + (-2) = -1  
so Right will win!

Right will win! 

The position of the game 
is ¼  + (-1) = - ¼ so 
Right will win!

However, 
Right can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Left will 
not make 
this move! 

However, 
Left can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Right will 
not make 
this move! 

The position of the game 
is ½  + (-1) = - ½ so 
Right will win! The position of the game is 

½ + (-2) = -1.5  so Right 
will win! 

Right will win by 
taking the stick 
touching the ground

The only 
optimal move 
for Right is to 
save its red stick 
that is in danger, 
Right’s other 
moves can be 
made later since 
those sticks are 
not in danger. 

The position of the game is           
2 + (-2) = 0  so the second player 
will win and it is Left’s turn so 
Right will win! 

The position of the game 
is ¼  + (-1) = - ¼ so 
Right will win!

Right will win by 
taking the stick 
touching the ground Right will win 

this position was 
analyzed on 
14’s right most 
branch  

Right will win 
this position was 
analyzed on 
13’s right most 
branch  

However, 
Left can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Right will 
not make 
this move! 

These 2 moves can be 
considered the same, since the 
resulting positions are the same. 

Right will win by 
taking the stick 
touching the ground

These 2 are  the 
same

The only 
optimal 
move for 
Right is to 
take a red 
stick that 
will take a 
blue stick 
with it, 
Right’s 
other move 
leads to a 
loss. 

Right would lose so 
he will not make this 
move. Blue’s only optimal 

move is to take her 
stick in danger, this 
leaves the position as 
1 + (-2) = -1 so 
Right will win!

Right will win by 
taking the stick 
touching the ground

Right will win this 
position was 
analyzed on 14’s 
middle branch’s 
middle branch  

However, 
Left can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Right will 
not make 
this move! 

These 2 moves can be 
considered the same, since the 
resulting positions are the same. 

Right will win by 
taking the stick 
touching the ground 

Right will win this 
position was 
analyzed on 14’s 
middle branch  

Right’s only optimal 
move is to save its stick 
in danger. This leaves the 
position 2 + (-2) = 0 
which is a second player 
win and since Left has 
the next play, Right will 
win! 

Left’s only optimal move is to save 
one of its sticks in danger.  Left can 
make her other moves in the future 
since they are in no danger. 

Right cannot win this position, Right’s best move is 
to eliminate it’s highest red stick, but then the 
position is 2 + (-1) = 1 which is a Left win.  So, the 
decision by Right at 11 to follow this path was a bad 
one, so he will not take it! 

However, 
Right can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Left will 
not make 
this move! 

This position has already 
been analyzed, it is the 
same as the figure that 
leads to 12 and 13, Right 
will win! 

This position has already 
been analyzed, it is the 
same as the figure that 
leads to 16, Right will 
win! 

This position has already 
been analyzed, it is the 
same as the figure that 
leads to 14 and 15, Right 
will win! 

Right will win by 
taking the stick 
touching the ground

However, Left can win by taking the 
stick connected to the ground, so Right 
will not make this move!

The position of the game is ½ + (- ½) 
= 0  so the second player will win and 
it is Left’s turn so Right will win! Both these positions have 

value ¼ + (- ½) = -¼  so 
Right will win!

However, Left can win by taking the 
stick connected to the ground, so Right 
will not make this move!

These positions should be considered the 
same since Right is making optimal moves. 
Left will take her stick not connected to the 
ground on the next move, and then the 
position of the game will be ¼ + (-1) = - ¾   
so Right will win!
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However, 
Left can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Right will 
not make 
this move! 

This position 
was already 
analyzed as 11’s 
leftmost 
position. Right 
will win! 

Right will win by 
taking the stick 
touching the ground

However, Left can 
win by taking the 
stick connected to 
the ground, so Right 
will not make this 
move! 

These 2 moves can be 
considered the same, as long as 
red is not stupid. Left will take its 

top blue stick 
making the 
position            
½ + (-1) = - ½ 
so Red will win! 

Right will win by 
taking the stick 
touching the ground

This position has value  
¼ + (-1) = -¾ so Right 
will win!

However, Left can 
win by taking the 
stick connected to 
the ground, so Right 
will not make this 
move! 

This position has value  ½ + 
(-1) = - ½ so Right will win! 

However, Left can 
win by taking the 
stick connected to 
the ground, so Right 
will not make this 
move!

However, 
Right can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Left will 
not make 
this move! 

However, 
Left can 
win by 
taking the 
stick 
connected 
to the 
ground, so 
Right will 
not make 
this move! 

These 2 moves can be 
considered the same, as long as 
red is not stupid. 

Right will win by 
taking the stick 
touching the ground

Right will 
win by 
taking the 
stick 
touching 
the ground

Right will win The 
left stalk has value 
1/2 and the right tree 
has value less than – 
½ and greater than –
2 so the position is 
less than ½  – ½ = 0 
so the position is 
negative. Right will 
win.  

Right will win The 
Right stalk has value 
-2 and the left tree 
has value greater 
than 1/8 and less 
than –2 so the 
position is less than 
2-2 = 0  so the 
position is negative, 
so Right will win.  

