QUALIFYING EXAMS

44. Fall 2024

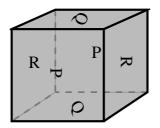
Three-hour exam. Do as many questions as you can. Each is worth 4 marks. Please write clear maths and clear English which could be understood by one of your fellow students - pictures aid explanation but should not replace it! Include as much detail as is appropriate; you can use standard results and theorems in your answers provided you refer to them clearly.

1. Let Σ_g be the closed orientable surface of genus $g \ge 0$. Show that if g < h, there does not exist a degree 1 map $\Sigma_q \to \Sigma_h$.

2. Give an example (a) of a space X with $\pi_2(X) = 0$ and $H_2(X) \neq 0$ and (b) of a space Y with $\pi_2(Y) \neq 0$ and $H_2(Y) = 0$.

3. Let K be a CW-complex with one 0-cell v, and let $f : (K, v) \to (K, v)$ be a basepoint-preserving map. Let T_f be the mapping torus of f: that is, the space obtained from $K \times I$ by gluing $(x, 1) \sim (f(x), 0)$ for all x. Show that a presentation of $\pi_1(T_f)$ may be obtained from a presentation of $\pi_1(K)$ by adjoining one new generator t and certain relations involving f_* .

4. Let X be the space obtained by gluing opposite pairs of faces of a standard cube I^3 via 90 degree rotations, as shown. Compute the homology $H_*(X;\mathbb{Z})$.



5. Let Σ be a one-holed torus (delete an open disc from a standard torus) whose boundary is identified with the standard S^1 . Let (X, x_0) be a based path-connected space, α a loop based at x_0 , and $[\alpha]$ the corresponding class in $\pi_1(X, x_0)$. Show that $[\alpha]$ may be expressed algebraically as a commutator $yzy^{-1}z^{-1}$ of two elements $y, z \in \pi_1(X, x_0)$ if and only if " α extends to a map of Σ ", meaning that α may be expressed as $f|_{\partial\Sigma}$ for some map $f: \Sigma \to X$. Is there an analogue of this result for one-holed higher-genus surfaces?

6. Use Mayer-Vietoris to show that the reduced homology of S^n is \mathbb{Z} in dimension n and zero otherwise, for all $n \ge 0$.

7. What is the fundamental group of $X = \mathbb{R}P^3 \# \mathbb{R}P^3$? Give a description of the universal cover \tilde{X} of X and use this to calculate $\pi_2(X)$.

8. Compute $\operatorname{Tor}(\mathbb{Z} \oplus \mathbb{Z}_4, \mathbb{Z}_6 \oplus \mathbb{Z}_8)$.