Math 281 A,B

Qualifying Tram. Sept. 20, 1999

(1) Assume X_1 , X_2 is a random sample of size 2 from the distribution having p.d.f.

$$f(x) = e^{-x}$$
, $0 < x < \infty$
= 0 elsewhere.

- a. Find the p.d.f. of $W = aX_1 + bX_2$ for any constants a and b. Then compute the mean and variance of this distribution.
 - b. Find the p.d.f. of $Y = max\{X_1, X_2\}$.
- (2) Suppose that X has a Poisson distribution with parameter λ . Now let the parameter $\theta = e^{-2\lambda}$ be estimated by $\hat{\theta} = (-1)^{x}$.
 - a. Show that this estimator is unbiased.
 - b. Further, show that it is UMVUE. But this estimator is absurd, why? Comment on the theory of UMVUE in light of this example.
 - (3) Let $Y \sim N_n(X\beta, \sigma^2 V)$ in which X is nxp (with n>p), $rank(X) \le p$, β is px1, and V>0 is nxn. Assume, also, that β and σ^2 are unknown. Derive the complete, sufficient statistic for (β, σ^2) . Write down the usual unbiased estimators for β and σ^2 . Show that these estimators are indeed unbiased. Finally, obtain general condions under which a quadratic form in Y is an unbiased estimator of σ^2 .

(4) State the Helly-Bray theorem and use this result to prove that

$$\begin{array}{cccc} L & & \\ X_n & \to & \phi_n(t) & \to \phi(t) \end{array}$$

where X_n and X are real valued random variables with respective characteristic functions $\phi_n(t)$ and $\phi(t)$. (In what follows, you will need to assume that the converse is also true.)

(5) Suppose the p.d.f. of X is given by f(x) as stated in problem (1). Compute the characteristic function and then

$$\mu = E(X)$$
 and $\sigma^2 = Var(X)$.

Now suppose a random sample of size n is taken from this distribution where the sample mean is given by \overline{X}_n . Use a characteristic function argument to prove that

$$\sqrt{n}$$
 ($\overline{X}_n - \mu$)/ $\sigma \xrightarrow{L} Z \sim N(0,1)$.