Right will 
win by 
taking the 
stick 
touching 
the ground 

Right will win this 
has been analyzed 
already on 9’s 
rightmost path 

Right will win. Right’s optimal move 
is to remove his red stick that will 
eliminate a blue.  After this, the tree on 
the left will have a value less than 2 
since there are 2 blue sticks and one 
red.  The stalk on the right has value –
2.  So the position will have value less 
than 2 + (-2) = 0. So the position will 
be negative! Right will win. 

Right will win. Right’s 
optimal move is to 
remove his red stick in 
danger that will eliminate 
a blue.  After this, the 
tree on the left will have 
a value ½ .  The stalk on 
the right has value –1.5 
(given on pg.23.  So the 
position will have value 
less than 0.5 + (-1.5) = -
1. So the position will be 
negative! Right will win. 

Right will win by 
taking the stick 
touching the ground

This position 
has value  ¼ + (-
1) = -¾ so Right 
will win! 

Right will 
win by 
taking the 
stick 
touching 
the ground

Right will win 
this position is 
equivalent to 
one that has 
been analyzed 
already on 9’s 
rightmost path 

However, Left 
can win by 
taking the stick 
connected to the 
ground, so Right 
will not make 
this move! 

This position has 
value  1 + (-1. 5) = -
0.5 so Right will 
win! 

This position has value     
3/4 + (-1. 5) = -3/4 so    
Right will win!

This was 
already analyzed 
on the middle 
path of 20.  
Right will win  

Right will win! 
This position 
has value ¼  + (- 
½ ) = - ¼  

However, Left can 
win by taking the 
stick connected to 
the ground, so Right 
will not make this 
move! 

Left will 
take its top 
blue stick 
making the 
position         
½ + (-1) = - 
½ so Red 
will win! 

Right will 
win by 
taking the 
stick 
touching 
the ground 

Right will win this has been analyzed 
already on 24 (the middle path of the 
middle path of the rightmost path) 

Right will take its 
highest stick in 
danger, then blue 
will take its stick not 
connected to the 
ground. The position 
is then ½ + (-1) = - 
½  so Right will 
win!  

Right will 
take its 
stick in 
danger that 
eliminates a 
blue stick, 
then the 
position is  
½ + (-1) = - 
½  so Right 
will win!  

Right will either take its  highest stick in 
danger sending the position to ¾ + (-1) = - 
¼ a Right win, or he will take his middle 
red stick to eliminate another red and a 
blue. This will send the position to 1 + (-1) 
= 0 a second player win, since it is Left’s 
turn , Right wins. So,Right will win!  

Right will take its 
highest stick in 
danger, then the 
position has been 
analyzed. The 
figure just below 
24’s 2nd to the left 
figure. Right will 
win!  

Right will either 
take its  highest stick 
in danger sending 
the position to ¾ + (-
1) = - ¼ a Right win, 
or he will take his 
middle red stick to 
eliminate another 
red and a blue. This 
will send the 
position to 1 + (-1) = 
0 a second player 
win, since it is Left’s 
turn , Right wins. 
So,Right will win!  

This position 
has value ½  + 
(-.½ ) = 0, a 2nd 
player win. It 
is Left’s turn  
so Right will 
win! 

Left will either take the 
blue stick in danger on 
the left sending the 
position to ¼ + (- ½ ) = -
0.25 a Right win. Or, 
Left will take the blue on 
the right tree sending the 
right tree to a value of –1. 
The left tree is obviously 
not greater than 1, so the 
value of the position 
would be negative(Right 
wins) or Zero, a Right 
win since he is the 
second player. So Right 
will win! 

Left will either take the 
blue in danger on the left 
tree sending the position 
to ¼ + (-0.5) = -0.25, a 
Right win. Or, she will 
take the blue on the right 
stalk. Then the  left tree 
has value less than ¾ and 
the right tree has value – 
1 so This position has 
value less than 0.75 + (-
1) = -0.25 so Right will 

However, Left 
can win by 
taking the stick 
connected to the 
ground, so Right 
will not make 
this move! 

This position 
has value  ¾  + 
(-2) = -1.25 so 
Right will win! 

The left tree has 
value ½ and the 
right tree has 
value less than – 
½ This position 
has value less 
than  ½  + (-0. 
5) = 0. So the 
value is 
negative. Right 
will win! 

This position 
has been 
analyzed in 24 
the 2nd to the left 
path’s 2nd to the 
left. Right will 
win! 

Right will 
win by 
taking the 
stick 
touching 
the ground 

Left will save her blue stick 
in danger, Right will then 
send it to a 2 + (-2) = 0 
game. A second player win, 
since Left is next, Right will 
win!

This is obviously 
a zero game. Left 
has the next play, 
so Right will win! 

The left tree has 
value ½ and the right 
tree has value less 
than –1/2. This 
position has value 
less than 0.5 + (-0. 5) 
= 0 so the value is 
negative. Right will 
win! 

Right will 
win by 
taking the 
stick 
touching 
the ground

Left will take either the blue in the left 
tree which sends the position to ¼ + (-
1/2) = -1/4, and Right would win. Or, 
Left will take the blue in the right tree 
to make the right tree have value –1. 
Right would take the top red in the left 
tree. Left would follow by taking the 
blue in the left tree sending the left tree 
to a value of ½. This position has value 
½ + (-1) = -0.5 so in all cases Right 
will win!

