32. Fall 2018

Three-hour exam. Do as many questions as you can. Each is worth 4 marks. Please write clear maths and clear English which could be understood by one of your fellow students! Include as much detail as is appropriate; you can use standard results and theorems in your answers provided you refer to them clearly.

- 1. Let G be a topological group and let 1 be its identity element. Show that the fundamental group $\pi_1(G,1)$ is abelian.
- **2.** Let X be the space made by gluing the edges of a solid hexagon H and a solid triangle T according to the scheme pictured below. Calculate $\pi_1 X$) and $H_*(X; \mathbb{Z})$.

- **3.** Let Y be a space obtained by attaching a 4-ball B^4 to a 3-sphere via a degree 6 map $\phi: \partial B^4 \to S^3$. Calculate the integral homology $H_*(Y \times \mathbb{R}P^2; \mathbb{Z})$.
- **4.** Provided the sum is finite, the Euler characteristic $\chi(X)$ of a space X is defined to be the alternating sum of the dimensions of the rational homology groups $H_i(X;\mathbb{Q})$. Use Poincaré duality to show that the Euler characteristic of a compact connected closed orientable 3-manifold M^3 is zero. Prove that the result still holds even if M is non-orientable. (You can assume that a compact manifold is homotopy-equivalent to a finite CW complex.)
- **5.** Show that any homotopy equivalence from $\mathbb{C}P^{2n}$ to itself is orientation-preserving, that is has degree +1.
- **6.** Calculate the homotopy group $\pi_3(\mathbb{R}P^4 \vee S^3)$. (Here \vee denotes the one-point union of the two spaces).
- 7. Let M^3 be a homology sphere: a connected closed compact 3-manifold with the same homology groups as S^3 . Calculate the fundamental group and homology of the suspension ΣM ? Use this to show that the suspension is homotopy-equivalent to S^4 .
- **8.** Let F_n denote the free group on n generators. Use covering space theory to prove that F_2 contains subgroups isomorphic to F_n , for every $n \ge 1$.