Mathematical Statistics (281ABC) Qualifying Exam, May 19, 2011

- **Problem 1** Consider i.i.d. data $X_1, ..., X_n$ from a parametric family of distributions \mathcal{P}_{θ} , where θ is a unknown scalar parameter, i.e. of dimension one. Denote $f(x; \theta)$ either the probability function or the density function. Let $\hat{\theta}$ be the maximum likelihood estimator (MLE). Give, as complete as possible, a set of conditions under which
 - (a) the MLE $\hat{\theta}$ exists (5 points);
 - (b) $\hat{\theta}$ is consistent for the true value of θ (5 points);
 - (c) $\hat{\theta}$ is asymptotically normal. (5 points).
- **Problem 2** Now consider i.i.d. data $(X_1, \delta_1), ..., (X_n, \delta_n)$ where the $X_i = \min(T_i, C_i)$ is possibly right-censored, and $\delta_i = I(T_i \leq C_i)$. Assume that C_i follows the random censorship assumption. Again denote $f(t; \theta)$ the density function for the distribution of T_i .
 - (a) Write down the likelihood function $L(\theta)$ for this data; (5 points)
 - (b) Give conditions under which the MLE $\hat{\theta}$ is consistent and asymptotically normal. (5 points)
 - (c) Choose a favorite parametric distribution of your own for $f(t;\theta)$, find $\hat{\theta}$; (5 points)
 - (d) Estimate the variance of $\hat{\theta}$. (5 points)
- **Problem 3** Consider the term 'asymptotic relative efficiency' (ARE); it appears a few times during our course.
 - (a) Give its definition in the context of point estimation; (5 points)
 - (b) Give its definition (i.e. Pitman ARE) in the context of hypothesis testing. (5 points)
 - (c) Now consider the score test based on the likelihood theory, show that it's fully efficient asymptotically; (5 points)
 - (d) Finally consider the problem of the weighted log-rank tests for the G^{ρ} family, where we derived the ARE. Under further assumptions that the censoring distributions are the same in the two comparison groups, the asymptotic efficacy for the G^{ρ} weighted log-rank test under the alternative which is given by the $G^{\rho'}$ distribution simplifies to

$$(\mu_{\rho}/\sigma_{\rho})^2 = \frac{\{\int_0^\infty \pi(u)S(u)^{\rho+\rho'}d\Lambda(u)\}^2}{\int_0^\infty \pi(u)S(u)^{2\rho}d\Lambda(u)},$$

where $\pi(u) = P(T \ge u, C \ge u)$ is the probability of being 'at risk' at time u for any member of the two groups under the null hypothesis, and $S(\cdot)$ and $\Lambda(\cdot)$ are

the survival function and the cumulative hazard function, respectively, again all under the null hypothesis.

Can you deduce the following from the above expression: [**Hint**: these parts do not require that you remember any of the formulas we talked about related to the G^{ρ} family or during the derivation of the ARE]

- i. for given alternative distribution $G^{\rho'}$, the maximum efficacy of the G^{ρ} test is achieved when $\rho = \rho'$; (5 points)
- ii. if we further assume that the survival function for the censoring distribution $S_c(u) = S(u)^{\alpha}$, then the asymptotic efficacy becomes $(2\rho + \alpha + 1)(2\rho' + \alpha + 1)/(\rho + \rho' + \alpha + 1)^2$; (5 points)
- iii. use the above from part ii. to compute the ARE of Peto's Wilcoxon log-rank test (i.e. G^1) versus the unweighted log-rank test under the proportional hazards alternative assuming $\alpha = .5$ and $\alpha = 0$. (5 points)

Problem 4 Using likelihood ratio test, show that the Pearson's test for $r \times c$ contingency table has approximately chi-squared distribution with the correct number of degrees of freedom under the null hypothesis that the column and row variables are independent. (15 points)

anestion V (Please use separate sheets of paper for this one, (a) Define what's meant by saying a sequence of romdom variables (Xn) is bounded in probability (or "tight", i.e. Xn = Op(i)). Als define what's meant by another sequence $Y_n = op(X_n)$ as $n \to \infty$. (b) Prove that y = Op(1) and $y_n = Op(x_n)$ then $y_n = Op(1)$. (c) State and prove the theorem known as the delta method. (d) $X_1,...,X_n \sim iid Pois(\lambda)$. Compute the ARE $(\hat{\lambda}_2^2,\hat{\lambda}_1^2)$, where $\hat{\lambda}_i$ is the NMVUE $\hat{q} \hat{\lambda}_j$ and $\hat{\lambda}_2 = -\log(\hat{n} \sum_i 1[x_i = 0] + 1)$ (The target function of the squared estimators λ_i^2 is of course λ^2 . Also note the "+1" in 2 simply prevents taking the log of O, Which would occur amyway with probability >0.) (e) How would you tell, from much simpler considerations, that 2 is In-consistent? (f) Suppose W,,..., Wr ~ iid. fo & ifo & a location family. Show that you can base a consistent estimator for 0 on X(n) alone (the largest order statistic), provided there are sequences (an) and (bn) with $b_n = o(1)$, such that $\{\frac{x_{(n)} - a_n}{b_n}\} = O_f(1)$. Show that if van X(n) >0 the condition by = 0(1) can be guaranteed For miterest only: this is a very fine toil condition on the shape fo; the uniform on [0,1] has it (easy), the normal (0,1) has it (tricky), and

the exponential (i) does not have it (easy).)