This is 
obviously a zero 
game. The left 
tree is the same 
tree as right with 
the colors 
switched.  It is 
Left’s turn so 
Right is the 
second player, 
and Right wins! 

Right’s other 
moves are not 
optimal. 

Right’s other 
moves are not 
optimal. 
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This position has 
value ¾  + (-1. 5) =  
-0.75 so Right will 
win! 

However, Left 
can win by 
taking the stick 
connected to the 
ground, so Right 
will not make 
this move! 

The left tree has 
value ½ . On Right’s 
next move he will 
take his red that will 
eliminate one blue. 
The value of the 
right tree will then 
be less than – ½ . 
This position has 
value less than ½  + 
(-0. 5) = 0 so the 
position has negative 
value, Right will 
win!

Right will 
win by 
taking the 
stick 
touching 
the ground 

Right will take the 
red in the right tree 
that will eliminate a 
blue, this makes the 
value of the right 
tree –2.  The left tree 
has a value 
obviously less than 2 
since it has 2 blue 
sticks and one red 
stick. This position 
has value less than 2 
+ (-2) = 0 so the 
game has a negative 
value. So, Right will 
win! 

Right will take its only stick in danger 
on his move.  Left will counter by taking 
her last stick in danger.  This leaves the 
position with value  2 + (-3) = -1 so 
Right will win! 

Right will 
win by 
taking the 
stick 
touching 
the ground

This position 
has been 
analyzed 
before. It is the 
figure that 
leads to 15 and 
16 Right will 
win! 

This was 
already analyzed 
on the middle 
path of 20.  
Right will win  

Right will 
win by 
taking the 
stick 
touching 
the ground 

However, Left 
can win by 
taking the stick 
connected to the 
ground, so Right 
will not make 
this move! 

This is obviously a 
zero game. The left 
tree is the same tree 
as right with the 
colors switched.  It is 
Left’s turn so Right 
is the second player, 
and Right wins! 

Right’s only optimal 
move is to take his stick 
on the left tree. This 
eliminates a blue stick.  
Left will respond by 
taking his only stick 
that is in danger. The 
resulting position has 
value  2 + (-3) = -1 so 
Right will win! These moves are not optimal for 

Right.  He should take the Red stick 
that eliminates a blue at the same 
time. His other moves he can make 
later.

However, Left 
can win by 
taking the stick 
connected to the 
ground, so Right 
will not make 
this move! 

This 
position 
has value 
¾ + (-2) = 
-0.25 so 
Right will 
win! 

Left will take its 
only stick in 
danger which 
sends the 
position to 2 + (-
3) = -1 so Right 
will win! 

Right will 
win by 
taking the 
stick 
touching 
the ground 

Right will take its only 
stick in danger which 
will send the game to 2 
+ (-2)=0, a second 
player win. Since Left 
has the next turn, Right 
will win! 

Right will win by 
taking the stick 
touching the ground

Right will take its 
only stick in danger 
which will eliminate 
a blue stick. This 
leads to a position of 
value  2 + (-2) = 0 a 
second player win. 
Since Left has the 
next turn, Right is 
the second player, so 
Right will win! 

However, Left can 
win by taking the 
stick connected to 
the ground, so Right 
will not make this 
move!

This position has value 2 
+ (-1. 5) = -0.5 so Right 
will win!

Left will take its 
blue not 
connected to the 
ground. This 
leads to the 
position with 
value  0.5 + (-1) 
= -0.5 so Right 
will win! 

However, Left 
can win by 
taking the stick 
connected to the 
ground, so Right 
will not make 
this move! 

Left will take its 
blue in the right 
tree. This leads to a 
position with value  
1 + (-2) = -1 so 
Right will win!

This position has 
been analyzed on 
27’s 2nd to the 
right branch Right 
will win! 

This position has  
been analyzed already 
on  21’s left branch’s 
middle branch. Right 
will win! 

This position 
has value ¼ + (-
0. 5) = -0.25 so 
Right will win! 

Right will 
win by 
taking the 
stick 
touching 
the ground

Right will take the stick in the left 
tree that eliminates a blue. This  
leads to a zero game since the left 
tree is the same as the right with 
the colors switched.  It is now 
Left’s turn, so Right is Second and 
therefore Right will win! 

This position has 
value ¾  + (-1. 5) 
= -0.75 so Right 
will win! 

This position has value ¾  + (-1. 
5) = -0.75 so Right will win! 

However, Left 
can win by 
taking the stick 
connected to the 
ground, so Right 
will not make 
this move! 

Left will take its blue 
stick at the top of the tree 
on the right. The tree on 
the right will then have a 
value less than –1 and the 
left tree has value 1. This 
position has value less 
than  1 + (-1) = 0 so the 
position is negative. 
Right will win! 

Right will win by 
taking the stick 
touching the ground

Right will take its stick in the left tree. 
Right will respond by taking its stick in 
the right tree. This  leads to a position 
with value  1 + (-2) = -1 so Right will 
win! 

