Note: In what follows, all p.d.f.'s are densities with respect to Lebesgue measure on the real line.

(1) Assume X₁, X₂ is a random sample of size 2 from the distribution having p.d.f.

$$f(x) = e^{-x}$$
, $0 < x < \infty$
= 0 elsewhere.

a. Find the p.d.f. of $W = aX_1 + bX_2$ for any constants a and b. Then compute the mean and variance of this distribution.

b. Find the p.d.f. of $Y = max\{X_1, X_2\}$.

- (2) Suppose that X has a Poisson distribution with parameter λ . Now let the parameter $\theta = e^{-2\lambda}$ be estimated by $\hat{\theta} = (-1)^{X}$.
 - a. Show that this estimator is unbiased.
 - b. Further, show that it is UMVUE.

But this estimator is absurd, why? Comment on the theory of UMVUE in light of this example.

(3) Suppose the p.d.f. of X is given by f(x) as stated in problem (1). Compute the characteristic function and then

$$\mu = E(X)$$
 and $\sigma^2 = Var(X)$.

Now suppose a random sample of size n is taken from this distribution where the sample mean is given by \overline{X}_n . Use a characteristic function argument to prove that

$$\sqrt{n}$$
 ($\overline{X}_n - \mu$)/ $\sigma \xrightarrow{L} Z \sim N(0,1)$.

(4) Assume $X_1, X_2, ..., X_n$ is a random sample taken from a distribution whose p.d.f. is given by

$$f(x;\theta) = \frac{1}{2\theta^3} x^2 e^{-x/\theta}; \quad 0 < \theta < \infty, \quad 0 < x < \infty$$

$$= 0 \quad \text{elsewhere} .$$

Find the Cramer-Rao lower bound and thus the asymptotic variance of the maximum likelihood estimator of θ .

(5) Find the distribution of the range of a random sample of size n where the p.d.f. is given by

$$f(x;\theta) = 4e^{-4x}; \quad 0 < x < \infty$$

= 0 elsewhere.

- (6) Let $X_{(1)} < X_{(2)} < ... < X_{(n)}$ be the order statistics for a random sample (of size n) from the distribution given by Problem (1).
 - a. Show that $X_{(r)}$ and $X_{(s)} X_{(r)}$ are independent for s>r.
 - b. Find the distribution of $X_{(r+1)} X_{(r)}$.
 - c. Interpret the significance of these results if the sample arose from a life test on n light bulbs with exponential lifetimes (i.e., the distribution from Problem (1)).