Right will take his stick 
that takes one blue stick 
with it. This  leads to the 
position with value ½  + 
(-0. 5) = 0. This is a 2nd 
player win, Since it is 
now Left’s turn, Right 
will win! 

Right will 
win by 
taking the 
stick 
touching 
the ground

Right will take the 
stick in the left tree 
that eliminates a blue 
also. This leads to a 
position with value  
1.5 + (-1. 5) = 0, a 
2nd player win. Since 
it is now Left’s turn, 
Right will win! 

This move is not optimal, Right should 
take a red that will take a blue with it.  
Red has 2 better plays. Right will not 
make this move. 

However, Left can win by taking 
the stick connected to the ground, 
so Right will not make this move! 

However, Left can win by taking 
the stick connected to the ground, 
so Right will not make this move!

These 2 moves can 
be considered the 
same, since the 
resulting positions 
are the same. 

Left will 
take its 
stick on the 
left tree in 
danger.  
Red will 
take a stick 
on the left 
tree and 
then the 
position 
will be ½ + 
(- ½ ) = 0, a 
second 
player win, 
since it is 
Left’s turn, 
Right wins! 

Right will 
win by 
taking the 
stick 
touching 
the ground 

This position 
has value ¼  + (-
0. 5) = -0.25 so 
Right will win! 

Right will take a 
stick from the left 
tree. Left will 
counter by taking its 
stick not connected 
to the ground.  This 
leaves the position ½ 
+ (-1) =-0.5 so Right 
wins! 

This is not an optimal move. This 
stick was in no danger from a 
optimal Left player.  Right should  
take a red stick that eliminates a 
blue stick at the same time.  This 
move can be made later in the 
game since the stick is in no 
danger, so Right should make a 
different move! 
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Now let Left go first:  
 
 
 
 
 
 
 
 
 
Since Right won the position             he can win this position using the same winning strategy.  He can pretend that the blue stick missing is 
still there and follow his winning strategy from the previous pages.  If Right can win with one more blue stick present, then Right can win when 
the blue stick is not present.  This is due to the fact that the blue stick adds some positive factor to the value of the position.  Since Right was the 
first player and won in the previous case, the starting position must have a negative value by Definition 1.3.1(iv).  
 
The position without the blue stick has a smaller value than the position with the blue stick, so these positions all have a value smaller than the 
negative value of       . 
 
 
 
So, all of these positions are negative.  This implies Right will win all of these positions!!! 
 
Note: This argument would not have worked if one of Left’s move had eliminated any red sticks! 
 
 
 
 
 
  

However, Right 
can win by 
taking the stick 
connected to the 
ground, so Left 
will not make 
this move! 

These 2 moves can be 
considered the same, since the 
resulting positions are the 
same. 
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Introduction 
 
Introduction to the Package 

 
Visual Hackenbush is a free Hackenbush Tree calculation environment.  Its only 
requirement is the Java Runtime Environment, which can be freely downloaded 
from Sun Microsystems’ website at http://java.sun.com. 
 
Visual Hackenbush is still being developed at the time of this current release so 
there are potential bugs.  Therefore, please send feedback (positive and negative 
welcome) to the web address below. 
 

Visual Hackenbush 
Version: 1.1 

© 2003-2004 Joey Hammer 
http://cgt.calculusfairy.com 

 
 

Java Runtime Environment 
Version: 1.4.1 

© 2002 Sun Microsystems, Inc. 
http://java.sun.com 

 
 
 
About the Developer 

 
Joey Hammer completed his degree in Mathematics-Computer Science at the 
University of California, San Diego.  His current research is conducted in the field 
of Combinatorial Game Theory, primarily focused in the game of Hackenbush. 
 
Joey first became interested in Combinatorial Games in the Fall of 2000.  He 
later became one of the first students to enroll in an experimental course on CGT 
in the Spring of 2003: Math 168A taught by Professor Len Haff and Jason Lee.  
During the following year, Hammer served as Haff’s Teaching Assistant for the 
Math 168A course for two quarters before graduating. 
 
Hammer has also developed a web resource guide for Combinatorial Games, 
which can be found at:  http://cgt.calculusfairy.com. 
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Installation 
 
System Requirements: 

 
Basically, just about any system should be able to handle Visual Hackenbush.  
However, in order to run it, you must have the Java Runtime Environment (JRE) 
installed on your system. 
 
Note for Network Users: 
In order to save Visual Hackenbush Trees (*.hat) files to your system, you must 
have write access privileges. 

 
 
 
JRE 1.4 Installation: 
 

1. Download the jre-1.4.2 installation package from: 
Sun Microsystems’ website http://java.sun.com or 
Math 168A Course Site http://cgt.calculusfairy.com/Software/jre.exe  

2. Double-click on the jre.exe and follow the instructions. 

 
 
 
Visual Hackenbush Installation: 
 

1. Download the Visual_Hackenbush_1.1-Setup.exe installation setup 
from http://cgt.calculusfairy.com/Software/VisualHackenbush/. 

2. Double-click on the installer and follow the instructions. 
3. Simply double-click on the shortcut under CGT/Visual Hackenbush and you’re 

ready to start drawing some trees! 
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Hackenbush Tree Calculation Studio 
 
Know Your Environment: 

 
Visual Hackenbush is a windowed environment, composed of four separate 
window frames: 
 

• Visual Hackenbush Main Window Frame 
• Display Options Window Frame 
• Project Options Window Frame 
• Visual Hackenbush Log Window Frame 

 
We will go through each frame in-depth and explain their features and 
functionality in the sections to follow.  In this section, we will keep to introducing 
the capabilities of the overall application itself. 
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Hackenbush Tree Calculation Studio [Continued] 
 
Visual Hackenbush Development: 

 
Essentially, Visual Hackenbush was developed to be a personal tool for my 
research in the area of Hackenbush Tree Decomposition.  I had initially wanted 
an applet that provided the user with a graphical interface inside of which they 
could draw the trees they wanted to analyze.  To assist with the analysis, I 
wanted the program to have the ability to calculate the value of what had been 
directly drawn into the interface.  This turned into an extensive project to say the 
least, but I’m proud to say that version 1.1 is the first real landmark for my hopes 
and dreams in the development of this software. 
 
Furthermore, I have implemented several additional features to Visual 
Hackenbush since its conception, including a play-by-play log, adjustable display 
settings, and the ability to read and write Visual Hackenbush Trees (*.hat) files to 
name a few.  In fact, the file input/ output option was so important that it required 
almost a complete overhaul to the software’s backbone—including the constraint 
that the program be written as an application rather than an applet. 
 
The final thing I should reemphasize is that most of Visual Hackenbush’s 
functionality is solely based upon the tools I needed for my research.  This is the 
reason why there is an entire panel dedicated to Hackenbush Tree 
Decomposition and a gamut of other tools which factor into labeling a tree as 
either Hammerian or Non-Hammerian.  Whether these tools would be of value to 
other users was not one of my top priorities when developing this software; 
nevertheless, they are still available to those who may have a need for them or 
are interested in experimenting with their extended capabilities. 

 
 
Version 1.1 Capabilities: 

 
Upon completion, Visual Hackenbush will be able to calculate the combinatorial 
game value of any type of Hackenbush Tree you can throw at it (well, draw in it). 
 
But since that day has not yet come, it is somewhat limited in its calculation 
capabilities.  In 1.1 version release, Visual Hackenbush has the ability to 
calculate any tree governed by the rules of Red-Blue Hackenbush alone. 
 
Support for other games types, such as Red-Blue-Green Hackenbush, Childish 
Red-Blue Hackenbush, and Green Hackenbush, is in development and will be 
released as soon as they can be properly devised, written, and tested. 
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Menus 
 
Toolbar: 
 

Just like any other windowed program, Visual Hackenbush has a toolbar from 
which you can choose various options.  I have also included key-bindings to most 
of the options found in the menus of the toolbar for quick access. 
 

 

 
 
 
We now outline each of the menus: 
 

 
File Menu: 
 
 New:       CTRL + N 

Selecting this option will clear the current Hackenbush Tree in the Drawing 
Canvas and reset the controls to their default settings. 
 

 Open:      -- -- 
Selecting this option will bring up the “Open Dialog” window so that a previously 
saved (*.hat) file can be opened.  The game type and button settings stored in 
the (*.hat) file will be automatically applied when a file is opened. 

 
 Save:      CTRL + S 

Depending upon the situation, selecting this option will either bring up the “Save 
As Dialog” window so that you can name and save your file in the location of 
choice, or it will simply save the currently active (*.hat) file without a prompt.  If 
you do not wish to overwrite your currently active (*.hat) file, you should use the 
Save As menu option instead. 

 
 Save As:      -- -- 

Selecting this option will bring up the Save As Dialog window so that you may 
name and save your (*.hat) file in the location of your choosing. 

 
 Exit:       CTRL + X 

Selecting this option will exit Visual Hackenbush.  While this is equivalent to 
clicking the ‘X’ in the upper right-hand corner of the main window frame, 
choosing “Exit” does provide a safety net for your project: prompting you to save 
your current work before you exit. 
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Menus [Continued] 
 
View Menu: 
 
 Drawing Canvas:    C 

Selecting this option will change the right-hand panel to the Drawing Canvas if it 
is not already visible. 
 

 Decomposition Canvas:   D 
Selecting this option will change the right-hand panel to the Decomposition 
Canvas if it is not already visible. 

 
 View Log:      ` 

Selecting this option will make the Visual Hackenbush Log visible. 
 
 
Game Menu: 
 
 Red-Blue Hackenbush:   1 

Selecting this option will create a new game and change the Hackenbush game 
type to Red-Blue Hackenbush.  In consequence, the Green Stick and Trunk 
buttons in the Drawing Control Panel will be disabled. 
 

 Red-Blue-Green Hackenbush:  2 
Selecting this option will create a new game and change the Hackenbush game 
type to Red-Blue-Green Hackenbush. 

 
 Childish Red-Blue Hackenbush: 3 

Selecting this option will create a new game and change the Hackenbush game 
type to Childish Red-Blue Hackenbush.  In consequence, the Green Stick and 
Trunk buttons in the Drawing Control Panel will be disabled. 

 
 Green Hackenbush:    4 

Selecting this option will create a new game and change the Hackenbush game 
type to Green Hackenbush.  In consequence, the Red and Blue Stick and Trunk 
buttons in the Drawing Control Panel will be disabled. 
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Menus [Continued] 
 
Project Menu: 
 
 Calculate Value:    ENTER 

Selecting this option will initiate a recalculation of the combinatorial game value 
of the tree currently visible in the Drawing Canvas.  If the Auto-Calculate option 
is activated in the Project Settings Window, this option will be disabled since 
Visual Hackenbush will recalculate the tree value each time the tree is 
structurally modified (by this I mean that moving the vertices do NOT initiate a 
recalculation, however: the options of adding, subtracting, or changing the color 
of one or more sticks will most certainly initiate a recalculation). 
 

 Tighten Display:    T 
Selecting this option will change the position of the vertices in the Drawing 
Canvas so that the structure of the resulting Hackenbush Tree is more clear.  
Visual Hackenbush will try its best to make the lengths of each stick as uniform 
as possible, and space the vertex positions far enough apart so that they are 
visually recognizable. [1.1– somewhat unpredictable results]* 

 
 Display Options:    O 

Selecting this option will make the Display Options window frame visible. 
This window frame is described in detail later. 

 
 Project Settings:    S 

Selecting this option will make the Project Settings window frame visible. 
This window frame is described in detail later. 

 
 
Help Menu: 
 
 Contents:      -- --  

Selecting this option will display a link to the location of the Visual Hackenbush 
Documentation. 

 
 About:      -- --  

Selecting this option will display the copyright and version information for the 
release of Visual Hackenbush currently in use. 

 
 
 
 
*Tighten Display: may place connection nodes on top of each other resulting in two or more sticks being drawn on top of each  

other. These “hidden” sticks could lead to confusion, it is suggested you check for overlapping nodes after 
using this functionality until this situation is remedied and updated. 
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Studio Main Frame 
 
Project Control Display Panel: 
 
 

 
 
 
This is Visual Hackenbush’s information and calculation results display.  At 
current release, it displays the following data: 

• Hackenbush Game Type 
• Combinatorial Game Value 
• Height of the Current Tree 
• Number of Sticks (which compose the current tree) 

 
Additionally, to supplement my own personal research, the panel also displays 
whether or not the current tree is considered Hammerian. 
 
Certainly as the functionality and algorithmic capabilities in later releases of 
Visual Hackenbush progress, There are plans for displaying more information 
about the trees constructed via the Drawing Canvas (hence the reason for the 
unused space at the bottom of the panel). 
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Studio Main Frame [Continued] 
 
Drawing Control Panel: 
 
 

 
 
 
This is Visual Hackenbush’s drawing control center.  Its main purpose is to 
control parameters of the Drawing Canvas in the right panel.  At current release, 
the user has the following options to adjust: 

• Stick Drawing Color 
• Trunk Color 
• Game Negation 
• Show the Game Decomposition Panel [1.1- not functional] 

 
Of course, both the Stick Drawing Color and Trunk Color buttons will adjust as 
the user changes the overall Hackenbush game type. 
 
It should be noted that the Trunk Color buttons are the only way to adjust the 
trunk of the current tree in the Drawing Canvas since there is no special popup 
menu which handles the trunk.  This prevents the user from removing the trunk, 
leaving them with nothing to work with: a trivial zero game. 
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Studio Main Frame [Continued] 
 
Drawing Canvas: 
 
 

 
 
 
This is the essence of Visual Hackenbush.  The Drawing Canvas is where 90% 
of the action is, so let’s properly examine its components in detail. 
NOTE: We explain the functionality in a later section. 
 
 
Vertices: 
Vertices are the connections between sticks (shown in yellow above).  Each one 
has an identification number which can be displayed by activating the option in 
the Project Settings window frame. 
 
 
Trunk: 
The trunk is a very special stick—it is the only stick directly connected to the 
ground (this may change in later versions of Visual Hackenbush).  It cannot be 
removed.  Its corresponding vertex is labeled as 0.  Its color can only be adjusted 
via the Drawing Control Center. 
 
 
Sticks: 
Sticks are the components which make up any Hackenbush Tree you can 
imagine.  The user may add, remove, and change the colors of any stick in the 
tree (with the aforementioned restriction of the trunk, which cannot be added or 
removed).  Their visual lengths do NOT affect the combinatorial game value. 
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Display Options Frame 
 

 
 
 

Size Adjustment Sliders: 
 
Stick Size: 
Allows the user to uniformly adjust the thickness of the sticks displayed in the 
Drawing Canvas.  Also affects the sticks drawn after adjustment. 

Default Size: 1. 
Range: [0, 5]. 

 
 

Vertex Size: 
Allows the user to uniformly adjust all the radii of the vertices displayed in the 
Drawing Canvas.  Also affects the vertices drawn after adjustment. 

Default Size: 1. 
Range: [0, 5]. 
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Display Options Frame [Continued] 
 
Color Adjustment ComboBoxes: 

 
Background Color: 
Allows the user to adjust the background color displayed in the Drawing Canvas. 

Default Color: Black. 
Choices: [Black, White]. 
 

 
Vertex Color: 
Allows the user to adjust the color of each of the vertices displayed in the 
Drawing Canvas.  Also affects the vertices drawn after adjustment. 

Default Color: Yellow. 
Choices: [Gray, White, Yellow]. 

 
 

Ground Color: 
Allows the user to adjust the ground color displayed in the Drawing Canvas. 

Default Color: Brown. 
Choices: [Black, Brown, Gray, White]. 
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Project Settings Frame 
 

 
 
 

Calculation Settings: 
 
Auto-Calculate Stalk and Tree Values: 
Toggles the option for Visual Hackenbush to automatically calculate the 
combinatorial game value for the tree being constructed in the Drawing Canvas. 

Default Value: ON. 
 
 

Test for Hammerian: 
Toggles the option for Visual Hackenbush to automatically test and calculate 
whether the tree being constructed in the Drawing Canvas fulfills the parameters 
to be classified as Hammerian or Non-Hammerian. 

Default Value: ON. 
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Project Settings Frame [Continued] 
 
Log Options: 

 
Enable Log: 
Toggles the option for Visual Hackenbush to keep a log of the actions done 
within the Drawing Canvas and Hackenbush Project. 

Default Value: ON. 
 
 

Log Filename: 
Allows the user to specify the name of the log file to be used when the log is 
saved via the “Save Log” button on the Log Frame.  It should be noted that this 
filename cannot be changed if the log is disabled. 

Default Filename: HackLog.log. 
 
 
Other Options: 

 
Allow Tree Decomposition: 
Toggles the option for Visual Hackenbush to calculate the Hammerian 
Decomposition of Hackenbush Trees so that the user may examine the results 
on the Decomposition Canvas.  [1.1- not available] 

Default Value: ON. 
 
 

Display Vertex Ids: 
Toggles the option for Visual Hackenbush to label each vertex as it is added to 
the tree in the Drawing Canvas. 

Default Value: OFF. 



Decomposing Hackenbush 80 

Visual Hackenbush Log 
 

 
 
 

Log Overview: 
 

The Visual Hackenbush Log is a very important tool to creating trees.  It stores to 
a text file all the commands and processes in the order in which the user 
performs them upon the Drawing Canvas.  The fact that this can be saved and 
reopened in a simple Text Editor (such as Notepad) means that the user can 
recreate a tree or pattern via a readable plaintext.  This is quite different from the 
Hackenbush Tree files (*.hat) which are structured for space optimization, 
making them much more cryptic to read.  Additionally, the (*.hat) files are simply 
a snapshot of the Hackenbush Tree structure at the time it was saved and does 
not record the steps leading up to the saved product. 
 
Furthermore, the log records very detailed information which cannot be found in 
the Project Control Display Panel, such as a stick’s source ID, a stick’s tree level, 
and even the identification numbers from the sticks removed. 

 



Decomposing Hackenbush 81 

Visual Hackenbush Log [Continued] 
 
Log Tools: 

 
Mark: 
Allows the user to insert a separator line and a numbered “mark” in the log, 
complete with timestamp.  This particular feature comes in handy if the user 
wishes to examine the log from a particular point in their project work in the 
Drawing Canvas.  This is better than simply clearing the log since all previous 
entries remain in the log. 
 

 
Save Log: 
Allows the user to save the log to a file.  The name of the log file is retrieved from 
the “Filename” text field found in the Project Settings Frame. 

 
 

Clear: 
Allows the user to clear the current log.  Note that this cannot be undone! 
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Visual Hackenbush Functionality 
 

 
 
 

Drawing Canvas Revisited: 
 
The Drawing Canvas is equipped with MouseEvent Listeners, which means that 
any mouse movement, click, or dragging performed over the panel is recorded 
and tested to determine if the user is attempting to modify the tree. 
 
In fact, mouse clicks and dragging are the main methods by which the user can 
construct a Hackenbush Tree in the Drawing Canvas, as well as the feature 
which sets Visual Hackenbush apart from other Combinatorial Games Software. 
 
Since this is the most essential part of understanding Visual Hackenbush, a 
simple, tutorial-like description is provided below to introduce each piece of the 
Drawing Canvas Graphical User Interface. 
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Visual Hackenbush Functionality [Continued] 
 
Moving Vertices: 

 
The Drawing Canvas can easily get cluttered with vertices and although it does 
not alter the value or underlying structure of the Hackenbush Tree the user has 
the option of adjusting the position of the stick connection vertices. 
 
LEFT MOUSE CLICK  on the desired connection vertex and  
DRAG   the cursor (and vertex) to a new position. 
 
You should notice that the sticks will stay connected to the vertices as they are 
moved around.  Sticks may be stretched or shrunk at the user’s whim, yet these 
actions will not modify the combinatorial game value of the tree. 
 
 

 
 

 
CAUTION: It is possible to drag a connection vertex on top of another connection 
vertex, which means that the tree may look connected at that one vertex when it 
really is not.  A quick way to double check the integrity of a vertex is by simply 
“wiggling” it by dragging it back and forth to reconfirm that the sticks that appear 
connected to it are actually connected.  One could also activate the Display 
Vertex Ids option in the Project Settings window to be extra cautious. 
 
Another complexity which may result in careless vertex positioning is the 
instance where two (or more) sticks lie on top of each other and as a result are 
disguised as a single stick.  If you become unsure of your display and suspect 
multiplicity in your sticks, you should first count the sticks displayed and compare 
this with the Stick Count in the Project Control Display Panel or activate the 
Display Vertex Ids option in the Project Settings window rather than manually 
checking each connection vertex. 
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Visual Hackenbush Functionality [Continued] 
 
Adding Sticks to the Tree: 

 
Drawing a Hackenbush Tree on a piece of paper or a whiteboard may appear as 
simple as drawing a bunch of connected lines, yet, in reality, there is quite a bit of 
data required to properly construct any tree-like structure.  Imagine attempting to 
describe a particular Hackenbush Tree to someone without the use of any visual 
aids.  Take it one step further: ask them to calculate its value based on the 
description you just gave them.  For any tree larger than a few sticks, this can 
prove to be quite a difficult task!  Thankfully, Visual Hackenbush is the solution! 
 
In fact, thanks to its graphical interface adding a new stick to the Hackenbush 
Tree is quite easy: 
 
RIGHT MOUSE CLICK  on any connection vertex and  
DRAG   the cursor (and vertex) to a desired position. 
 
By this action, Visual Hackenbush will create a new connection vertex on top of 
the original and position it where the user releases the right mouse button.  You 
will notice that the new stick will appear as you drag the new connection vertex 
away from the original.  Also notice that the color of this new stick is the currently 
selected Stick Drawing Color in the Drawing Control Panel. 
 
 

 
 

 
SPECIAL NOTE: All of the details concerning the creation of the new stick are 
recorded in the Visual Hackenbush Log (provided that it is enabled). 
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Visual Hackenbush Functionality [Continued] 
 
 

CAUTION: It is possible to create a connection vertex by accident!  This occurs if 
the user performs a right click and releases on top of the original vertex position, 
resulting in a stick length which is obstructed by its connection vertex.  Thus, the 
graphical user interface will process this as the command to create a new stick.  
To avoid this scenario, the user should always drag out the connection vertex to 
a reasonable distance away from the original. 
 
If you do in fact create an unwanted stick: don’t panic, you can always remove it 
to resume the previous tree structure.  See the section on “Removing Sticks from 
the Tree” for details. 
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Visual Hackenbush Functionality [Continued] 
 
Modifying Stick Colors: 

 
Of course, your Hackenbush Tree would be quite boring if you only drew red 
sticks on top of that blue trunk.  After all, the game is Red-Blue Hackenbush. 
There are two ways in which the user may change stick colors: 

1) Adjust the Stick Drawing Color BEFORE drawing the stick in the 
Drawing Control Panel. 

2) Modify the stick color AFTER it is already drawn by the method below. 
 

The former is pretty self-explanatory so we examine the latter in consequence. 
To change the color of a stick that has already been grafted into the current tree: 
 
RIGHT MOUSE CLICK  on the desired stick and  
SELECT  the new color for the stick from the popup menu. 
 
This action will not only change the appearance of the stick of the tree in the 
Drawing Canvas, but also the combinatorial game value of the tree.  If the 
Auto-Calculate option is active the value displayed in the Project Controls 
Display Panel will change automatically to compensate for the modification. 
 
 

 
 

 
SPECIAL NOTE: Only the colors available to the game type will be available to 
choose from in the popup menu.  This prevents an unknown stick color from 
entering into a game where its character is unknown. 

 
IMPORTANT: There is no popup menu for the trunk of the tree.  You must use 
the Drawing Controls Panel to modify the trunk color. 
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Visual Hackenbush Functionality [Continued] 
 
Removing Sticks from the Tree: 

 
Finally, there is the issue of removing any unwanted sticks or subtrees from the 
current tree drawn in the Drawing Canvas.  You may wish to do this because you 
accidentally added a stick where you did not want to, or maybe want to calculate 
the value of tree if a player decides to hack a particular stick.   
 
For whatever reason you may have for its use, the method by which you remove 
a stick is similar to the way you would modify the color: 
 
RIGHT MOUSE CLICK  on the desired stick and  
SELECT REMOVE  from the popup menu. 
 
Take note of the following bullets: 

• There is NO UNDO feature as of version 1.1, so make sure the stick you 
are selecting to remove is really the stick you want to remove! 

• Removing a stick obeys the same rules laid out in Hackenbush: 
“If a stick is no longer (indirectly) connected to the ground 
 after the removal of a stick, it too must fall away.” 

Therefore, if the stick you are about to remove is the parent to a subtree 
then the subtree will also be removed as a result of the removal. 
 
NOTE: If you wish to examine which sticks were removed, you can always 
consult the log (provided it was active at the time of the removal). 

 
 

 
 

 
IMPORTANT: You CANNOT remove the trunk of the tree. 
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Software 
 
Combinatorial Games Suite (CG Suite).  Aaron Siegel, 2003. 
 
C Stalks Calculator (CSC).  Joey Hammer, 2003. 
 
Hammerian Trees Algorithm (HTA).  Joey Hammer, 2003. 
 
Hackenbush Applet.  Joey Hammer, 2004. 
 
Visual Hackenbush 1.1.  Joey Hammer, 2004. 
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